1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LibCallSemantics.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 using namespace llvm; 48 49 #define DEBUG_TYPE "local" 50 51 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 52 53 //===----------------------------------------------------------------------===// 54 // Local constant propagation. 55 // 56 57 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 58 /// constant value, convert it into an unconditional branch to the constant 59 /// destination. This is a nontrivial operation because the successors of this 60 /// basic block must have their PHI nodes updated. 61 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 62 /// conditions and indirectbr addresses this might make dead if 63 /// DeleteDeadConditions is true. 64 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 65 const TargetLibraryInfo *TLI) { 66 TerminatorInst *T = BB->getTerminator(); 67 IRBuilder<> Builder(T); 68 69 // Branch - See if we are conditional jumping on constant 70 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 71 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 72 BasicBlock *Dest1 = BI->getSuccessor(0); 73 BasicBlock *Dest2 = BI->getSuccessor(1); 74 75 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 76 // Are we branching on constant? 77 // YES. Change to unconditional branch... 78 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 79 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 80 81 //cerr << "Function: " << T->getParent()->getParent() 82 // << "\nRemoving branch from " << T->getParent() 83 // << "\n\nTo: " << OldDest << endl; 84 85 // Let the basic block know that we are letting go of it. Based on this, 86 // it will adjust it's PHI nodes. 87 OldDest->removePredecessor(BB); 88 89 // Replace the conditional branch with an unconditional one. 90 Builder.CreateBr(Destination); 91 BI->eraseFromParent(); 92 return true; 93 } 94 95 if (Dest2 == Dest1) { // Conditional branch to same location? 96 // This branch matches something like this: 97 // br bool %cond, label %Dest, label %Dest 98 // and changes it into: br label %Dest 99 100 // Let the basic block know that we are letting go of one copy of it. 101 assert(BI->getParent() && "Terminator not inserted in block!"); 102 Dest1->removePredecessor(BI->getParent()); 103 104 // Replace the conditional branch with an unconditional one. 105 Builder.CreateBr(Dest1); 106 Value *Cond = BI->getCondition(); 107 BI->eraseFromParent(); 108 if (DeleteDeadConditions) 109 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 110 return true; 111 } 112 return false; 113 } 114 115 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 116 // If we are switching on a constant, we can convert the switch to an 117 // unconditional branch. 118 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 119 BasicBlock *DefaultDest = SI->getDefaultDest(); 120 BasicBlock *TheOnlyDest = DefaultDest; 121 122 // If the default is unreachable, ignore it when searching for TheOnlyDest. 123 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 124 SI->getNumCases() > 0) { 125 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 126 } 127 128 // Figure out which case it goes to. 129 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 130 i != e; ++i) { 131 // Found case matching a constant operand? 132 if (i.getCaseValue() == CI) { 133 TheOnlyDest = i.getCaseSuccessor(); 134 break; 135 } 136 137 // Check to see if this branch is going to the same place as the default 138 // dest. If so, eliminate it as an explicit compare. 139 if (i.getCaseSuccessor() == DefaultDest) { 140 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 141 unsigned NCases = SI->getNumCases(); 142 // Fold the case metadata into the default if there will be any branches 143 // left, unless the metadata doesn't match the switch. 144 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 145 // Collect branch weights into a vector. 146 SmallVector<uint32_t, 8> Weights; 147 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 148 ++MD_i) { 149 ConstantInt *CI = 150 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 151 assert(CI); 152 Weights.push_back(CI->getValue().getZExtValue()); 153 } 154 // Merge weight of this case to the default weight. 155 unsigned idx = i.getCaseIndex(); 156 Weights[0] += Weights[idx+1]; 157 // Remove weight for this case. 158 std::swap(Weights[idx+1], Weights.back()); 159 Weights.pop_back(); 160 SI->setMetadata(LLVMContext::MD_prof, 161 MDBuilder(BB->getContext()). 162 createBranchWeights(Weights)); 163 } 164 // Remove this entry. 165 DefaultDest->removePredecessor(SI->getParent()); 166 SI->removeCase(i); 167 --i; --e; 168 continue; 169 } 170 171 // Otherwise, check to see if the switch only branches to one destination. 