xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision e406b29c2295b8d41ebb084ee0dd79f87bcf16fa)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
87 
88 #define DEBUG_TYPE "local"
89 
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
91 
92 //===----------------------------------------------------------------------===//
93 //  Local constant propagation.
94 //
95 
96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
97 /// constant value, convert it into an unconditional branch to the constant
98 /// destination.  This is a nontrivial operation because the successors of this
99 /// basic block must have their PHI nodes updated.
100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
101 /// conditions and indirectbr addresses this might make dead if
102 /// DeleteDeadConditions is true.
103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
104                                   const TargetLibraryInfo *TLI,
105                                   DeferredDominance *DDT) {
106   TerminatorInst *T = BB->getTerminator();
107   IRBuilder<> Builder(T);
108 
109   // Branch - See if we are conditional jumping on constant
110   if (auto *BI = dyn_cast<BranchInst>(T)) {
111     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
112     BasicBlock *Dest1 = BI->getSuccessor(0);
113     BasicBlock *Dest2 = BI->getSuccessor(1);
114 
115     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
116       // Are we branching on constant?
117       // YES.  Change to unconditional branch...
118       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
119       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
120 
121       // Let the basic block know that we are letting go of it.  Based on this,
122       // it will adjust it's PHI nodes.
123       OldDest->removePredecessor(BB);
124 
125       // Replace the conditional branch with an unconditional one.
126       Builder.CreateBr(Destination);
127       BI->eraseFromParent();
128       if (DDT)
129         DDT->deleteEdge(BB, OldDest);
130       return true;
131     }
132 
133     if (Dest2 == Dest1) {       // Conditional branch to same location?
134       // This branch matches something like this:
135       //     br bool %cond, label %Dest, label %Dest
136       // and changes it into:  br label %Dest
137 
138       // Let the basic block know that we are letting go of one copy of it.
139       assert(BI->getParent() && "Terminator not inserted in block!");
140       Dest1->removePredecessor(BI->getParent());
141 
142       // Replace the conditional branch with an unconditional one.
143       Builder.CreateBr(Dest1);
144       Value *Cond = BI->getCondition();
145       BI->eraseFromParent();
146       if (DeleteDeadConditions)
147         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
148       return true;
149     }
150     return false;
151   }
152 
153   if (auto *SI = dyn_cast<SwitchInst>(T)) {
154     // If we are switching on a constant, we can convert the switch to an
155     // unconditional branch.
156     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
157     BasicBlock *DefaultDest = SI->getDefaultDest();
158     BasicBlock *TheOnlyDest = DefaultDest;
159 
160     // If the default is unreachable, ignore it when searching for TheOnlyDest.
161     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
162         SI->getNumCases() > 0) {
163       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
164     }
165 
166     // Figure out which case it goes to.
167     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
168       // Found case matching a constant operand?
169       if (i->getCaseValue() == CI) {
170         TheOnlyDest = i->getCaseSuccessor();
171         break;
172       }
173 
174       // Check to see if this branch is going to the same place as the default
175       // dest.  If so, eliminate it as an explicit compare.
176       if (i->getCaseSuccessor() == DefaultDest) {
177         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
178         unsigned NCases = SI->getNumCases();
179         // Fold the case metadata into the default if there will be any branches
180         // left, unless the metadata doesn't match the switch.
181         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
182           // Collect branch weights into a vector.
183           SmallVector<uint32_t, 8> Weights;
184           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
185                ++MD_i) {
186             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
187             Weights.push_back(CI->getValue().getZExtValue());
188           }
189           // Merge weight of this case to the default weight.
190           unsigned idx = i->getCaseIndex();
191           Weights[0] += Weights[idx+1];
192           // Remove weight for this case.
193           std::swap(Weights[idx+1], Weights.back());
194           Weights.pop_back();
195           SI->setMetadata(LLVMContext::MD_prof,
196                           MDBuilder(BB->getContext()).
197                           createBranchWeights(Weights));
198         }
199         // Remove this entry.
200         BasicBlock *ParentBB = SI->getParent();
201         DefaultDest->removePredecessor(ParentBB);
202         i = SI->removeCase(i);
203         e = SI->case_end();
204         if (DDT)
205           DDT->deleteEdge(ParentBB, DefaultDest);
206         continue;
207       }
208 
209       // Otherwise, check to see if the switch only branches to one destination.
210       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
211       // destinations.
212       if (i->getCaseSuccessor() != TheOnlyDest)
213         TheOnlyDest = nullptr;
214 
215       // Increment this iterator as we haven't removed the case.
216       ++i;
217     }
218 
219     if (CI && !TheOnlyDest) {
220       // Branching on a constant, but not any of the cases, go to the default
221       // successor.
222       TheOnlyDest = SI->getDefaultDest();
223     }
224 
225     // If we found a single destination that we can fold the switch into, do so
226     // now.
227     if (TheOnlyDest) {
228       // Insert the new branch.
229       Builder.CreateBr(TheOnlyDest);
230       BasicBlock *BB = SI->getParent();
231       std::vector <DominatorTree::UpdateType> Updates;
232       if (DDT)
233         Updates.reserve(SI->getNumSuccessors() - 1);
234 
235       // Remove entries from PHI nodes which we no longer branch to...
236       for (BasicBlock *Succ : SI->successors()) {
237         // Found case matching a constant operand?
238         if (Succ == TheOnlyDest) {
239           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
240         } else {
241           Succ->removePredecessor(BB);
242           if (DDT)
243             Updates.push_back({DominatorTree::Delete, BB, Succ});
244         }
245       }
246 
247       // Delete the old switch.
248       Value *Cond = SI->getCondition();
249       SI->eraseFromParent();
250       if (DeleteDeadConditions)
251         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
252       if (DDT)
253         DDT->applyUpdates(Updates);
254       return true;
255     }
256 
257     if (SI->getNumCases() == 1) {
258       // Otherwise, we can fold this switch into a conditional branch
259       // instruction if it has only one non-default destination.
260       auto FirstCase = *SI->case_begin();
261       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
262           FirstCase.getCaseValue(), "cond");
263 
264       // Insert the new branch.
265       BranchInst *NewBr = Builder.CreateCondBr(Cond,
266                                                FirstCase.getCaseSuccessor(),
267                                                SI->getDefaultDest());
268       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
269       if (MD && MD->getNumOperands() == 3) {
270         ConstantInt *SICase =
271             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
272         ConstantInt *SIDef =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
274         assert(SICase && SIDef);
275         // The TrueWeight should be the weight for the single case of SI.
276         NewBr->setMetadata(LLVMContext::MD_prof,
277                         MDBuilder(BB->getContext()).
278                         createBranchWeights(SICase->getValue().getZExtValue(),
279                                             SIDef->getValue().getZExtValue()));
280       }
281 
282       // Update make.implicit metadata to the newly-created conditional branch.
283       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
284       if (MakeImplicitMD)
285         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
286 
287       // Delete the old switch.
288       SI->eraseFromParent();
289       return true;
290     }
291     return false;
292   }
293 
294   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
295     // indirectbr blockaddress(@F, @BB) -> br label @BB
296     if (auto *BA =
297           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
298       BasicBlock *TheOnlyDest = BA->getBasicBlock();
299       std::vector <DominatorTree::UpdateType> Updates;
300       if (DDT)
301         Updates.reserve(IBI->getNumDestinations() - 1);
302 
303       // Insert the new branch.
304       Builder.CreateBr(TheOnlyDest);
305 
306       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
307         if (IBI->getDestination(i) == TheOnlyDest) {
308           TheOnlyDest = nullptr;
309         } else {
310           BasicBlock *ParentBB = IBI->getParent();
311           BasicBlock *DestBB = IBI->getDestination(i);
312           DestBB->removePredecessor(ParentBB);
313           if (DDT)
314             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
315         }
316       }
317       Value *Address = IBI->getAddress();
318       IBI->eraseFromParent();
319       if (DeleteDeadConditions)
320         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
321 
322       // If we didn't find our destination in the IBI successor list, then we
323       // have undefined behavior.  Replace the unconditional branch with an
324       // 'unreachable' instruction.
325       if (TheOnlyDest) {
326         BB->getTerminator()->eraseFromParent();
327         new UnreachableInst(BB->getContext(), BB);
328       }
329 
330       if (DDT)
331         DDT->applyUpdates(Updates);
332       return true;
333     }
334   }
335 
336   return false;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 //  Local dead code elimination.
341 //
342 
343 /// isInstructionTriviallyDead - Return true if the result produced by the
344 /// instruction is not used, and the instruction has no side effects.
345 ///
346 bool llvm::isInstructionTriviallyDead(Instruction *I,
347                                       const TargetLibraryInfo *TLI) {
348   if (!I->use_empty())
349     return false;
350   return wouldInstructionBeTriviallyDead(I, TLI);
351 }
352 
353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
354                                            const TargetLibraryInfo *TLI) {
355   if (isa<TerminatorInst>(I))
356     return false;
357 
358   // We don't want the landingpad-like instructions removed by anything this
359   // general.
360   if (I->isEHPad())
361     return false;
362 
363   // We don't want debug info removed by anything this general, unless
364   // debug info is empty.
365   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
366     if (DDI->getAddress())
367       return false;
368     return true;
369   }
370   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
371     if (DVI->getValue())
372       return false;
373     return true;
374   }
375   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
376     if (DLI->getLabel())
377       return false;
378     return true;
379   }
380 
381   if (!I->mayHaveSideEffects())
382     return true;
383 
384   // Special case intrinsics that "may have side effects" but can be deleted
385   // when dead.
386   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
387     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
388     if (II->getIntrinsicID() == Intrinsic::stacksave ||
389         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
390       return true;
391 
392     // Lifetime intrinsics are dead when their right-hand is undef.
393     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
394         II->getIntrinsicID() == Intrinsic::lifetime_end)
395       return isa<UndefValue>(II->getArgOperand(1));
396 
397     // Assumptions are dead if their condition is trivially true.  Guards on
398     // true are operationally no-ops.  In the future we can consider more
399     // sophisticated tradeoffs for guards considering potential for check
400     // widening, but for now we keep things simple.
