1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "local" 52 53 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 54 55 //===----------------------------------------------------------------------===// 56 // Local constant propagation. 57 // 58 59 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 60 /// constant value, convert it into an unconditional branch to the constant 61 /// destination. This is a nontrivial operation because the successors of this 62 /// basic block must have their PHI nodes updated. 63 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 64 /// conditions and indirectbr addresses this might make dead if 65 /// DeleteDeadConditions is true. 66 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 67 const TargetLibraryInfo *TLI) { 68 TerminatorInst *T = BB->getTerminator(); 69 IRBuilder<> Builder(T); 70 71 // Branch - See if we are conditional jumping on constant 72 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 73 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 74 BasicBlock *Dest1 = BI->getSuccessor(0); 75 BasicBlock *Dest2 = BI->getSuccessor(1); 76 77 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 78 // Are we branching on constant? 79 // YES. Change to unconditional branch... 80 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 81 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 82 83 //cerr << "Function: " << T->getParent()->getParent() 84 // << "\nRemoving branch from " << T->getParent() 85 // << "\n\nTo: " << OldDest << endl; 86 87 // Let the basic block know that we are letting go of it. Based on this, 88 // it will adjust it's PHI nodes. 89 OldDest->removePredecessor(BB); 90 91 // Replace the conditional branch with an unconditional one. 92 Builder.CreateBr(Destination); 93 BI->eraseFromParent(); 94 return true; 95 } 96 97 if (Dest2 == Dest1) { // Conditional branch to same location? 98 // This branch matches something like this: 99 // br bool %cond, label %Dest, label %Dest 100 // and changes it into: br label %Dest 101 102 // Let the basic block know that we are letting go of one copy of it. 103 assert(BI->getParent() && "Terminator not inserted in block!"); 104 Dest1->removePredecessor(BI->getParent()); 105 106 // Replace the conditional branch with an unconditional one. 107 Builder.CreateBr(Dest1); 108 Value *Cond = BI->getCondition(); 109 BI->eraseFromParent(); 110 if (DeleteDeadConditions) 111 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 112 return true; 113 } 114 return false; 115 } 116 117 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 118 // If we are switching on a constant, we can convert the switch to an 119 // unconditional branch. 120 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 121 BasicBlock *DefaultDest = SI->getDefaultDest(); 122 BasicBlock *TheOnlyDest = DefaultDest; 123 124 // If the default is unreachable, ignore it when searching for TheOnlyDest. 125 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 126 SI->getNumCases() > 0) { 127 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 128 } 129 130 // Figure out which case it goes to. 131 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 132 i != e; ++i) { 133 // Found case matching a constant operand? 134 if (i.getCaseValue() == CI) { 135 TheOnlyDest = i.getCaseSuccessor(); 136 break; 137 } 138 139 // Check to see if this branch is going to the same place as the default 140 // dest. If so, eliminate it as an explicit compare. 141 if (i.getCaseSuccessor() == DefaultDest) { 142 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 143 unsigned NCases = SI->getNumCases(); 144 // Fold the case metadata into the default if there will be any branches 145 // left, unless the metadata doesn't match the switch. 146 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 147 // Collect branch weights into a vector. 148 SmallVector<uint32_t, 8> Weights; 149 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 150 ++MD_i) { 151 ConstantInt *CI = 152 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 153 assert(CI); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 291 292 // We don't want the landingpad-like instructions removed by anything this 293 // general. 294 if (I->isEHPad()) 295 return false; 296 297 // We don't want debug info removed by anything this general, unless 298 // debug info is empty. 299 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 300 if (DDI->getAddress()) 301 return false; 302 return true; 303 } 304 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 305 if (DVI->getValue()) 306 return false; 307 return true; 308 } 309 310 if (!I->mayHaveSideEffects()) return true; 311 312 // Special case intrinsics that "may have side effects" but can be deleted 313 // when dead. 314 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 315 // Safe to delete llvm.stacksave if dead. 316 if (II->getIntrinsicID() == Intrinsic::stacksave) 317 return true; 318 319 // Lifetime intrinsics are dead when their right-hand is undef. 320 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 321 II->getIntrinsicID() == Intrinsic::lifetime_end) 322 return isa<UndefValue>(II->getArgOperand(1)); 323 324 // Assumptions are dead if their condition is trivially true. Guards on 325 // true are operationally no-ops. In the future we can consider more 326 // sophisticated tradeoffs for guards considering potential for check 327 // widening, but for now we keep things simple. 328 if (II->getIntrinsicID() == Intrinsic::assume || 329 II->getIntrinsicID() == Intrinsic::experimental_guard) { 330 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 331 return !Cond->isZero(); 332 333 return false; 334 } 335 } 336 337 if (isAllocLikeFn(I, TLI)) return true; 338 339 if (CallInst *CI = isFreeCall(I, TLI)) 340 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 341 return C->isNullValue() || isa<UndefValue>(C); 342 343 return false; 344 } 345 346 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 347 /// trivially dead instruction, delete it. If that makes any of its operands 348 /// trivially dead, delete them too, recursively. Return true if any 349 /// instructions were deleted. 350 bool 351 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 352 const TargetLibraryInfo *TLI) { 353 Instruction *I = dyn_cast<Instruction>(V); 354 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 355 return false; 356 357 SmallVector<Instruction*, 16> DeadInsts; 358 DeadInsts.push_back(I); 359 360 do { 361 I = DeadInsts.pop_back_val(); 362 363 // Null out all of the instruction's operands to see if any operand becomes 364 // dead as we go. 365 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 366 Value *OpV = I->getOperand(i); 367 I->setOperand(i, nullptr); 368 369 if (!OpV->use_empty()) continue; 370 371 // If the operand is an instruction that became dead as we nulled out the 372 // operand, and if it is 'trivially' dead, delete it in a future loop 373 // iteration. 374 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 375 if (isInstructionTriviallyDead(OpI, TLI)) 376 DeadInsts.push_back(OpI); 377 } 378 379 I->eraseFromParent(); 380 } while (!DeadInsts.empty()); 381 382 return true; 383 } 384 385 /// areAllUsesEqual - Check whether the uses of a value are all the same. 386 /// This is similar to Instruction::hasOneUse() except this will also return 387 /// true when there are no uses or multiple uses that all refer to the same 388 /// value. 