xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision ddfdba3b01fa2ca9066feaf472feb78da1ca2cfc)
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/ValueHandle.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 using namespace llvm;
51 using namespace llvm::PatternMatch;
52 
53 #define DEBUG_TYPE "local"
54 
55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
56 
57 //===----------------------------------------------------------------------===//
58 //  Local constant propagation.
59 //
60 
61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
62 /// constant value, convert it into an unconditional branch to the constant
63 /// destination.  This is a nontrivial operation because the successors of this
64 /// basic block must have their PHI nodes updated.
65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
66 /// conditions and indirectbr addresses this might make dead if
67 /// DeleteDeadConditions is true.
68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
69                                   const TargetLibraryInfo *TLI) {
70   TerminatorInst *T = BB->getTerminator();
71   IRBuilder<> Builder(T);
72 
73   // Branch - See if we are conditional jumping on constant
74   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
75     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
76     BasicBlock *Dest1 = BI->getSuccessor(0);
77     BasicBlock *Dest2 = BI->getSuccessor(1);
78 
79     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
80       // Are we branching on constant?
81       // YES.  Change to unconditional branch...
82       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
83       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
84 
85       //cerr << "Function: " << T->getParent()->getParent()
86       //     << "\nRemoving branch from " << T->getParent()
87       //     << "\n\nTo: " << OldDest << endl;
88 
89       // Let the basic block know that we are letting go of it.  Based on this,
90       // it will adjust it's PHI nodes.
91       OldDest->removePredecessor(BB);
92 
93       // Replace the conditional branch with an unconditional one.
94       Builder.CreateBr(Destination);
95       BI->eraseFromParent();
96       return true;
97     }
98 
99     if (Dest2 == Dest1) {       // Conditional branch to same location?
100       // This branch matches something like this:
101       //     br bool %cond, label %Dest, label %Dest
102       // and changes it into:  br label %Dest
103 
104       // Let the basic block know that we are letting go of one copy of it.
105       assert(BI->getParent() && "Terminator not inserted in block!");
106       Dest1->removePredecessor(BI->getParent());
107 
108       // Replace the conditional branch with an unconditional one.
109       Builder.CreateBr(Dest1);
110       Value *Cond = BI->getCondition();
111       BI->eraseFromParent();
112       if (DeleteDeadConditions)
113         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
114       return true;
115     }
116     return false;
117   }
118 
119   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
120     // If we are switching on a constant, we can convert the switch to an
121     // unconditional branch.
122     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
123     BasicBlock *DefaultDest = SI->getDefaultDest();
124     BasicBlock *TheOnlyDest = DefaultDest;
125 
126     // If the default is unreachable, ignore it when searching for TheOnlyDest.
127     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
128         SI->getNumCases() > 0) {
129       TheOnlyDest = SI->case_begin().getCaseSuccessor();
130     }
131 
132     // Figure out which case it goes to.
133     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
134          i != e; ++i) {
135       // Found case matching a constant operand?
136       if (i.getCaseValue() == CI) {
137         TheOnlyDest = i.getCaseSuccessor();
138         break;
139       }
140 
141       // Check to see if this branch is going to the same place as the default
142       // dest.  If so, eliminate it as an explicit compare.
143       if (i.getCaseSuccessor() == DefaultDest) {
144         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
145         unsigned NCases = SI->getNumCases();
146         // Fold the case metadata into the default if there will be any branches
147         // left, unless the metadata doesn't match the switch.
148         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
149           // Collect branch weights into a vector.
150           SmallVector<uint32_t, 8> Weights;
151           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
152                ++MD_i) {
153             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
154             Weights.push_back(CI->getValue().getZExtValue());
155           }
156           // Merge weight of this case to the default weight.
157           unsigned idx = i.getCaseIndex();
158           Weights[0] += Weights[idx+1];
159           // Remove weight for this case.
160           std::swap(Weights[idx+1], Weights.back());
161           Weights.pop_back();
162           SI->setMetadata(LLVMContext::MD_prof,
163                           MDBuilder(BB->getContext()).
164                           createBranchWeights(Weights));
165         }
166         // Remove this entry.
167         DefaultDest->removePredecessor(SI->getParent());
168         SI->removeCase(i);
169         --i; --e;
170         continue;
171       }
172 
173       // Otherwise, check to see if the switch only branches to one destination.
174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
175       // destinations.
176       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
177     }
178 
179     if (CI && !TheOnlyDest) {
180       // Branching on a constant, but not any of the cases, go to the default
181       // successor.
182       TheOnlyDest = SI->getDefaultDest();
183     }
184 
185     // If we found a single destination that we can fold the switch into, do so
186     // now.
187     if (TheOnlyDest) {
188       // Insert the new branch.
189       Builder.CreateBr(TheOnlyDest);
190       BasicBlock *BB = SI->getParent();
191 
192       // Remove entries from PHI nodes which we no longer branch to...
193       for (BasicBlock *Succ : SI->successors()) {
194         // Found case matching a constant operand?
195         if (Succ == TheOnlyDest)
196           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
197         else
198           Succ->removePredecessor(BB);
199       }
200 
201       // Delete the old switch.
202       Value *Cond = SI->getCondition();
203       SI->eraseFromParent();
204       if (DeleteDeadConditions)
205         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
206       return true;
207     }
208 
209     if (SI->getNumCases() == 1) {
210       // Otherwise, we can fold this switch into a conditional branch
211       // instruction if it has only one non-default destination.
212       SwitchInst::CaseIt FirstCase = SI->case_begin();
213       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
214           FirstCase.getCaseValue(), "cond");
215 
216       // Insert the new branch.
217       BranchInst *NewBr = Builder.CreateCondBr(Cond,
218                                                FirstCase.getCaseSuccessor(),
219                                                SI->getDefaultDest());
220       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
221       if (MD && MD->getNumOperands() == 3) {
222         ConstantInt *SICase =
223             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
224         ConstantInt *SIDef =
225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
226         assert(SICase && SIDef);
227         // The TrueWeight should be the weight for the single case of SI.
228         NewBr->setMetadata(LLVMContext::MD_prof,
229                         MDBuilder(BB->getContext()).
230                         createBranchWeights(SICase->getValue().getZExtValue(),
231                                             SIDef->getValue().getZExtValue()));
232       }
233 
234       // Update make.implicit metadata to the newly-created conditional branch.
235       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
236       if (MakeImplicitMD)
237         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
238 
239       // Delete the old switch.
240       SI->eraseFromParent();
241       return true;
242     }
243     return false;
244   }
245 
246   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
247     // indirectbr blockaddress(@F, @BB) -> br label @BB
248     if (BlockAddress *BA =
249           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
250       BasicBlock *TheOnlyDest = BA->getBasicBlock();
251       // Insert the new branch.
252       Builder.CreateBr(TheOnlyDest);
253 
254       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
255         if (IBI->getDestination(i) == TheOnlyDest)
256           TheOnlyDest = nullptr;
257         else
258           IBI->getDestination(i)->removePredecessor(IBI->getParent());
259       }
260       Value *Address = IBI->getAddress();
261       IBI->eraseFromParent();
262       if (DeleteDeadConditions)
263         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
264 
265       // If we didn't find our destination in the IBI successor list, then we
266       // have undefined behavior.  Replace the unconditional branch with an
267       // 'unreachable' instruction.
268       if (TheOnlyDest) {
269         BB->getTerminator()->eraseFromParent();
270         new UnreachableInst(BB->getContext(), BB);
271       }
272 
273       return true;
274     }
275   }
276 
277   return false;
278 }
279 
280 
281 //===----------------------------------------------------------------------===//
282 //  Local dead code elimination.
283 //
284 
285 /// isInstructionTriviallyDead - Return true if the result produced by the
286 /// instruction is not used, and the instruction has no side effects.
287 ///
288 bool llvm::isInstructionTriviallyDead(Instruction *I,
289                                       const TargetLibraryInfo *TLI) {
290   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
291 
292   // We don't want the landingpad-like instructions removed by anything this
293   // general.
294   if (I->isEHPad())
295     return false;
296 
297   // We don't want debug info removed by anything this general, unless
298   // debug info is empty.
299   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
300     if (DDI->getAddress())
301       return false;
302     return true;
303   }
304   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
305     if (DVI->getValue())
306       return false;
307     return true;
308   }
309 
310   if (!I->mayHaveSideEffects()) return true;
311 
312   // Special case intrinsics that "may have side effects" but can be deleted
313   // when dead.