172 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 173 // destinations. 174 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 175 } 176 177 if (CI && !TheOnlyDest) { 178 // Branching on a constant, but not any of the cases, go to the default 179 // successor. 180 TheOnlyDest = SI->getDefaultDest(); 181 } 182 183 // If we found a single destination that we can fold the switch into, do so 184 // now. 185 if (TheOnlyDest) { 186 // Insert the new branch. 187 Builder.CreateBr(TheOnlyDest); 188 BasicBlock *BB = SI->getParent(); 189 190 // Remove entries from PHI nodes which we no longer branch to... 191 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 192 // Found case matching a constant operand? 193 BasicBlock *Succ = SI->getSuccessor(i); 194 if (Succ == TheOnlyDest) 195 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 196 else 197 Succ->removePredecessor(BB); 198 } 199 200 // Delete the old switch. 201 Value *Cond = SI->getCondition(); 202 SI->eraseFromParent(); 203 if (DeleteDeadConditions) 204 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 205 return true; 206 } 207 208 if (SI->getNumCases() == 1) { 209 // Otherwise, we can fold this switch into a conditional branch 210 // instruction if it has only one non-default destination. 211 SwitchInst::CaseIt FirstCase = SI->case_begin(); 212 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 213 FirstCase.getCaseValue(), "cond"); 214 215 // Insert the new branch. 216 BranchInst *NewBr = Builder.CreateCondBr(Cond, 217 FirstCase.getCaseSuccessor(), 218 SI->getDefaultDest()); 219 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 220 if (MD && MD->getNumOperands() == 3) { 221 ConstantInt *SICase = 222 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 223 ConstantInt *SIDef = 224 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 225 assert(SICase && SIDef); 226 // The TrueWeight should be the weight for the single case of SI. 227 NewBr->setMetadata(LLVMContext::MD_prof, 228 MDBuilder(BB->getContext()). 229 createBranchWeights(SICase->getValue().getZExtValue(), 230 SIDef->getValue().getZExtValue())); 231 } 232 233 // Delete the old switch. 234 SI->eraseFromParent(); 235 return true; 236 } 237 return false; 238 } 239 240 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 241 // indirectbr blockaddress(@F, @BB) -> br label @BB 242 if (BlockAddress *BA = 243 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 244 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 245 // Insert the new branch. 246 Builder.CreateBr(TheOnlyDest); 247 248 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 249 if (IBI->getDestination(i) == TheOnlyDest) 250 TheOnlyDest = nullptr; 251 else 252 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 253 } 254 Value *Address = IBI->getAddress(); 255 IBI->eraseFromParent(); 256 if (DeleteDeadConditions) 257 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 258 259 // If we didn't find our destination in the IBI successor list, then we 260 // have undefined behavior. Replace the unconditional branch with an 261 // 'unreachable' instruction. 262 if (TheOnlyDest) { 263 BB->getTerminator()->eraseFromParent(); 264 new UnreachableInst(BB->getContext(), BB); 265 } 266 267 return true; 268 } 269 } 270 271 return false; 272 } 273 274 275 //===----------------------------------------------------------------------===// 276 // Local dead code elimination. 277 // 278 279 /// isInstructionTriviallyDead - Return true if the result produced by the 280 /// instruction is not used, and the instruction has no side effects. 281 /// 282 bool llvm::isInstructionTriviallyDead(Instruction *I, 283 const TargetLibraryInfo *TLI) { 284 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 285 286 // We don't want the landingpad instruction removed by anything this general. 287 if (isa<LandingPadInst>(I)) 288 return false; 289 290 // We don't want debug info removed by anything this general, unless 291 // debug info is empty. 292 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 293 if (DDI->getAddress()) 294 return false; 295 return true; 296 } 297 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 298 if (DVI->getValue()) 299 return false; 300 return true; 301 } 302 303 if (!I->mayHaveSideEffects()) return true; 304 305 // Special case intrinsics that "may have side effects" but can be deleted 306 // when dead. 307 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 308 // Safe to delete llvm.stacksave if dead. 309 if (II->getIntrinsicID() == Intrinsic::stacksave) 310 return true; 311 312 // Lifetime intrinsics are dead when their right-hand is undef. 