xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision e5819e27321b93629aa7a561b98fa7fec1cb8391)
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "local"
52 
53 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
54 
55 //===----------------------------------------------------------------------===//
56 //  Local constant propagation.
57 //
58 
59 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
60 /// constant value, convert it into an unconditional branch to the constant
61 /// destination.  This is a nontrivial operation because the successors of this
62 /// basic block must have their PHI nodes updated.
63 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
64 /// conditions and indirectbr addresses this might make dead if
65 /// DeleteDeadConditions is true.
66 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
67                                   const TargetLibraryInfo *TLI) {
68   TerminatorInst *T = BB->getTerminator();
69   IRBuilder<> Builder(T);
70 
71   // Branch - See if we are conditional jumping on constant
72   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
73     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
74     BasicBlock *Dest1 = BI->getSuccessor(0);
75     BasicBlock *Dest2 = BI->getSuccessor(1);
76 
77     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
78       // Are we branching on constant?
79       // YES.  Change to unconditional branch...
80       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
81       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
82 
83       //cerr << "Function: " << T->getParent()->getParent()
84       //     << "\nRemoving branch from " << T->getParent()
85       //     << "\n\nTo: " << OldDest << endl;
86 
87       // Let the basic block know that we are letting go of it.  Based on this,
88       // it will adjust it's PHI nodes.
89       OldDest->removePredecessor(BB);
90 
91       // Replace the conditional branch with an unconditional one.
92       Builder.CreateBr(Destination);
93       BI->eraseFromParent();
94       return true;
95     }
96 
97     if (Dest2 == Dest1) {       // Conditional branch to same location?
98       // This branch matches something like this:
99       //     br bool %cond, label %Dest, label %Dest
100       // and changes it into:  br label %Dest
101 
102       // Let the basic block know that we are letting go of one copy of it.
103       assert(BI->getParent() && "Terminator not inserted in block!");
104       Dest1->removePredecessor(BI->getParent());
105 
106       // Replace the conditional branch with an unconditional one.
107       Builder.CreateBr(Dest1);
108       Value *Cond = BI->getCondition();
109       BI->eraseFromParent();
110       if (DeleteDeadConditions)
111         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
112       return true;
113     }
114     return false;
115   }
116 
117   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
118     // If we are switching on a constant, we can convert the switch to an
119     // unconditional branch.
120     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
121     BasicBlock *DefaultDest = SI->getDefaultDest();
122     BasicBlock *TheOnlyDest = DefaultDest;
123 
124     // If the default is unreachable, ignore it when searching for TheOnlyDest.
125     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
126         SI->getNumCases() > 0) {
127       TheOnlyDest = SI->case_begin().getCaseSuccessor();
128     }
129 
130     // Figure out which case it goes to.
131     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
132          i != e; ++i) {
133       // Found case matching a constant operand?
134       if (i.getCaseValue() == CI) {
135         TheOnlyDest = i.getCaseSuccessor();
136         break;
137       }
138 
139       // Check to see if this branch is going to the same place as the default
140       // dest.  If so, eliminate it as an explicit compare.
141       if (i.getCaseSuccessor() == DefaultDest) {
142         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
143         unsigned NCases = SI->getNumCases();
144         // Fold the case metadata into the default if there will be any branches
145         // left, unless the metadata doesn't match the switch.
146         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
147           // Collect branch weights into a vector.
148           SmallVector<uint32_t, 8> Weights;
149           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
150                ++MD_i) {
151             ConstantInt *CI =
152                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
153             assert(CI);
154             Weights.push_back(CI->getValue().getZExtValue());
155           }
156           // Merge weight of this case to the default weight.
157           unsigned idx = i.getCaseIndex();
158           Weights[0] += Weights[idx+1];
159           // Remove weight for this case.
160           std::swap(Weights[idx+1], Weights.back());
161           Weights.pop_back();
162           SI->setMetadata(LLVMContext::MD_prof,
163                           MDBuilder(BB->getContext()).
164                           createBranchWeights(Weights));
165         }
166         // Remove this entry.
167         DefaultDest->removePredecessor(SI->getParent());
168         SI->removeCase(i);
169         --i; --e;
170         continue;
171       }
172 
173       // Otherwise, check to see if the switch only branches to one destination.
174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
175       // destinations.
176       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
177     }
178 
179     if (CI && !TheOnlyDest) {
180       // Branching on a constant, but not any of the cases, go to the default
181       // successor.
182       TheOnlyDest = SI->getDefaultDest();
183     }
184 
185     // If we found a single destination that we can fold the switch into, do so
186     // now.
187     if (TheOnlyDest) {
188       // Insert the new branch.
189       Builder.CreateBr(TheOnlyDest);
190       BasicBlock *BB = SI->getParent();
191 
192       // Remove entries from PHI nodes which we no longer branch to...
193       for (BasicBlock *Succ : SI->successors()) {
194         // Found case matching a constant operand?
195         if (Succ == TheOnlyDest)
196           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
197         else
198           Succ->removePredecessor(BB);
199       }
200 
201       // Delete the old switch.
202       Value *Cond = SI->getCondition();
203       SI->eraseFromParent();
204       if (DeleteDeadConditions)
205         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
206       return true;
207     }
208 
209     if (SI->getNumCases() == 1) {
210       // Otherwise, we can fold this switch into a conditional branch
211       // instruction if it has only one non-default destination.
212       SwitchInst::CaseIt FirstCase = SI->case_begin();
213       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
214           FirstCase.getCaseValue(), "cond");
215 
216       // Insert the new branch.
217       BranchInst *NewBr = Builder.CreateCondBr(Cond,
218                                                FirstCase.getCaseSuccessor(),
219                                                SI->getDefaultDest());
220       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
221       if (MD && MD->getNumOperands() == 3) {
222         ConstantInt *SICase =
223             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
224         ConstantInt *SIDef =
225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
226         assert(SICase && SIDef);
227         // The TrueWeight should be the weight for the single case of SI.
228         NewBr->setMetadata(LLVMContext::MD_prof,
229                         MDBuilder(BB->getContext()).
230                         createBranchWeights(SICase->getValue().getZExtValue(),
231                                             SIDef->getValue().getZExtValue()));
232       }
233 
234       // Update make.implicit metadata to the newly-created conditional branch.
235       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
236       if (MakeImplicitMD)
237         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
238 
239       // Delete the old switch.
240       SI->eraseFromParent();
241       return true;
242     }
243     return false;
244   }
245 
246   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
247     // indirectbr blockaddress(@F, @BB) -> br label @BB
248     if (BlockAddress *BA =
249           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
250       BasicBlock *TheOnlyDest = BA->getBasicBlock();
251       // Insert the new branch.
252       Builder.CreateBr(TheOnlyDest);
253 
254       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
255         if (IBI->getDestination(i) == TheOnlyDest)
256           TheOnlyDest = nullptr;
257         else
258           IBI->getDestination(i)->removePredecessor(IBI->getParent());
259       }
260       Value *Address = IBI->getAddress();
261       IBI->eraseFromParent();
262       if (DeleteDeadConditions)
263         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
264 
265       // If we didn't find our destination in the IBI successor list, then we
266       // have undefined behavior.  Replace the unconditional branch with an
267       // 'unreachable' instruction.
268       if (TheOnlyDest) {
269         BB->getTerminator()->eraseFromParent();
270         new UnreachableInst(BB->getContext(), BB);
271       }
272 
273       return true;
274     }
275   }
276 
277   return false;
278 }
279 
280 
281 //===----------------------------------------------------------------------===//
282 //  Local dead code elimination.
283 //
284 
285 /// isInstructionTriviallyDead - Return true if the result produced by the
286 /// instruction is not used, and the instruction has no side effects.