401     if (II->getIntrinsicID() == Intrinsic::assume ||
402         II->getIntrinsicID() == Intrinsic::experimental_guard) {
403       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
404         return !Cond->isZero();
405 
406       return false;
407     }
408   }
409 
410   if (isAllocLikeFn(I, TLI))
411     return true;
412 
413   if (CallInst *CI = isFreeCall(I, TLI))
414     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
415       return C->isNullValue() || isa<UndefValue>(C);
416 
417   if (CallSite CS = CallSite(I))
418     if (isMathLibCallNoop(CS, TLI))
419       return true;
420 
421   return false;
422 }
423 
424 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
425 /// trivially dead instruction, delete it.  If that makes any of its operands
426 /// trivially dead, delete them too, recursively.  Return true if any
427 /// instructions were deleted.
428 bool
429 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
430                                                  const TargetLibraryInfo *TLI) {
431   Instruction *I = dyn_cast<Instruction>(V);
432   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
433     return false;
434 
435   SmallVector<Instruction*, 16> DeadInsts;
436   DeadInsts.push_back(I);
437   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
438 
439   return true;
440 }
441 
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI) {
444   // Process the dead instruction list until empty.
445   while (!DeadInsts.empty()) {
446     Instruction &I = *DeadInsts.pop_back_val();
447     assert(I.use_empty() && "Instructions with uses are not dead.");
448     assert(isInstructionTriviallyDead(&I, TLI) &&
449            "Live instruction found in dead worklist!");
450 
451     // Don't lose the debug info while deleting the instructions.
452     salvageDebugInfo(I);
453 
454     // Null out all of the instruction's operands to see if any operand becomes
455     // dead as we go.
456     for (Use &OpU : I.operands()) {
457       Value *OpV = OpU.get();
458       OpU.set(nullptr);
459 
460       if (!OpV->use_empty())
461         continue;
462 
463       // If the operand is an instruction that became dead as we nulled out the
464       // operand, and if it is 'trivially' dead, delete it in a future loop
465       // iteration.
466       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
467         if (isInstructionTriviallyDead(OpI, TLI))
468           DeadInsts.push_back(OpI);
469     }
470 
471     I.eraseFromParent();
472   }
473 }
474 
475 /// areAllUsesEqual - Check whether the uses of a value are all the same.
476 /// This is similar to Instruction::hasOneUse() except this will also return
477 /// true when there are no uses or multiple uses that all refer to the same
478 /// value.
479 static bool areAllUsesEqual(Instruction *I) {
480   Value::user_iterator UI = I->user_begin();
481   Value::user_iterator UE = I->user_end();
482   if (UI == UE)
483     return true;
484 
485   User *TheUse = *UI;
486   for (++UI; UI != UE; ++UI) {
487     if (*UI != TheUse)
488       return false;
489   }
490   return true;
491 }
492 
493 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
494 /// dead PHI node, due to being a def-use chain of single-use nodes that
495 /// either forms a cycle or is terminated by a trivially dead instruction,
496 /// delete it.  If that makes any of its operands trivially dead, delete them
497 /// too, recursively.  Return true if a change was made.
498 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
499                                         const TargetLibraryInfo *TLI) {
500   SmallPtrSet<Instruction*, 4> Visited;
501   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
502        I = cast<Instruction>(*I->user_begin())) {
503     if (I->use_empty())
504       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
505 
506     // If we find an instruction more than once, we're on a cycle that
507     // won't prove fruitful.
508     if (!Visited.insert(I).second) {
509       // Break the cycle and delete the instruction and its operands.
510       I->replaceAllUsesWith(UndefValue::get(I->getType()));
511       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
512       return true;
513     }
514   }
515   return false;
516 }
517 
518 static bool
519 simplifyAndDCEInstruction(Instruction *I,
520                           SmallSetVector<Instruction *, 16> &WorkList,
521                           const DataLayout &DL,
522                           const TargetLibraryInfo *TLI) {
523   if (isInstructionTriviallyDead(I, TLI)) {
524     salvageDebugInfo(*I);
525 
526     // Null out all of the instruction's operands to see if any operand becomes
527     // dead as we go.
528     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
529       Value *OpV = I->getOperand(i);
530       I->setOperand(i, nullptr);
531 
532       if (!OpV->use_empty() || I == OpV)
533         continue;
534 
535       // If the operand is an instruction that became dead as we nulled out the
536       // operand, and if it is 'trivially' dead, delete it in a future loop
537       // iteration.
538       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
539         if (isInstructionTriviallyDead(OpI, TLI))
540           WorkList.insert(OpI);
541     }
542 
543     I->eraseFromParent();
544 
545     return true;
546   }
547 
548   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
549     // Add the users to the worklist. CAREFUL: an instruction can use itself,
550     // in the case of a phi node.
551     for (User *U : I->users()) {
552       if (U != I) {
553         WorkList.insert(cast<Instruction>(U));
554       }
555     }
556 
557     // Replace the instruction with its simplified value.
558     bool Changed = false;
559     if (!I->use_empty()) {
560       I->replaceAllUsesWith(SimpleV);
561       Changed = true;
562     }
563     if (isInstructionTriviallyDead(I, TLI)) {
564       I->eraseFromParent();
565       Changed = true;
566     }
567     return Changed;
568   }
569   return false;
570 }
571 
572 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
573 /// simplify any instructions in it and recursively delete dead instructions.
574 ///
575 /// This returns true if it changed the code, note that it can delete
576 /// instructions in other blocks as well in this block.
577 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
578                                        const TargetLibraryInfo *TLI) {
579   bool MadeChange = false;
580   const DataLayout &DL = BB->getModule()->getDataLayout();
581 
582 #ifndef NDEBUG
583   // In debug builds, ensure that the terminator of the block is never replaced
584   // or deleted by these simplifications. The idea of simplification is that it
585   // cannot introduce new instructions, and there is no way to replace the
586   // terminator of a block without introducing a new instruction.
587   AssertingVH<Instruction> TerminatorVH(&BB->back());
588 #endif
589 
590   SmallSetVector<Instruction *, 16> WorkList;
591   // Iterate over the original function, only adding insts to the worklist
592   // if they actually need to be revisited. This avoids having to pre-init
593   // the worklist with the entire function's worth of instructions.
594   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
595        BI != E;) {
596     assert(!BI->isTerminator());
597     Instruction *I = &*BI;
598     ++BI;
599 
600     // We're visiting this instruction now, so make sure it's not in the
601     // worklist from an earlier visit.
602     if (!WorkList.count(I))
603       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
604   }
605 
606   while (!WorkList.empty()) {
607     Instruction *I = WorkList.pop_back_val();
608     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
609   }
610   return MadeChange;
611 }
612 
613 //===----------------------------------------------------------------------===//
614 //  Control Flow Graph Restructuring.
615 //
616 
617 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
618 /// method is called when we're about to delete Pred as a predecessor of BB.  If
619 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
620 ///
621 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
622 /// nodes that collapse into identity values.  For example, if we have:
623 ///   x = phi(1, 0, 0, 0)
624 ///   y = and x, z
625 ///
626 /// .. and delete the predecessor corresponding to the '1', this will attempt to
627 /// recursively fold the and to 0.
628 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
629                                         DeferredDominance *DDT) {
630   // This only adjusts blocks with PHI nodes.
631   if (!isa<PHINode>(BB->begin()))
632     return;
633 
634   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
635   // them down.  This will leave us with single entry phi nodes and other phis
636   // that can be removed.
637   BB->removePredecessor(Pred, true);
638 
639   WeakTrackingVH PhiIt = &BB->front();
640   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
641     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
642     Value *OldPhiIt = PhiIt;
643 
644     if (!recursivelySimplifyInstruction(PN))
645       continue;
646 
647     // If recursive simplification ended up deleting the next PHI node we would
648     // iterate to, then our iterator is invalid, restart scanning from the top
649     // of the block.
650     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
651   }
652   if (DDT)
653     DDT->deleteEdge(Pred, BB);
654 }
655 
656 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
657 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
658 /// between them, moving the instructions in the predecessor into DestBB and
659 /// deleting the predecessor block.
660 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT,
661                                        DeferredDominance *DDT) {
662   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
663 
664   // If BB has single-entry PHI nodes, fold them.
665   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
666     Value *NewVal = PN->getIncomingValue(0);
667     // Replace self referencing PHI with undef, it must be dead.
668     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
669     PN->replaceAllUsesWith(NewVal);
670     PN->eraseFromParent();
671   }
672 
673   BasicBlock *PredBB = DestBB->getSinglePredecessor();
674   assert(PredBB && "Block doesn't have a single predecessor!");
675 
676   bool ReplaceEntryBB = false;
677   if (PredBB == &DestBB->getParent()->getEntryBlock())
678     ReplaceEntryBB = true;
679 
680   // Deferred DT update: Collect all the edges that enter PredBB. These
681   // dominator edges will be redirected to DestBB.
682   std::vector <DominatorTree::UpdateType> Updates;
683   if (DDT && !ReplaceEntryBB) {
684     Updates.reserve(1 + (2 * pred_size(PredBB)));
685     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
686     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
687       Updates.push_back({DominatorTree::Delete, *I, PredBB});
688       // This predecessor of PredBB may already have DestBB as a successor.
689       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
690         Updates.push_back({DominatorTree::Insert, *I, DestBB});
691     }
692   }
693 
694   // Zap anything that took the address of DestBB.  Not doing this will give the
695   // address an invalid value.
696   if (DestBB->hasAddressTaken()) {
697     BlockAddress *BA = BlockAddress::get(DestBB);
698     Constant *Replacement =
699       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
700     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
701                                                      BA->getType()));
702     BA->destroyConstant();
703   }
704 
705   // Anything that branched to PredBB now branches to DestBB.
706   PredBB->replaceAllUsesWith(DestBB);
707 
708   // Splice all the instructions from PredBB to DestBB.
709   PredBB->getTerminator()->eraseFromParent();
710   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
711 
712   // If the PredBB is the entry block of the function, move DestBB up to
713   // become the entry block after we erase PredBB.
714   if (ReplaceEntryBB)
715     DestBB->moveAfter(PredBB);
716 
717   if (DT) {
718     // For some irreducible CFG we end up having forward-unreachable blocks
719     // so check if getNode returns a valid node before updating the domtree.