313 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 314 II->getIntrinsicID() == Intrinsic::lifetime_end) 315 return isa<UndefValue>(II->getArgOperand(1)); 316 317 // Assumptions are dead if their condition is trivially true. 318 if (II->getIntrinsicID() == Intrinsic::assume) { 319 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 320 return !Cond->isZero(); 321 322 return false; 323 } 324 } 325 326 if (isAllocLikeFn(I, TLI)) return true; 327 328 if (CallInst *CI = isFreeCall(I, TLI)) 329 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 330 return C->isNullValue() || isa<UndefValue>(C); 331 332 return false; 333 } 334 335 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 336 /// trivially dead instruction, delete it. If that makes any of its operands 337 /// trivially dead, delete them too, recursively. Return true if any 338 /// instructions were deleted. 339 bool 340 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 341 const TargetLibraryInfo *TLI) { 342 Instruction *I = dyn_cast<Instruction>(V); 343 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 344 return false; 345 346 SmallVector<Instruction*, 16> DeadInsts; 347 DeadInsts.push_back(I); 348 349 do { 350 I = DeadInsts.pop_back_val(); 351 352 // Null out all of the instruction's operands to see if any operand becomes 353 // dead as we go. 354 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 355 Value *OpV = I->getOperand(i); 356 I->setOperand(i, nullptr); 357 358 if (!OpV->use_empty()) continue; 359 360 // If the operand is an instruction that became dead as we nulled out the 361 // operand, and if it is 'trivially' dead, delete it in a future loop 362 // iteration. 363 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 364 if (isInstructionTriviallyDead(OpI, TLI)) 365 DeadInsts.push_back(OpI); 366 } 367 368 I->eraseFromParent(); 369 } while (!DeadInsts.empty()); 370 371 return true; 372 } 373 374 /// areAllUsesEqual - Check whether the uses of a value are all the same. 375 /// This is similar to Instruction::hasOneUse() except this will also return 376 /// true when there are no uses or multiple uses that all refer to the same 377 /// value. 378 static bool areAllUsesEqual(Instruction *I) { 379 Value::user_iterator UI = I->user_begin(); 380 Value::user_iterator UE = I->user_end(); 381 if (UI == UE) 382 return true; 383 384 User *TheUse = *UI; 385 for (++UI; UI != UE; ++UI) { 386 if (*UI != TheUse) 387 return false; 388 } 389 return true; 390 } 391 392 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 393 /// dead PHI node, due to being a def-use chain of single-use nodes that 394 /// either forms a cycle or is terminated by a trivially dead instruction, 395 /// delete it. If that makes any of its operands trivially dead, delete them 396 /// too, recursively. Return true if a change was made. 397 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 398 const TargetLibraryInfo *TLI) { 399 SmallPtrSet<Instruction*, 4> Visited; 400 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 401 I = cast<Instruction>(*I->user_begin())) { 402 if (I->use_empty()) 403 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 404 405 // If we find an instruction more than once, we're on a cycle that 406 // won't prove fruitful. 407 if (!Visited.insert(I).second) { 408 // Break the cycle and delete the instruction and its operands. 409 I->replaceAllUsesWith(UndefValue::get(I->getType())); 410 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 411 return true; 412 } 413 } 414 return false; 415 } 416 417 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 418 /// simplify any instructions in it and recursively delete dead instructions. 419 /// 420 /// This returns true if it changed the code, note that it can delete 421 /// instructions in other blocks as well in this block. 422 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 423 const TargetLibraryInfo *TLI) { 424 bool MadeChange = false; 425 426 #ifndef NDEBUG 427 // In debug builds, ensure that the terminator of the block is never replaced 428 // or deleted by these simplifications. The idea of simplification is that it 429 // cannot introduce new instructions, and there is no way to replace the 430 // terminator of a block without introducing a new instruction. 431 AssertingVH<Instruction> TerminatorVH(--BB->end()); 432 #endif 433 434 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 435 assert(!BI->isTerminator()); 436 Instruction *Inst = BI++; 437 438 WeakVH BIHandle(BI); 439 if (recursivelySimplifyInstruction(Inst, TLI)) { 440 MadeChange = true; 441 if (BIHandle != BI) 442 BI = BB->begin(); 443 continue; 444 } 445 446 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 447 if (BIHandle != BI) 448 BI = BB->begin(); 449 } 450 return MadeChange; 451 } 452 453 //===----------------------------------------------------------------------===// 454 // Control Flow Graph Restructuring. 