389 static bool areAllUsesEqual(Instruction *I) { 390 Value::user_iterator UI = I->user_begin(); 391 Value::user_iterator UE = I->user_end(); 392 if (UI == UE) 393 return true; 394 395 User *TheUse = *UI; 396 for (++UI; UI != UE; ++UI) { 397 if (*UI != TheUse) 398 return false; 399 } 400 return true; 401 } 402 403 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 404 /// dead PHI node, due to being a def-use chain of single-use nodes that 405 /// either forms a cycle or is terminated by a trivially dead instruction, 406 /// delete it. If that makes any of its operands trivially dead, delete them 407 /// too, recursively. Return true if a change was made. 408 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 409 const TargetLibraryInfo *TLI) { 410 SmallPtrSet<Instruction*, 4> Visited; 411 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 412 I = cast<Instruction>(*I->user_begin())) { 413 if (I->use_empty()) 414 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 415 416 // If we find an instruction more than once, we're on a cycle that 417 // won't prove fruitful. 418 if (!Visited.insert(I).second) { 419 // Break the cycle and delete the instruction and its operands. 420 I->replaceAllUsesWith(UndefValue::get(I->getType())); 421 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 422 return true; 423 } 424 } 425 return false; 426 } 427 428 static bool 429 simplifyAndDCEInstruction(Instruction *I, 430 SmallSetVector<Instruction *, 16> &WorkList, 431 const DataLayout &DL, 432 const TargetLibraryInfo *TLI) { 433 if (isInstructionTriviallyDead(I, TLI)) { 434 // Null out all of the instruction's operands to see if any operand becomes 435 // dead as we go. 436 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 437 Value *OpV = I->getOperand(i); 438 I->setOperand(i, nullptr); 439 440 if (!OpV->use_empty() || I == OpV) 441 continue; 442 443 // If the operand is an instruction that became dead as we nulled out the 444 // operand, and if it is 'trivially' dead, delete it in a future loop 445 // iteration. 446 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 447 if (isInstructionTriviallyDead(OpI, TLI)) 448 WorkList.insert(OpI); 449 } 450 451 I->eraseFromParent(); 452 453 return true; 454 } 455 456 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 457 // Add the users to the worklist. CAREFUL: an instruction can use itself, 458 // in the case of a phi node. 459 for (User *U : I->users()) 460 if (U != I) 461 WorkList.insert(cast<Instruction>(U)); 462 463 // Replace the instruction with its simplified value. 464 I->replaceAllUsesWith(SimpleV); 465 I->eraseFromParent(); 466 return true; 467 } 468 return false; 469 } 470 471 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 472 /// simplify any instructions in it and recursively delete dead instructions. 473 /// 474 /// This returns true if it changed the code, note that it can delete 475 /// instructions in other blocks as well in this block. 476 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 477 const TargetLibraryInfo *TLI) { 478 bool MadeChange = false; 479 const DataLayout &DL = BB->getModule()->getDataLayout(); 480 481 #ifndef NDEBUG 482 // In debug builds, ensure that the terminator of the block is never replaced 483 // or deleted by these simplifications. The idea of simplification is that it 484 // cannot introduce new instructions, and there is no way to replace the 485 // terminator of a block without introducing a new instruction. 486 AssertingVH<Instruction> TerminatorVH(&BB->back()); 487 #endif 488 489 SmallSetVector<Instruction *, 16> WorkList; 490 // Iterate over the original function, only adding insts to the worklist 491 // if they actually need to be revisited. This avoids having to pre-init 492 // the worklist with the entire function's worth of instructions. 493 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 494 BI != E;) { 495 assert(!BI->isTerminator()); 496 Instruction *I = &*BI; 497 ++BI; 498 499 // We're visiting this instruction now, so make sure it's not in the 500 // worklist from an earlier visit. 501 if (!WorkList.count(I)) 502 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 503 } 504 505 while (!WorkList.empty()) { 506 Instruction *I = WorkList.pop_back_val(); 507 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 508 } 509 return MadeChange; 510 } 511 512 //===----------------------------------------------------------------------===// 513 // Control Flow Graph Restructuring. 514 // 515 516 517 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 518 /// method is called when we're about to delete Pred as a predecessor of BB. If 519 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 520 /// 521 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 522 /// nodes that collapse into identity values. For example, if we have: 523 /// x = phi(1, 0, 0, 0) 524 /// y = and x, z 525 /// 526 /// .. and delete the predecessor corresponding to the '1', this will attempt to 527 /// recursively fold the and to 0. 528 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 529 // This only adjusts blocks with PHI nodes. 530 if (!isa<PHINode>(BB->begin())) 531 return; 532 533 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 534 // them down. This will leave us with single entry phi nodes and other phis 535 // that can be removed. 536 BB->removePredecessor(Pred, true); 537 538 WeakVH PhiIt = &BB->front(); 539 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 540 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 541 Value *OldPhiIt = PhiIt; 542 543 if (!recursivelySimplifyInstruction(PN)) 544 continue; 545 546 // If recursive simplification ended up deleting the next PHI node we would 547 // iterate to, then our iterator is invalid, restart scanning from the top 548 // of the block. 549 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 550 } 551 } 552 553 554 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 555 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 556 /// between them, moving the instructions in the predecessor into DestBB and 557 /// deleting the predecessor block. 558 /// 559 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 560 // If BB has single-entry PHI nodes, fold them. 561 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 562 Value *NewVal = PN->getIncomingValue(0); 563 // Replace self referencing PHI with undef, it must be dead. 564 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 565 PN->replaceAllUsesWith(NewVal); 566 PN->eraseFromParent(); 567 } 568 569 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 570 assert(PredBB && "Block doesn't have a single predecessor!"); 571 572 // Zap anything that took the address of DestBB. Not doing this will give the 573 // address an invalid value. 574 if (DestBB->hasAddressTaken()) { 575 BlockAddress *BA = BlockAddress::get(DestBB); 576 Constant *Replacement = 577 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 578 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 579 BA->getType())); 580 BA->destroyConstant(); 581 } 582 583 // Anything that branched to PredBB now branches to DestBB. 584 PredBB->replaceAllUsesWith(DestBB); 585 586 // Splice all the instructions from PredBB to DestBB. 587 PredBB->getTerminator()->eraseFromParent(); 588 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 589 590 // If the PredBB is the entry block of the function, move DestBB up to 591 // become the entry block after we erase PredBB. 