720     if (DomTreeNode *DTN = DT->getNode(PredBB)) {
721       BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
722       DT->changeImmediateDominator(DestBB, PredBBIDom);
723       DT->eraseNode(PredBB);
724     }
725   }
726 
727   if (DDT) {
728     DDT->deleteBB(PredBB); // Deferred deletion of BB.
729     if (ReplaceEntryBB)
730       // The entry block was removed and there is no external interface for the
731       // dominator tree to be notified of this change. In this corner-case we
732       // recalculate the entire tree.
733       DDT->recalculate(*(DestBB->getParent()));
734     else
735       DDT->applyUpdates(Updates);
736   } else {
737     PredBB->eraseFromParent(); // Nuke BB.
738   }
739 }
740 
741 /// CanMergeValues - Return true if we can choose one of these values to use
742 /// in place of the other. Note that we will always choose the non-undef
743 /// value to keep.
744 static bool CanMergeValues(Value *First, Value *Second) {
745   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
746 }
747 
748 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
749 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
750 ///
751 /// Assumption: Succ is the single successor for BB.
752 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
753   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
754 
755   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
756                     << Succ->getName() << "\n");
757   // Shortcut, if there is only a single predecessor it must be BB and merging
758   // is always safe
759   if (Succ->getSinglePredecessor()) return true;
760 
761   // Make a list of the predecessors of BB
762   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
763 
764   // Look at all the phi nodes in Succ, to see if they present a conflict when
765   // merging these blocks
766   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
767     PHINode *PN = cast<PHINode>(I);
768 
769     // If the incoming value from BB is again a PHINode in
770     // BB which has the same incoming value for *PI as PN does, we can
771     // merge the phi nodes and then the blocks can still be merged
772     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
773     if (BBPN && BBPN->getParent() == BB) {
774       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
775         BasicBlock *IBB = PN->getIncomingBlock(PI);
776         if (BBPreds.count(IBB) &&
777             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
778                             PN->getIncomingValue(PI))) {
779           LLVM_DEBUG(dbgs()
780                      << "Can't fold, phi node " << PN->getName() << " in "
781                      << Succ->getName() << " is conflicting with "
782                      << BBPN->getName() << " with regard to common predecessor "
783                      << IBB->getName() << "\n");
784           return false;
785         }
786       }
787     } else {
788       Value* Val = PN->getIncomingValueForBlock(BB);
789       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
790         // See if the incoming value for the common predecessor is equal to the
791         // one for BB, in which case this phi node will not prevent the merging
792         // of the block.
793         BasicBlock *IBB = PN->getIncomingBlock(PI);
794         if (BBPreds.count(IBB) &&
795             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
796           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
797                             << " in " << Succ->getName()
798                             << " is conflicting with regard to common "
799                             << "predecessor " << IBB->getName() << "\n");
800           return false;
801         }
802       }
803     }
804   }
805 
806   return true;
807 }
808 
809 using PredBlockVector = SmallVector<BasicBlock *, 16>;
810 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
811 
812 /// Determines the value to use as the phi node input for a block.
813 ///
814 /// Select between \p OldVal any value that we know flows from \p BB
815 /// to a particular phi on the basis of which one (if either) is not
816 /// undef. Update IncomingValues based on the selected value.
817 ///
818 /// \param OldVal The value we are considering selecting.
819 /// \param BB The block that the value flows in from.
820 /// \param IncomingValues A map from block-to-value for other phi inputs
821 /// that we have examined.
822 ///
823 /// \returns the selected value.
824 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
825                                           IncomingValueMap &IncomingValues) {
826   if (!isa<UndefValue>(OldVal)) {
827     assert((!IncomingValues.count(BB) ||
828             IncomingValues.find(BB)->second == OldVal) &&
829            "Expected OldVal to match incoming value from BB!");
830 
831     IncomingValues.insert(std::make_pair(BB, OldVal));
832     return OldVal;
833   }
834 
835   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
836   if (It != IncomingValues.end()) return It->second;
837 
838   return OldVal;
839 }
840 
841 /// Create a map from block to value for the operands of a
842 /// given phi.
843 ///
844 /// Create a map from block to value for each non-undef value flowing
845 /// into \p PN.
846 ///
847 /// \param PN The phi we are collecting the map for.
848 /// \param IncomingValues [out] The map from block to value for this phi.
849 static void gatherIncomingValuesToPhi(PHINode *PN,
850                                       IncomingValueMap &IncomingValues) {
851   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
852     BasicBlock *BB = PN->getIncomingBlock(i);
853     Value *V = PN->getIncomingValue(i);
854 
855     if (!isa<UndefValue>(V))
856       IncomingValues.insert(std::make_pair(BB, V));
857   }
858 }
859 
860 /// Replace the incoming undef values to a phi with the values
861 /// from a block-to-value map.
862 ///
863 /// \param PN The phi we are replacing the undefs in.
864 /// \param IncomingValues A map from block to value.
865 static void replaceUndefValuesInPhi(PHINode *PN,
866                                     const IncomingValueMap &IncomingValues) {
867   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
868     Value *V = PN->getIncomingValue(i);
869 
870     if (!isa<UndefValue>(V)) continue;
871 
872     BasicBlock *BB = PN->getIncomingBlock(i);
873     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
874     if (It == IncomingValues.end()) continue;
875 
876     PN->setIncomingValue(i, It->second);
877   }
878 }
879 
880 /// Replace a value flowing from a block to a phi with
881 /// potentially multiple instances of that value flowing from the
882 /// block's predecessors to the phi.
883 ///
884 /// \param BB The block with the value flowing into the phi.
885 /// \param BBPreds The predecessors of BB.
886 /// \param PN The phi that we are updating.
887 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
888                                                 const PredBlockVector &BBPreds,
889                                                 PHINode *PN) {
890   Value *OldVal = PN->removeIncomingValue(BB, false);
891   assert(OldVal && "No entry in PHI for Pred BB!");
892 
893   IncomingValueMap IncomingValues;
894 
895   // We are merging two blocks - BB, and the block containing PN - and
896   // as a result we need to redirect edges from the predecessors of BB
897   // to go to the block containing PN, and update PN
898   // accordingly. Since we allow merging blocks in the case where the
899   // predecessor and successor blocks both share some predecessors,
900   // and where some of those common predecessors might have undef
901   // values flowing into PN, we want to rewrite those values to be
902   // consistent with the non-undef values.
903 
904   gatherIncomingValuesToPhi(PN, IncomingValues);
905 
906   // If this incoming value is one of the PHI nodes in BB, the new entries
907   // in the PHI node are the entries from the old PHI.
908   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
909     PHINode *OldValPN = cast<PHINode>(OldVal);
910     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
911       // Note that, since we are merging phi nodes and BB and Succ might
912       // have common predecessors, we could end up with a phi node with
913       // identical incoming branches. This will be cleaned up later (and
914       // will trigger asserts if we try to clean it up now, without also
915       // simplifying the corresponding conditional branch).
916       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
917       Value *PredVal = OldValPN->getIncomingValue(i);
918       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
919                                                     IncomingValues);
920 
921       // And add a new incoming value for this predecessor for the
922       // newly retargeted branch.
923       PN->addIncoming(Selected, PredBB);
924     }
925   } else {
926     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
927       // Update existing incoming values in PN for this
928       // predecessor of BB.
929       BasicBlock *PredBB = BBPreds[i];
930       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
931                                                     IncomingValues);
932 
933       // And add a new incoming value for this predecessor for the
934       // newly retargeted branch.
935       PN->addIncoming(Selected, PredBB);
936     }
937   }
938 
939   replaceUndefValuesInPhi(PN, IncomingValues);
940 }
941 
942 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
943 /// unconditional branch, and contains no instructions other than PHI nodes,
944 /// potential side-effect free intrinsics and the branch.  If possible,
945 /// eliminate BB by rewriting all the predecessors to branch to the successor
946 /// block and return true.  If we can't transform, return false.
947 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
948                                                    DeferredDominance *DDT) {
949   assert(BB != &BB->getParent()->getEntryBlock() &&
950          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
951 
952   // We can't eliminate infinite loops.
953   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
954   if (BB == Succ) return false;
955 
956   // Check to see if merging these blocks would cause conflicts for any of the
957   // phi nodes in BB or Succ. If not, we can safely merge.
958   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
959 
960   // Check for cases where Succ has multiple predecessors and a PHI node in BB
961   // has uses which will not disappear when the PHI nodes are merged.  It is
962   // possible to handle such cases, but difficult: it requires checking whether
963   // BB dominates Succ, which is non-trivial to calculate in the case where
964   // Succ has multiple predecessors.  Also, it requires checking whether
965   // constructing the necessary self-referential PHI node doesn't introduce any
966   // conflicts; this isn't too difficult, but the previous code for doing this
967   // was incorrect.
968   //
969   // Note that if this check finds a live use, BB dominates Succ, so BB is
970   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
971   // folding the branch isn't profitable in that case anyway.
972   if (!Succ->getSinglePredecessor()) {
973     BasicBlock::iterator BBI = BB->begin();
974     while (isa<PHINode>(*BBI)) {
975       for (Use &U : BBI->uses()) {
976         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
977           if (PN->getIncomingBlock(U) != BB)
978             return false;
979         } else {
980           return false;
981         }
982       }
983       ++BBI;
984     }
985   }
986 
987   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
988 
989   std::vector<DominatorTree::UpdateType> Updates;
990   if (DDT) {
991     Updates.reserve(1 + (2 * pred_size(BB)));
992     Updates.push_back({DominatorTree::Delete, BB, Succ});
993     // All predecessors of BB will be moved to Succ.
994     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
995       Updates.push_back({DominatorTree::Delete, *I, BB});
996       // This predecessor of BB may already have Succ as a successor.
997       if (llvm::find(successors(*I), Succ) == succ_end(*I))
998         Updates.push_back({DominatorTree::Insert, *I, Succ});
999     }
1000   }
1001 
1002   if (isa<PHINode>(Succ->begin())) {
1003     // If there is more than one pred of succ, and there are PHI nodes in
1004     // the successor, then we need to add incoming edges for the PHI nodes
1005     //
1006     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1007 
1008     // Loop over all of the PHI nodes in the successor of BB.