314   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
315     // Safe to delete llvm.stacksave if dead.
316     if (II->getIntrinsicID() == Intrinsic::stacksave)
317       return true;
318 
319     // Lifetime intrinsics are dead when their right-hand is undef.
320     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
321         II->getIntrinsicID() == Intrinsic::lifetime_end)
322       return isa<UndefValue>(II->getArgOperand(1));
323 
324     // Assumptions are dead if their condition is trivially true.  Guards on
325     // true are operationally no-ops.  In the future we can consider more
326     // sophisticated tradeoffs for guards considering potential for check
327     // widening, but for now we keep things simple.
328     if (II->getIntrinsicID() == Intrinsic::assume ||
329         II->getIntrinsicID() == Intrinsic::experimental_guard) {
330       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
331         return !Cond->isZero();
332 
333       return false;
334     }
335   }
336 
337   if (isAllocLikeFn(I, TLI)) return true;
338 
339   if (CallInst *CI = isFreeCall(I, TLI))
340     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
341       return C->isNullValue() || isa<UndefValue>(C);
342 
343   if (CallSite CS = CallSite(I))
344     if (isMathLibCallNoop(CS, TLI))
345       return true;
346 
347   return false;
348 }
349 
350 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
351 /// trivially dead instruction, delete it.  If that makes any of its operands
352 /// trivially dead, delete them too, recursively.  Return true if any
353 /// instructions were deleted.
354 bool
355 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
356                                                  const TargetLibraryInfo *TLI) {
357   Instruction *I = dyn_cast<Instruction>(V);
358   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
359     return false;
360 
361   SmallVector<Instruction*, 16> DeadInsts;
362   DeadInsts.push_back(I);
363 
364   do {
365     I = DeadInsts.pop_back_val();
366 
367     // Null out all of the instruction's operands to see if any operand becomes
368     // dead as we go.
369     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
370       Value *OpV = I->getOperand(i);
371       I->setOperand(i, nullptr);
372 
373       if (!OpV->use_empty()) continue;
374 
375       // If the operand is an instruction that became dead as we nulled out the
376       // operand, and if it is 'trivially' dead, delete it in a future loop
377       // iteration.
378       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
379         if (isInstructionTriviallyDead(OpI, TLI))
380           DeadInsts.push_back(OpI);
381     }
382 
383     I->eraseFromParent();
384   } while (!DeadInsts.empty());
385 
386   return true;
387 }
388 
389 /// areAllUsesEqual - Check whether the uses of a value are all the same.
390 /// This is similar to Instruction::hasOneUse() except this will also return
391 /// true when there are no uses or multiple uses that all refer to the same
392 /// value.
393 static bool areAllUsesEqual(Instruction *I) {
394   Value::user_iterator UI = I->user_begin();
395   Value::user_iterator UE = I->user_end();
396   if (UI == UE)
397     return true;
398 
399   User *TheUse = *UI;
400   for (++UI; UI != UE; ++UI) {
401     if (*UI != TheUse)
402       return false;
403   }
404   return true;
405 }
406 
407 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
408 /// dead PHI node, due to being a def-use chain of single-use nodes that
409 /// either forms a cycle or is terminated by a trivially dead instruction,
410 /// delete it.  If that makes any of its operands trivially dead, delete them
411 /// too, recursively.  Return true if a change was made.
412 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
413                                         const TargetLibraryInfo *TLI) {
414   SmallPtrSet<Instruction*, 4> Visited;
415   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
416        I = cast<Instruction>(*I->user_begin())) {
417     if (I->use_empty())
418       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
419 
420     // If we find an instruction more than once, we're on a cycle that
421     // won't prove fruitful.
422     if (!Visited.insert(I).second) {
423       // Break the cycle and delete the instruction and its operands.
424       I->replaceAllUsesWith(UndefValue::get(I->getType()));
425       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
426       return true;
427     }
428   }
429   return false;
430 }
431 
432 static bool
433 simplifyAndDCEInstruction(Instruction *I,
434                           SmallSetVector<Instruction *, 16> &WorkList,
435                           const DataLayout &DL,
436                           const TargetLibraryInfo *TLI) {
437   if (isInstructionTriviallyDead(I, TLI)) {
438     // Null out all of the instruction's operands to see if any operand becomes
439     // dead as we go.
440     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
441       Value *OpV = I->getOperand(i);
442       I->setOperand(i, nullptr);
443 
444       if (!OpV->use_empty() || I == OpV)
445         continue;
446 
447       // If the operand is an instruction that became dead as we nulled out the
448       // operand, and if it is 'trivially' dead, delete it in a future loop
449       // iteration.
450       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
451         if (isInstructionTriviallyDead(OpI, TLI))
452           WorkList.insert(OpI);
453     }
454 
455     I->eraseFromParent();
456 
457     return true;
458   }
459 
460   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
461     // Add the users to the worklist. CAREFUL: an instruction can use itself,
462     // in the case of a phi node.
463     for (User *U : I->users()) {
464       if (U != I) {
465         WorkList.insert(cast<Instruction>(U));
466       }
467     }
468 
469     // Replace the instruction with its simplified value.
470     bool Changed = false;
471     if (!I->use_empty()) {
472       I->replaceAllUsesWith(SimpleV);
473       Changed = true;
474     }
475     if (isInstructionTriviallyDead(I, TLI)) {
476       I->eraseFromParent();
477       Changed = true;
478     }
479     return Changed;
480   }
481   return false;
482 }
483 
484 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
485 /// simplify any instructions in it and recursively delete dead instructions.
486 ///
487 /// This returns true if it changed the code, note that it can delete
488 /// instructions in other blocks as well in this block.
489 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
490                                        const TargetLibraryInfo *TLI) {
491   bool MadeChange = false;
492   const DataLayout &DL = BB->getModule()->getDataLayout();
493 
494 #ifndef NDEBUG
495   // In debug builds, ensure that the terminator of the block is never replaced
496   // or deleted by these simplifications. The idea of simplification is that it
497   // cannot introduce new instructions, and there is no way to replace the
498   // terminator of a block without introducing a new instruction.
499   AssertingVH<Instruction> TerminatorVH(&BB->back());
500 #endif
501 
502   SmallSetVector<Instruction *, 16> WorkList;
503   // Iterate over the original function, only adding insts to the worklist
504   // if they actually need to be revisited. This avoids having to pre-init
505   // the worklist with the entire function's worth of instructions.
506   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
507        BI != E;) {
508     assert(!BI->isTerminator());
509     Instruction *I = &*BI;
510     ++BI;
511 
512     // We're visiting this instruction now, so make sure it's not in the
513     // worklist from an earlier visit.
514     if (!WorkList.count(I))
515       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
516   }
517 
518   while (!WorkList.empty()) {
519     Instruction *I = WorkList.pop_back_val();
520     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
521   }
522   return MadeChange;
523 }
524 
525 //===----------------------------------------------------------------------===//
526 //  Control Flow Graph Restructuring.
527 //
528 
529 
530 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
531 /// method is called when we're about to delete Pred as a predecessor of BB.  If
532 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
533 ///
534 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
535 /// nodes that collapse into identity values.  For example, if we have:
536 ///   x = phi(1, 0, 0, 0)
537 ///   y = and x, z
538 ///
539 /// .. and delete the predecessor corresponding to the '1', this will attempt to
540 /// recursively fold the and to 0.
541 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
542   // This only adjusts blocks with PHI nodes.
543   if (!isa<PHINode>(BB->begin()))
544     return;
545 
546   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
547   // them down.  This will leave us with single entry phi nodes and other phis
548   // that can be removed.
549   BB->removePredecessor(Pred, true);
550 
551   WeakVH PhiIt = &BB->front();
552   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
553     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
554     Value *OldPhiIt = PhiIt;
555 
556     if (!recursivelySimplifyInstruction(PN))
557       continue;
558 
559     // If recursive simplification ended up deleting the next PHI node we would
560     // iterate to, then our iterator is invalid, restart scanning from the top
561     // of the block.
562     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
563   }
564 }
565 
566 
567 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
568 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
569 /// between them, moving the instructions in the predecessor into DestBB and
570 /// deleting the predecessor block.
571 ///
572 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
573   // If BB has single-entry PHI nodes, fold them.
574   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
575     Value *NewVal = PN->getIncomingValue(0);
576     // Replace self referencing PHI with undef, it must be dead.