592 if (PredBB == &DestBB->getParent()->getEntryBlock()) 593 DestBB->moveAfter(PredBB); 594 595 if (DT) { 596 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 597 DT->changeImmediateDominator(DestBB, PredBBIDom); 598 DT->eraseNode(PredBB); 599 } 600 // Nuke BB. 601 PredBB->eraseFromParent(); 602 } 603 604 /// CanMergeValues - Return true if we can choose one of these values to use 605 /// in place of the other. Note that we will always choose the non-undef 606 /// value to keep. 607 static bool CanMergeValues(Value *First, Value *Second) { 608 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 609 } 610 611 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 612 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 613 /// 614 /// Assumption: Succ is the single successor for BB. 615 /// 616 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 617 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 618 619 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 620 << Succ->getName() << "\n"); 621 // Shortcut, if there is only a single predecessor it must be BB and merging 622 // is always safe 623 if (Succ->getSinglePredecessor()) return true; 624 625 // Make a list of the predecessors of BB 626 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 627 628 // Look at all the phi nodes in Succ, to see if they present a conflict when 629 // merging these blocks 630 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 631 PHINode *PN = cast<PHINode>(I); 632 633 // If the incoming value from BB is again a PHINode in 634 // BB which has the same incoming value for *PI as PN does, we can 635 // merge the phi nodes and then the blocks can still be merged 636 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 637 if (BBPN && BBPN->getParent() == BB) { 638 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 639 BasicBlock *IBB = PN->getIncomingBlock(PI); 640 if (BBPreds.count(IBB) && 641 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 642 PN->getIncomingValue(PI))) { 643 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 644 << Succ->getName() << " is conflicting with " 645 << BBPN->getName() << " with regard to common predecessor " 646 << IBB->getName() << "\n"); 647 return false; 648 } 649 } 650 } else { 651 Value* Val = PN->getIncomingValueForBlock(BB); 652 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 653 // See if the incoming value for the common predecessor is equal to the 654 // one for BB, in which case this phi node will not prevent the merging 655 // of the block. 656 BasicBlock *IBB = PN->getIncomingBlock(PI); 657 if (BBPreds.count(IBB) && 658 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 659 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 660 << Succ->getName() << " is conflicting with regard to common " 661 << "predecessor " << IBB->getName() << "\n"); 662 return false; 663 } 664 } 665 } 666 } 667 668 return true; 669 } 670 671 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 672 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 673 674 /// \brief Determines the value to use as the phi node input for a block. 675 /// 676 /// Select between \p OldVal any value that we know flows from \p BB 677 /// to a particular phi on the basis of which one (if either) is not 678 /// undef. Update IncomingValues based on the selected value. 679 /// 680 /// \param OldVal The value we are considering selecting. 681 /// \param BB The block that the value flows in from. 682 /// \param IncomingValues A map from block-to-value for other phi inputs 683 /// that we have examined. 684 /// 685 /// \returns the selected value. 686 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 687 IncomingValueMap &IncomingValues) { 688 if (!isa<UndefValue>(OldVal)) { 689 assert((!IncomingValues.count(BB) || 690 IncomingValues.find(BB)->second == OldVal) && 691 "Expected OldVal to match incoming value from BB!"); 692 693 IncomingValues.insert(std::make_pair(BB, OldVal)); 694 return OldVal; 695 } 696 697 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 698 if (It != IncomingValues.end()) return It->second; 699 700 return OldVal; 701 } 702 703 /// \brief Create a map from block to value for the operands of a 704 /// given phi. 705 /// 706 /// Create a map from block to value for each non-undef value flowing 707 /// into \p PN. 708 /// 709 /// \param PN The phi we are collecting the map for. 710 /// \param IncomingValues [out] The map from block to value for this phi. 711 static void gatherIncomingValuesToPhi(PHINode *PN, 712 IncomingValueMap &IncomingValues) { 713 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 714 BasicBlock *BB = PN->getIncomingBlock(i); 715 Value *V = PN->getIncomingValue(i); 716 717 if (!isa<UndefValue>(V)) 718 IncomingValues.insert(std::make_pair(BB, V)); 719 } 720 } 721 722 /// \brief Replace the incoming undef values to a phi with the values 723 /// from a block-to-value map. 724 /// 725 /// \param PN The phi we are replacing the undefs in. 726 /// \param IncomingValues A map from block to value. 727 static void replaceUndefValuesInPhi(PHINode *PN, 728 const IncomingValueMap &IncomingValues) { 729 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 730 Value *V = PN->getIncomingValue(i); 731 732 if (!isa<UndefValue>(V)) continue; 733 734 BasicBlock *BB = PN->getIncomingBlock(i); 735 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 736 if (It == IncomingValues.end()) continue; 737 738 PN->setIncomingValue(i, It->second); 739 } 740 } 741 742 /// \brief Replace a value flowing from a block to a phi with 743 /// potentially multiple instances of that value flowing from the 744 /// block's predecessors to the phi. 745 /// 746 /// \param BB The block with the value flowing into the phi. 747 /// \param BBPreds The predecessors of BB. 748 /// \param PN The phi that we are updating. 749 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 750 const PredBlockVector &BBPreds, 751 PHINode *PN) { 752 Value *OldVal = PN->removeIncomingValue(BB, false); 753 assert(OldVal && "No entry in PHI for Pred BB!"); 754 755 IncomingValueMap IncomingValues; 756 757 // We are merging two blocks - BB, and the block containing PN - and 758 // as a result we need to redirect edges from the predecessors of BB 759 // to go to the block containing PN, and update PN 760 // accordingly. Since we allow merging blocks in the case where the 761 // predecessor and successor blocks both share some predecessors, 762 // and where some of those common predecessors might have undef 763 // values flowing into PN, we want to rewrite those values to be 764 // consistent with the non-undef values. 765 766 gatherIncomingValuesToPhi(PN, IncomingValues); 767 768 // If this incoming value is one of the PHI nodes in BB, the new entries 769 // in the PHI node are the entries from the old PHI. 770 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 771 PHINode *OldValPN = cast<PHINode>(OldVal); 772 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 773 // Note that, since we are merging phi nodes and BB and Succ might 774 // have common predecessors, we could end up with a phi node with 775 // identical incoming branches. This will be cleaned up later (and 776 // will trigger asserts if we try to clean it up now, without also 777 // simplifying the corresponding conditional branch). 778 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 779 Value *PredVal = OldValPN->getIncomingValue(i); 780 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 781 IncomingValues); 782 783 // And add a new incoming value for this predecessor for the 784 // newly retargeted branch. 785 PN->addIncoming(Selected, PredBB); 786 } 787 } else { 788 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 789 // Update existing incoming values in PN for this 790 // predecessor of BB. 791 BasicBlock *PredBB = BBPreds[i]; 792 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 793 IncomingValues); 794 795 // And add a new incoming value for this predecessor for the 796 // newly retargeted branch. 797 PN->addIncoming(Selected, PredBB); 798 } 799 } 800 801 replaceUndefValuesInPhi(PN, IncomingValues); 802 } 803 804 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 805 /// unconditional branch, and contains no instructions other than PHI nodes, 806 /// potential side-effect free intrinsics and the branch. If possible, 807 /// eliminate BB by rewriting all the predecessors to branch to the successor 808 /// block and return true. If we can't transform, return false. 809 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 810 assert(BB != &BB->getParent()->getEntryBlock() && 811 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 812 813 // We can't eliminate infinite loops. 