1009     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1010       PHINode *PN = cast<PHINode>(I);
1011 
1012       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1013     }
1014   }
1015 
1016   if (Succ->getSinglePredecessor()) {
1017     // BB is the only predecessor of Succ, so Succ will end up with exactly
1018     // the same predecessors BB had.
1019 
1020     // Copy over any phi, debug or lifetime instruction.
1021     BB->getTerminator()->eraseFromParent();
1022     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1023                                BB->getInstList());
1024   } else {
1025     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1026       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1027       assert(PN->use_empty() && "There shouldn't be any uses here!");
1028       PN->eraseFromParent();
1029     }
1030   }
1031 
1032   // If the unconditional branch we replaced contains llvm.loop metadata, we
1033   // add the metadata to the branch instructions in the predecessors.
1034   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1035   Instruction *TI = BB->getTerminator();
1036   if (TI)
1037     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1038       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1039         BasicBlock *Pred = *PI;
1040         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1041       }
1042 
1043   // Everything that jumped to BB now goes to Succ.
1044   BB->replaceAllUsesWith(Succ);
1045   if (!Succ->hasName()) Succ->takeName(BB);
1046 
1047   if (DDT) {
1048     DDT->deleteBB(BB); // Deferred deletion of the old basic block.
1049     DDT->applyUpdates(Updates);
1050   } else {
1051     BB->eraseFromParent(); // Delete the old basic block.
1052   }
1053   return true;
1054 }
1055 
1056 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1057 /// nodes in this block. This doesn't try to be clever about PHI nodes
1058 /// which differ only in the order of the incoming values, but instcombine
1059 /// orders them so it usually won't matter.
1060 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1061   // This implementation doesn't currently consider undef operands
1062   // specially. Theoretically, two phis which are identical except for
1063   // one having an undef where the other doesn't could be collapsed.
1064 
1065   struct PHIDenseMapInfo {
1066     static PHINode *getEmptyKey() {
1067       return DenseMapInfo<PHINode *>::getEmptyKey();
1068     }
1069 
1070     static PHINode *getTombstoneKey() {
1071       return DenseMapInfo<PHINode *>::getTombstoneKey();
1072     }
1073 
1074     static unsigned getHashValue(PHINode *PN) {
1075       // Compute a hash value on the operands. Instcombine will likely have
1076       // sorted them, which helps expose duplicates, but we have to check all
1077       // the operands to be safe in case instcombine hasn't run.
1078       return static_cast<unsigned>(hash_combine(
1079           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1080           hash_combine_range(PN->block_begin(), PN->block_end())));
1081     }
1082 
1083     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1084       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1085           RHS == getEmptyKey() || RHS == getTombstoneKey())
1086         return LHS == RHS;
1087       return LHS->isIdenticalTo(RHS);
1088     }
1089   };
1090 
1091   // Set of unique PHINodes.
1092   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1093 
1094   // Examine each PHI.
1095   bool Changed = false;
1096   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1097     auto Inserted = PHISet.insert(PN);
1098     if (!Inserted.second) {
1099       // A duplicate. Replace this PHI with its duplicate.
1100       PN->replaceAllUsesWith(*Inserted.first);
1101       PN->eraseFromParent();
1102       Changed = true;
1103 
1104       // The RAUW can change PHIs that we already visited. Start over from the
1105       // beginning.
1106       PHISet.clear();
1107       I = BB->begin();
1108     }
1109   }
1110 
1111   return Changed;
1112 }
1113 
1114 /// enforceKnownAlignment - If the specified pointer points to an object that
1115 /// we control, modify the object's alignment to PrefAlign. This isn't
1116 /// often possible though. If alignment is important, a more reliable approach
1117 /// is to simply align all global variables and allocation instructions to
1118 /// their preferred alignment from the beginning.
1119 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1120                                       unsigned PrefAlign,
1121                                       const DataLayout &DL) {
1122   assert(PrefAlign > Align);
1123 
1124   V = V->stripPointerCasts();
1125 
1126   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1127     // TODO: ideally, computeKnownBits ought to have used
1128     // AllocaInst::getAlignment() in its computation already, making
1129     // the below max redundant. But, as it turns out,
1130     // stripPointerCasts recurses through infinite layers of bitcasts,
1131     // while computeKnownBits is not allowed to traverse more than 6
1132     // levels.
1133     Align = std::max(AI->getAlignment(), Align);
1134     if (PrefAlign <= Align)
1135       return Align;
1136 
1137     // If the preferred alignment is greater than the natural stack alignment
1138     // then don't round up. This avoids dynamic stack realignment.
1139     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1140       return Align;
1141     AI->setAlignment(PrefAlign);
1142     return PrefAlign;
1143   }
1144 
1145   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1146     // TODO: as above, this shouldn't be necessary.
1147     Align = std::max(GO->getAlignment(), Align);
1148     if (PrefAlign <= Align)
1149       return Align;
1150 
1151     // If there is a large requested alignment and we can, bump up the alignment
1152     // of the global.  If the memory we set aside for the global may not be the
1153     // memory used by the final program then it is impossible for us to reliably
1154     // enforce the preferred alignment.
1155     if (!GO->canIncreaseAlignment())
1156       return Align;
1157 
1158     GO->setAlignment(PrefAlign);
1159     return PrefAlign;
1160   }
1161 
1162   return Align;
1163 }
1164 
1165 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1166                                           const DataLayout &DL,
1167                                           const Instruction *CxtI,
1168                                           AssumptionCache *AC,
1169                                           const DominatorTree *DT) {
1170   assert(V->getType()->isPointerTy() &&
1171          "getOrEnforceKnownAlignment expects a pointer!");
1172 
1173   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1174   unsigned TrailZ = Known.countMinTrailingZeros();
1175 
1176   // Avoid trouble with ridiculously large TrailZ values, such as
1177   // those computed from a null pointer.
1178   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1179 
1180   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1181 
1182   // LLVM doesn't support alignments larger than this currently.
1183   Align = std::min(Align, +Value::MaximumAlignment);
1184 
1185   if (PrefAlign > Align)
1186     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1187 
1188   // We don't need to make any adjustment.
1189   return Align;
1190 }
1191 
1192 ///===---------------------------------------------------------------------===//
1193 ///  Dbg Intrinsic utilities
1194 ///
1195 
1196 /// See if there is a dbg.value intrinsic for DIVar before I.
1197 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1198                               Instruction *I) {
1199   // Since we can't guarantee that the original dbg.declare instrinsic
1200   // is removed by LowerDbgDeclare(), we need to make sure that we are
1201   // not inserting the same dbg.value intrinsic over and over.
1202   BasicBlock::InstListType::iterator PrevI(I);
1203   if (PrevI != I->getParent()->getInstList().begin()) {
1204     --PrevI;
1205     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1206       if (DVI->getValue() == I->getOperand(0) &&
1207           DVI->getVariable() == DIVar &&
1208           DVI->getExpression() == DIExpr)
1209         return true;
1210   }
1211   return false;
1212 }
1213 
1214 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1215 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1216                              DIExpression *DIExpr,
1217                              PHINode *APN) {
1218   // Since we can't guarantee that the original dbg.declare instrinsic
1219   // is removed by LowerDbgDeclare(), we need to make sure that we are
1220   // not inserting the same dbg.value intrinsic over and over.
1221   SmallVector<DbgValueInst *, 1> DbgValues;
1222   findDbgValues(DbgValues, APN);
1223   for (auto *DVI : DbgValues) {
1224     assert(DVI->getValue() == APN);
1225     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1226       return true;
1227   }
1228   return false;
1229 }
1230 
1231 /// Check if the store size of \p ValTy is large enough to cover the variable
1232 /// (or fragment of the variable) described by \p DII.
1233 ///
1234 /// This is primarily intended as a helper for the different
1235 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1236 /// converted describes an alloca'd variable, so we need to use the
1237 /// store size of the value when doing the comparison. E.g. an i1 value will be
1238 /// identified as covering an n-bit fragment, if the store size of i1 is at
1239 /// least n bits.
1240 static bool valueCoversEntireFragment(Type *ValTy, DbgInfoIntrinsic *DII) {
1241   const DataLayout &DL = DII->getModule()->getDataLayout();
1242   uint64_t ValueSize = DL.getTypeStoreSizeInBits(ValTy);
1243   if (auto FragmentSize = DII->getFragmentSizeInBits())
1244     return ValueSize >= *FragmentSize;
1245   return false;
1246 }
1247 
1248 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1249 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1250 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1251                                            StoreInst *SI, DIBuilder &Builder) {
1252   assert(DII->isAddressOfVariable());
1253   auto *DIVar = DII->getVariable();
1254   assert(DIVar && "Missing variable");
1255   auto *DIExpr = DII->getExpression();
1256   Value *DV = SI->getOperand(0);
1257 
1258   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1259     // FIXME: If storing to a part of the variable described by the dbg.declare,
1260     // then we want to insert a dbg.value for the corresponding fragment.
1261     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1262                       << *DII << '\n');
1263     // For now, when there is a store to parts of the variable (but we do not
1264     // know which part) we insert an dbg.value instrinsic to indicate that we
1265     // know nothing about the variable's content.
1266     DV = UndefValue::get(DV->getType());
1267     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1268       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1269                                       SI);
1270     return;
1271   }
1272 
1273   // If an argument is zero extended then use argument directly. The ZExt
1274   // may be zapped by an optimization pass in future.
1275   Argument *ExtendedArg = nullptr;
1276   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1277     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1278   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1279     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1280   if (ExtendedArg) {
1281     // If this DII was already describing only a fragment of a variable, ensure
1282     // that fragment is appropriately narrowed here.
1283     // But if a fragment wasn't used, describe the value as the original
1284     // argument (rather than the zext or sext) so that it remains described even
1285     // if the sext/zext is optimized away. This widens the variable description,
1286     // leaving it up to the consumer to know how the smaller value may be
1287     // represented in a larger register.