577     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
578     PN->replaceAllUsesWith(NewVal);
579     PN->eraseFromParent();
580   }
581 
582   BasicBlock *PredBB = DestBB->getSinglePredecessor();
583   assert(PredBB && "Block doesn't have a single predecessor!");
584 
585   // Zap anything that took the address of DestBB.  Not doing this will give the
586   // address an invalid value.
587   if (DestBB->hasAddressTaken()) {
588     BlockAddress *BA = BlockAddress::get(DestBB);
589     Constant *Replacement =
590       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
591     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
592                                                      BA->getType()));
593     BA->destroyConstant();
594   }
595 
596   // Anything that branched to PredBB now branches to DestBB.
597   PredBB->replaceAllUsesWith(DestBB);
598 
599   // Splice all the instructions from PredBB to DestBB.
600   PredBB->getTerminator()->eraseFromParent();
601   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
602 
603   // If the PredBB is the entry block of the function, move DestBB up to
604   // become the entry block after we erase PredBB.
605   if (PredBB == &DestBB->getParent()->getEntryBlock())
606     DestBB->moveAfter(PredBB);
607 
608   if (DT) {
609     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
610     DT->changeImmediateDominator(DestBB, PredBBIDom);
611     DT->eraseNode(PredBB);
612   }
613   // Nuke BB.
614   PredBB->eraseFromParent();
615 }
616 
617 /// CanMergeValues - Return true if we can choose one of these values to use
618 /// in place of the other. Note that we will always choose the non-undef
619 /// value to keep.
620 static bool CanMergeValues(Value *First, Value *Second) {
621   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
622 }
623 
624 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
625 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
626 ///
627 /// Assumption: Succ is the single successor for BB.
628 ///
629 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
630   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
631 
632   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
633         << Succ->getName() << "\n");
634   // Shortcut, if there is only a single predecessor it must be BB and merging
635   // is always safe
636   if (Succ->getSinglePredecessor()) return true;
637 
638   // Make a list of the predecessors of BB
639   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
640 
641   // Look at all the phi nodes in Succ, to see if they present a conflict when
642   // merging these blocks
643   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
644     PHINode *PN = cast<PHINode>(I);
645 
646     // If the incoming value from BB is again a PHINode in
647     // BB which has the same incoming value for *PI as PN does, we can
648     // merge the phi nodes and then the blocks can still be merged
649     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
650     if (BBPN && BBPN->getParent() == BB) {
651       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
652         BasicBlock *IBB = PN->getIncomingBlock(PI);
653         if (BBPreds.count(IBB) &&
654             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
655                             PN->getIncomingValue(PI))) {
656           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
657                 << Succ->getName() << " is conflicting with "
658                 << BBPN->getName() << " with regard to common predecessor "
659                 << IBB->getName() << "\n");
660           return false;
661         }
662       }
663     } else {
664       Value* Val = PN->getIncomingValueForBlock(BB);
665       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
666         // See if the incoming value for the common predecessor is equal to the
667         // one for BB, in which case this phi node will not prevent the merging
668         // of the block.
669         BasicBlock *IBB = PN->getIncomingBlock(PI);
670         if (BBPreds.count(IBB) &&
671             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
672           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
673                 << Succ->getName() << " is conflicting with regard to common "
674                 << "predecessor " << IBB->getName() << "\n");
675           return false;
676         }
677       }
678     }
679   }
680 
681   return true;
682 }
683 
684 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
685 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
686 
687 /// \brief Determines the value to use as the phi node input for a block.
688 ///
689 /// Select between \p OldVal any value that we know flows from \p BB
690 /// to a particular phi on the basis of which one (if either) is not
691 /// undef. Update IncomingValues based on the selected value.
692 ///
693 /// \param OldVal The value we are considering selecting.
694 /// \param BB The block that the value flows in from.
695 /// \param IncomingValues A map from block-to-value for other phi inputs
696 /// that we have examined.
697 ///
698 /// \returns the selected value.
699 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
700                                           IncomingValueMap &IncomingValues) {
701   if (!isa<UndefValue>(OldVal)) {
702     assert((!IncomingValues.count(BB) ||
703             IncomingValues.find(BB)->second == OldVal) &&
704            "Expected OldVal to match incoming value from BB!");
705 
706     IncomingValues.insert(std::make_pair(BB, OldVal));
707     return OldVal;
708   }
709 
710   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
711   if (It != IncomingValues.end()) return It->second;
712 
713   return OldVal;
714 }
715 
716 /// \brief Create a map from block to value for the operands of a
717 /// given phi.
718 ///
719 /// Create a map from block to value for each non-undef value flowing
720 /// into \p PN.
721 ///
722 /// \param PN The phi we are collecting the map for.
723 /// \param IncomingValues [out] The map from block to value for this phi.
724 static void gatherIncomingValuesToPhi(PHINode *PN,
725                                       IncomingValueMap &IncomingValues) {
726   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
727     BasicBlock *BB = PN->getIncomingBlock(i);
728     Value *V = PN->getIncomingValue(i);
729 
730     if (!isa<UndefValue>(V))
731       IncomingValues.insert(std::make_pair(BB, V));
732   }
733 }
734 
735 /// \brief Replace the incoming undef values to a phi with the values
736 /// from a block-to-value map.
737 ///
738 /// \param PN The phi we are replacing the undefs in.
739 /// \param IncomingValues A map from block to value.
740 static void replaceUndefValuesInPhi(PHINode *PN,
741                                     const IncomingValueMap &IncomingValues) {
742   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
743     Value *V = PN->getIncomingValue(i);
744 
745     if (!isa<UndefValue>(V)) continue;
746 
747     BasicBlock *BB = PN->getIncomingBlock(i);
748     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
749     if (It == IncomingValues.end()) continue;
750 
751     PN->setIncomingValue(i, It->second);
752   }
753 }
754 
755 /// \brief Replace a value flowing from a block to a phi with
756 /// potentially multiple instances of that value flowing from the
757 /// block's predecessors to the phi.
758 ///
759 /// \param BB The block with the value flowing into the phi.
760 /// \param BBPreds The predecessors of BB.
761 /// \param PN The phi that we are updating.
762 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
763                                                 const PredBlockVector &BBPreds,
764                                                 PHINode *PN) {
765   Value *OldVal = PN->removeIncomingValue(BB, false);
766   assert(OldVal && "No entry in PHI for Pred BB!");
767 
768   IncomingValueMap IncomingValues;
769 
770   // We are merging two blocks - BB, and the block containing PN - and
771   // as a result we need to redirect edges from the predecessors of BB
772   // to go to the block containing PN, and update PN
773   // accordingly. Since we allow merging blocks in the case where the
774   // predecessor and successor blocks both share some predecessors,
775   // and where some of those common predecessors might have undef
776   // values flowing into PN, we want to rewrite those values to be
777   // consistent with the non-undef values.
778 
779   gatherIncomingValuesToPhi(PN, IncomingValues);
780 
781   // If this incoming value is one of the PHI nodes in BB, the new entries
782   // in the PHI node are the entries from the old PHI.
783   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
784     PHINode *OldValPN = cast<PHINode>(OldVal);
785     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
786       // Note that, since we are merging phi nodes and BB and Succ might
787       // have common predecessors, we could end up with a phi node with
788       // identical incoming branches. This will be cleaned up later (and
789       // will trigger asserts if we try to clean it up now, without also
790       // simplifying the corresponding conditional branch).
791       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
792       Value *PredVal = OldValPN->getIncomingValue(i);
793       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
794                                                     IncomingValues);
795 
796       // And add a new incoming value for this predecessor for the
797       // newly retargeted branch.
798       PN->addIncoming(Selected, PredBB);
799     }
800   } else {
801     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
802       // Update existing incoming values in PN for this
803       // predecessor of BB.
804       BasicBlock *PredBB = BBPreds[i];
805       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
806                                                     IncomingValues);
807 
808       // And add a new incoming value for this predecessor for the
809       // newly retargeted branch.
810       PN->addIncoming(Selected, PredBB);
811     }
812   }
813 
814   replaceUndefValuesInPhi(PN, IncomingValues);
815 }
816 
817 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
818 /// unconditional branch, and contains no instructions other than PHI nodes,
819 /// potential side-effect free intrinsics and the branch.  If possible,
820 /// eliminate BB by rewriting all the predecessors to branch to the successor
821 /// block and return true.  If we can't transform, return false.