814 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 815 if (BB == Succ) return false; 816 817 // Check to see if merging these blocks would cause conflicts for any of the 818 // phi nodes in BB or Succ. If not, we can safely merge. 819 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 820 821 // Check for cases where Succ has multiple predecessors and a PHI node in BB 822 // has uses which will not disappear when the PHI nodes are merged. It is 823 // possible to handle such cases, but difficult: it requires checking whether 824 // BB dominates Succ, which is non-trivial to calculate in the case where 825 // Succ has multiple predecessors. Also, it requires checking whether 826 // constructing the necessary self-referential PHI node doesn't introduce any 827 // conflicts; this isn't too difficult, but the previous code for doing this 828 // was incorrect. 829 // 830 // Note that if this check finds a live use, BB dominates Succ, so BB is 831 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 832 // folding the branch isn't profitable in that case anyway. 833 if (!Succ->getSinglePredecessor()) { 834 BasicBlock::iterator BBI = BB->begin(); 835 while (isa<PHINode>(*BBI)) { 836 for (Use &U : BBI->uses()) { 837 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 838 if (PN->getIncomingBlock(U) != BB) 839 return false; 840 } else { 841 return false; 842 } 843 } 844 ++BBI; 845 } 846 } 847 848 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 849 850 if (isa<PHINode>(Succ->begin())) { 851 // If there is more than one pred of succ, and there are PHI nodes in 852 // the successor, then we need to add incoming edges for the PHI nodes 853 // 854 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 855 856 // Loop over all of the PHI nodes in the successor of BB. 857 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 858 PHINode *PN = cast<PHINode>(I); 859 860 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 861 } 862 } 863 864 if (Succ->getSinglePredecessor()) { 865 // BB is the only predecessor of Succ, so Succ will end up with exactly 866 // the same predecessors BB had. 867 868 // Copy over any phi, debug or lifetime instruction. 869 BB->getTerminator()->eraseFromParent(); 870 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 871 BB->getInstList()); 872 } else { 873 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 874 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 875 assert(PN->use_empty() && "There shouldn't be any uses here!"); 876 PN->eraseFromParent(); 877 } 878 } 879 880 // Everything that jumped to BB now goes to Succ. 881 BB->replaceAllUsesWith(Succ); 882 if (!Succ->hasName()) Succ->takeName(BB); 883 BB->eraseFromParent(); // Delete the old basic block. 884 return true; 885 } 886 887 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 888 /// nodes in this block. This doesn't try to be clever about PHI nodes 889 /// which differ only in the order of the incoming values, but instcombine 890 /// orders them so it usually won't matter. 891 /// 892 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 893 // This implementation doesn't currently consider undef operands 894 // specially. Theoretically, two phis which are identical except for 895 // one having an undef where the other doesn't could be collapsed. 896 897 struct PHIDenseMapInfo { 898 static PHINode *getEmptyKey() { 899 return DenseMapInfo<PHINode *>::getEmptyKey(); 900 } 901 static PHINode *getTombstoneKey() { 902 return DenseMapInfo<PHINode *>::getTombstoneKey(); 903 } 904 static unsigned getHashValue(PHINode *PN) { 905 // Compute a hash value on the operands. Instcombine will likely have 906 // sorted them, which helps expose duplicates, but we have to check all 907 // the operands to be safe in case instcombine hasn't run. 908 return static_cast<unsigned>(hash_combine( 909 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 910 hash_combine_range(PN->block_begin(), PN->block_end()))); 911 } 912 static bool isEqual(PHINode *LHS, PHINode *RHS) { 913 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 914 RHS == getEmptyKey() || RHS == getTombstoneKey()) 915 return LHS == RHS; 916 return LHS->isIdenticalTo(RHS); 917 } 918 }; 919 920 // Set of unique PHINodes. 921 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 922 923 // Examine each PHI. 924 bool Changed = false; 925 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 926 auto Inserted = PHISet.insert(PN); 927 if (!Inserted.second) { 928 // A duplicate. Replace this PHI with its duplicate. 929 PN->replaceAllUsesWith(*Inserted.first); 930 PN->eraseFromParent(); 931 Changed = true; 932 933 // The RAUW can change PHIs that we already visited. Start over from the 934 // beginning. 935 PHISet.clear(); 936 I = BB->begin(); 937 } 938 } 939 940 return Changed; 941 } 942 943 /// enforceKnownAlignment - If the specified pointer points to an object that 944 /// we control, modify the object's alignment to PrefAlign. This isn't 945 /// often possible though. If alignment is important, a more reliable approach 946 /// is to simply align all global variables and allocation instructions to 947 /// their preferred alignment from the beginning. 948 /// 949 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 950 unsigned PrefAlign, 951 const DataLayout &DL) { 952 assert(PrefAlign > Align); 953 954 V = V->stripPointerCasts(); 955 956 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 957 // TODO: ideally, computeKnownBits ought to have used 958 // AllocaInst::getAlignment() in its computation already, making 959 // the below max redundant. But, as it turns out, 960 // stripPointerCasts recurses through infinite layers of bitcasts, 961 // while computeKnownBits is not allowed to traverse more than 6 962 // levels. 963 Align = std::max(AI->getAlignment(), Align); 964 if (PrefAlign <= Align) 965 return Align; 966 967 // If the preferred alignment is greater than the natural stack alignment 968 // then don't round up. This avoids dynamic stack realignment. 969 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 970 return Align; 971 AI->setAlignment(PrefAlign); 972 return PrefAlign; 973 } 974 975 if (auto *GO = dyn_cast<GlobalObject>(V)) { 976 // TODO: as above, this shouldn't be necessary. 977 Align = std::max(GO->getAlignment(), Align); 978 if (PrefAlign <= Align) 979 return Align; 980 981 // If there is a large requested alignment and we can, bump up the alignment 982 // of the global. If the memory we set aside for the global may not be the 983 // memory used by the final program then it is impossible for us to reliably 984 // enforce the preferred alignment. 985 if (!GO->canIncreaseAlignment()) 986 return Align; 987 988 GO->setAlignment(PrefAlign); 989 return PrefAlign; 990 } 991 992 return Align; 993 } 994 995 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 996 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 997 /// and it is more than the alignment of the ultimate object, see if we can 998 /// increase the alignment of the ultimate object, making this check succeed. 999 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1000 const DataLayout &DL, 1001 const Instruction *CxtI, 1002 AssumptionCache *AC, 1003 const DominatorTree *DT) { 1004 assert(V->getType()->isPointerTy() && 1005 "getOrEnforceKnownAlignment expects a pointer!"); 1006 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1007 1008 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1009 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1010 unsigned TrailZ = KnownZero.countTrailingOnes(); 1011 1012 // Avoid trouble with ridiculously large TrailZ values, such as 1013 // those computed from a null pointer. 1014 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1015 1016 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1017 1018 // LLVM doesn't support alignments larger than this currently. 1019 Align = std::min(Align, +Value::MaximumAlignment); 1020 1021 if (PrefAlign > Align) 1022 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1023 1024 // We don't need to make any adjustment. 