287 ///
288 bool llvm::isInstructionTriviallyDead(Instruction *I,
289                                       const TargetLibraryInfo *TLI) {
290   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
291 
292   // We don't want the landingpad-like instructions removed by anything this
293   // general.
294   if (I->isEHPad())
295     return false;
296 
297   // We don't want debug info removed by anything this general, unless
298   // debug info is empty.
299   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
300     if (DDI->getAddress())
301       return false;
302     return true;
303   }
304   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
305     if (DVI->getValue())
306       return false;
307     return true;
308   }
309 
310   if (!I->mayHaveSideEffects()) return true;
311 
312   // Special case intrinsics that "may have side effects" but can be deleted
313   // when dead.
314   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
315     // Safe to delete llvm.stacksave if dead.
316     if (II->getIntrinsicID() == Intrinsic::stacksave)
317       return true;
318 
319     // Lifetime intrinsics are dead when their right-hand is undef.
320     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
321         II->getIntrinsicID() == Intrinsic::lifetime_end)
322       return isa<UndefValue>(II->getArgOperand(1));
323 
324     // Assumptions are dead if their condition is trivially true.  Guards on
325     // true are operationally no-ops.  In the future we can consider more
326     // sophisticated tradeoffs for guards considering potential for check
327     // widening, but for now we keep things simple.
328     if (II->getIntrinsicID() == Intrinsic::assume ||
329         II->getIntrinsicID() == Intrinsic::experimental_guard) {
330       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
331         return !Cond->isZero();
332 
333       return false;
334     }
335   }
336 
337   if (isAllocLikeFn(I, TLI)) return true;
338 
339   if (CallInst *CI = isFreeCall(I, TLI))
340     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
341       return C->isNullValue() || isa<UndefValue>(C);
342 
343   return false;
344 }
345 
346 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
347 /// trivially dead instruction, delete it.  If that makes any of its operands
348 /// trivially dead, delete them too, recursively.  Return true if any
349 /// instructions were deleted.
350 bool
351 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
352                                                  const TargetLibraryInfo *TLI) {
353   Instruction *I = dyn_cast<Instruction>(V);
354   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
355     return false;
356 
357   SmallVector<Instruction*, 16> DeadInsts;
358   DeadInsts.push_back(I);
359 
360   do {
361     I = DeadInsts.pop_back_val();
362 
363     // Null out all of the instruction's operands to see if any operand becomes
364     // dead as we go.
365     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
366       Value *OpV = I->getOperand(i);
367       I->setOperand(i, nullptr);
368 
369       if (!OpV->use_empty()) continue;
370 
371       // If the operand is an instruction that became dead as we nulled out the
372       // operand, and if it is 'trivially' dead, delete it in a future loop
373       // iteration.
374       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
375         if (isInstructionTriviallyDead(OpI, TLI))
376           DeadInsts.push_back(OpI);
377     }
378 
379     I->eraseFromParent();
380   } while (!DeadInsts.empty());
381 
382   return true;
383 }
384 
385 /// areAllUsesEqual - Check whether the uses of a value are all the same.
386 /// This is similar to Instruction::hasOneUse() except this will also return
387 /// true when there are no uses or multiple uses that all refer to the same
388 /// value.
389 static bool areAllUsesEqual(Instruction *I) {
390   Value::user_iterator UI = I->user_begin();
391   Value::user_iterator UE = I->user_end();
392   if (UI == UE)
393     return true;
394 
395   User *TheUse = *UI;
396   for (++UI; UI != UE; ++UI) {
397     if (*UI != TheUse)
398       return false;
399   }
400   return true;
401 }
402 
403 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
404 /// dead PHI node, due to being a def-use chain of single-use nodes that
405 /// either forms a cycle or is terminated by a trivially dead instruction,
406 /// delete it.  If that makes any of its operands trivially dead, delete them
407 /// too, recursively.  Return true if a change was made.
408 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
409                                         const TargetLibraryInfo *TLI) {
410   SmallPtrSet<Instruction*, 4> Visited;
411   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
412        I = cast<Instruction>(*I->user_begin())) {
413     if (I->use_empty())
414       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
415 
416     // If we find an instruction more than once, we're on a cycle that
417     // won't prove fruitful.
418     if (!Visited.insert(I).second) {
419       // Break the cycle and delete the instruction and its operands.
420       I->replaceAllUsesWith(UndefValue::get(I->getType()));
421       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
422       return true;
423     }
424   }
425   return false;
426 }
427 
428 static bool
429 simplifyAndDCEInstruction(Instruction *I,
430                           SmallSetVector<Instruction *, 16> &WorkList,
431                           const DataLayout &DL,
432                           const TargetLibraryInfo *TLI) {
433   if (isInstructionTriviallyDead(I, TLI)) {
434     // Null out all of the instruction's operands to see if any operand becomes
435     // dead as we go.
436     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
437       Value *OpV = I->getOperand(i);
438       I->setOperand(i, nullptr);
439 
440       if (!OpV->use_empty() || I == OpV)
441         continue;
442 
443       // If the operand is an instruction that became dead as we nulled out the
444       // operand, and if it is 'trivially' dead, delete it in a future loop
445       // iteration.
446       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
447         if (isInstructionTriviallyDead(OpI, TLI))
448           WorkList.insert(OpI);
449     }
450 
451     I->eraseFromParent();
452 
453     return true;
454   }
455 
456   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
457     // Add the users to the worklist. CAREFUL: an instruction can use itself,
458     // in the case of a phi node.
459     for (User *U : I->users())
460       if (U != I)
461         WorkList.insert(cast<Instruction>(U));
462 
463     // Replace the instruction with its simplified value.
464     I->replaceAllUsesWith(SimpleV);
465     I->eraseFromParent();
466     return true;
467   }
468   return false;
469 }
470 
471 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
472 /// simplify any instructions in it and recursively delete dead instructions.
473 ///
474 /// This returns true if it changed the code, note that it can delete
475 /// instructions in other blocks as well in this block.
476 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
477                                        const TargetLibraryInfo *TLI) {
478   bool MadeChange = false;
479   const DataLayout &DL = BB->getModule()->getDataLayout();
480 
481 #ifndef NDEBUG
482   // In debug builds, ensure that the terminator of the block is never replaced
483   // or deleted by these simplifications. The idea of simplification is that it
484   // cannot introduce new instructions, and there is no way to replace the
485   // terminator of a block without introducing a new instruction.
486   AssertingVH<Instruction> TerminatorVH(&BB->back());
487 #endif
488 
489   SmallSetVector<Instruction *, 16> WorkList;
490   // Iterate over the original function, only adding insts to the worklist
491   // if they actually need to be revisited. This avoids having to pre-init
492   // the worklist with the entire function's worth of instructions.
493   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
494        BI != E;) {
495     assert(!BI->isTerminator());
496     Instruction *I = &*BI;
497     ++BI;
498 
499     // We're visiting this instruction now, so make sure it's not in the
500     // worklist from an earlier visit.
501     if (!WorkList.count(I))
502       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
503   }
504 
505   while (!WorkList.empty()) {
506     Instruction *I = WorkList.pop_back_val();
507     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
508   }
509   return MadeChange;
510 }
511 
512 //===----------------------------------------------------------------------===//
513 //  Control Flow Graph Restructuring.
514 //
515 
516 
517 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
518 /// method is called when we're about to delete Pred as a predecessor of BB.  If
519 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
520 ///
521 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
522 /// nodes that collapse into identity values.  For example, if we have:
523 ///   x = phi(1, 0, 0, 0)
524 ///   y = and x, z
525 ///
526 /// .. and delete the predecessor corresponding to the '1', this will attempt to
527 /// recursively fold the and to 0.