822 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
823   assert(BB != &BB->getParent()->getEntryBlock() &&
824          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
825 
826   // We can't eliminate infinite loops.
827   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
828   if (BB == Succ) return false;
829 
830   // Check to see if merging these blocks would cause conflicts for any of the
831   // phi nodes in BB or Succ. If not, we can safely merge.
832   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
833 
834   // Check for cases where Succ has multiple predecessors and a PHI node in BB
835   // has uses which will not disappear when the PHI nodes are merged.  It is
836   // possible to handle such cases, but difficult: it requires checking whether
837   // BB dominates Succ, which is non-trivial to calculate in the case where
838   // Succ has multiple predecessors.  Also, it requires checking whether
839   // constructing the necessary self-referential PHI node doesn't introduce any
840   // conflicts; this isn't too difficult, but the previous code for doing this
841   // was incorrect.
842   //
843   // Note that if this check finds a live use, BB dominates Succ, so BB is
844   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
845   // folding the branch isn't profitable in that case anyway.
846   if (!Succ->getSinglePredecessor()) {
847     BasicBlock::iterator BBI = BB->begin();
848     while (isa<PHINode>(*BBI)) {
849       for (Use &U : BBI->uses()) {
850         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
851           if (PN->getIncomingBlock(U) != BB)
852             return false;
853         } else {
854           return false;
855         }
856       }
857       ++BBI;
858     }
859   }
860 
861   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
862 
863   if (isa<PHINode>(Succ->begin())) {
864     // If there is more than one pred of succ, and there are PHI nodes in
865     // the successor, then we need to add incoming edges for the PHI nodes
866     //
867     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
868 
869     // Loop over all of the PHI nodes in the successor of BB.
870     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
871       PHINode *PN = cast<PHINode>(I);
872 
873       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
874     }
875   }
876 
877   if (Succ->getSinglePredecessor()) {
878     // BB is the only predecessor of Succ, so Succ will end up with exactly
879     // the same predecessors BB had.
880 
881     // Copy over any phi, debug or lifetime instruction.
882     BB->getTerminator()->eraseFromParent();
883     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
884                                BB->getInstList());
885   } else {
886     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
887       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
888       assert(PN->use_empty() && "There shouldn't be any uses here!");
889       PN->eraseFromParent();
890     }
891   }
892 
893   // Everything that jumped to BB now goes to Succ.
894   BB->replaceAllUsesWith(Succ);
895   if (!Succ->hasName()) Succ->takeName(BB);
896   BB->eraseFromParent();              // Delete the old basic block.
897   return true;
898 }
899 
900 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
901 /// nodes in this block. This doesn't try to be clever about PHI nodes
902 /// which differ only in the order of the incoming values, but instcombine
903 /// orders them so it usually won't matter.
904 ///
905 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
906   // This implementation doesn't currently consider undef operands
907   // specially. Theoretically, two phis which are identical except for
908   // one having an undef where the other doesn't could be collapsed.
909 
910   struct PHIDenseMapInfo {
911     static PHINode *getEmptyKey() {
912       return DenseMapInfo<PHINode *>::getEmptyKey();
913     }
914     static PHINode *getTombstoneKey() {
915       return DenseMapInfo<PHINode *>::getTombstoneKey();
916     }
917     static unsigned getHashValue(PHINode *PN) {
918       // Compute a hash value on the operands. Instcombine will likely have
919       // sorted them, which helps expose duplicates, but we have to check all
920       // the operands to be safe in case instcombine hasn't run.
921       return static_cast<unsigned>(hash_combine(
922           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
923           hash_combine_range(PN->block_begin(), PN->block_end())));
924     }
925     static bool isEqual(PHINode *LHS, PHINode *RHS) {
926       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
927           RHS == getEmptyKey() || RHS == getTombstoneKey())
928         return LHS == RHS;
929       return LHS->isIdenticalTo(RHS);
930     }
931   };
932 
933   // Set of unique PHINodes.
934   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
935 
936   // Examine each PHI.
937   bool Changed = false;
938   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
939     auto Inserted = PHISet.insert(PN);
940     if (!Inserted.second) {
941       // A duplicate. Replace this PHI with its duplicate.
942       PN->replaceAllUsesWith(*Inserted.first);
943       PN->eraseFromParent();
944       Changed = true;
945 
946       // The RAUW can change PHIs that we already visited. Start over from the
947       // beginning.
948       PHISet.clear();
949       I = BB->begin();
950     }
951   }
952 
953   return Changed;
954 }
955 
956 /// enforceKnownAlignment - If the specified pointer points to an object that
957 /// we control, modify the object's alignment to PrefAlign. This isn't
958 /// often possible though. If alignment is important, a more reliable approach
959 /// is to simply align all global variables and allocation instructions to
960 /// their preferred alignment from the beginning.
961 ///
962 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
963                                       unsigned PrefAlign,
964                                       const DataLayout &DL) {
965   assert(PrefAlign > Align);
966 
967   V = V->stripPointerCasts();
968 
969   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
970     // TODO: ideally, computeKnownBits ought to have used
971     // AllocaInst::getAlignment() in its computation already, making
972     // the below max redundant. But, as it turns out,
973     // stripPointerCasts recurses through infinite layers of bitcasts,
974     // while computeKnownBits is not allowed to traverse more than 6
975     // levels.
976     Align = std::max(AI->getAlignment(), Align);
977     if (PrefAlign <= Align)
978       return Align;
979 
980     // If the preferred alignment is greater than the natural stack alignment
981     // then don't round up. This avoids dynamic stack realignment.
982     if (DL.exceedsNaturalStackAlignment(PrefAlign))
983       return Align;
984     AI->setAlignment(PrefAlign);
985     return PrefAlign;
986   }
987 
988   if (auto *GO = dyn_cast<GlobalObject>(V)) {
989     // TODO: as above, this shouldn't be necessary.
990     Align = std::max(GO->getAlignment(), Align);
991     if (PrefAlign <= Align)
992       return Align;
993 
994     // If there is a large requested alignment and we can, bump up the alignment
995     // of the global.  If the memory we set aside for the global may not be the
996     // memory used by the final program then it is impossible for us to reliably
997     // enforce the preferred alignment.
998     if (!GO->canIncreaseAlignment())
999       return Align;
1000 
1001     GO->setAlignment(PrefAlign);
1002     return PrefAlign;
1003   }
1004 
1005   return Align;
1006 }
1007 
1008 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1009                                           const DataLayout &DL,
1010                                           const Instruction *CxtI,
1011                                           AssumptionCache *AC,
1012                                           const DominatorTree *DT) {
1013   assert(V->getType()->isPointerTy() &&
1014          "getOrEnforceKnownAlignment expects a pointer!");
1015   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1016 
1017   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1018   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
1019   unsigned TrailZ = KnownZero.countTrailingOnes();
1020 
1021   // Avoid trouble with ridiculously large TrailZ values, such as
1022   // those computed from a null pointer.
1023   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1024 
1025   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1026 
1027   // LLVM doesn't support alignments larger than this currently.
1028   Align = std::min(Align, +Value::MaximumAlignment);
1029 
1030   if (PrefAlign > Align)
1031     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1032 
1033   // We don't need to make any adjustment.
1034   return Align;
1035 }
1036 
1037 ///===---------------------------------------------------------------------===//
1038 ///  Dbg Intrinsic utilities
1039 ///
1040 
1041 /// See if there is a dbg.value intrinsic for DIVar before I.
1042 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1043                               Instruction *I) {
1044   // Since we can't guarantee that the original dbg.declare instrinsic
1045   // is removed by LowerDbgDeclare(), we need to make sure that we are
1046   // not inserting the same dbg.value intrinsic over and over.
1047   llvm::BasicBlock::InstListType::iterator PrevI(I);
1048   if (PrevI != I->getParent()->getInstList().begin()) {
1049     --PrevI;
1050     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1051       if (DVI->getValue() == I->getOperand(0) &&
1052           DVI->getOffset() == 0 &&
1053           DVI->getVariable() == DIVar &&
1054           DVI->getExpression() == DIExpr)
1055         return true;
1056   }
1057   return false;
1058 }
1059 
1060 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1061 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1062                              DIExpression *DIExpr,
1063                              PHINode *APN) {
1064   // Since we can't guarantee that the original dbg.declare instrinsic
1065   // is removed by LowerDbgDeclare(), we need to make sure that we are
1066   // not inserting the same dbg.value intrinsic over and over.