1025 return Align; 1026 } 1027 1028 ///===---------------------------------------------------------------------===// 1029 /// Dbg Intrinsic utilities 1030 /// 1031 1032 /// See if there is a dbg.value intrinsic for DIVar before I. 1033 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1034 Instruction *I) { 1035 // Since we can't guarantee that the original dbg.declare instrinsic 1036 // is removed by LowerDbgDeclare(), we need to make sure that we are 1037 // not inserting the same dbg.value intrinsic over and over. 1038 llvm::BasicBlock::InstListType::iterator PrevI(I); 1039 if (PrevI != I->getParent()->getInstList().begin()) { 1040 --PrevI; 1041 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1042 if (DVI->getValue() == I->getOperand(0) && 1043 DVI->getOffset() == 0 && 1044 DVI->getVariable() == DIVar && 1045 DVI->getExpression() == DIExpr) 1046 return true; 1047 } 1048 return false; 1049 } 1050 1051 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1052 /// that has an associated llvm.dbg.decl intrinsic. 1053 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1054 StoreInst *SI, DIBuilder &Builder) { 1055 auto *DIVar = DDI->getVariable(); 1056 auto *DIExpr = DDI->getExpression(); 1057 assert(DIVar && "Missing variable"); 1058 1059 // If an argument is zero extended then use argument directly. The ZExt 1060 // may be zapped by an optimization pass in future. 1061 Argument *ExtendedArg = nullptr; 1062 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1063 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1064 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1065 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1066 if (ExtendedArg) { 1067 // We're now only describing a subset of the variable. The piece we're 1068 // describing will always be smaller than the variable size, because 1069 // VariableSize == Size of Alloca described by DDI. Since SI stores 1070 // to the alloca described by DDI, if it's first operand is an extend, 1071 // we're guaranteed that before extension, the value was narrower than 1072 // the size of the alloca, hence the size of the described variable. 1073 SmallVector<uint64_t, 3> Ops; 1074 unsigned PieceOffset = 0; 1075 // If this already is a bit piece, we drop the bit piece from the expression 1076 // and record the offset. 1077 if (DIExpr->isBitPiece()) { 1078 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1079 PieceOffset = DIExpr->getBitPieceOffset(); 1080 } else { 1081 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1082 } 1083 Ops.push_back(dwarf::DW_OP_bit_piece); 1084 Ops.push_back(PieceOffset); // Offset 1085 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1086 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size 1087 auto NewDIExpr = Builder.createExpression(Ops); 1088 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1089 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1090 DDI->getDebugLoc(), SI); 1091 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1092 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1093 DDI->getDebugLoc(), SI); 1094 return true; 1095 } 1096 1097 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1098 /// that has an associated llvm.dbg.decl intrinsic. 1099 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1100 LoadInst *LI, DIBuilder &Builder) { 1101 auto *DIVar = DDI->getVariable(); 1102 auto *DIExpr = DDI->getExpression(); 1103 assert(DIVar && "Missing variable"); 1104 1105 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1106 return true; 1107 1108 // We are now tracking the loaded value instead of the address. In the 1109 // future if multi-location support is added to the IR, it might be 1110 // preferable to keep tracking both the loaded value and the original 1111 // address in case the alloca can not be elided. 1112 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1113 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1114 DbgValue->insertAfter(LI); 1115 return true; 1116 } 1117 1118 /// Determine whether this alloca is either a VLA or an array. 1119 static bool isArray(AllocaInst *AI) { 1120 return AI->isArrayAllocation() || 1121 AI->getType()->getElementType()->isArrayTy(); 1122 } 1123 1124 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1125 /// of llvm.dbg.value intrinsics. 1126 bool llvm::LowerDbgDeclare(Function &F) { 1127 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1128 SmallVector<DbgDeclareInst *, 4> Dbgs; 1129 for (auto &FI : F) 1130 for (Instruction &BI : FI) 1131 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1132 Dbgs.push_back(DDI); 1133 1134 if (Dbgs.empty()) 1135 return false; 1136 1137 for (auto &I : Dbgs) { 1138 DbgDeclareInst *DDI = I; 1139 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1140 // If this is an alloca for a scalar variable, insert a dbg.value 1141 // at each load and store to the alloca and erase the dbg.declare. 1142 // The dbg.values allow tracking a variable even if it is not 1143 // stored on the stack, while the dbg.declare can only describe 1144 // the stack slot (and at a lexical-scope granularity). Later 1145 // passes will attempt to elide the stack slot. 1146 if (AI && !isArray(AI)) { 1147 for (auto &AIUse : AI->uses()) { 1148 User *U = AIUse.getUser(); 1149 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1150 if (AIUse.getOperandNo() == 1) 1151 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1152 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1153 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1154 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1155 // This is a call by-value or some other instruction that 1156 // takes a pointer to the variable. Insert a *value* 1157 // intrinsic that describes the alloca. 1158 SmallVector<uint64_t, 1> NewDIExpr; 1159 auto *DIExpr = DDI->getExpression(); 1160 NewDIExpr.push_back(dwarf::DW_OP_deref); 1161 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1162 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1163 DIB.createExpression(NewDIExpr), 1164 DDI->getDebugLoc(), CI); 1165 } 1166 } 1167 DDI->eraseFromParent(); 1168 } 1169 } 1170 return true; 1171 } 1172 1173 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1174 /// alloca 'V', if any. 1175 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1176 if (auto *L = LocalAsMetadata::getIfExists(V)) 1177 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1178 for (User *U : MDV->users()) 1179 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1180 return DDI; 1181 1182 return nullptr; 1183 } 1184 1185 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1186 Instruction *InsertBefore, DIBuilder &Builder, 1187 bool Deref, int Offset) { 1188 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1189 if (!DDI) 1190 return false; 1191 DebugLoc Loc = DDI->getDebugLoc(); 1192 auto *DIVar = DDI->getVariable(); 1193 auto *DIExpr = DDI->getExpression(); 1194 assert(DIVar && "Missing variable"); 1195 1196 if (Deref || Offset) { 1197 // Create a copy of the original DIDescriptor for user variable, prepending 1198 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1199 // will take a value storing address of the memory for variable, not 1200 // alloca itself. 1201 SmallVector<uint64_t, 4> NewDIExpr; 1202 if (Deref) 1203 NewDIExpr.push_back(dwarf::DW_OP_deref); 1204 if (Offset > 0) { 1205 NewDIExpr.push_back(dwarf::DW_OP_plus); 1206 NewDIExpr.push_back(Offset); 1207 } else if (Offset < 0) { 1208 NewDIExpr.push_back(dwarf::DW_OP_minus); 1209 NewDIExpr.push_back(-Offset); 1210 } 1211 if (DIExpr) 1212 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1213 DIExpr = Builder.createExpression(NewDIExpr); 1214 } 1215 1216 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1217 // old llvm.dbg.declare. 