528 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
529   // This only adjusts blocks with PHI nodes.
530   if (!isa<PHINode>(BB->begin()))
531     return;
532 
533   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
534   // them down.  This will leave us with single entry phi nodes and other phis
535   // that can be removed.
536   BB->removePredecessor(Pred, true);
537 
538   WeakVH PhiIt = &BB->front();
539   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
540     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
541     Value *OldPhiIt = PhiIt;
542 
543     if (!recursivelySimplifyInstruction(PN))
544       continue;
545 
546     // If recursive simplification ended up deleting the next PHI node we would
547     // iterate to, then our iterator is invalid, restart scanning from the top
548     // of the block.
549     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
550   }
551 }
552 
553 
554 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
555 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
556 /// between them, moving the instructions in the predecessor into DestBB and
557 /// deleting the predecessor block.
558 ///
559 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
560   // If BB has single-entry PHI nodes, fold them.
561   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
562     Value *NewVal = PN->getIncomingValue(0);
563     // Replace self referencing PHI with undef, it must be dead.
564     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
565     PN->replaceAllUsesWith(NewVal);
566     PN->eraseFromParent();
567   }
568 
569   BasicBlock *PredBB = DestBB->getSinglePredecessor();
570   assert(PredBB && "Block doesn't have a single predecessor!");
571 
572   // Zap anything that took the address of DestBB.  Not doing this will give the
573   // address an invalid value.
574   if (DestBB->hasAddressTaken()) {
575     BlockAddress *BA = BlockAddress::get(DestBB);
576     Constant *Replacement =
577       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
578     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
579                                                      BA->getType()));
580     BA->destroyConstant();
581   }
582 
583   // Anything that branched to PredBB now branches to DestBB.
584   PredBB->replaceAllUsesWith(DestBB);
585 
586   // Splice all the instructions from PredBB to DestBB.
587   PredBB->getTerminator()->eraseFromParent();
588   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
589 
590   // If the PredBB is the entry block of the function, move DestBB up to
591   // become the entry block after we erase PredBB.
592   if (PredBB == &DestBB->getParent()->getEntryBlock())
593     DestBB->moveAfter(PredBB);
594 
595   if (DT) {
596     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
597     DT->changeImmediateDominator(DestBB, PredBBIDom);
598     DT->eraseNode(PredBB);
599   }
600   // Nuke BB.
601   PredBB->eraseFromParent();
602 }
603 
604 /// CanMergeValues - Return true if we can choose one of these values to use
605 /// in place of the other. Note that we will always choose the non-undef
606 /// value to keep.
607 static bool CanMergeValues(Value *First, Value *Second) {
608   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
609 }
610 
611 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
612 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
613 ///
614 /// Assumption: Succ is the single successor for BB.
615 ///
616 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
617   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
618 
619   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
620         << Succ->getName() << "\n");
621   // Shortcut, if there is only a single predecessor it must be BB and merging
622   // is always safe
623   if (Succ->getSinglePredecessor()) return true;
624 
625   // Make a list of the predecessors of BB
626   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
627 
628   // Look at all the phi nodes in Succ, to see if they present a conflict when
629   // merging these blocks
630   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
631     PHINode *PN = cast<PHINode>(I);
632 
633     // If the incoming value from BB is again a PHINode in
634     // BB which has the same incoming value for *PI as PN does, we can
635     // merge the phi nodes and then the blocks can still be merged
636     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
637     if (BBPN && BBPN->getParent() == BB) {
638       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
639         BasicBlock *IBB = PN->getIncomingBlock(PI);
640         if (BBPreds.count(IBB) &&
641             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
642                             PN->getIncomingValue(PI))) {
643           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
644                 << Succ->getName() << " is conflicting with "
645                 << BBPN->getName() << " with regard to common predecessor "
646                 << IBB->getName() << "\n");
647           return false;
648         }
649       }
650     } else {
651       Value* Val = PN->getIncomingValueForBlock(BB);
652       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
653         // See if the incoming value for the common predecessor is equal to the
654         // one for BB, in which case this phi node will not prevent the merging
655         // of the block.
656         BasicBlock *IBB = PN->getIncomingBlock(PI);
657         if (BBPreds.count(IBB) &&
658             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
659           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
660                 << Succ->getName() << " is conflicting with regard to common "
661                 << "predecessor " << IBB->getName() << "\n");
662           return false;
663         }
664       }
665     }
666   }
667 
668   return true;
669 }
670 
671 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
672 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
673 
674 /// \brief Determines the value to use as the phi node input for a block.
675 ///
676 /// Select between \p OldVal any value that we know flows from \p BB
677 /// to a particular phi on the basis of which one (if either) is not
678 /// undef. Update IncomingValues based on the selected value.
679 ///
680 /// \param OldVal The value we are considering selecting.
681 /// \param BB The block that the value flows in from.
682 /// \param IncomingValues A map from block-to-value for other phi inputs
683 /// that we have examined.
684 ///
685 /// \returns the selected value.
686 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
687                                           IncomingValueMap &IncomingValues) {
688   if (!isa<UndefValue>(OldVal)) {
689     assert((!IncomingValues.count(BB) ||
690             IncomingValues.find(BB)->second == OldVal) &&
691            "Expected OldVal to match incoming value from BB!");
692 
693     IncomingValues.insert(std::make_pair(BB, OldVal));
694     return OldVal;
695   }
696 
697   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
698   if (It != IncomingValues.end()) return It->second;
699 
700   return OldVal;
701 }
702 
703 /// \brief Create a map from block to value for the operands of a
704 /// given phi.
705 ///
706 /// Create a map from block to value for each non-undef value flowing
707 /// into \p PN.
708 ///
709 /// \param PN The phi we are collecting the map for.
710 /// \param IncomingValues [out] The map from block to value for this phi.
711 static void gatherIncomingValuesToPhi(PHINode *PN,
712                                       IncomingValueMap &IncomingValues) {
713   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
714     BasicBlock *BB = PN->getIncomingBlock(i);
715     Value *V = PN->getIncomingValue(i);
716 
717     if (!isa<UndefValue>(V))
718       IncomingValues.insert(std::make_pair(BB, V));
719   }
720 }
721 
722 /// \brief Replace the incoming undef values to a phi with the values
723 /// from a block-to-value map.
724 ///
725 /// \param PN The phi we are replacing the undefs in.
726 /// \param IncomingValues A map from block to value.
727 static void replaceUndefValuesInPhi(PHINode *PN,
728                                     const IncomingValueMap &IncomingValues) {
729   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
730     Value *V = PN->getIncomingValue(i);
731 
732     if (!isa<UndefValue>(V)) continue;
733 
734     BasicBlock *BB = PN->getIncomingBlock(i);
735     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
736     if (It == IncomingValues.end()) continue;
737 
738     PN->setIncomingValue(i, It->second);
739   }
740 }
741 
742 /// \brief Replace a value flowing from a block to a phi with
743 /// potentially multiple instances of that value flowing from the
744 /// block's predecessors to the phi.
745 ///
746 /// \param BB The block with the value flowing into the phi.
747 /// \param BBPreds The predecessors of BB.
748 /// \param PN The phi that we are updating.
749 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
750                                                 const PredBlockVector &BBPreds,
751                                                 PHINode *PN) {
752   Value *OldVal = PN->removeIncomingValue(BB, false);
753   assert(OldVal && "No entry in PHI for Pred BB!");
754 
755   IncomingValueMap IncomingValues;
756 
757   // We are merging two blocks - BB, and the block containing PN - and
758   // as a result we need to redirect edges from the predecessors of BB
759   // to go to the block containing PN, and update PN
760   // accordingly. Since we allow merging blocks in the case where the
761   // predecessor and successor blocks both share some predecessors,
762   // and where some of those common predecessors might have undef
763   // values flowing into PN, we want to rewrite those values to be
764   // consistent with the non-undef values.