1067   DbgValueList DbgValues;
1068   FindAllocaDbgValues(DbgValues, APN);
1069   for (auto DVI : DbgValues) {
1070     assert (DVI->getValue() == APN);
1071     assert (DVI->getOffset() == 0);
1072     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1073       return true;
1074   }
1075   return false;
1076 }
1077 
1078 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1079 /// that has an associated llvm.dbg.decl intrinsic.
1080 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1081                                            StoreInst *SI, DIBuilder &Builder) {
1082   auto *DIVar = DDI->getVariable();
1083   auto *DIExpr = DDI->getExpression();
1084   assert(DIVar && "Missing variable");
1085 
1086   // If an argument is zero extended then use argument directly. The ZExt
1087   // may be zapped by an optimization pass in future.
1088   Argument *ExtendedArg = nullptr;
1089   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1090     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1091   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1092     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1093   if (ExtendedArg) {
1094     // We're now only describing a subset of the variable. The piece we're
1095     // describing will always be smaller than the variable size, because
1096     // VariableSize == Size of Alloca described by DDI. Since SI stores
1097     // to the alloca described by DDI, if it's first operand is an extend,
1098     // we're guaranteed that before extension, the value was narrower than
1099     // the size of the alloca, hence the size of the described variable.
1100     SmallVector<uint64_t, 3> Ops;
1101     unsigned PieceOffset = 0;
1102     // If this already is a bit piece, we drop the bit piece from the expression
1103     // and record the offset.
1104     if (DIExpr->isBitPiece()) {
1105       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1106       PieceOffset = DIExpr->getBitPieceOffset();
1107     } else {
1108       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
1109     }
1110     Ops.push_back(dwarf::DW_OP_bit_piece);
1111     Ops.push_back(PieceOffset); // Offset
1112     const DataLayout &DL = DDI->getModule()->getDataLayout();
1113     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
1114     auto NewDIExpr = Builder.createExpression(Ops);
1115     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
1116       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
1117                                       DDI->getDebugLoc(), SI);
1118   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1119     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1120                                     DDI->getDebugLoc(), SI);
1121 }
1122 
1123 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1124 /// that has an associated llvm.dbg.decl intrinsic.
1125 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1126                                            LoadInst *LI, DIBuilder &Builder) {
1127   auto *DIVar = DDI->getVariable();
1128   auto *DIExpr = DDI->getExpression();
1129   assert(DIVar && "Missing variable");
1130 
1131   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1132     return;
1133 
1134   // We are now tracking the loaded value instead of the address. In the
1135   // future if multi-location support is added to the IR, it might be
1136   // preferable to keep tracking both the loaded value and the original
1137   // address in case the alloca can not be elided.
1138   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1139       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1140   DbgValue->insertAfter(LI);
1141 }
1142 
1143 /// Inserts a llvm.dbg.value intrinsic after a phi
1144 /// that has an associated llvm.dbg.decl intrinsic.
1145 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1146                                            PHINode *APN, DIBuilder &Builder) {
1147   auto *DIVar = DDI->getVariable();
1148   auto *DIExpr = DDI->getExpression();
1149   assert(DIVar && "Missing variable");
1150 
1151   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1152     return;
1153 
1154   BasicBlock *BB = APN->getParent();
1155   auto InsertionPt = BB->getFirstInsertionPt();
1156 
1157   // The block may be a catchswitch block, which does not have a valid
1158   // insertion point.
1159   // FIXME: Insert dbg.value markers in the successors when appropriate.
1160   if (InsertionPt != BB->end())
1161     Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(),
1162                                     &*InsertionPt);
1163 }
1164 
1165 /// Determine whether this alloca is either a VLA or an array.
1166 static bool isArray(AllocaInst *AI) {
1167   return AI->isArrayAllocation() ||
1168     AI->getType()->getElementType()->isArrayTy();
1169 }
1170 
1171 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1172 /// of llvm.dbg.value intrinsics.
1173 bool llvm::LowerDbgDeclare(Function &F) {
1174   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1175   SmallVector<DbgDeclareInst *, 4> Dbgs;
1176   for (auto &FI : F)
1177     for (Instruction &BI : FI)
1178       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1179         Dbgs.push_back(DDI);
1180 
1181   if (Dbgs.empty())
1182     return false;
1183 
1184   for (auto &I : Dbgs) {
1185     DbgDeclareInst *DDI = I;
1186     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1187     // If this is an alloca for a scalar variable, insert a dbg.value
1188     // at each load and store to the alloca and erase the dbg.declare.
1189     // The dbg.values allow tracking a variable even if it is not
1190     // stored on the stack, while the dbg.declare can only describe
1191     // the stack slot (and at a lexical-scope granularity). Later
1192     // passes will attempt to elide the stack slot.
1193     if (AI && !isArray(AI)) {
1194       for (auto &AIUse : AI->uses()) {
1195         User *U = AIUse.getUser();
1196         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1197           if (AIUse.getOperandNo() == 1)
1198             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1199         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1200           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1201         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1202           // This is a call by-value or some other instruction that
1203           // takes a pointer to the variable. Insert a *value*
1204           // intrinsic that describes the alloca.
1205           SmallVector<uint64_t, 1> NewDIExpr;
1206           auto *DIExpr = DDI->getExpression();
1207           NewDIExpr.push_back(dwarf::DW_OP_deref);
1208           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1209           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1210                                       DIB.createExpression(NewDIExpr),
1211                                       DDI->getDebugLoc(), CI);
1212         }
1213       }
1214       DDI->eraseFromParent();
1215     }
1216   }
1217   return true;
1218 }
1219 
1220 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1221 /// alloca 'V', if any.
1222 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1223   if (auto *L = LocalAsMetadata::getIfExists(V))
1224     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1225       for (User *U : MDV->users())
1226         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1227           return DDI;
1228 
1229   return nullptr;
1230 }
1231 
1232 /// FindAllocaDbgValues - Finds the llvm.dbg.value intrinsics describing the
1233 /// alloca 'V', if any.
1234 void llvm::FindAllocaDbgValues(DbgValueList &DbgValues, Value *V) {
1235   if (auto *L = LocalAsMetadata::getIfExists(V))
1236     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1237       for (User *U : MDV->users())
1238         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1239           DbgValues.push_back(DVI);
1240 }
1241 
1242 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) {
1243   Expr.push_back(dwarf::DW_OP_deref);
1244 }
1245 
1246 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) {
1247   if (Offset > 0) {
1248     Expr.push_back(dwarf::DW_OP_plus);
1249     Expr.push_back(Offset);
1250   } else if (Offset < 0) {
1251     Expr.push_back(dwarf::DW_OP_minus);
1252     Expr.push_back(-Offset);
1253   }
1254 }
1255 
1256 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder,
1257                                             DIExpression *DIExpr, bool Deref,
1258                                             int Offset) {
1259   if (!Deref && !Offset)
1260     return DIExpr;
1261   // Create a copy of the original DIDescriptor for user variable, prepending
1262   // "deref" operation to a list of address elements, as new llvm.dbg.declare
1263   // will take a value storing address of the memory for variable, not
1264   // alloca itself.
1265   SmallVector<uint64_t, 4> NewDIExpr;
1266   if (Deref)
1267     DIExprAddDeref(NewDIExpr);
1268   DIExprAddOffset(NewDIExpr, Offset);
1269   if (DIExpr)
1270     NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1271   return Builder.createExpression(NewDIExpr);
1272 }
1273 
1274 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1275                              Instruction *InsertBefore, DIBuilder &Builder,
1276                              bool Deref, int Offset) {
1277   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1278   if (!DDI)
1279     return false;
1280   DebugLoc Loc = DDI->getDebugLoc();
1281   auto *DIVar = DDI->getVariable();
1282   auto *DIExpr = DDI->getExpression();
1283   assert(DIVar && "Missing variable");
1284 
1285   DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset);
1286 
1287   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1288   // old llvm.dbg.declare.
1289   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1290   DDI->eraseFromParent();
1291   return true;
1292 }
1293 
1294 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1295                                       DIBuilder &Builder, bool Deref, int Offset) {
1296   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1297                            Deref, Offset);
1298 }
1299 
1300 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1301                                         DIBuilder &Builder, int Offset) {
1302   DebugLoc Loc = DVI->getDebugLoc();
1303   auto *DIVar = DVI->getVariable();
1304   auto *DIExpr = DVI->getExpression();
1305   assert(DIVar && "Missing variable");
1306 
1307   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1308   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1309   // it and give up.