1218 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1219 DDI->eraseFromParent(); 1220 return true; 1221 } 1222 1223 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1224 DIBuilder &Builder, bool Deref, int Offset) { 1225 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1226 Deref, Offset); 1227 } 1228 1229 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1230 unsigned NumDeadInst = 0; 1231 // Delete the instructions backwards, as it has a reduced likelihood of 1232 // having to update as many def-use and use-def chains. 1233 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1234 while (EndInst != &BB->front()) { 1235 // Delete the next to last instruction. 1236 Instruction *Inst = &*--EndInst->getIterator(); 1237 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1238 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1239 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1240 EndInst = Inst; 1241 continue; 1242 } 1243 if (!isa<DbgInfoIntrinsic>(Inst)) 1244 ++NumDeadInst; 1245 Inst->eraseFromParent(); 1246 } 1247 return NumDeadInst; 1248 } 1249 1250 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1251 BasicBlock *BB = I->getParent(); 1252 // Loop over all of the successors, removing BB's entry from any PHI 1253 // nodes. 1254 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1255 (*SI)->removePredecessor(BB); 1256 1257 // Insert a call to llvm.trap right before this. This turns the undefined 1258 // behavior into a hard fail instead of falling through into random code. 1259 if (UseLLVMTrap) { 1260 Function *TrapFn = 1261 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1262 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1263 CallTrap->setDebugLoc(I->getDebugLoc()); 1264 } 1265 new UnreachableInst(I->getContext(), I); 1266 1267 // All instructions after this are dead. 1268 unsigned NumInstrsRemoved = 0; 1269 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1270 while (BBI != BBE) { 1271 if (!BBI->use_empty()) 1272 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1273 BB->getInstList().erase(BBI++); 1274 ++NumInstrsRemoved; 1275 } 1276 return NumInstrsRemoved; 1277 } 1278 1279 /// changeToCall - Convert the specified invoke into a normal call. 1280 static void changeToCall(InvokeInst *II) { 1281 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1282 SmallVector<OperandBundleDef, 1> OpBundles; 1283 II->getOperandBundlesAsDefs(OpBundles); 1284 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1285 "", II); 1286 NewCall->takeName(II); 1287 NewCall->setCallingConv(II->getCallingConv()); 1288 NewCall->setAttributes(II->getAttributes()); 1289 NewCall->setDebugLoc(II->getDebugLoc()); 1290 II->replaceAllUsesWith(NewCall); 1291 1292 // Follow the call by a branch to the normal destination. 1293 BranchInst::Create(II->getNormalDest(), II); 1294 1295 // Update PHI nodes in the unwind destination 1296 II->getUnwindDest()->removePredecessor(II->getParent()); 1297 II->eraseFromParent(); 1298 } 1299 1300 static bool markAliveBlocks(Function &F, 1301 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1302 1303 SmallVector<BasicBlock*, 128> Worklist; 1304 BasicBlock *BB = &F.front(); 1305 Worklist.push_back(BB); 1306 Reachable.insert(BB); 1307 bool Changed = false; 1308 do { 1309 BB = Worklist.pop_back_val(); 1310 1311 // Do a quick scan of the basic block, turning any obviously unreachable 1312 // instructions into LLVM unreachable insts. The instruction combining pass 1313 // canonicalizes unreachable insts into stores to null or undef. 1314 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1315 // Assumptions that are known to be false are equivalent to unreachable. 1316 // Also, if the condition is undefined, then we make the choice most 1317 // beneficial to the optimizer, and choose that to also be unreachable. 1318 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) { 1319 if (II->getIntrinsicID() == Intrinsic::assume) { 1320 bool MakeUnreachable = false; 1321 if (isa<UndefValue>(II->getArgOperand(0))) 1322 MakeUnreachable = true; 1323 else if (ConstantInt *Cond = 1324 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1325 MakeUnreachable = Cond->isZero(); 1326 1327 if (MakeUnreachable) { 1328 // Don't insert a call to llvm.trap right before the unreachable. 1329 changeToUnreachable(&*BBI, false); 1330 Changed = true; 1331 break; 1332 } 1333 } 1334 1335 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1336 // A call to the guard intrinsic bails out of the current compilation 1337 // unit if the predicate passed to it is false. If the predicate is a 1338 // constant false, then we know the guard will bail out of the current 1339 // compile unconditionally, so all code following it is dead. 1340 // 1341 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1342 // guards to treat `undef` as `false` since a guard on `undef` can 1343 // still be useful for widening. 1344 if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1345 if (CI->isZero() && !isa<UnreachableInst>(II->getNextNode())) { 1346 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1347 Changed = true; 1348 break; 1349 } 1350 } 1351 } 1352 1353 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1354 if (CI->doesNotReturn()) { 1355 // If we found a call to a no-return function, insert an unreachable 1356 // instruction after it. Make sure there isn't *already* one there 1357 // though. 1358 ++BBI; 1359 if (!isa<UnreachableInst>(BBI)) { 1360 // Don't insert a call to llvm.trap right before the unreachable. 1361 changeToUnreachable(&*BBI, false); 1362 Changed = true; 1363 } 1364 break; 1365 } 1366 } 1367 1368 // Store to undef and store to null are undefined and used to signal that 1369 // they should be changed to unreachable by passes that can't modify the 1370 // CFG. 1371 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1372 // Don't touch volatile stores. 1373 if (SI->isVolatile()) continue; 1374 1375 Value *Ptr = SI->getOperand(1); 1376 1377 if (isa<UndefValue>(Ptr) || 1378 (isa<ConstantPointerNull>(Ptr) && 1379 SI->getPointerAddressSpace() == 0)) { 1380 changeToUnreachable(SI, true); 1381 Changed = true; 1382 break; 1383 } 1384 } 1385 } 1386 1387 TerminatorInst *Terminator = BB->getTerminator(); 1388 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1389 // Turn invokes that call 'nounwind' functions into ordinary calls. 1390 Value *Callee = II->getCalledValue(); 1391 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1392 changeToUnreachable(II, true); 1393 Changed = true; 1394 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1395 if (II->use_empty() && II->onlyReadsMemory()) { 1396 // jump to the normal destination branch. 1397 BranchInst::Create(II->getNormalDest(), II); 1398 II->getUnwindDest()->removePredecessor(II->getParent()); 1399 II->eraseFromParent(); 1400 } else 1401 changeToCall(II); 1402 Changed = true; 1403 } 1404 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1405 // Remove catchpads which cannot be reached. 1406 struct CatchPadDenseMapInfo { 1407 static CatchPadInst *getEmptyKey() { 1408 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1409 } 1410 static CatchPadInst *getTombstoneKey() { 1411 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1412 } 1413 static unsigned getHashValue(CatchPadInst *CatchPad) { 1414 return static_cast<unsigned>(hash_combine_range( 1415 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1416 } 1417 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1418 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1419 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1420 return LHS == RHS; 1421 return LHS->isIdenticalTo(RHS); 1422 } 1423 }; 1424 1425 // Set of unique CatchPads. 