455 // 456 457 458 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 459 /// method is called when we're about to delete Pred as a predecessor of BB. If 460 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 461 /// 462 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 463 /// nodes that collapse into identity values. For example, if we have: 464 /// x = phi(1, 0, 0, 0) 465 /// y = and x, z 466 /// 467 /// .. and delete the predecessor corresponding to the '1', this will attempt to 468 /// recursively fold the and to 0. 469 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 470 // This only adjusts blocks with PHI nodes. 471 if (!isa<PHINode>(BB->begin())) 472 return; 473 474 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 475 // them down. This will leave us with single entry phi nodes and other phis 476 // that can be removed. 477 BB->removePredecessor(Pred, true); 478 479 WeakVH PhiIt = &BB->front(); 480 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 481 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 482 Value *OldPhiIt = PhiIt; 483 484 if (!recursivelySimplifyInstruction(PN)) 485 continue; 486 487 // If recursive simplification ended up deleting the next PHI node we would 488 // iterate to, then our iterator is invalid, restart scanning from the top 489 // of the block. 490 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 491 } 492 } 493 494 495 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 496 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 497 /// between them, moving the instructions in the predecessor into DestBB and 498 /// deleting the predecessor block. 499 /// 500 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 501 // If BB has single-entry PHI nodes, fold them. 502 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 503 Value *NewVal = PN->getIncomingValue(0); 504 // Replace self referencing PHI with undef, it must be dead. 505 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 506 PN->replaceAllUsesWith(NewVal); 507 PN->eraseFromParent(); 508 } 509 510 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 511 assert(PredBB && "Block doesn't have a single predecessor!"); 512 513 // Zap anything that took the address of DestBB. Not doing this will give the 514 // address an invalid value. 515 if (DestBB->hasAddressTaken()) { 516 BlockAddress *BA = BlockAddress::get(DestBB); 517 Constant *Replacement = 518 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 519 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 520 BA->getType())); 521 BA->destroyConstant(); 522 } 523 524 // Anything that branched to PredBB now branches to DestBB. 525 PredBB->replaceAllUsesWith(DestBB); 526 527 // Splice all the instructions from PredBB to DestBB. 528 PredBB->getTerminator()->eraseFromParent(); 529 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 530 531 // If the PredBB is the entry block of the function, move DestBB up to 532 // become the entry block after we erase PredBB. 533 if (PredBB == &DestBB->getParent()->getEntryBlock()) 534 DestBB->moveAfter(PredBB); 535 536 if (DT) { 537 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 538 DT->changeImmediateDominator(DestBB, PredBBIDom); 539 DT->eraseNode(PredBB); 540 } 541 // Nuke BB. 542 PredBB->eraseFromParent(); 543 } 544 545 /// CanMergeValues - Return true if we can choose one of these values to use 546 /// in place of the other. Note that we will always choose the non-undef 547 /// value to keep. 548 static bool CanMergeValues(Value *First, Value *Second) { 549 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 550 } 551 552 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 553 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 554 /// 555 /// Assumption: Succ is the single successor for BB. 556 /// 557 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 558 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 559 560 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 561 << Succ->getName() << "\n"); 562 // Shortcut, if there is only a single predecessor it must be BB and merging 563 // is always safe 564 if (Succ->getSinglePredecessor()) return true; 565 566 // Make a list of the predecessors of BB 567 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 568 569 // Look at all the phi nodes in Succ, to see if they present a conflict when 570 // merging these blocks 571 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 572 PHINode *PN = cast<PHINode>(I); 573 574 // If the incoming value from BB is again a PHINode in 575 // BB which has the same incoming value for *PI as PN does, we can 576 // merge the phi nodes and then the blocks can still be merged 577 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 578 if (BBPN && BBPN->getParent() == BB) { 579 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 580 BasicBlock *IBB = PN->getIncomingBlock(PI); 581 if (BBPreds.count(IBB) && 582 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 583 PN->getIncomingValue(PI))) { 584 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 585 << Succ->getName() << " is conflicting with " 586 << BBPN->getName() << " with regard to common predecessor " 587 << IBB->getName() << "\n"); 588 return false; 589 } 590 } 591 } else { 592 Value* Val = PN->getIncomingValueForBlock(BB); 593 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 594 // See if the incoming value for the common predecessor is equal to the 595 // one for BB, in which case this phi node will not prevent the merging 596 // of the block. 