765 
766   gatherIncomingValuesToPhi(PN, IncomingValues);
767 
768   // If this incoming value is one of the PHI nodes in BB, the new entries
769   // in the PHI node are the entries from the old PHI.
770   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
771     PHINode *OldValPN = cast<PHINode>(OldVal);
772     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
773       // Note that, since we are merging phi nodes and BB and Succ might
774       // have common predecessors, we could end up with a phi node with
775       // identical incoming branches. This will be cleaned up later (and
776       // will trigger asserts if we try to clean it up now, without also
777       // simplifying the corresponding conditional branch).
778       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
779       Value *PredVal = OldValPN->getIncomingValue(i);
780       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
781                                                     IncomingValues);
782 
783       // And add a new incoming value for this predecessor for the
784       // newly retargeted branch.
785       PN->addIncoming(Selected, PredBB);
786     }
787   } else {
788     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
789       // Update existing incoming values in PN for this
790       // predecessor of BB.
791       BasicBlock *PredBB = BBPreds[i];
792       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
793                                                     IncomingValues);
794 
795       // And add a new incoming value for this predecessor for the
796       // newly retargeted branch.
797       PN->addIncoming(Selected, PredBB);
798     }
799   }
800 
801   replaceUndefValuesInPhi(PN, IncomingValues);
802 }
803 
804 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
805 /// unconditional branch, and contains no instructions other than PHI nodes,
806 /// potential side-effect free intrinsics and the branch.  If possible,
807 /// eliminate BB by rewriting all the predecessors to branch to the successor
808 /// block and return true.  If we can't transform, return false.
809 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
810   assert(BB != &BB->getParent()->getEntryBlock() &&
811          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
812 
813   // We can't eliminate infinite loops.
814   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
815   if (BB == Succ) return false;
816 
817   // Check to see if merging these blocks would cause conflicts for any of the
818   // phi nodes in BB or Succ. If not, we can safely merge.
819   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
820 
821   // Check for cases where Succ has multiple predecessors and a PHI node in BB
822   // has uses which will not disappear when the PHI nodes are merged.  It is
823   // possible to handle such cases, but difficult: it requires checking whether
824   // BB dominates Succ, which is non-trivial to calculate in the case where
825   // Succ has multiple predecessors.  Also, it requires checking whether
826   // constructing the necessary self-referential PHI node doesn't introduce any
827   // conflicts; this isn't too difficult, but the previous code for doing this
828   // was incorrect.
829   //
830   // Note that if this check finds a live use, BB dominates Succ, so BB is
831   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
832   // folding the branch isn't profitable in that case anyway.
833   if (!Succ->getSinglePredecessor()) {
834     BasicBlock::iterator BBI = BB->begin();
835     while (isa<PHINode>(*BBI)) {
836       for (Use &U : BBI->uses()) {
837         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
838           if (PN->getIncomingBlock(U) != BB)
839             return false;
840         } else {
841           return false;
842         }
843       }
844       ++BBI;
845     }
846   }
847 
848   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
849 
850   if (isa<PHINode>(Succ->begin())) {
851     // If there is more than one pred of succ, and there are PHI nodes in
852     // the successor, then we need to add incoming edges for the PHI nodes
853     //
854     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
855 
856     // Loop over all of the PHI nodes in the successor of BB.
857     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
858       PHINode *PN = cast<PHINode>(I);
859 
860       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
861     }
862   }
863 
864   if (Succ->getSinglePredecessor()) {
865     // BB is the only predecessor of Succ, so Succ will end up with exactly
866     // the same predecessors BB had.
867 
868     // Copy over any phi, debug or lifetime instruction.
869     BB->getTerminator()->eraseFromParent();
870     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
871                                BB->getInstList());
872   } else {
873     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
874       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
875       assert(PN->use_empty() && "There shouldn't be any uses here!");
876       PN->eraseFromParent();
877     }
878   }
879 
880   // Everything that jumped to BB now goes to Succ.
881   BB->replaceAllUsesWith(Succ);
882   if (!Succ->hasName()) Succ->takeName(BB);
883   BB->eraseFromParent();              // Delete the old basic block.
884   return true;
885 }
886 
887 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
888 /// nodes in this block. This doesn't try to be clever about PHI nodes
889 /// which differ only in the order of the incoming values, but instcombine
890 /// orders them so it usually won't matter.
891 ///
892 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
893   // This implementation doesn't currently consider undef operands
894   // specially. Theoretically, two phis which are identical except for
895   // one having an undef where the other doesn't could be collapsed.
896 
897   struct PHIDenseMapInfo {
898     static PHINode *getEmptyKey() {
899       return DenseMapInfo<PHINode *>::getEmptyKey();
900     }
901     static PHINode *getTombstoneKey() {
902       return DenseMapInfo<PHINode *>::getTombstoneKey();
903     }
904     static unsigned getHashValue(PHINode *PN) {
905       // Compute a hash value on the operands. Instcombine will likely have
906       // sorted them, which helps expose duplicates, but we have to check all
907       // the operands to be safe in case instcombine hasn't run.
908       return static_cast<unsigned>(hash_combine(
909           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
910           hash_combine_range(PN->block_begin(), PN->block_end())));
911     }
912     static bool isEqual(PHINode *LHS, PHINode *RHS) {
913       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
914           RHS == getEmptyKey() || RHS == getTombstoneKey())
915         return LHS == RHS;
916       return LHS->isIdenticalTo(RHS);
917     }
918   };
919 
920   // Set of unique PHINodes.
921   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
922 
923   // Examine each PHI.
924   bool Changed = false;
925   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
926     auto Inserted = PHISet.insert(PN);
927     if (!Inserted.second) {
928       // A duplicate. Replace this PHI with its duplicate.
929       PN->replaceAllUsesWith(*Inserted.first);
930       PN->eraseFromParent();
931       Changed = true;
932 
933       // The RAUW can change PHIs that we already visited. Start over from the
934       // beginning.
935       PHISet.clear();
936       I = BB->begin();
937     }
938   }
939 
940   return Changed;
941 }
942 
943 /// enforceKnownAlignment - If the specified pointer points to an object that
944 /// we control, modify the object's alignment to PrefAlign. This isn't
945 /// often possible though. If alignment is important, a more reliable approach
946 /// is to simply align all global variables and allocation instructions to
947 /// their preferred alignment from the beginning.
948 ///
949 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
950                                       unsigned PrefAlign,
951                                       const DataLayout &DL) {
952   assert(PrefAlign > Align);
953 
954   V = V->stripPointerCasts();
955 
956   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
957     // TODO: ideally, computeKnownBits ought to have used
958     // AllocaInst::getAlignment() in its computation already, making
959     // the below max redundant. But, as it turns out,
960     // stripPointerCasts recurses through infinite layers of bitcasts,
961     // while computeKnownBits is not allowed to traverse more than 6
962     // levels.
963     Align = std::max(AI->getAlignment(), Align);
964     if (PrefAlign <= Align)
965       return Align;
966 
967     // If the preferred alignment is greater than the natural stack alignment
968     // then don't round up. This avoids dynamic stack realignment.
969     if (DL.exceedsNaturalStackAlignment(PrefAlign))
970       return Align;
971     AI->setAlignment(PrefAlign);
972     return PrefAlign;
973   }
974 
975   if (auto *GO = dyn_cast<GlobalObject>(V)) {
976     // TODO: as above, this shouldn't be necessary.