1426 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1427 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1428 HandlerSet; 1429 detail::DenseSetEmpty Empty; 1430 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1431 E = CatchSwitch->handler_end(); 1432 I != E; ++I) { 1433 BasicBlock *HandlerBB = *I; 1434 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1435 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1436 CatchSwitch->removeHandler(I); 1437 --I; 1438 --E; 1439 Changed = true; 1440 } 1441 } 1442 } 1443 1444 Changed |= ConstantFoldTerminator(BB, true); 1445 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1446 if (Reachable.insert(*SI).second) 1447 Worklist.push_back(*SI); 1448 } while (!Worklist.empty()); 1449 return Changed; 1450 } 1451 1452 void llvm::removeUnwindEdge(BasicBlock *BB) { 1453 TerminatorInst *TI = BB->getTerminator(); 1454 1455 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1456 changeToCall(II); 1457 return; 1458 } 1459 1460 TerminatorInst *NewTI; 1461 BasicBlock *UnwindDest; 1462 1463 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1464 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1465 UnwindDest = CRI->getUnwindDest(); 1466 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1467 auto *NewCatchSwitch = CatchSwitchInst::Create( 1468 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1469 CatchSwitch->getName(), CatchSwitch); 1470 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1471 NewCatchSwitch->addHandler(PadBB); 1472 1473 NewTI = NewCatchSwitch; 1474 UnwindDest = CatchSwitch->getUnwindDest(); 1475 } else { 1476 llvm_unreachable("Could not find unwind successor"); 1477 } 1478 1479 NewTI->takeName(TI); 1480 NewTI->setDebugLoc(TI->getDebugLoc()); 1481 UnwindDest->removePredecessor(BB); 1482 TI->replaceAllUsesWith(NewTI); 1483 TI->eraseFromParent(); 1484 } 1485 1486 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1487 /// if they are in a dead cycle. Return true if a change was made, false 1488 /// otherwise. 1489 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1490 SmallPtrSet<BasicBlock*, 16> Reachable; 1491 bool Changed = markAliveBlocks(F, Reachable); 1492 1493 // If there are unreachable blocks in the CFG... 1494 if (Reachable.size() == F.size()) 1495 return Changed; 1496 1497 assert(Reachable.size() < F.size()); 1498 NumRemoved += F.size()-Reachable.size(); 1499 1500 // Loop over all of the basic blocks that are not reachable, dropping all of 1501 // their internal references... 1502 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1503 if (Reachable.count(&*BB)) 1504 continue; 1505 1506 for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE; 1507 ++SI) 1508 if (Reachable.count(*SI)) 1509 (*SI)->removePredecessor(&*BB); 1510 if (LVI) 1511 LVI->eraseBlock(&*BB); 1512 BB->dropAllReferences(); 1513 } 1514 1515 for (Function::iterator I = ++F.begin(); I != F.end();) 1516 if (!Reachable.count(&*I)) 1517 I = F.getBasicBlockList().erase(I); 1518 else 1519 ++I; 1520 1521 return true; 1522 } 1523 1524 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1525 ArrayRef<unsigned> KnownIDs) { 1526 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1527 K->dropUnknownNonDebugMetadata(KnownIDs); 1528 K->getAllMetadataOtherThanDebugLoc(Metadata); 1529 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1530 unsigned Kind = Metadata[i].first; 1531 MDNode *JMD = J->getMetadata(Kind); 1532 MDNode *KMD = Metadata[i].second; 1533 1534 switch (Kind) { 1535 default: 1536 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1537 break; 1538 case LLVMContext::MD_dbg: 1539 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1540 case LLVMContext::MD_tbaa: 1541 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1542 break; 1543 case LLVMContext::MD_alias_scope: 1544 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1545 break; 1546 case LLVMContext::MD_noalias: 1547 case LLVMContext::MD_mem_parallel_loop_access: 1548 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1549 break; 1550 case LLVMContext::MD_range: 1551 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1552 break; 1553 case LLVMContext::MD_fpmath: 1554 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1555 break; 1556 case LLVMContext::MD_invariant_load: 1557 // Only set the !invariant.load if it is present in both instructions. 1558 K->setMetadata(Kind, JMD); 1559 break; 1560 case LLVMContext::MD_nonnull: 1561 // Only set the !nonnull if it is present in both instructions. 1562 K->setMetadata(Kind, JMD); 1563 break; 1564 case LLVMContext::MD_invariant_group: 1565 // Preserve !invariant.group in K. 1566 break; 1567 case LLVMContext::MD_align: 1568 K->setMetadata(Kind, 1569 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1570 break; 1571 case LLVMContext::MD_dereferenceable: 1572 case LLVMContext::MD_dereferenceable_or_null: 1573 K->setMetadata(Kind, 1574 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1575 break; 1576 } 1577 } 1578 // Set !invariant.group from J if J has it. If both instructions have it 1579 // then we will just pick it from J - even when they are different. 1580 // Also make sure that K is load or store - f.e. combining bitcast with load 1581 // could produce bitcast with invariant.group metadata, which is invalid. 1582 // FIXME: we should try to preserve both invariant.group md if they are 1583 // different, but right now instruction can only have one invariant.group. 1584 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1585 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1586 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1587 } 1588 1589 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1590 DominatorTree &DT, 1591 const BasicBlockEdge &Root) { 1592 assert(From->getType() == To->getType()); 1593 1594 unsigned Count = 0; 1595 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1596 UI != UE; ) { 1597 Use &U = *UI++; 1598 if (DT.dominates(Root, U)) { 1599 U.set(To); 1600 DEBUG(dbgs() << "Replace dominated use of '" 1601 << From->getName() << "' as " 1602 << *To << " in " << *U << "\n"); 1603 ++Count; 1604 } 1605 } 1606 return Count; 1607 } 1608 1609 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1610 DominatorTree &DT, 1611 const BasicBlock *BB) { 1612 assert(From->getType() == To->getType()); 1613 1614 unsigned Count = 0; 1615 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1616 UI != UE;) { 1617 Use &U = *UI++; 1618 auto *I = cast<Instruction>(U.getUser()); 1619 if (DT.properlyDominates(BB, I->getParent())) { 1620 U.set(To); 1621 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1622 << *To << " in " << *U << "\n"); 1623 ++Count; 1624 } 1625 } 1626 return Count; 1627 } 1628 1629 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1630 // Check if the function is specifically marked as a gc leaf function. 1631 if (CS.hasFnAttr("gc-leaf-function")) 1632 return true; 1633 if (const Function *F = CS.getCalledFunction()) { 1634 if (F->hasFnAttribute("gc-leaf-function")) 1635 return true; 1636 1637 if (auto IID = F->getIntrinsicID()) 1638 // Most LLVM intrinsics do not take safepoints. 1639 return IID != Intrinsic::experimental_gc_statepoint && 1640 IID != Intrinsic::experimental_deoptimize; 1641 } 1642 1643 return false; 1644 } 1645 1646 /// A potential constituent of a bitreverse or bswap expression. See 1647 /// collectBitParts for a fuller explanation. 1648 struct BitPart { 1649 BitPart(Value *P, unsigned BW) : Provider(P) { 1650 Provenance.resize(BW); 1651 } 1652 1653 /// The Value that this is a bitreverse/bswap of. 1654 Value *Provider; 1655 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1656 /// in Provider becomes bit B in the result of this expression. 1657 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1658 1659 enum { Unset = -1 }; 1660 }; 1661 1662 /// Analyze the specified subexpression and see if it is capable of providing 1663 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1664 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1665 /// the output of the expression came from a corresponding bit in some other 1666 /// value. This function is recursive, and the end result is a mapping of 1667 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1668 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1669 /// 1670 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1671 /// that the expression deposits the low byte of %X into the high byte of the 1672 /// result and that all other bits are zero. This expression is accepted and a 1673 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1674 /// [0-7]. 