597 BasicBlock *IBB = PN->getIncomingBlock(PI); 598 if (BBPreds.count(IBB) && 599 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 600 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 601 << Succ->getName() << " is conflicting with regard to common " 602 << "predecessor " << IBB->getName() << "\n"); 603 return false; 604 } 605 } 606 } 607 } 608 609 return true; 610 } 611 612 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 613 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 614 615 /// \brief Determines the value to use as the phi node input for a block. 616 /// 617 /// Select between \p OldVal any value that we know flows from \p BB 618 /// to a particular phi on the basis of which one (if either) is not 619 /// undef. Update IncomingValues based on the selected value. 620 /// 621 /// \param OldVal The value we are considering selecting. 622 /// \param BB The block that the value flows in from. 623 /// \param IncomingValues A map from block-to-value for other phi inputs 624 /// that we have examined. 625 /// 626 /// \returns the selected value. 627 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 628 IncomingValueMap &IncomingValues) { 629 if (!isa<UndefValue>(OldVal)) { 630 assert((!IncomingValues.count(BB) || 631 IncomingValues.find(BB)->second == OldVal) && 632 "Expected OldVal to match incoming value from BB!"); 633 634 IncomingValues.insert(std::make_pair(BB, OldVal)); 635 return OldVal; 636 } 637 638 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 639 if (It != IncomingValues.end()) return It->second; 640 641 return OldVal; 642 } 643 644 /// \brief Create a map from block to value for the operands of a 645 /// given phi. 646 /// 647 /// Create a map from block to value for each non-undef value flowing 648 /// into \p PN. 649 /// 650 /// \param PN The phi we are collecting the map for. 651 /// \param IncomingValues [out] The map from block to value for this phi. 652 static void gatherIncomingValuesToPhi(PHINode *PN, 653 IncomingValueMap &IncomingValues) { 654 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 655 BasicBlock *BB = PN->getIncomingBlock(i); 656 Value *V = PN->getIncomingValue(i); 657 658 if (!isa<UndefValue>(V)) 659 IncomingValues.insert(std::make_pair(BB, V)); 660 } 661 } 662 663 /// \brief Replace the incoming undef values to a phi with the values 664 /// from a block-to-value map. 665 /// 666 /// \param PN The phi we are replacing the undefs in. 667 /// \param IncomingValues A map from block to value. 668 static void replaceUndefValuesInPhi(PHINode *PN, 669 const IncomingValueMap &IncomingValues) { 670 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 671 Value *V = PN->getIncomingValue(i); 672 673 if (!isa<UndefValue>(V)) continue; 674 675 BasicBlock *BB = PN->getIncomingBlock(i); 676 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 677 if (It == IncomingValues.end()) continue; 678 679 PN->setIncomingValue(i, It->second); 680 } 681 } 682 683 /// \brief Replace a value flowing from a block to a phi with 684 /// potentially multiple instances of that value flowing from the 685 /// block's predecessors to the phi. 686 /// 687 /// \param BB The block with the value flowing into the phi. 688 /// \param BBPreds The predecessors of BB. 689 /// \param PN The phi that we are updating. 690 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 691 const PredBlockVector &BBPreds, 692 PHINode *PN) { 693 Value *OldVal = PN->removeIncomingValue(BB, false); 694 assert(OldVal && "No entry in PHI for Pred BB!"); 695 696 IncomingValueMap IncomingValues; 697 698 // We are merging two blocks - BB, and the block containing PN - and 699 // as a result we need to redirect edges from the predecessors of BB 700 // to go to the block containing PN, and update PN 701 // accordingly. Since we allow merging blocks in the case where the 702 // predecessor and successor blocks both share some predecessors, 703 // and where some of those common predecessors might have undef 704 // values flowing into PN, we want to rewrite those values to be 705 // consistent with the non-undef values. 