1310   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1311       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1312     return;
1313 
1314   // Insert the offset immediately after the first deref.
1315   // We could just change the offset argument of dbg.value, but it's unsigned...
1316   if (Offset) {
1317     SmallVector<uint64_t, 4> NewDIExpr;
1318     DIExprAddDeref(NewDIExpr);
1319     DIExprAddOffset(NewDIExpr, Offset);
1320     NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1321     DIExpr = Builder.createExpression(NewDIExpr);
1322   }
1323 
1324   Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
1325                                   Loc, DVI);
1326   DVI->eraseFromParent();
1327 }
1328 
1329 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1330                                     DIBuilder &Builder, int Offset) {
1331   if (auto *L = LocalAsMetadata::getIfExists(AI))
1332     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1333       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1334         Use &U = *UI++;
1335         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1336           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1337       }
1338 }
1339 
1340 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1341   unsigned NumDeadInst = 0;
1342   // Delete the instructions backwards, as it has a reduced likelihood of
1343   // having to update as many def-use and use-def chains.
1344   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1345   while (EndInst != &BB->front()) {
1346     // Delete the next to last instruction.
1347     Instruction *Inst = &*--EndInst->getIterator();
1348     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1349       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1350     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1351       EndInst = Inst;
1352       continue;
1353     }
1354     if (!isa<DbgInfoIntrinsic>(Inst))
1355       ++NumDeadInst;
1356     Inst->eraseFromParent();
1357   }
1358   return NumDeadInst;
1359 }
1360 
1361 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1362   BasicBlock *BB = I->getParent();
1363   // Loop over all of the successors, removing BB's entry from any PHI
1364   // nodes.
1365   for (BasicBlock *Successor : successors(BB))
1366     Successor->removePredecessor(BB);
1367 
1368   // Insert a call to llvm.trap right before this.  This turns the undefined
1369   // behavior into a hard fail instead of falling through into random code.
1370   if (UseLLVMTrap) {
1371     Function *TrapFn =
1372       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1373     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1374     CallTrap->setDebugLoc(I->getDebugLoc());
1375   }
1376   new UnreachableInst(I->getContext(), I);
1377 
1378   // All instructions after this are dead.
1379   unsigned NumInstrsRemoved = 0;
1380   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1381   while (BBI != BBE) {
1382     if (!BBI->use_empty())
1383       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1384     BB->getInstList().erase(BBI++);
1385     ++NumInstrsRemoved;
1386   }
1387   return NumInstrsRemoved;
1388 }
1389 
1390 /// changeToCall - Convert the specified invoke into a normal call.
1391 static void changeToCall(InvokeInst *II) {
1392   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1393   SmallVector<OperandBundleDef, 1> OpBundles;
1394   II->getOperandBundlesAsDefs(OpBundles);
1395   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1396                                        "", II);
1397   NewCall->takeName(II);
1398   NewCall->setCallingConv(II->getCallingConv());
1399   NewCall->setAttributes(II->getAttributes());
1400   NewCall->setDebugLoc(II->getDebugLoc());
1401   II->replaceAllUsesWith(NewCall);
1402 
1403   // Follow the call by a branch to the normal destination.
1404   BranchInst::Create(II->getNormalDest(), II);
1405 
1406   // Update PHI nodes in the unwind destination
1407   II->getUnwindDest()->removePredecessor(II->getParent());
1408   II->eraseFromParent();
1409 }
1410 
1411 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1412                                                    BasicBlock *UnwindEdge) {
1413   BasicBlock *BB = CI->getParent();
1414 
1415   // Convert this function call into an invoke instruction.  First, split the
1416   // basic block.
1417   BasicBlock *Split =
1418       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1419 
1420   // Delete the unconditional branch inserted by splitBasicBlock
1421   BB->getInstList().pop_back();
1422 
1423   // Create the new invoke instruction.
1424   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1425   SmallVector<OperandBundleDef, 1> OpBundles;
1426 
1427   CI->getOperandBundlesAsDefs(OpBundles);
1428 
1429   // Note: we're round tripping operand bundles through memory here, and that
1430   // can potentially be avoided with a cleverer API design that we do not have
1431   // as of this time.
1432 
1433   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1434                                       InvokeArgs, OpBundles, CI->getName(), BB);
1435   II->setDebugLoc(CI->getDebugLoc());
1436   II->setCallingConv(CI->getCallingConv());
1437   II->setAttributes(CI->getAttributes());
1438 
1439   // Make sure that anything using the call now uses the invoke!  This also
1440   // updates the CallGraph if present, because it uses a WeakVH.
1441   CI->replaceAllUsesWith(II);
1442 
1443   // Delete the original call
1444   Split->getInstList().pop_front();
1445   return Split;
1446 }
1447 
1448 static bool markAliveBlocks(Function &F,
1449                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1450 
1451   SmallVector<BasicBlock*, 128> Worklist;
1452   BasicBlock *BB = &F.front();
1453   Worklist.push_back(BB);
1454   Reachable.insert(BB);
1455   bool Changed = false;
1456   do {
1457     BB = Worklist.pop_back_val();
1458 
1459     // Do a quick scan of the basic block, turning any obviously unreachable
1460     // instructions into LLVM unreachable insts.  The instruction combining pass
1461     // canonicalizes unreachable insts into stores to null or undef.
1462     for (Instruction &I : *BB) {
1463       // Assumptions that are known to be false are equivalent to unreachable.
1464       // Also, if the condition is undefined, then we make the choice most
1465       // beneficial to the optimizer, and choose that to also be unreachable.
1466       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1467         if (II->getIntrinsicID() == Intrinsic::assume) {
1468           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1469             // Don't insert a call to llvm.trap right before the unreachable.
1470             changeToUnreachable(II, false);
1471             Changed = true;
1472             break;
1473           }
1474         }
1475 
1476         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1477           // A call to the guard intrinsic bails out of the current compilation
1478           // unit if the predicate passed to it is false.  If the predicate is a
1479           // constant false, then we know the guard will bail out of the current
1480           // compile unconditionally, so all code following it is dead.
1481           //
1482           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1483           // guards to treat `undef` as `false` since a guard on `undef` can
1484           // still be useful for widening.
1485           if (match(II->getArgOperand(0), m_Zero()))
1486             if (!isa<UnreachableInst>(II->getNextNode())) {
1487               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1488               Changed = true;
1489               break;
1490             }
1491         }
1492       }
1493 
1494       if (auto *CI = dyn_cast<CallInst>(&I)) {
1495         Value *Callee = CI->getCalledValue();
1496         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1497           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
1498           Changed = true;
1499           break;
1500         }
1501         if (CI->doesNotReturn()) {
1502           // If we found a call to a no-return function, insert an unreachable
1503           // instruction after it.  Make sure there isn't *already* one there
1504           // though.
1505           if (!isa<UnreachableInst>(CI->getNextNode())) {
1506             // Don't insert a call to llvm.trap right before the unreachable.
1507             changeToUnreachable(CI->getNextNode(), false);
1508             Changed = true;
1509           }
1510           break;
1511         }
1512       }
1513 
1514       // Store to undef and store to null are undefined and used to signal that
1515       // they should be changed to unreachable by passes that can't modify the
1516       // CFG.
1517       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1518         // Don't touch volatile stores.
1519         if (SI->isVolatile()) continue;
1520 
1521         Value *Ptr = SI->getOperand(1);
1522 
1523         if (isa<UndefValue>(Ptr) ||
1524             (isa<ConstantPointerNull>(Ptr) &&
1525              SI->getPointerAddressSpace() == 0)) {
1526           changeToUnreachable(SI, true);
1527           Changed = true;
1528           break;
1529         }
1530       }
1531     }
1532 
1533     TerminatorInst *Terminator = BB->getTerminator();
1534     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1535       // Turn invokes that call 'nounwind' functions into ordinary calls.
1536       Value *Callee = II->getCalledValue();
1537       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1538         changeToUnreachable(II, true);
1539         Changed = true;
1540       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1541         if (II->use_empty() && II->onlyReadsMemory()) {
1542           // jump to the normal destination branch.
1543           BranchInst::Create(II->getNormalDest(), II);
1544           II->getUnwindDest()->removePredecessor(II->getParent());
1545           II->eraseFromParent();
1546         } else
1547           changeToCall(II);
1548         Changed = true;
1549       }
1550     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1551       // Remove catchpads which cannot be reached.