1675 /// 1676 /// To avoid revisiting values, the BitPart results are memoized into the 1677 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1678 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1679 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1680 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1681 /// type instead to provide the same functionality. 1682 /// 1683 /// Because we pass around references into \c BPS, we must use a container that 1684 /// does not invalidate internal references (std::map instead of DenseMap). 1685 /// 1686 static const Optional<BitPart> & 1687 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1688 std::map<Value *, Optional<BitPart>> &BPS) { 1689 auto I = BPS.find(V); 1690 if (I != BPS.end()) 1691 return I->second; 1692 1693 auto &Result = BPS[V] = None; 1694 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1695 1696 if (Instruction *I = dyn_cast<Instruction>(V)) { 1697 // If this is an or instruction, it may be an inner node of the bswap. 1698 if (I->getOpcode() == Instruction::Or) { 1699 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1700 MatchBitReversals, BPS); 1701 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1702 MatchBitReversals, BPS); 1703 if (!A || !B) 1704 return Result; 1705 1706 // Try and merge the two together. 1707 if (!A->Provider || A->Provider != B->Provider) 1708 return Result; 1709 1710 Result = BitPart(A->Provider, BitWidth); 1711 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1712 if (A->Provenance[i] != BitPart::Unset && 1713 B->Provenance[i] != BitPart::Unset && 1714 A->Provenance[i] != B->Provenance[i]) 1715 return Result = None; 1716 1717 if (A->Provenance[i] == BitPart::Unset) 1718 Result->Provenance[i] = B->Provenance[i]; 1719 else 1720 Result->Provenance[i] = A->Provenance[i]; 1721 } 1722 1723 return Result; 1724 } 1725 1726 // If this is a logical shift by a constant, recurse then shift the result. 1727 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1728 unsigned BitShift = 1729 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1730 // Ensure the shift amount is defined. 1731 if (BitShift > BitWidth) 1732 return Result; 1733 1734 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1735 MatchBitReversals, BPS); 1736 if (!Res) 1737 return Result; 1738 Result = Res; 1739 1740 // Perform the "shift" on BitProvenance. 1741 auto &P = Result->Provenance; 1742 if (I->getOpcode() == Instruction::Shl) { 1743 P.erase(std::prev(P.end(), BitShift), P.end()); 1744 P.insert(P.begin(), BitShift, BitPart::Unset); 1745 } else { 1746 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1747 P.insert(P.end(), BitShift, BitPart::Unset); 1748 } 1749 1750 return Result; 1751 } 1752 1753 // If this is a logical 'and' with a mask that clears bits, recurse then 1754 // unset the appropriate bits. 1755 if (I->getOpcode() == Instruction::And && 1756 isa<ConstantInt>(I->getOperand(1))) { 1757 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1758 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1759 1760 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1761 // early exit. 1762 unsigned NumMaskedBits = AndMask.countPopulation(); 1763 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1764 return Result; 1765 1766 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1767 MatchBitReversals, BPS); 1768 if (!Res) 1769 return Result; 1770 Result = Res; 1771 1772 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1773 // If the AndMask is zero for this bit, clear the bit. 1774 if ((AndMask & Bit) == 0) 1775 Result->Provenance[i] = BitPart::Unset; 1776 return Result; 1777 } 1778 1779 // If this is a zext instruction zero extend the result. 1780 if (I->getOpcode() == Instruction::ZExt) { 1781 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1782 MatchBitReversals, BPS); 1783 if (!Res) 1784 return Result; 1785 1786 Result = BitPart(Res->Provider, BitWidth); 1787 auto NarrowBitWidth = 1788 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1789 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1790 Result->Provenance[i] = Res->Provenance[i]; 1791 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1792 Result->Provenance[i] = BitPart::Unset; 1793 return Result; 1794 } 1795 } 1796 1797 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1798 // the input value to the bswap/bitreverse. 1799 Result = BitPart(V, BitWidth); 1800 for (unsigned i = 0; i < BitWidth; ++i) 1801 Result->Provenance[i] = i; 1802 return Result; 1803 } 1804 1805 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1806 unsigned BitWidth) { 1807 if (From % 8 != To % 8) 1808 return false; 1809 // Convert from bit indices to byte indices and check for a byte reversal. 1810 From >>= 3; 1811 To >>= 3; 1812 BitWidth >>= 3; 1813 return From == BitWidth - To - 1; 1814 } 1815 1816 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1817 unsigned BitWidth) { 1818 return From == BitWidth - To - 1; 1819 } 1820 1821 /// Given an OR instruction, check to see if this is a bitreverse 1822 /// idiom. If so, insert the new intrinsic and return true. 1823 bool llvm::recognizeBSwapOrBitReverseIdiom( 1824 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 1825 SmallVectorImpl<Instruction *> &InsertedInsts) { 1826 if (Operator::getOpcode(I) != Instruction::Or) 1827 return false; 1828 if (!MatchBSwaps && !MatchBitReversals) 1829 return false; 1830 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 1831 if (!ITy || ITy->getBitWidth() > 128) 1832 return false; // Can't do vectors or integers > 128 bits. 1833 unsigned BW = ITy->getBitWidth(); 1834 1835 unsigned DemandedBW = BW; 1836 IntegerType *DemandedTy = ITy; 1837 if (I->hasOneUse()) { 1838 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 1839 DemandedTy = cast<IntegerType>(Trunc->getType()); 1840 DemandedBW = DemandedTy->getBitWidth(); 1841 } 1842 } 1843 1844 // Try to find all the pieces corresponding to the bswap. 1845 std::map<Value *, Optional<BitPart>> BPS; 1846 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 1847 if (!Res) 1848 return false; 1849 auto &BitProvenance = Res->Provenance; 1850 1851 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 1852 // only byteswap values with an even number of bytes. 1853 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 1854 for (unsigned i = 0; i < DemandedBW; ++i) { 1855 OKForBSwap &= 1856 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 1857 OKForBitReverse &= 1858 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 1859 } 1860 1861 Intrinsic::ID Intrin; 1862 if (OKForBSwap && MatchBSwaps) 1863 Intrin = Intrinsic::bswap; 1864 else if (OKForBitReverse && MatchBitReversals) 1865 Intrin = Intrinsic::bitreverse; 1866 else 1867 return false; 1868 1869 if (ITy != DemandedTy) { 1870 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 1871 Value *Provider = Res->Provider; 1872 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 1873 // We may need to truncate the provider. 1874 if (DemandedTy != ProviderTy) { 1875 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 1876 "trunc", I); 1877 InsertedInsts.push_back(Trunc); 1878 Provider = Trunc; 1879 } 1880 auto *CI = CallInst::Create(F, Provider, "rev", I); 1881 InsertedInsts.push_back(CI); 1882 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 1883 InsertedInsts.push_back(ExtInst); 1884 return true; 1885 } 1886 1887 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 1888 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 1889 return true; 1890 } 1891