706 707 gatherIncomingValuesToPhi(PN, IncomingValues); 708 709 // If this incoming value is one of the PHI nodes in BB, the new entries 710 // in the PHI node are the entries from the old PHI. 711 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 712 PHINode *OldValPN = cast<PHINode>(OldVal); 713 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 714 // Note that, since we are merging phi nodes and BB and Succ might 715 // have common predecessors, we could end up with a phi node with 716 // identical incoming branches. This will be cleaned up later (and 717 // will trigger asserts if we try to clean it up now, without also 718 // simplifying the corresponding conditional branch). 719 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 720 Value *PredVal = OldValPN->getIncomingValue(i); 721 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 722 IncomingValues); 723 724 // And add a new incoming value for this predecessor for the 725 // newly retargeted branch. 726 PN->addIncoming(Selected, PredBB); 727 } 728 } else { 729 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 730 // Update existing incoming values in PN for this 731 // predecessor of BB. 732 BasicBlock *PredBB = BBPreds[i]; 733 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 734 IncomingValues); 735 736 // And add a new incoming value for this predecessor for the 737 // newly retargeted branch. 738 PN->addIncoming(Selected, PredBB); 739 } 740 } 741 742 replaceUndefValuesInPhi(PN, IncomingValues); 743 } 744 745 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 746 /// unconditional branch, and contains no instructions other than PHI nodes, 747 /// potential side-effect free intrinsics and the branch. If possible, 748 /// eliminate BB by rewriting all the predecessors to branch to the successor 749 /// block and return true. If we can't transform, return false. 750 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 751 assert(BB != &BB->getParent()->getEntryBlock() && 752 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 753 754 // We can't eliminate infinite loops. 755 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 756 if (BB == Succ) return false; 757 758 // Check to see if merging these blocks would cause conflicts for any of the 759 // phi nodes in BB or Succ. If not, we can safely merge. 760 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 761 762 // Check for cases where Succ has multiple predecessors and a PHI node in BB 763 // has uses which will not disappear when the PHI nodes are merged. It is 764 // possible to handle such cases, but difficult: it requires checking whether 765 // BB dominates Succ, which is non-trivial to calculate in the case where 766 // Succ has multiple predecessors. Also, it requires checking whether 767 // constructing the necessary self-referential PHI node doesn't introduce any 768 // conflicts; this isn't too difficult, but the previous code for doing this 769 // was incorrect. 770 // 771 // Note that if this check finds a live use, BB dominates Succ, so BB is 772 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 773 // folding the branch isn't profitable in that case anyway. 774 if (!Succ->getSinglePredecessor()) { 775 BasicBlock::iterator BBI = BB->begin(); 776 while (isa<PHINode>(*BBI)) { 777 for (Use &U : BBI->uses()) { 778 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 779 if (PN->getIncomingBlock(U) != BB) 780 return false; 781 } else { 782 return false; 783 } 784 } 785 ++BBI; 786 } 787 } 788 789 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 790 791 if (isa<PHINode>(Succ->begin())) { 792 // If there is more than one pred of succ, and there are PHI nodes in 793 // the successor, then we need to add incoming edges for the PHI nodes 794 // 795 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 796 797 // Loop over all of the PHI nodes in the successor of BB. 798 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 799 PHINode *PN = cast<PHINode>(I); 800 801 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 802 } 803 } 804 805 if (Succ->getSinglePredecessor()) { 806 // BB is the only predecessor of Succ, so Succ will end up with exactly 807 // the same predecessors BB had. 808 809 // Copy over any phi, debug or lifetime instruction. 810 BB->getTerminator()->eraseFromParent(); 811 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 812 } else { 813 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 814 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 815 assert(PN->use_empty() && "There shouldn't be any uses here!"); 816 PN->eraseFromParent(); 817 } 818 } 819 820 // Everything that jumped to BB now goes to Succ. 821 BB->replaceAllUsesWith(Succ); 822 if (!Succ->hasName()) Succ->takeName(BB); 823 BB->eraseFromParent(); // Delete the old basic block. 824 return true; 825 } 826 827 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 828 /// nodes in this block. This doesn't try to be clever about PHI nodes 829 /// which differ only in the order of the incoming values, but instcombine 830 /// orders them so it usually won't matter. 