977     Align = std::max(GO->getAlignment(), Align);
978     if (PrefAlign <= Align)
979       return Align;
980 
981     // If there is a large requested alignment and we can, bump up the alignment
982     // of the global.  If the memory we set aside for the global may not be the
983     // memory used by the final program then it is impossible for us to reliably
984     // enforce the preferred alignment.
985     if (!GO->canIncreaseAlignment())
986       return Align;
987 
988     GO->setAlignment(PrefAlign);
989     return PrefAlign;
990   }
991 
992   return Align;
993 }
994 
995 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
996 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
997 /// and it is more than the alignment of the ultimate object, see if we can
998 /// increase the alignment of the ultimate object, making this check succeed.
999 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1000                                           const DataLayout &DL,
1001                                           const Instruction *CxtI,
1002                                           AssumptionCache *AC,
1003                                           const DominatorTree *DT) {
1004   assert(V->getType()->isPointerTy() &&
1005          "getOrEnforceKnownAlignment expects a pointer!");
1006   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1007 
1008   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1009   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
1010   unsigned TrailZ = KnownZero.countTrailingOnes();
1011 
1012   // Avoid trouble with ridiculously large TrailZ values, such as
1013   // those computed from a null pointer.
1014   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1015 
1016   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1017 
1018   // LLVM doesn't support alignments larger than this currently.
1019   Align = std::min(Align, +Value::MaximumAlignment);
1020 
1021   if (PrefAlign > Align)
1022     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1023 
1024   // We don't need to make any adjustment.
1025   return Align;
1026 }
1027 
1028 ///===---------------------------------------------------------------------===//
1029 ///  Dbg Intrinsic utilities
1030 ///
1031 
1032 /// See if there is a dbg.value intrinsic for DIVar before I.
1033 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1034                               Instruction *I) {
1035   // Since we can't guarantee that the original dbg.declare instrinsic
1036   // is removed by LowerDbgDeclare(), we need to make sure that we are
1037   // not inserting the same dbg.value intrinsic over and over.
1038   llvm::BasicBlock::InstListType::iterator PrevI(I);
1039   if (PrevI != I->getParent()->getInstList().begin()) {
1040     --PrevI;
1041     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1042       if (DVI->getValue() == I->getOperand(0) &&
1043           DVI->getOffset() == 0 &&
1044           DVI->getVariable() == DIVar &&
1045           DVI->getExpression() == DIExpr)
1046         return true;
1047   }
1048   return false;
1049 }
1050 
1051 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1052 /// that has an associated llvm.dbg.decl intrinsic.
1053 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1054                                            StoreInst *SI, DIBuilder &Builder) {
1055   auto *DIVar = DDI->getVariable();
1056   auto *DIExpr = DDI->getExpression();
1057   assert(DIVar && "Missing variable");
1058 
1059   // If an argument is zero extended then use argument directly. The ZExt
1060   // may be zapped by an optimization pass in future.
1061   Argument *ExtendedArg = nullptr;
1062   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1063     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1064   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1065     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1066   if (ExtendedArg) {
1067     // We're now only describing a subset of the variable. The piece we're
1068     // describing will always be smaller than the variable size, because
1069     // VariableSize == Size of Alloca described by DDI. Since SI stores
1070     // to the alloca described by DDI, if it's first operand is an extend,
1071     // we're guaranteed that before extension, the value was narrower than
1072     // the size of the alloca, hence the size of the described variable.
1073     SmallVector<uint64_t, 3> Ops;
1074     unsigned PieceOffset = 0;
1075     // If this already is a bit piece, we drop the bit piece from the expression
1076     // and record the offset.
1077     if (DIExpr->isBitPiece()) {
1078       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1079       PieceOffset = DIExpr->getBitPieceOffset();
1080     } else {
1081       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
1082     }
1083     Ops.push_back(dwarf::DW_OP_bit_piece);
1084     Ops.push_back(PieceOffset); // Offset
1085     const DataLayout &DL = DDI->getModule()->getDataLayout();
1086     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
1087     auto NewDIExpr = Builder.createExpression(Ops);
1088     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
1089       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
1090                                       DDI->getDebugLoc(), SI);
1091   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1092     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1093                                     DDI->getDebugLoc(), SI);
1094   return true;
1095 }
1096 
1097 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1098 /// that has an associated llvm.dbg.decl intrinsic.
1099 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1100                                            LoadInst *LI, DIBuilder &Builder) {
1101   auto *DIVar = DDI->getVariable();
1102   auto *DIExpr = DDI->getExpression();
1103   assert(DIVar && "Missing variable");
1104 
1105   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1106     return true;
1107 
1108   // We are now tracking the loaded value instead of the address. In the
1109   // future if multi-location support is added to the IR, it might be
1110   // preferable to keep tracking both the loaded value and the original
1111   // address in case the alloca can not be elided.
1112   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1113       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1114   DbgValue->insertAfter(LI);
1115   return true;
1116 }
1117 
1118 /// Determine whether this alloca is either a VLA or an array.
1119 static bool isArray(AllocaInst *AI) {
1120   return AI->isArrayAllocation() ||
1121     AI->getType()->getElementType()->isArrayTy();
1122 }
1123 
1124 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1125 /// of llvm.dbg.value intrinsics.
1126 bool llvm::LowerDbgDeclare(Function &F) {
1127   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1128   SmallVector<DbgDeclareInst *, 4> Dbgs;
1129   for (auto &FI : F)
1130     for (Instruction &BI : FI)
1131       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1132         Dbgs.push_back(DDI);
1133 
1134   if (Dbgs.empty())
1135     return false;
1136 
1137   for (auto &I : Dbgs) {
1138     DbgDeclareInst *DDI = I;
1139     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1140     // If this is an alloca for a scalar variable, insert a dbg.value
1141     // at each load and store to the alloca and erase the dbg.declare.
1142     // The dbg.values allow tracking a variable even if it is not
1143     // stored on the stack, while the dbg.declare can only describe
1144     // the stack slot (and at a lexical-scope granularity). Later
1145     // passes will attempt to elide the stack slot.
1146     if (AI && !isArray(AI)) {
1147       for (auto &AIUse : AI->uses()) {
1148         User *U = AIUse.getUser();
1149         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1150           if (AIUse.getOperandNo() == 1)
1151             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1152         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1153           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1154         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1155           // This is a call by-value or some other instruction that
1156           // takes a pointer to the variable. Insert a *value*
1157           // intrinsic that describes the alloca.
1158           SmallVector<uint64_t, 1> NewDIExpr;
1159           auto *DIExpr = DDI->getExpression();
1160           NewDIExpr.push_back(dwarf::DW_OP_deref);
1161           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1162           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1163                                       DIB.createExpression(NewDIExpr),
1164                                       DDI->getDebugLoc(), CI);
1165         }
1166       }
1167       DDI->eraseFromParent();
1168     }
1169   }
1170   return true;
1171 }
1172 
1173 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1174 /// alloca 'V', if any.
1175 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1176   if (auto *L = LocalAsMetadata::getIfExists(V))
1177     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1178       for (User *U : MDV->users())
1179         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1180           return DDI;
1181 
1182   return nullptr;
1183 }
1184 
1185 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1186                              Instruction *InsertBefore, DIBuilder &Builder,
1187                              bool Deref, int Offset) {
1188   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1189   if (!DDI)
1190     return false;
1191   DebugLoc Loc = DDI->getDebugLoc();
1192   auto *DIVar = DDI->getVariable();
1193   auto *DIExpr = DDI->getExpression();
1194   assert(DIVar && "Missing variable");
1195 
1196   if (Deref || Offset) {
1197     // Create a copy of the original DIDescriptor for user variable, prepending
1198     // "deref" operation to a list of address elements, as new llvm.dbg.declare
1199     // will take a value storing address of the memory for variable, not
1200     // alloca itself.