1288     if (auto Fragment = DIExpr->getFragmentInfo()) {
1289       unsigned FragmentOffset = Fragment->OffsetInBits;
1290       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1291                                    DIExpr->elements_end() - 3);
1292       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1293       Ops.push_back(FragmentOffset);
1294       const DataLayout &DL = DII->getModule()->getDataLayout();
1295       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1296       DIExpr = Builder.createExpression(Ops);
1297     }
1298     DV = ExtendedArg;
1299   }
1300   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1301     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1302                                     SI);
1303 }
1304 
1305 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1306 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1307 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1308                                            LoadInst *LI, DIBuilder &Builder) {
1309   auto *DIVar = DII->getVariable();
1310   auto *DIExpr = DII->getExpression();
1311   assert(DIVar && "Missing variable");
1312 
1313   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1314     return;
1315 
1316   assert(valueCoversEntireFragment(LI->getType(), DII) &&
1317          "Load is not loading the full variable fragment.");
1318 
1319   // We are now tracking the loaded value instead of the address. In the
1320   // future if multi-location support is added to the IR, it might be
1321   // preferable to keep tracking both the loaded value and the original
1322   // address in case the alloca can not be elided.
1323   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1324       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1325   DbgValue->insertAfter(LI);
1326 }
1327 
1328 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1329 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1330 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1331                                            PHINode *APN, DIBuilder &Builder) {
1332   auto *DIVar = DII->getVariable();
1333   auto *DIExpr = DII->getExpression();
1334   assert(DIVar && "Missing variable");
1335 
1336   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1337     return;
1338 
1339   assert(valueCoversEntireFragment(APN->getType(), DII) &&
1340          "PHI node is not describing the full variable.");
1341 
1342   BasicBlock *BB = APN->getParent();
1343   auto InsertionPt = BB->getFirstInsertionPt();
1344 
1345   // The block may be a catchswitch block, which does not have a valid
1346   // insertion point.
1347   // FIXME: Insert dbg.value markers in the successors when appropriate.
1348   if (InsertionPt != BB->end())
1349     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1350                                     &*InsertionPt);
1351 }
1352 
1353 /// Determine whether this alloca is either a VLA or an array.
1354 static bool isArray(AllocaInst *AI) {
1355   return AI->isArrayAllocation() ||
1356     AI->getType()->getElementType()->isArrayTy();
1357 }
1358 
1359 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1360 /// of llvm.dbg.value intrinsics.
1361 bool llvm::LowerDbgDeclare(Function &F) {
1362   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1363   SmallVector<DbgDeclareInst *, 4> Dbgs;
1364   for (auto &FI : F)
1365     for (Instruction &BI : FI)
1366       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1367         Dbgs.push_back(DDI);
1368 
1369   if (Dbgs.empty())
1370     return false;
1371 
1372   for (auto &I : Dbgs) {
1373     DbgDeclareInst *DDI = I;
1374     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1375     // If this is an alloca for a scalar variable, insert a dbg.value
1376     // at each load and store to the alloca and erase the dbg.declare.
1377     // The dbg.values allow tracking a variable even if it is not
1378     // stored on the stack, while the dbg.declare can only describe
1379     // the stack slot (and at a lexical-scope granularity). Later
1380     // passes will attempt to elide the stack slot.
1381     if (!AI || isArray(AI))
1382       continue;
1383 
1384     // A volatile load/store means that the alloca can't be elided anyway.
1385     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1386           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1387             return LI->isVolatile();
1388           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1389             return SI->isVolatile();
1390           return false;
1391         }))
1392       continue;
1393 
1394     for (auto &AIUse : AI->uses()) {
1395       User *U = AIUse.getUser();
1396       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1397         if (AIUse.getOperandNo() == 1)
1398           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1399       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1400         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1401       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1402         // This is a call by-value or some other instruction that
1403         // takes a pointer to the variable. Insert a *value*
1404         // intrinsic that describes the alloca.
1405         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1406                                     DDI->getExpression(), DDI->getDebugLoc(),
1407                                     CI);
1408       }
1409     }
1410     DDI->eraseFromParent();
1411   }
1412   return true;
1413 }
1414 
1415 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1416 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1417                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1418   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1419   if (InsertedPHIs.size() == 0)
1420     return;
1421 
1422   // Map existing PHI nodes to their dbg.values.
1423   ValueToValueMapTy DbgValueMap;
1424   for (auto &I : *BB) {
1425     if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
1426       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1427         DbgValueMap.insert({Loc, DbgII});
1428     }
1429   }
1430   if (DbgValueMap.size() == 0)
1431     return;
1432 
1433   // Then iterate through the new PHIs and look to see if they use one of the
1434   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1435   // propagate the info through the new PHI.
1436   LLVMContext &C = BB->getContext();
1437   for (auto PHI : InsertedPHIs) {
1438     BasicBlock *Parent = PHI->getParent();
1439     // Avoid inserting an intrinsic into an EH block.
1440     if (Parent->getFirstNonPHI()->isEHPad())
1441       continue;
1442     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1443     for (auto VI : PHI->operand_values()) {
1444       auto V = DbgValueMap.find(VI);
1445       if (V != DbgValueMap.end()) {
1446         auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
1447         Instruction *NewDbgII = DbgII->clone();
1448         NewDbgII->setOperand(0, PhiMAV);
1449         auto InsertionPt = Parent->getFirstInsertionPt();
1450         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1451         NewDbgII->insertBefore(&*InsertionPt);
1452       }
1453     }
1454   }
1455 }
1456 
1457 /// Finds all intrinsics declaring local variables as living in the memory that
1458 /// 'V' points to. This may include a mix of dbg.declare and
1459 /// dbg.addr intrinsics.
1460 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1461   auto *L = LocalAsMetadata::getIfExists(V);
1462   if (!L)
1463     return {};
1464   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1465   if (!MDV)
1466     return {};
1467 
1468   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1469   for (User *U : MDV->users()) {
1470     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1471       if (DII->isAddressOfVariable())
1472         Declares.push_back(DII);
1473   }
1474 
1475   return Declares;
1476 }
1477 
1478 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1479   if (auto *L = LocalAsMetadata::getIfExists(V))
1480     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1481       for (User *U : MDV->users())
1482         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1483           DbgValues.push_back(DVI);
1484 }
1485 
1486 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1487                         Value *V) {
1488   if (auto *L = LocalAsMetadata::getIfExists(V))
1489     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1490       for (User *U : MDV->users())
1491         if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1492           DbgUsers.push_back(DII);
1493 }
1494 
1495 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1496                              Instruction *InsertBefore, DIBuilder &Builder,
1497                              bool DerefBefore, int Offset, bool DerefAfter) {
1498   auto DbgAddrs = FindDbgAddrUses(Address);
1499   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1500     DebugLoc Loc = DII->getDebugLoc();
1501     auto *DIVar = DII->getVariable();
1502     auto *DIExpr = DII->getExpression();
1503     assert(DIVar && "Missing variable");
1504     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1505     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1506     // llvm.dbg.declare.
1507     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1508     if (DII == InsertBefore)
1509       InsertBefore = &*std::next(InsertBefore->getIterator());
1510     DII->eraseFromParent();
1511   }
1512   return !DbgAddrs.empty();
1513 }
1514 
1515 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1516                                       DIBuilder &Builder, bool DerefBefore,
1517                                       int Offset, bool DerefAfter) {
1518   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1519                            DerefBefore, Offset, DerefAfter);
1520 }
1521 
1522 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1523                                         DIBuilder &Builder, int Offset) {
1524   DebugLoc Loc = DVI->getDebugLoc();
1525   auto *DIVar = DVI->getVariable();
1526   auto *DIExpr = DVI->getExpression();
1527   assert(DIVar && "Missing variable");
1528 
1529   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1530   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1531   // it and give up.
1532   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1533       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1534     return;
1535 
1536   // Insert the offset immediately after the first deref.
1537   // We could just change the offset argument of dbg.value, but it's unsigned...
1538   if (Offset) {
1539     SmallVector<uint64_t, 4> Ops;
1540     Ops.push_back(dwarf::DW_OP_deref);
1541     DIExpression::appendOffset(Ops, Offset);
1542     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1543     DIExpr = Builder.createExpression(Ops);
1544   }
1545 
1546   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1547   DVI->eraseFromParent();
1548 }
1549 
1550 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1551                                     DIBuilder &Builder, int Offset) {
1552   if (auto *L = LocalAsMetadata::getIfExists(AI))
1553     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1554       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1555         Use &U = *UI++;
1556         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1557           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1558       }
1559 }
1560 
1561 void llvm::salvageDebugInfo(Instruction &I) {
1562   // This function is hot. An early check to determine whether the instruction
1563   // has any metadata to save allows it to return earlier on average.
1564   if (!I.isUsedByMetadata())
1565     return;
1566 
1567   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1568   findDbgUsers(DbgUsers, &I);
1569   if (DbgUsers.empty())
1570     return;
1571 
1572   auto &M = *I.getModule();
1573   auto &DL = M.getDataLayout();
1574 
1575   auto wrapMD = [&](Value *V) {
1576     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1577   };
1578 
1579   auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1580     auto *DIExpr = DII->getExpression();
1581     DIExpr =
1582         DIExpression::prependOpcodes(DIExpr, Ops, DIExpression::WithStackValue);
1583     DII->setOperand(0, wrapMD(I.getOperand(0)));
1584     DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1585     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1586   };
1587 
1588   auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1589     SmallVector<uint64_t, 8> Ops;
1590     DIExpression::appendOffset(Ops, Offset);
1591     doSalvage(DII, Ops);
1592   };
1593 
1594   auto applyOps = [&](DbgInfoIntrinsic *DII,
1595                       std::initializer_list<uint64_t> Opcodes) {
1596     SmallVector<uint64_t, 8> Ops(Opcodes);
1597     doSalvage(DII, Ops);
1598   };
1599 
1600   if (auto *CI = dyn_cast<CastInst>(&I)) {
1601     if (!CI->isNoopCast(DL))
1602       return;
1603 
1604     // No-op casts are irrelevant for debug info.
1605     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1606     for (auto *DII : DbgUsers) {
1607       DII->setOperand(0, CastSrc);
1608       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1609     }
1610   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1611     unsigned BitWidth =
1612         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1613     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1614     // arithmetic to compute the variable's *value* in the DIExpression, we
1615     // need to mark the expression with a DW_OP_stack_value.
1616     APInt Offset(BitWidth, 0);
1617     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1618       for (auto *DII : DbgUsers)
1619         applyOffset(DII, Offset.getSExtValue());
1620   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1621     // Rewrite binary operations with constant integer operands.