1552       struct CatchPadDenseMapInfo {
1553         static CatchPadInst *getEmptyKey() {
1554           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1555         }
1556         static CatchPadInst *getTombstoneKey() {
1557           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1558         }
1559         static unsigned getHashValue(CatchPadInst *CatchPad) {
1560           return static_cast<unsigned>(hash_combine_range(
1561               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1562         }
1563         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1564           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1565               RHS == getEmptyKey() || RHS == getTombstoneKey())
1566             return LHS == RHS;
1567           return LHS->isIdenticalTo(RHS);
1568         }
1569       };
1570 
1571       // Set of unique CatchPads.
1572       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1573                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1574           HandlerSet;
1575       detail::DenseSetEmpty Empty;
1576       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1577                                              E = CatchSwitch->handler_end();
1578            I != E; ++I) {
1579         BasicBlock *HandlerBB = *I;
1580         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1581         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1582           CatchSwitch->removeHandler(I);
1583           --I;
1584           --E;
1585           Changed = true;
1586         }
1587       }
1588     }
1589 
1590     Changed |= ConstantFoldTerminator(BB, true);
1591     for (BasicBlock *Successor : successors(BB))
1592       if (Reachable.insert(Successor).second)
1593         Worklist.push_back(Successor);
1594   } while (!Worklist.empty());
1595   return Changed;
1596 }
1597 
1598 void llvm::removeUnwindEdge(BasicBlock *BB) {
1599   TerminatorInst *TI = BB->getTerminator();
1600 
1601   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1602     changeToCall(II);
1603     return;
1604   }
1605 
1606   TerminatorInst *NewTI;
1607   BasicBlock *UnwindDest;
1608 
1609   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1610     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1611     UnwindDest = CRI->getUnwindDest();
1612   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1613     auto *NewCatchSwitch = CatchSwitchInst::Create(
1614         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1615         CatchSwitch->getName(), CatchSwitch);
1616     for (BasicBlock *PadBB : CatchSwitch->handlers())
1617       NewCatchSwitch->addHandler(PadBB);
1618 
1619     NewTI = NewCatchSwitch;
1620     UnwindDest = CatchSwitch->getUnwindDest();
1621   } else {
1622     llvm_unreachable("Could not find unwind successor");
1623   }
1624 
1625   NewTI->takeName(TI);
1626   NewTI->setDebugLoc(TI->getDebugLoc());
1627   UnwindDest->removePredecessor(BB);
1628   TI->replaceAllUsesWith(NewTI);
1629   TI->eraseFromParent();
1630 }
1631 
1632 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1633 /// if they are in a dead cycle.  Return true if a change was made, false
1634 /// otherwise.
1635 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1636   SmallPtrSet<BasicBlock*, 16> Reachable;
1637   bool Changed = markAliveBlocks(F, Reachable);
1638 
1639   // If there are unreachable blocks in the CFG...
1640   if (Reachable.size() == F.size())
1641     return Changed;
1642 
1643   assert(Reachable.size() < F.size());
1644   NumRemoved += F.size()-Reachable.size();
1645 
1646   // Loop over all of the basic blocks that are not reachable, dropping all of
1647   // their internal references...
1648   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1649     if (Reachable.count(&*BB))
1650       continue;
1651 
1652     for (BasicBlock *Successor : successors(&*BB))
1653       if (Reachable.count(Successor))
1654         Successor->removePredecessor(&*BB);
1655     if (LVI)
1656       LVI->eraseBlock(&*BB);
1657     BB->dropAllReferences();
1658   }
1659 
1660   for (Function::iterator I = ++F.begin(); I != F.end();)
1661     if (!Reachable.count(&*I))
1662       I = F.getBasicBlockList().erase(I);
1663     else
1664       ++I;
1665 
1666   return true;
1667 }
1668 
1669 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1670                            ArrayRef<unsigned> KnownIDs) {
1671   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1672   K->dropUnknownNonDebugMetadata(KnownIDs);
1673   K->getAllMetadataOtherThanDebugLoc(Metadata);
1674   for (const auto &MD : Metadata) {
1675     unsigned Kind = MD.first;
1676     MDNode *JMD = J->getMetadata(Kind);
1677     MDNode *KMD = MD.second;
1678 
1679     switch (Kind) {
1680       default:
1681         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1682         break;
1683       case LLVMContext::MD_dbg:
1684         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1685       case LLVMContext::MD_tbaa:
1686         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1687         break;
1688       case LLVMContext::MD_alias_scope:
1689         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1690         break;
1691       case LLVMContext::MD_noalias:
1692       case LLVMContext::MD_mem_parallel_loop_access:
1693         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1694         break;
1695       case LLVMContext::MD_range:
1696         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1697         break;
1698       case LLVMContext::MD_fpmath:
1699         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1700         break;
1701       case LLVMContext::MD_invariant_load:
1702         // Only set the !invariant.load if it is present in both instructions.
1703         K->setMetadata(Kind, JMD);
1704         break;
1705       case LLVMContext::MD_nonnull:
1706         // Only set the !nonnull if it is present in both instructions.
1707         K->setMetadata(Kind, JMD);
1708         break;
1709       case LLVMContext::MD_invariant_group:
1710         // Preserve !invariant.group in K.
1711         break;
1712       case LLVMContext::MD_align:
1713         K->setMetadata(Kind,
1714           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1715         break;
1716       case LLVMContext::MD_dereferenceable:
1717       case LLVMContext::MD_dereferenceable_or_null:
1718         K->setMetadata(Kind,
1719           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1720         break;
1721     }
1722   }
1723   // Set !invariant.group from J if J has it. If both instructions have it
1724   // then we will just pick it from J - even when they are different.
1725   // Also make sure that K is load or store - f.e. combining bitcast with load
1726   // could produce bitcast with invariant.group metadata, which is invalid.
1727   // FIXME: we should try to preserve both invariant.group md if they are
1728   // different, but right now instruction can only have one invariant.group.
1729   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1730     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1731       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1732 }
1733 
1734 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1735   unsigned KnownIDs[] = {
1736       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
1737       LLVMContext::MD_noalias,         LLVMContext::MD_range,
1738       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
1739       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1740       LLVMContext::MD_dereferenceable,
1741       LLVMContext::MD_dereferenceable_or_null};
1742   combineMetadata(K, J, KnownIDs);
1743 }
1744 
1745 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1746                                         DominatorTree &DT,
1747                                         const BasicBlockEdge &Root) {
1748   assert(From->getType() == To->getType());
1749 
1750   unsigned Count = 0;
1751   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1752        UI != UE; ) {
1753     Use &U = *UI++;
1754     if (DT.dominates(Root, U)) {
1755       U.set(To);
1756       DEBUG(dbgs() << "Replace dominated use of '"
1757             << From->getName() << "' as "
1758             << *To << " in " << *U << "\n");
1759       ++Count;
1760     }
1761   }
1762   return Count;
1763 }
1764 
1765 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1766                                         DominatorTree &DT,
1767                                         const BasicBlock *BB) {
1768   assert(From->getType() == To->getType());
1769 
1770   unsigned Count = 0;
1771   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1772        UI != UE;) {
1773     Use &U = *UI++;
1774     auto *I = cast<Instruction>(U.getUser());
1775     if (DT.properlyDominates(BB, I->getParent())) {
1776       U.set(To);
1777       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1778                    << *To << " in " << *U << "\n");
1779       ++Count;
1780     }
1781   }
1782   return Count;
1783 }
1784 
1785 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1786   // Check if the function is specifically marked as a gc leaf function.
1787   if (CS.hasFnAttr("gc-leaf-function"))
1788     return true;
1789   if (const Function *F = CS.getCalledFunction()) {
1790     if (F->hasFnAttribute("gc-leaf-function"))
1791       return true;
1792 
1793     if (auto IID = F->getIntrinsicID())
1794       // Most LLVM intrinsics do not take safepoints.
1795       return IID != Intrinsic::experimental_gc_statepoint &&
1796              IID != Intrinsic::experimental_deoptimize;
1797   }
1798 
1799   return false;
1800 }
1801 
1802 namespace {
1803 /// A potential constituent of a bitreverse or bswap expression. See
1804 /// collectBitParts for a fuller explanation.