1201     SmallVector<uint64_t, 4> NewDIExpr;
1202     if (Deref)
1203       NewDIExpr.push_back(dwarf::DW_OP_deref);
1204     if (Offset > 0) {
1205       NewDIExpr.push_back(dwarf::DW_OP_plus);
1206       NewDIExpr.push_back(Offset);
1207     } else if (Offset < 0) {
1208       NewDIExpr.push_back(dwarf::DW_OP_minus);
1209       NewDIExpr.push_back(-Offset);
1210     }
1211     if (DIExpr)
1212       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1213     DIExpr = Builder.createExpression(NewDIExpr);
1214   }
1215 
1216   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1217   // old llvm.dbg.declare.
1218   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1219   DDI->eraseFromParent();
1220   return true;
1221 }
1222 
1223 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1224                                       DIBuilder &Builder, bool Deref, int Offset) {
1225   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1226                            Deref, Offset);
1227 }
1228 
1229 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1230   unsigned NumDeadInst = 0;
1231   // Delete the instructions backwards, as it has a reduced likelihood of
1232   // having to update as many def-use and use-def chains.
1233   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1234   while (EndInst != &BB->front()) {
1235     // Delete the next to last instruction.
1236     Instruction *Inst = &*--EndInst->getIterator();
1237     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1238       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1239     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1240       EndInst = Inst;
1241       continue;
1242     }
1243     if (!isa<DbgInfoIntrinsic>(Inst))
1244       ++NumDeadInst;
1245     Inst->eraseFromParent();
1246   }
1247   return NumDeadInst;
1248 }
1249 
1250 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1251   BasicBlock *BB = I->getParent();
1252   // Loop over all of the successors, removing BB's entry from any PHI
1253   // nodes.
1254   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1255     (*SI)->removePredecessor(BB);
1256 
1257   // Insert a call to llvm.trap right before this.  This turns the undefined
1258   // behavior into a hard fail instead of falling through into random code.
1259   if (UseLLVMTrap) {
1260     Function *TrapFn =
1261       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1262     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1263     CallTrap->setDebugLoc(I->getDebugLoc());
1264   }
1265   new UnreachableInst(I->getContext(), I);
1266 
1267   // All instructions after this are dead.
1268   unsigned NumInstrsRemoved = 0;
1269   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1270   while (BBI != BBE) {
1271     if (!BBI->use_empty())
1272       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1273     BB->getInstList().erase(BBI++);
1274     ++NumInstrsRemoved;
1275   }
1276   return NumInstrsRemoved;
1277 }
1278 
1279 /// changeToCall - Convert the specified invoke into a normal call.
1280 static void changeToCall(InvokeInst *II) {
1281   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1282   SmallVector<OperandBundleDef, 1> OpBundles;
1283   II->getOperandBundlesAsDefs(OpBundles);
1284   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1285                                        "", II);
1286   NewCall->takeName(II);
1287   NewCall->setCallingConv(II->getCallingConv());
1288   NewCall->setAttributes(II->getAttributes());
1289   NewCall->setDebugLoc(II->getDebugLoc());
1290   II->replaceAllUsesWith(NewCall);
1291 
1292   // Follow the call by a branch to the normal destination.
1293   BranchInst::Create(II->getNormalDest(), II);
1294 
1295   // Update PHI nodes in the unwind destination
1296   II->getUnwindDest()->removePredecessor(II->getParent());
1297   II->eraseFromParent();
1298 }
1299 
1300 static bool markAliveBlocks(Function &F,
1301                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1302 
1303   SmallVector<BasicBlock*, 128> Worklist;
1304   BasicBlock *BB = &F.front();
1305   Worklist.push_back(BB);
1306   Reachable.insert(BB);
1307   bool Changed = false;
1308   do {
1309     BB = Worklist.pop_back_val();
1310 
1311     // Do a quick scan of the basic block, turning any obviously unreachable
1312     // instructions into LLVM unreachable insts.  The instruction combining pass
1313     // canonicalizes unreachable insts into stores to null or undef.
1314     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1315       // Assumptions that are known to be false are equivalent to unreachable.
1316       // Also, if the condition is undefined, then we make the choice most
1317       // beneficial to the optimizer, and choose that to also be unreachable.
1318       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) {
1319         if (II->getIntrinsicID() == Intrinsic::assume) {
1320           bool MakeUnreachable = false;
1321           if (isa<UndefValue>(II->getArgOperand(0)))
1322             MakeUnreachable = true;
1323           else if (ConstantInt *Cond =
1324                    dyn_cast<ConstantInt>(II->getArgOperand(0)))
1325             MakeUnreachable = Cond->isZero();
1326 
1327           if (MakeUnreachable) {
1328             // Don't insert a call to llvm.trap right before the unreachable.
1329             changeToUnreachable(&*BBI, false);
1330             Changed = true;
1331             break;
1332           }
1333         }
1334 
1335         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1336           // A call to the guard intrinsic bails out of the current compilation
1337           // unit if the predicate passed to it is false.  If the predicate is a
1338           // constant false, then we know the guard will bail out of the current
1339           // compile unconditionally, so all code following it is dead.
1340           //
1341           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1342           // guards to treat `undef` as `false` since a guard on `undef` can
1343           // still be useful for widening.
1344           if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1345             if (CI->isZero() && !isa<UnreachableInst>(II->getNextNode())) {
1346               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1347               Changed = true;
1348               break;
1349             }
1350         }
1351       }
1352 
1353       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1354         if (CI->doesNotReturn()) {
1355           // If we found a call to a no-return function, insert an unreachable
1356           // instruction after it.  Make sure there isn't *already* one there
1357           // though.
1358           ++BBI;
1359           if (!isa<UnreachableInst>(BBI)) {
1360             // Don't insert a call to llvm.trap right before the unreachable.
1361             changeToUnreachable(&*BBI, false);
1362             Changed = true;
1363           }
1364           break;
1365         }
1366       }
1367 
1368       // Store to undef and store to null are undefined and used to signal that
1369       // they should be changed to unreachable by passes that can't modify the
1370       // CFG.
1371       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1372         // Don't touch volatile stores.
1373         if (SI->isVolatile()) continue;
1374 
1375         Value *Ptr = SI->getOperand(1);
1376 
1377         if (isa<UndefValue>(Ptr) ||
1378             (isa<ConstantPointerNull>(Ptr) &&
1379              SI->getPointerAddressSpace() == 0)) {
1380           changeToUnreachable(SI, true);
1381           Changed = true;
1382           break;
1383         }
1384       }
1385     }
1386 
1387     TerminatorInst *Terminator = BB->getTerminator();
1388     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1389       // Turn invokes that call 'nounwind' functions into ordinary calls.
1390       Value *Callee = II->getCalledValue();
1391       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1392         changeToUnreachable(II, true);
1393         Changed = true;
1394       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1395         if (II->use_empty() && II->onlyReadsMemory()) {
1396           // jump to the normal destination branch.
1397           BranchInst::Create(II->getNormalDest(), II);
1398           II->getUnwindDest()->removePredecessor(II->getParent());
1399           II->eraseFromParent();
1400         } else
1401           changeToCall(II);
1402         Changed = true;
1403       }
1404     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1405       // Remove catchpads which cannot be reached.
1406       struct CatchPadDenseMapInfo {
1407         static CatchPadInst *getEmptyKey() {
1408           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1409         }
1410         static CatchPadInst *getTombstoneKey() {
1411           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1412         }
1413         static unsigned getHashValue(CatchPadInst *CatchPad) {
1414           return static_cast<unsigned>(hash_combine_range(
1415               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1416         }
1417         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1418           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1419               RHS == getEmptyKey() || RHS == getTombstoneKey())
1420             return LHS == RHS;
1421           return LHS->isIdenticalTo(RHS);
1422         }
1423       };
1424 
1425       // Set of unique CatchPads.