1622     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1623     if (!ConstInt || ConstInt->getBitWidth() > 64)
1624       return;
1625 
1626     uint64_t Val = ConstInt->getSExtValue();
1627     for (auto *DII : DbgUsers) {
1628       switch (BI->getOpcode()) {
1629       case Instruction::Add:
1630         applyOffset(DII, Val);
1631         break;
1632       case Instruction::Sub:
1633         applyOffset(DII, -int64_t(Val));
1634         break;
1635       case Instruction::Mul:
1636         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1637         break;
1638       case Instruction::SDiv:
1639         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1640         break;
1641       case Instruction::SRem:
1642         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1643         break;
1644       case Instruction::Or:
1645         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1646         break;
1647       case Instruction::And:
1648         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1649         break;
1650       case Instruction::Xor:
1651         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1652         break;
1653       case Instruction::Shl:
1654         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1655         break;
1656       case Instruction::LShr:
1657         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1658         break;
1659       case Instruction::AShr:
1660         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1661         break;
1662       default:
1663         // TODO: Salvage constants from each kind of binop we know about.
1664         continue;
1665       }
1666     }
1667   } else if (isa<LoadInst>(&I)) {
1668     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1669     for (auto *DII : DbgUsers) {
1670       // Rewrite the load into DW_OP_deref.
1671       auto *DIExpr = DII->getExpression();
1672       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1673       DII->setOperand(0, AddrMD);
1674       DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1675       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1676     }
1677   }
1678 }
1679 
1680 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1681   unsigned NumDeadInst = 0;
1682   // Delete the instructions backwards, as it has a reduced likelihood of
1683   // having to update as many def-use and use-def chains.
1684   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1685   while (EndInst != &BB->front()) {
1686     // Delete the next to last instruction.
1687     Instruction *Inst = &*--EndInst->getIterator();
1688     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1689       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1690     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1691       EndInst = Inst;
1692       continue;
1693     }
1694     if (!isa<DbgInfoIntrinsic>(Inst))
1695       ++NumDeadInst;
1696     Inst->eraseFromParent();
1697   }
1698   return NumDeadInst;
1699 }
1700 
1701 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1702                                    bool PreserveLCSSA, DeferredDominance *DDT) {
1703   BasicBlock *BB = I->getParent();
1704   std::vector <DominatorTree::UpdateType> Updates;
1705 
1706   // Loop over all of the successors, removing BB's entry from any PHI
1707   // nodes.
1708   if (DDT)
1709     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1710   for (BasicBlock *Successor : successors(BB)) {
1711     Successor->removePredecessor(BB, PreserveLCSSA);
1712     if (DDT)
1713       Updates.push_back({DominatorTree::Delete, BB, Successor});
1714   }
1715   // Insert a call to llvm.trap right before this.  This turns the undefined
1716   // behavior into a hard fail instead of falling through into random code.
1717   if (UseLLVMTrap) {
1718     Function *TrapFn =
1719       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1720     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1721     CallTrap->setDebugLoc(I->getDebugLoc());
1722   }
1723   new UnreachableInst(I->getContext(), I);
1724 
1725   // All instructions after this are dead.
1726   unsigned NumInstrsRemoved = 0;
1727   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1728   while (BBI != BBE) {
1729     if (!BBI->use_empty())
1730       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1731     BB->getInstList().erase(BBI++);
1732     ++NumInstrsRemoved;
1733   }
1734   if (DDT)
1735     DDT->applyUpdates(Updates);
1736   return NumInstrsRemoved;
1737 }
1738 
1739 /// changeToCall - Convert the specified invoke into a normal call.
1740 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) {
1741   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1742   SmallVector<OperandBundleDef, 1> OpBundles;
1743   II->getOperandBundlesAsDefs(OpBundles);
1744   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1745                                        "", II);
1746   NewCall->takeName(II);
1747   NewCall->setCallingConv(II->getCallingConv());
1748   NewCall->setAttributes(II->getAttributes());
1749   NewCall->setDebugLoc(II->getDebugLoc());
1750   II->replaceAllUsesWith(NewCall);
1751 
1752   // Follow the call by a branch to the normal destination.
1753   BasicBlock *NormalDestBB = II->getNormalDest();
1754   BranchInst::Create(NormalDestBB, II);
1755 
1756   // Update PHI nodes in the unwind destination
1757   BasicBlock *BB = II->getParent();
1758   BasicBlock *UnwindDestBB = II->getUnwindDest();
1759   UnwindDestBB->removePredecessor(BB);
1760   II->eraseFromParent();
1761   if (DDT)
1762     DDT->deleteEdge(BB, UnwindDestBB);
1763 }
1764 
1765 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1766                                                    BasicBlock *UnwindEdge) {
1767   BasicBlock *BB = CI->getParent();
1768 
1769   // Convert this function call into an invoke instruction.  First, split the
1770   // basic block.
1771   BasicBlock *Split =
1772       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1773 
1774   // Delete the unconditional branch inserted by splitBasicBlock
1775   BB->getInstList().pop_back();
1776 
1777   // Create the new invoke instruction.
1778   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1779   SmallVector<OperandBundleDef, 1> OpBundles;
1780 
1781   CI->getOperandBundlesAsDefs(OpBundles);
1782 
1783   // Note: we're round tripping operand bundles through memory here, and that
1784   // can potentially be avoided with a cleverer API design that we do not have
1785   // as of this time.
1786 
1787   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1788                                       InvokeArgs, OpBundles, CI->getName(), BB);
1789   II->setDebugLoc(CI->getDebugLoc());
1790   II->setCallingConv(CI->getCallingConv());
1791   II->setAttributes(CI->getAttributes());
1792 
1793   // Make sure that anything using the call now uses the invoke!  This also
1794   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1795   CI->replaceAllUsesWith(II);
1796 
1797   // Delete the original call
1798   Split->getInstList().pop_front();
1799   return Split;
1800 }
1801 
1802 static bool markAliveBlocks(Function &F,
1803                             SmallPtrSetImpl<BasicBlock*> &Reachable,
1804                             DeferredDominance *DDT = nullptr) {
1805   SmallVector<BasicBlock*, 128> Worklist;
1806   BasicBlock *BB = &F.front();
1807   Worklist.push_back(BB);
1808   Reachable.insert(BB);
1809   bool Changed = false;
1810   do {
1811     BB = Worklist.pop_back_val();
1812 
1813     // Do a quick scan of the basic block, turning any obviously unreachable
1814     // instructions into LLVM unreachable insts.  The instruction combining pass
1815     // canonicalizes unreachable insts into stores to null or undef.
1816     for (Instruction &I : *BB) {
1817       // Assumptions that are known to be false are equivalent to unreachable.
1818       // Also, if the condition is undefined, then we make the choice most
1819       // beneficial to the optimizer, and choose that to also be unreachable.
1820       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1821         if (II->getIntrinsicID() == Intrinsic::assume) {
1822           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1823             // Don't insert a call to llvm.trap right before the unreachable.
1824             changeToUnreachable(II, false, false, DDT);
1825             Changed = true;
1826             break;
1827           }
1828         }
1829 
1830         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1831           // A call to the guard intrinsic bails out of the current compilation
1832           // unit if the predicate passed to it is false.  If the predicate is a
1833           // constant false, then we know the guard will bail out of the current
1834           // compile unconditionally, so all code following it is dead.
1835           //
1836           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1837           // guards to treat `undef` as `false` since a guard on `undef` can
1838           // still be useful for widening.
1839           if (match(II->getArgOperand(0), m_Zero()))
1840             if (!isa<UnreachableInst>(II->getNextNode())) {
1841               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false,
1842                                   false, DDT);
1843               Changed = true;
1844               break;
1845             }
1846         }
1847       }
1848 
1849       if (auto *CI = dyn_cast<CallInst>(&I)) {
1850         Value *Callee = CI->getCalledValue();
1851         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1852           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT);
1853           Changed = true;
1854           break;
1855         }
1856         if (CI->doesNotReturn()) {
1857           // If we found a call to a no-return function, insert an unreachable
1858           // instruction after it.  Make sure there isn't *already* one there
1859           // though.
1860           if (!isa<UnreachableInst>(CI->getNextNode())) {
1861             // Don't insert a call to llvm.trap right before the unreachable.
1862             changeToUnreachable(CI->getNextNode(), false, false, DDT);
1863             Changed = true;
1864           }
1865           break;
1866         }
1867       }
1868 
1869       // Store to undef and store to null are undefined and used to signal that
1870       // they should be changed to unreachable by passes that can't modify the
1871       // CFG.
1872       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1873         // Don't touch volatile stores.
1874         if (SI->isVolatile()) continue;
1875 
1876         Value *Ptr = SI->getOperand(1);
1877 
1878         if (isa<UndefValue>(Ptr) ||
1879             (isa<ConstantPointerNull>(Ptr) &&
1880              SI->getPointerAddressSpace() == 0)) {
1881           changeToUnreachable(SI, true, false, DDT);
1882           Changed = true;
1883           break;
1884         }
1885       }
1886     }
1887 
1888     TerminatorInst *Terminator = BB->getTerminator();
1889     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1890       // Turn invokes that call 'nounwind' functions into ordinary calls.
1891       Value *Callee = II->getCalledValue();
1892       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1893         changeToUnreachable(II, true, false, DDT);
1894         Changed = true;
1895       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1896         if (II->use_empty() && II->onlyReadsMemory()) {
1897           // jump to the normal destination branch.
1898           BasicBlock *NormalDestBB = II->getNormalDest();
1899           BasicBlock *UnwindDestBB = II->getUnwindDest();
1900           BranchInst::Create(NormalDestBB, II);
1901           UnwindDestBB->removePredecessor(II->getParent());
1902           II->eraseFromParent();
1903           if (DDT)
1904             DDT->deleteEdge(BB, UnwindDestBB);
1905         } else
1906           changeToCall(II, DDT);
1907         Changed = true;
1908       }
1909     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1910       // Remove catchpads which cannot be reached.