1805 struct BitPart {
1806   BitPart(Value *P, unsigned BW) : Provider(P) {
1807     Provenance.resize(BW);
1808   }
1809 
1810   /// The Value that this is a bitreverse/bswap of.
1811   Value *Provider;
1812   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1813   /// in Provider becomes bit B in the result of this expression.
1814   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1815 
1816   enum { Unset = -1 };
1817 };
1818 } // end anonymous namespace
1819 
1820 /// Analyze the specified subexpression and see if it is capable of providing
1821 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1822 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1823 /// the output of the expression came from a corresponding bit in some other
1824 /// value. This function is recursive, and the end result is a mapping of
1825 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1826 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1827 ///
1828 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1829 /// that the expression deposits the low byte of %X into the high byte of the
1830 /// result and that all other bits are zero. This expression is accepted and a
1831 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1832 /// [0-7].
1833 ///
1834 /// To avoid revisiting values, the BitPart results are memoized into the
1835 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1836 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1837 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1838 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1839 /// type instead to provide the same functionality.
1840 ///
1841 /// Because we pass around references into \c BPS, we must use a container that
1842 /// does not invalidate internal references (std::map instead of DenseMap).
1843 ///
1844 static const Optional<BitPart> &
1845 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1846                 std::map<Value *, Optional<BitPart>> &BPS) {
1847   auto I = BPS.find(V);
1848   if (I != BPS.end())
1849     return I->second;
1850 
1851   auto &Result = BPS[V] = None;
1852   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1853 
1854   if (Instruction *I = dyn_cast<Instruction>(V)) {
1855     // If this is an or instruction, it may be an inner node of the bswap.
1856     if (I->getOpcode() == Instruction::Or) {
1857       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1858                                 MatchBitReversals, BPS);
1859       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1860                                 MatchBitReversals, BPS);
1861       if (!A || !B)
1862         return Result;
1863 
1864       // Try and merge the two together.
1865       if (!A->Provider || A->Provider != B->Provider)
1866         return Result;
1867 
1868       Result = BitPart(A->Provider, BitWidth);
1869       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1870         if (A->Provenance[i] != BitPart::Unset &&
1871             B->Provenance[i] != BitPart::Unset &&
1872             A->Provenance[i] != B->Provenance[i])
1873           return Result = None;
1874 
1875         if (A->Provenance[i] == BitPart::Unset)
1876           Result->Provenance[i] = B->Provenance[i];
1877         else
1878           Result->Provenance[i] = A->Provenance[i];
1879       }
1880 
1881       return Result;
1882     }
1883 
1884     // If this is a logical shift by a constant, recurse then shift the result.
1885     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1886       unsigned BitShift =
1887           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1888       // Ensure the shift amount is defined.
1889       if (BitShift > BitWidth)
1890         return Result;
1891 
1892       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1893                                   MatchBitReversals, BPS);
1894       if (!Res)
1895         return Result;
1896       Result = Res;
1897 
1898       // Perform the "shift" on BitProvenance.
1899       auto &P = Result->Provenance;
1900       if (I->getOpcode() == Instruction::Shl) {
1901         P.erase(std::prev(P.end(), BitShift), P.end());
1902         P.insert(P.begin(), BitShift, BitPart::Unset);
1903       } else {
1904         P.erase(P.begin(), std::next(P.begin(), BitShift));
1905         P.insert(P.end(), BitShift, BitPart::Unset);
1906       }
1907 
1908       return Result;
1909     }
1910 
1911     // If this is a logical 'and' with a mask that clears bits, recurse then
1912     // unset the appropriate bits.
1913     if (I->getOpcode() == Instruction::And &&
1914         isa<ConstantInt>(I->getOperand(1))) {
1915       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1916       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1917 
1918       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1919       // early exit.
1920       unsigned NumMaskedBits = AndMask.countPopulation();
1921       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1922         return Result;
1923 
1924       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1925                                   MatchBitReversals, BPS);
1926       if (!Res)
1927         return Result;
1928       Result = Res;
1929 
1930       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1931         // If the AndMask is zero for this bit, clear the bit.
1932         if ((AndMask & Bit) == 0)
1933           Result->Provenance[i] = BitPart::Unset;
1934       return Result;
1935     }
1936 
1937     // If this is a zext instruction zero extend the result.
1938     if (I->getOpcode() == Instruction::ZExt) {
1939       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1940                                   MatchBitReversals, BPS);
1941       if (!Res)
1942         return Result;
1943 
1944       Result = BitPart(Res->Provider, BitWidth);
1945       auto NarrowBitWidth =
1946           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
1947       for (unsigned i = 0; i < NarrowBitWidth; ++i)
1948         Result->Provenance[i] = Res->Provenance[i];
1949       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
1950         Result->Provenance[i] = BitPart::Unset;
1951       return Result;
1952     }
1953   }
1954 
1955   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1956   // the input value to the bswap/bitreverse.
1957   Result = BitPart(V, BitWidth);
1958   for (unsigned i = 0; i < BitWidth; ++i)
1959     Result->Provenance[i] = i;
1960   return Result;
1961 }
1962 
1963 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1964                                           unsigned BitWidth) {
1965   if (From % 8 != To % 8)
1966     return false;
1967   // Convert from bit indices to byte indices and check for a byte reversal.
1968   From >>= 3;
1969   To >>= 3;
1970   BitWidth >>= 3;
1971   return From == BitWidth - To - 1;
1972 }
1973 
1974 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1975                                                unsigned BitWidth) {
1976   return From == BitWidth - To - 1;
1977 }
1978 
1979 /// Given an OR instruction, check to see if this is a bitreverse
1980 /// idiom. If so, insert the new intrinsic and return true.
1981 bool llvm::recognizeBSwapOrBitReverseIdiom(
1982     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
1983     SmallVectorImpl<Instruction *> &InsertedInsts) {
1984   if (Operator::getOpcode(I) != Instruction::Or)
1985     return false;
1986   if (!MatchBSwaps && !MatchBitReversals)
1987     return false;
1988   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
1989   if (!ITy || ITy->getBitWidth() > 128)
1990     return false;   // Can't do vectors or integers > 128 bits.
1991   unsigned BW = ITy->getBitWidth();
1992 
1993   unsigned DemandedBW = BW;
1994   IntegerType *DemandedTy = ITy;
1995   if (I->hasOneUse()) {
1996     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
1997       DemandedTy = cast<IntegerType>(Trunc->getType());
1998       DemandedBW = DemandedTy->getBitWidth();
1999     }
2000   }
2001 
2002   // Try to find all the pieces corresponding to the bswap.
2003   std::map<Value *, Optional<BitPart>> BPS;
2004   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2005   if (!Res)
2006     return false;
2007   auto &BitProvenance = Res->Provenance;
2008 
2009   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2010   // only byteswap values with an even number of bytes.
2011   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2012   for (unsigned i = 0; i < DemandedBW; ++i) {
2013     OKForBSwap &=
2014         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2015     OKForBitReverse &=
2016         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2017   }
2018 
2019   Intrinsic::ID Intrin;
2020   if (OKForBSwap && MatchBSwaps)
2021     Intrin = Intrinsic::bswap;
2022   else if (OKForBitReverse && MatchBitReversals)
2023     Intrin = Intrinsic::bitreverse;
2024   else
2025     return false;
2026 
2027   if (ITy != DemandedTy) {
2028     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2029     Value *Provider = Res->Provider;
2030     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2031     // We may need to truncate the provider.
2032     if (DemandedTy != ProviderTy) {
2033       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2034                                      "trunc", I);
2035       InsertedInsts.push_back(Trunc);
2036       Provider = Trunc;
2037     }
2038     auto *CI = CallInst::Create(F, Provider, "rev", I);
2039     InsertedInsts.push_back(CI);
2040     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2041     InsertedInsts.push_back(ExtInst);
2042     return true;
2043   }
2044 
2045   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2046   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2047   return true;
2048 }
2049 
2050 // CodeGen has special handling for some string functions that may replace
2051 // them with target-specific intrinsics.  Since that'd skip our interceptors
2052 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2053 // we mark affected calls as NoBuiltin, which will disable optimization
2054 // in CodeGen.
2055 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2056     CallInst *CI, const TargetLibraryInfo *TLI) {
2057   Function *F = CI->getCalledFunction();
2058   LibFunc::Func Func;
2059   if (F && !F->hasLocalLinkage() && F->hasName() &&
2060       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2061       !F->doesNotAccessMemory())
2062     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin);
2063 }
2064