1426       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1427                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1428           HandlerSet;
1429       detail::DenseSetEmpty Empty;
1430       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1431                                              E = CatchSwitch->handler_end();
1432            I != E; ++I) {
1433         BasicBlock *HandlerBB = *I;
1434         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1435         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1436           CatchSwitch->removeHandler(I);
1437           --I;
1438           --E;
1439           Changed = true;
1440         }
1441       }
1442     }
1443 
1444     Changed |= ConstantFoldTerminator(BB, true);
1445     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1446       if (Reachable.insert(*SI).second)
1447         Worklist.push_back(*SI);
1448   } while (!Worklist.empty());
1449   return Changed;
1450 }
1451 
1452 void llvm::removeUnwindEdge(BasicBlock *BB) {
1453   TerminatorInst *TI = BB->getTerminator();
1454 
1455   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1456     changeToCall(II);
1457     return;
1458   }
1459 
1460   TerminatorInst *NewTI;
1461   BasicBlock *UnwindDest;
1462 
1463   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1464     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1465     UnwindDest = CRI->getUnwindDest();
1466   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1467     auto *NewCatchSwitch = CatchSwitchInst::Create(
1468         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1469         CatchSwitch->getName(), CatchSwitch);
1470     for (BasicBlock *PadBB : CatchSwitch->handlers())
1471       NewCatchSwitch->addHandler(PadBB);
1472 
1473     NewTI = NewCatchSwitch;
1474     UnwindDest = CatchSwitch->getUnwindDest();
1475   } else {
1476     llvm_unreachable("Could not find unwind successor");
1477   }
1478 
1479   NewTI->takeName(TI);
1480   NewTI->setDebugLoc(TI->getDebugLoc());
1481   UnwindDest->removePredecessor(BB);
1482   TI->replaceAllUsesWith(NewTI);
1483   TI->eraseFromParent();
1484 }
1485 
1486 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1487 /// if they are in a dead cycle.  Return true if a change was made, false
1488 /// otherwise.
1489 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1490   SmallPtrSet<BasicBlock*, 16> Reachable;
1491   bool Changed = markAliveBlocks(F, Reachable);
1492 
1493   // If there are unreachable blocks in the CFG...
1494   if (Reachable.size() == F.size())
1495     return Changed;
1496 
1497   assert(Reachable.size() < F.size());
1498   NumRemoved += F.size()-Reachable.size();
1499 
1500   // Loop over all of the basic blocks that are not reachable, dropping all of
1501   // their internal references...
1502   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1503     if (Reachable.count(&*BB))
1504       continue;
1505 
1506     for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE;
1507          ++SI)
1508       if (Reachable.count(*SI))
1509         (*SI)->removePredecessor(&*BB);
1510     if (LVI)
1511       LVI->eraseBlock(&*BB);
1512     BB->dropAllReferences();
1513   }
1514 
1515   for (Function::iterator I = ++F.begin(); I != F.end();)
1516     if (!Reachable.count(&*I))
1517       I = F.getBasicBlockList().erase(I);
1518     else
1519       ++I;
1520 
1521   return true;
1522 }
1523 
1524 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1525                            ArrayRef<unsigned> KnownIDs) {
1526   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1527   K->dropUnknownNonDebugMetadata(KnownIDs);
1528   K->getAllMetadataOtherThanDebugLoc(Metadata);
1529   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1530     unsigned Kind = Metadata[i].first;
1531     MDNode *JMD = J->getMetadata(Kind);
1532     MDNode *KMD = Metadata[i].second;
1533 
1534     switch (Kind) {
1535       default:
1536         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1537         break;
1538       case LLVMContext::MD_dbg:
1539         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1540       case LLVMContext::MD_tbaa:
1541         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1542         break;
1543       case LLVMContext::MD_alias_scope:
1544         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1545         break;
1546       case LLVMContext::MD_noalias:
1547       case LLVMContext::MD_mem_parallel_loop_access:
1548         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1549         break;
1550       case LLVMContext::MD_range:
1551         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1552         break;
1553       case LLVMContext::MD_fpmath:
1554         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1555         break;
1556       case LLVMContext::MD_invariant_load:
1557         // Only set the !invariant.load if it is present in both instructions.
1558         K->setMetadata(Kind, JMD);
1559         break;
1560       case LLVMContext::MD_nonnull:
1561         // Only set the !nonnull if it is present in both instructions.
1562         K->setMetadata(Kind, JMD);
1563         break;
1564       case LLVMContext::MD_invariant_group:
1565         // Preserve !invariant.group in K.
1566         break;
1567       case LLVMContext::MD_align:
1568         K->setMetadata(Kind,
1569           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1570         break;
1571       case LLVMContext::MD_dereferenceable:
1572       case LLVMContext::MD_dereferenceable_or_null:
1573         K->setMetadata(Kind,
1574           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1575         break;
1576     }
1577   }
1578   // Set !invariant.group from J if J has it. If both instructions have it
1579   // then we will just pick it from J - even when they are different.
1580   // Also make sure that K is load or store - f.e. combining bitcast with load
1581   // could produce bitcast with invariant.group metadata, which is invalid.
1582   // FIXME: we should try to preserve both invariant.group md if they are
1583   // different, but right now instruction can only have one invariant.group.
1584   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1585     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1586       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1587 }
1588 
1589 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1590                                         DominatorTree &DT,
1591                                         const BasicBlockEdge &Root) {
1592   assert(From->getType() == To->getType());
1593 
1594   unsigned Count = 0;
1595   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1596        UI != UE; ) {
1597     Use &U = *UI++;
1598     if (DT.dominates(Root, U)) {
1599       U.set(To);
1600       DEBUG(dbgs() << "Replace dominated use of '"
1601             << From->getName() << "' as "
1602             << *To << " in " << *U << "\n");
1603       ++Count;
1604     }
1605   }
1606   return Count;
1607 }
1608 
1609 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1610                                         DominatorTree &DT,
1611                                         const BasicBlock *BB) {
1612   assert(From->getType() == To->getType());
1613 
1614   unsigned Count = 0;
1615   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1616        UI != UE;) {
1617     Use &U = *UI++;
1618     auto *I = cast<Instruction>(U.getUser());
1619     if (DT.properlyDominates(BB, I->getParent())) {
1620       U.set(To);
1621       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1622                    << *To << " in " << *U << "\n");
1623       ++Count;
1624     }
1625   }
1626   return Count;
1627 }
1628 
1629 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1630   // Check if the function is specifically marked as a gc leaf function.
1631   if (CS.hasFnAttr("gc-leaf-function"))
1632     return true;
1633   if (const Function *F = CS.getCalledFunction()) {
1634     if (F->hasFnAttribute("gc-leaf-function"))
1635       return true;
1636 
1637     if (auto IID = F->getIntrinsicID())
1638       // Most LLVM intrinsics do not take safepoints.
1639       return IID != Intrinsic::experimental_gc_statepoint &&
1640              IID != Intrinsic::experimental_deoptimize;
1641   }
1642 
1643   return false;
1644 }
1645 
1646 /// A potential constituent of a bitreverse or bswap expression. See
1647 /// collectBitParts for a fuller explanation.
1648 struct BitPart {
1649   BitPart(Value *P, unsigned BW) : Provider(P) {
1650     Provenance.resize(BW);
1651   }
1652 
1653   /// The Value that this is a bitreverse/bswap of.