1911       struct CatchPadDenseMapInfo {
1912         static CatchPadInst *getEmptyKey() {
1913           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1914         }
1915 
1916         static CatchPadInst *getTombstoneKey() {
1917           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1918         }
1919 
1920         static unsigned getHashValue(CatchPadInst *CatchPad) {
1921           return static_cast<unsigned>(hash_combine_range(
1922               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1923         }
1924 
1925         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1926           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1927               RHS == getEmptyKey() || RHS == getTombstoneKey())
1928             return LHS == RHS;
1929           return LHS->isIdenticalTo(RHS);
1930         }
1931       };
1932 
1933       // Set of unique CatchPads.
1934       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1935                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1936           HandlerSet;
1937       detail::DenseSetEmpty Empty;
1938       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1939                                              E = CatchSwitch->handler_end();
1940            I != E; ++I) {
1941         BasicBlock *HandlerBB = *I;
1942         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1943         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1944           CatchSwitch->removeHandler(I);
1945           --I;
1946           --E;
1947           Changed = true;
1948         }
1949       }
1950     }
1951 
1952     Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT);
1953     for (BasicBlock *Successor : successors(BB))
1954       if (Reachable.insert(Successor).second)
1955         Worklist.push_back(Successor);
1956   } while (!Worklist.empty());
1957   return Changed;
1958 }
1959 
1960 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) {
1961   TerminatorInst *TI = BB->getTerminator();
1962 
1963   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1964     changeToCall(II, DDT);
1965     return;
1966   }
1967 
1968   TerminatorInst *NewTI;
1969   BasicBlock *UnwindDest;
1970 
1971   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1972     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1973     UnwindDest = CRI->getUnwindDest();
1974   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1975     auto *NewCatchSwitch = CatchSwitchInst::Create(
1976         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1977         CatchSwitch->getName(), CatchSwitch);
1978     for (BasicBlock *PadBB : CatchSwitch->handlers())
1979       NewCatchSwitch->addHandler(PadBB);
1980 
1981     NewTI = NewCatchSwitch;
1982     UnwindDest = CatchSwitch->getUnwindDest();
1983   } else {
1984     llvm_unreachable("Could not find unwind successor");
1985   }
1986 
1987   NewTI->takeName(TI);
1988   NewTI->setDebugLoc(TI->getDebugLoc());
1989   UnwindDest->removePredecessor(BB);
1990   TI->replaceAllUsesWith(NewTI);
1991   TI->eraseFromParent();
1992   if (DDT)
1993     DDT->deleteEdge(BB, UnwindDest);
1994 }
1995 
1996 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1997 /// if they are in a dead cycle.  Return true if a change was made, false
1998 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1999 /// after modifying the CFG.
2000 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2001                                    DeferredDominance *DDT) {
2002   SmallPtrSet<BasicBlock*, 16> Reachable;
2003   bool Changed = markAliveBlocks(F, Reachable, DDT);
2004 
2005   // If there are unreachable blocks in the CFG...
2006   if (Reachable.size() == F.size())
2007     return Changed;
2008 
2009   assert(Reachable.size() < F.size());
2010   NumRemoved += F.size()-Reachable.size();
2011 
2012   // Loop over all of the basic blocks that are not reachable, dropping all of
2013   // their internal references. Update DDT and LVI if available.
2014   std::vector <DominatorTree::UpdateType> Updates;
2015   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2016     auto *BB = &*I;
2017     if (Reachable.count(BB))
2018       continue;
2019     for (BasicBlock *Successor : successors(BB)) {
2020       if (Reachable.count(Successor))
2021         Successor->removePredecessor(BB);
2022       if (DDT)
2023         Updates.push_back({DominatorTree::Delete, BB, Successor});
2024     }
2025     if (LVI)
2026       LVI->eraseBlock(BB);
2027     BB->dropAllReferences();
2028   }
2029 
2030   for (Function::iterator I = ++F.begin(); I != F.end();) {
2031     auto *BB = &*I;
2032     if (Reachable.count(BB)) {
2033       ++I;
2034       continue;
2035     }
2036     if (DDT) {
2037       DDT->deleteBB(BB); // deferred deletion of BB.
2038       ++I;
2039     } else {
2040       I = F.getBasicBlockList().erase(I);
2041     }
2042   }
2043 
2044   if (DDT)
2045     DDT->applyUpdates(Updates);
2046   return true;
2047 }
2048 
2049 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2050                            ArrayRef<unsigned> KnownIDs) {
2051   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2052   K->dropUnknownNonDebugMetadata(KnownIDs);
2053   K->getAllMetadataOtherThanDebugLoc(Metadata);
2054   for (const auto &MD : Metadata) {
2055     unsigned Kind = MD.first;
2056     MDNode *JMD = J->getMetadata(Kind);
2057     MDNode *KMD = MD.second;
2058 
2059     switch (Kind) {
2060       default:
2061         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2062         break;
2063       case LLVMContext::MD_dbg:
2064         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2065       case LLVMContext::MD_tbaa:
2066         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2067         break;
2068       case LLVMContext::MD_alias_scope:
2069         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2070         break;
2071       case LLVMContext::MD_noalias:
2072       case LLVMContext::MD_mem_parallel_loop_access:
2073         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2074         break;
2075       case LLVMContext::MD_range:
2076         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2077         break;
2078       case LLVMContext::MD_fpmath:
2079         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2080         break;
2081       case LLVMContext::MD_invariant_load:
2082         // Only set the !invariant.load if it is present in both instructions.
2083         K->setMetadata(Kind, JMD);
2084         break;
2085       case LLVMContext::MD_nonnull:
2086         // Only set the !nonnull if it is present in both instructions.
2087         K->setMetadata(Kind, JMD);
2088         break;
2089       case LLVMContext::MD_invariant_group:
2090         // Preserve !invariant.group in K.
2091         break;
2092       case LLVMContext::MD_align:
2093         K->setMetadata(Kind,
2094           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2095         break;
2096       case LLVMContext::MD_dereferenceable:
2097       case LLVMContext::MD_dereferenceable_or_null:
2098         K->setMetadata(Kind,
2099           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2100         break;
2101     }
2102   }
2103   // Set !invariant.group from J if J has it. If both instructions have it
2104   // then we will just pick it from J - even when they are different.
2105   // Also make sure that K is load or store - f.e. combining bitcast with load
2106   // could produce bitcast with invariant.group metadata, which is invalid.
2107   // FIXME: we should try to preserve both invariant.group md if they are
2108   // different, but right now instruction can only have one invariant.group.
2109   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2110     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2111       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2112 }
2113 
2114 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
2115   unsigned KnownIDs[] = {
2116       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2117       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2118       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2119       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2120       LLVMContext::MD_dereferenceable,
2121       LLVMContext::MD_dereferenceable_or_null};
2122   combineMetadata(K, J, KnownIDs);
2123 }
2124 
2125 template <typename RootType, typename DominatesFn>
2126 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2127                                          const RootType &Root,
2128                                          const DominatesFn &Dominates) {
2129   assert(From->getType() == To->getType());
2130 
2131   unsigned Count = 0;
2132   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2133        UI != UE;) {
2134     Use &U = *UI++;
2135     if (!Dominates(Root, U))
2136       continue;
2137     U.set(To);
2138     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2139                       << "' as " << *To << " in " << *U << "\n");
2140     ++Count;
2141   }
2142   return Count;
2143 }
2144 
2145 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2146    assert(From->getType() == To->getType());
2147    auto *BB = From->getParent();
2148    unsigned Count = 0;
2149 
2150   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2151        UI != UE;) {
2152     Use &U = *UI++;
2153     auto *I = cast<Instruction>(U.getUser());
2154     if (I->getParent() == BB)
2155       continue;
2156     U.set(To);
2157     ++Count;
2158   }
2159   return Count;
2160 }
2161 
2162 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2163                                         DominatorTree &DT,
2164                                         const BasicBlockEdge &Root) {
2165   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2166     return DT.dominates(Root, U);
2167   };
2168   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2169 }
2170 
2171 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2172                                         DominatorTree &DT,
2173                                         const BasicBlock *BB) {
2174   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2175     auto *I = cast<Instruction>(U.getUser())->getParent();
2176     return DT.properlyDominates(BB, I);
2177   };
2178   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2179 }
2180 
2181 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2182                                const TargetLibraryInfo &TLI) {
2183   // Check if the function is specifically marked as a gc leaf function.
2184   if (CS.hasFnAttr("gc-leaf-function"))
2185     return true;
2186   if (const Function *F = CS.getCalledFunction()) {
2187     if (F->hasFnAttribute("gc-leaf-function"))
2188       return true;
2189 
2190     if (auto IID = F->getIntrinsicID())
2191       // Most LLVM intrinsics do not take safepoints.
2192       return IID != Intrinsic::experimental_gc_statepoint &&
2193              IID != Intrinsic::experimental_deoptimize;
2194   }
2195 
2196   // Lib calls can be materialized by some passes, and won't be
2197   // marked as 'gc-leaf-function.' All available Libcalls are
2198   // GC-leaf.
2199   LibFunc LF;
2200   if (TLI.getLibFunc(CS, LF)) {
2201     return TLI.has(LF);
2202   }
2203 
2204   return false;
2205 }
2206 
2207 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2208                                LoadInst &NewLI) {
2209   auto *NewTy = NewLI.getType();
2210 
2211   // This only directly applies if the new type is also a pointer.
2212   if (NewTy->isPointerTy()) {
2213     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2214     return;
2215   }
2216 
2217   // The only other translation we can do is to integral loads with !range
2218   // metadata.
2219   if (!NewTy->isIntegerTy())
2220     return;
2221 
2222   MDBuilder MDB(NewLI.getContext());
2223   const Value *Ptr = OldLI.getPointerOperand();
2224   auto *ITy = cast<IntegerType>(NewTy);
2225   auto *NullInt = ConstantExpr::getPtrToInt(
2226       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2227   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2228   NewLI.setMetadata(LLVMContext::MD_range,
2229                     MDB.createRange(NonNullInt, NullInt));
2230 }
2231 
2232 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2233                              MDNode *N, LoadInst &NewLI) {
2234   auto *NewTy = NewLI.getType();
2235 
2236   // Give up unless it is converted to a pointer where there is a single very
2237   // valuable mapping we can do reliably.
2238   // FIXME: It would be nice to propagate this in more ways, but the type
2239   // conversions make it hard.
2240   if (!NewTy->isPointerTy())
2241     return;
2242 
2243   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2244   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2245     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2246     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2247   }
2248 }
2249 
2250 namespace {
2251 
2252 /// A potential constituent of a bitreverse or bswap expression. See
2253 /// collectBitParts for a fuller explanation.
2254 struct BitPart {
2255   BitPart(Value *P, unsigned BW) : Provider(P) {
2256     Provenance.resize(BW);
2257   }
2258 
2259   /// The Value that this is a bitreverse/bswap of.
2260   Value *Provider;
2261 
2262   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2263   /// in Provider becomes bit B in the result of this expression.
2264   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2265 
2266   enum { Unset = -1 };
2267 };
2268 
2269 } // end anonymous namespace
2270 
2271 /// Analyze the specified subexpression and see if it is capable of providing
2272 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2273 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2274 /// the output of the expression came from a corresponding bit in some other
2275 /// value. This function is recursive, and the end result is a mapping of
2276 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2277 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2278 ///
2279 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2280 /// that the expression deposits the low byte of %X into the high byte of the
2281 /// result and that all other bits are zero. This expression is accepted and a
2282 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2283 /// [0-7].
2284 ///
2285 /// To avoid revisiting values, the BitPart results are memoized into the
2286 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2287 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2288 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2289 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2290 /// type instead to provide the same functionality.
2291 ///
2292 /// Because we pass around references into \c BPS, we must use a container that
2293 /// does not invalidate internal references (std::map instead of DenseMap).
2294 static const Optional<BitPart> &
2295 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2296                 std::map<Value *, Optional<BitPart>> &BPS) {
2297   auto I = BPS.find(V);
2298   if (I != BPS.end())
2299     return I->second;
2300 
2301   auto &Result = BPS[V] = None;
2302   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2303 
2304   if (Instruction *I = dyn_cast<Instruction>(V)) {
2305     // If this is an or instruction, it may be an inner node of the bswap.
2306     if (I->getOpcode() == Instruction::Or) {
2307       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2308                                 MatchBitReversals, BPS);
2309       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2310                                 MatchBitReversals, BPS);
2311       if (!A || !B)
2312         return Result;
2313 
2314       // Try and merge the two together.
2315       if (!A->Provider || A->Provider != B->Provider)
2316         return Result;
2317 
2318       Result = BitPart(A->Provider, BitWidth);
2319       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2320         if (A->Provenance[i] != BitPart::Unset &&
2321             B->Provenance[i] != BitPart::Unset &&
2322             A->Provenance[i] != B->Provenance[i])
2323           return Result = None;
2324 
2325         if (A->Provenance[i] == BitPart::Unset)
2326           Result->Provenance[i] = B->Provenance[i];
2327         else
2328           Result->Provenance[i] = A->Provenance[i];
2329       }
2330 
2331       return Result;
2332     }
2333 
2334     // If this is a logical shift by a constant, recurse then shift the result.
2335     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2336       unsigned BitShift =
2337           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2338       // Ensure the shift amount is defined.
2339       if (BitShift > BitWidth)
2340         return Result;
2341 
2342       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2343                                   MatchBitReversals, BPS);
2344       if (!Res)
2345         return Result;
2346       Result = Res;
2347 
2348       // Perform the "shift" on BitProvenance.
2349       auto &P = Result->Provenance;
2350       if (I->getOpcode() == Instruction::Shl) {
2351         P.erase(std::prev(P.end(), BitShift), P.end());
2352         P.insert(P.begin(), BitShift, BitPart::Unset);
2353       } else {
2354         P.erase(P.begin(), std::next(P.begin(), BitShift));
2355         P.insert(P.end(), BitShift, BitPart::Unset);
2356       }
2357 
2358       return Result;
2359     }
2360 
2361     // If this is a logical 'and' with a mask that clears bits, recurse then
2362     // unset the appropriate bits.
2363     if (I->getOpcode() == Instruction::And &&
2364         isa<ConstantInt>(I->getOperand(1))) {
2365       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2366       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2367 
2368       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2369       // early exit.
2370       unsigned NumMaskedBits = AndMask.countPopulation();
2371       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2372         return Result;
2373 
2374       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2375                                   MatchBitReversals, BPS);
2376       if (!Res)
2377         return Result;
2378       Result = Res;
2379 
2380       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2381         // If the AndMask is zero for this bit, clear the bit.
2382         if ((AndMask & Bit) == 0)
2383           Result->Provenance[i] = BitPart::Unset;
2384       return Result;
2385     }
2386 
2387     // If this is a zext instruction zero extend the result.
2388     if (I->getOpcode() == Instruction::ZExt) {
2389       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2390                                   MatchBitReversals, BPS);
2391       if (!Res)
2392         return Result;
2393 
2394       Result = BitPart(Res->Provider, BitWidth);
2395       auto NarrowBitWidth =
2396           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2397       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2398         Result->Provenance[i] = Res->Provenance[i];
2399       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2400         Result->Provenance[i] = BitPart::Unset;
2401       return Result;
2402     }
2403   }
2404 
2405   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2406   // the input value to the bswap/bitreverse.
2407   Result = BitPart(V, BitWidth);
2408   for (unsigned i = 0; i < BitWidth; ++i)
2409     Result->Provenance[i] = i;
2410   return Result;
2411 }
2412 
2413 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2414                                           unsigned BitWidth) {
2415   if (From % 8 != To % 8)
2416     return false;
2417   // Convert from bit indices to byte indices and check for a byte reversal.
2418   From >>= 3;
2419   To >>= 3;
2420   BitWidth >>= 3;
2421   return From == BitWidth - To - 1;
2422 }
2423 
2424 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2425                                                unsigned BitWidth) {
2426   return From == BitWidth - To - 1;
2427 }
2428 
2429 bool llvm::recognizeBSwapOrBitReverseIdiom(
2430     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2431     SmallVectorImpl<Instruction *> &InsertedInsts) {
2432   if (Operator::getOpcode(I) != Instruction::Or)
2433     return false;
2434   if (!MatchBSwaps && !MatchBitReversals)
2435     return false;
2436   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2437   if (!ITy || ITy->getBitWidth() > 128)
2438     return false;   // Can't do vectors or integers > 128 bits.
2439   unsigned BW = ITy->getBitWidth();
2440 
2441   unsigned DemandedBW = BW;
2442   IntegerType *DemandedTy = ITy;
2443   if (I->hasOneUse()) {
2444     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2445       DemandedTy = cast<IntegerType>(Trunc->getType());
2446       DemandedBW = DemandedTy->getBitWidth();
2447     }
2448   }
2449 
2450   // Try to find all the pieces corresponding to the bswap.
2451   std::map<Value *, Optional<BitPart>> BPS;
2452   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2453   if (!Res)
2454     return false;
2455   auto &BitProvenance = Res->Provenance;
2456 
2457   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2458   // only byteswap values with an even number of bytes.
2459   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2460   for (unsigned i = 0; i < DemandedBW; ++i) {
2461     OKForBSwap &=
2462         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2463     OKForBitReverse &=
2464         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2465   }
2466 
2467   Intrinsic::ID Intrin;
2468   if (OKForBSwap && MatchBSwaps)
2469     Intrin = Intrinsic::bswap;
2470   else if (OKForBitReverse && MatchBitReversals)
2471     Intrin = Intrinsic::bitreverse;
2472   else
2473     return false;
2474 
2475   if (ITy != DemandedTy) {
2476     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2477     Value *Provider = Res->Provider;
2478     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2479     // We may need to truncate the provider.
2480     if (DemandedTy != ProviderTy) {
2481       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2482                                      "trunc", I);
2483       InsertedInsts.push_back(Trunc);
2484       Provider = Trunc;
2485     }
2486     auto *CI = CallInst::Create(F, Provider, "rev", I);
2487     InsertedInsts.push_back(CI);
2488     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2489     InsertedInsts.push_back(ExtInst);
2490     return true;
2491   }
2492 
2493   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2494   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2495   return true;
2496 }
2497 
2498 // CodeGen has special handling for some string functions that may replace
2499 // them with target-specific intrinsics.  Since that'd skip our interceptors
2500 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2501 // we mark affected calls as NoBuiltin, which will disable optimization
2502 // in CodeGen.
2503 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2504     CallInst *CI, const TargetLibraryInfo *TLI) {
2505   Function *F = CI->getCalledFunction();
2506   LibFunc Func;
2507   if (F && !F->hasLocalLinkage() && F->hasName() &&
2508       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2509       !F->doesNotAccessMemory())
2510     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2511 }
2512 
2513 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2514   // We can't have a PHI with a metadata type.
2515   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2516     return false;
2517 
2518   // Early exit.
2519   if (!isa<Constant>(I->getOperand(OpIdx)))
2520     return true;
2521 
2522   switch (I->getOpcode()) {
2523   default:
2524     return true;
2525   case Instruction::Call:
2526   case Instruction::Invoke:
2527     // Can't handle inline asm. Skip it.
2528     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2529       return false;
2530     // Many arithmetic intrinsics have no issue taking a
2531     // variable, however it's hard to distingish these from
2532     // specials such as @llvm.frameaddress that require a constant.
2533     if (isa<IntrinsicInst>(I))
2534       return false;
2535 
2536     // Constant bundle operands may need to retain their constant-ness for
2537     // correctness.
2538     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2539       return false;
2540     return true;
2541   case Instruction::ShuffleVector:
2542     // Shufflevector masks are constant.
2543     return OpIdx != 2;
2544   case Instruction::Switch:
2545   case Instruction::ExtractValue:
2546     // All operands apart from the first are constant.
2547     return OpIdx == 0;
2548   case Instruction::InsertValue:
2549     // All operands apart from the first and the second are constant.
2550     return OpIdx < 2;
2551   case Instruction::Alloca:
2552     // Static allocas (constant size in the entry block) are handled by
2553     // prologue/epilogue insertion so they're free anyway. We definitely don't
2554     // want to make them non-constant.
2555     return !cast<AllocaInst>(I)->isStaticAlloca();
2556   case Instruction::GetElementPtr:
2557     if (OpIdx == 0)
2558       return true;
2559     gep_type_iterator It = gep_type_begin(I);
2560     for (auto E = std::next(It, OpIdx); It != E; ++It)
2561       if (It.isStruct())
2562         return false;
2563     return true;
2564   }
2565 }
2566