1654   Value *Provider;
1655   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1656   /// in Provider becomes bit B in the result of this expression.
1657   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1658 
1659   enum { Unset = -1 };
1660 };
1661 
1662 /// Analyze the specified subexpression and see if it is capable of providing
1663 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1664 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1665 /// the output of the expression came from a corresponding bit in some other
1666 /// value. This function is recursive, and the end result is a mapping of
1667 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1668 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1669 ///
1670 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1671 /// that the expression deposits the low byte of %X into the high byte of the
1672 /// result and that all other bits are zero. This expression is accepted and a
1673 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1674 /// [0-7].
1675 ///
1676 /// To avoid revisiting values, the BitPart results are memoized into the
1677 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1678 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1679 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1680 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1681 /// type instead to provide the same functionality.
1682 ///
1683 /// Because we pass around references into \c BPS, we must use a container that
1684 /// does not invalidate internal references (std::map instead of DenseMap).
1685 ///
1686 static const Optional<BitPart> &
1687 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1688                 std::map<Value *, Optional<BitPart>> &BPS) {
1689   auto I = BPS.find(V);
1690   if (I != BPS.end())
1691     return I->second;
1692 
1693   auto &Result = BPS[V] = None;
1694   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1695 
1696   if (Instruction *I = dyn_cast<Instruction>(V)) {
1697     // If this is an or instruction, it may be an inner node of the bswap.
1698     if (I->getOpcode() == Instruction::Or) {
1699       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1700                                 MatchBitReversals, BPS);
1701       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1702                                 MatchBitReversals, BPS);
1703       if (!A || !B)
1704         return Result;
1705 
1706       // Try and merge the two together.
1707       if (!A->Provider || A->Provider != B->Provider)
1708         return Result;
1709 
1710       Result = BitPart(A->Provider, BitWidth);
1711       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1712         if (A->Provenance[i] != BitPart::Unset &&
1713             B->Provenance[i] != BitPart::Unset &&
1714             A->Provenance[i] != B->Provenance[i])
1715           return Result = None;
1716 
1717         if (A->Provenance[i] == BitPart::Unset)
1718           Result->Provenance[i] = B->Provenance[i];
1719         else
1720           Result->Provenance[i] = A->Provenance[i];
1721       }
1722 
1723       return Result;
1724     }
1725 
1726     // If this is a logical shift by a constant, recurse then shift the result.
1727     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1728       unsigned BitShift =
1729           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1730       // Ensure the shift amount is defined.
1731       if (BitShift > BitWidth)
1732         return Result;
1733 
1734       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1735                                   MatchBitReversals, BPS);
1736       if (!Res)
1737         return Result;
1738       Result = Res;
1739 
1740       // Perform the "shift" on BitProvenance.
1741       auto &P = Result->Provenance;
1742       if (I->getOpcode() == Instruction::Shl) {
1743         P.erase(std::prev(P.end(), BitShift), P.end());
1744         P.insert(P.begin(), BitShift, BitPart::Unset);
1745       } else {
1746         P.erase(P.begin(), std::next(P.begin(), BitShift));
1747         P.insert(P.end(), BitShift, BitPart::Unset);
1748       }
1749 
1750       return Result;
1751     }
1752 
1753     // If this is a logical 'and' with a mask that clears bits, recurse then
1754     // unset the appropriate bits.
1755     if (I->getOpcode() == Instruction::And &&
1756         isa<ConstantInt>(I->getOperand(1))) {
1757       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1758       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1759 
1760       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1761       // early exit.
1762       unsigned NumMaskedBits = AndMask.countPopulation();
1763       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1764         return Result;
1765 
1766       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1767                                   MatchBitReversals, BPS);
1768       if (!Res)
1769         return Result;
1770       Result = Res;
1771 
1772       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1773         // If the AndMask is zero for this bit, clear the bit.
1774         if ((AndMask & Bit) == 0)
1775           Result->Provenance[i] = BitPart::Unset;
1776       return Result;
1777     }
1778 
1779     // If this is a zext instruction zero extend the result.
1780     if (I->getOpcode() == Instruction::ZExt) {
1781       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1782                                   MatchBitReversals, BPS);
1783       if (!Res)
1784         return Result;
1785 
1786       Result = BitPart(Res->Provider, BitWidth);
1787       auto NarrowBitWidth =
1788           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
1789       for (unsigned i = 0; i < NarrowBitWidth; ++i)
1790         Result->Provenance[i] = Res->Provenance[i];
1791       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
1792         Result->Provenance[i] = BitPart::Unset;
1793       return Result;
1794     }
1795   }
1796 
1797   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1798   // the input value to the bswap/bitreverse.
1799   Result = BitPart(V, BitWidth);
1800   for (unsigned i = 0; i < BitWidth; ++i)
1801     Result->Provenance[i] = i;
1802   return Result;
1803 }
1804 
1805 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1806                                           unsigned BitWidth) {
1807   if (From % 8 != To % 8)
1808     return false;
1809   // Convert from bit indices to byte indices and check for a byte reversal.
1810   From >>= 3;
1811   To >>= 3;
1812   BitWidth >>= 3;
1813   return From == BitWidth - To - 1;
1814 }
1815 
1816 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1817                                                unsigned BitWidth) {
1818   return From == BitWidth - To - 1;
1819 }
1820 
1821 /// Given an OR instruction, check to see if this is a bitreverse
1822 /// idiom. If so, insert the new intrinsic and return true.
1823 bool llvm::recognizeBSwapOrBitReverseIdiom(
1824     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
1825     SmallVectorImpl<Instruction *> &InsertedInsts) {
1826   if (Operator::getOpcode(I) != Instruction::Or)
1827     return false;
1828   if (!MatchBSwaps && !MatchBitReversals)
1829     return false;
1830   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
1831   if (!ITy || ITy->getBitWidth() > 128)
1832     return false;   // Can't do vectors or integers > 128 bits.
1833   unsigned BW = ITy->getBitWidth();
1834 
1835   unsigned DemandedBW = BW;
1836   IntegerType *DemandedTy = ITy;
1837   if (I->hasOneUse()) {
1838     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
1839       DemandedTy = cast<IntegerType>(Trunc->getType());
1840       DemandedBW = DemandedTy->getBitWidth();
1841     }
1842   }
1843 
1844   // Try to find all the pieces corresponding to the bswap.
1845   std::map<Value *, Optional<BitPart>> BPS;
1846   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
1847   if (!Res)
1848     return false;
1849   auto &BitProvenance = Res->Provenance;
1850 
1851   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
1852   // only byteswap values with an even number of bytes.
1853   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
1854   for (unsigned i = 0; i < DemandedBW; ++i) {
1855     OKForBSwap &=
1856         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
1857     OKForBitReverse &=
1858         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
1859   }
1860 
1861   Intrinsic::ID Intrin;
1862   if (OKForBSwap && MatchBSwaps)
1863     Intrin = Intrinsic::bswap;
1864   else if (OKForBitReverse && MatchBitReversals)
1865     Intrin = Intrinsic::bitreverse;
1866   else
1867     return false;
1868 
1869   if (ITy != DemandedTy) {
1870     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
1871     Value *Provider = Res->Provider;
1872     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
1873     // We may need to truncate the provider.
1874     if (DemandedTy != ProviderTy) {
1875       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
1876                                      "trunc", I);
1877       InsertedInsts.push_back(Trunc);
1878       Provider = Trunc;
1879     }
1880     auto *CI = CallInst::Create(F, Provider, "rev", I);
1881     InsertedInsts.push_back(CI);
1882     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
1883     InsertedInsts.push_back(ExtInst);
1884     return true;
1885   }
1886 
1887   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
1888   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
1889   return true;
1890 }
1891