831 /// 832 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 833 // This implementation doesn't currently consider undef operands 834 // specially. Theoretically, two phis which are identical except for 835 // one having an undef where the other doesn't could be collapsed. 836 837 struct PHIDenseMapInfo { 838 static PHINode *getEmptyKey() { 839 return DenseMapInfo<PHINode *>::getEmptyKey(); 840 } 841 static PHINode *getTombstoneKey() { 842 return DenseMapInfo<PHINode *>::getTombstoneKey(); 843 } 844 static unsigned getHashValue(PHINode *PN) { 845 // Compute a hash value on the operands. Instcombine will likely have 846 // sorted them, which helps expose duplicates, but we have to check all 847 // the operands to be safe in case instcombine hasn't run. 848 return static_cast<unsigned>(hash_combine( 849 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 850 hash_combine_range(PN->block_begin(), PN->block_end()))); 851 } 852 static bool isEqual(PHINode *LHS, PHINode *RHS) { 853 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 854 RHS == getEmptyKey() || RHS == getTombstoneKey()) 855 return LHS == RHS; 856 return LHS->isIdenticalTo(RHS); 857 } 858 }; 859 860 // Set of unique PHINodes. 861 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 862 863 // Examine each PHI. 864 bool Changed = false; 865 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 866 auto Inserted = PHISet.insert(PN); 867 if (!Inserted.second) { 868 // A duplicate. Replace this PHI with its duplicate. 869 PN->replaceAllUsesWith(*Inserted.first); 870 PN->eraseFromParent(); 871 Changed = true; 872 } 873 } 874 875 return Changed; 876 } 877 878 /// enforceKnownAlignment - If the specified pointer points to an object that 879 /// we control, modify the object's alignment to PrefAlign. This isn't 880 /// often possible though. If alignment is important, a more reliable approach 881 /// is to simply align all global variables and allocation instructions to 882 /// their preferred alignment from the beginning. 883 /// 884 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 885 unsigned PrefAlign, 886 const DataLayout &DL) { 887 V = V->stripPointerCasts(); 888 889 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 890 // If the preferred alignment is greater than the natural stack alignment 891 // then don't round up. This avoids dynamic stack realignment. 892 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 893 return Align; 894 // If there is a requested alignment and if this is an alloca, round up. 895 if (AI->getAlignment() >= PrefAlign) 896 return AI->getAlignment(); 897 AI->setAlignment(PrefAlign); 898 return PrefAlign; 899 } 900 901 if (auto *GO = dyn_cast<GlobalObject>(V)) { 902 // If there is a large requested alignment and we can, bump up the alignment 903 // of the global. 904 if (GO->isDeclaration()) 905 return Align; 906 // If the memory we set aside for the global may not be the memory used by 907 // the final program then it is impossible for us to reliably enforce the 908 // preferred alignment. 909 if (GO->isWeakForLinker()) 910 return Align; 911 912 if (GO->getAlignment() >= PrefAlign) 913 return GO->getAlignment(); 914 // We can only increase the alignment of the global if it has no alignment 915 // specified or if it is not assigned a section. If it is assigned a 916 // section, the global could be densely packed with other objects in the 917 // section, increasing the alignment could cause padding issues. 918 if (!GO->hasSection() || GO->getAlignment() == 0) 919 GO->setAlignment(PrefAlign); 920 return GO->getAlignment(); 921 } 922 923 return Align; 924 } 925 926 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 927 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 928 /// and it is more than the alignment of the ultimate object, see if we can 929 /// increase the alignment of the ultimate object, making this check succeed. 930 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 931 const DataLayout &DL, 932 const Instruction *CxtI, 933 AssumptionCache *AC, 934 const DominatorTree *DT) { 935 assert(V->getType()->isPointerTy() && 936 "getOrEnforceKnownAlignment expects a pointer!"); 937 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 938 939 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 940 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 941 unsigned TrailZ = KnownZero.countTrailingOnes(); 942 943 // Avoid trouble with ridiculously large TrailZ values, such as 944 // those computed from a null pointer. 945 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 946 947 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 948 949 // LLVM doesn't support alignments larger than this currently. 950 Align = std::min(Align, +Value::MaximumAlignment); 951 952 if (PrefAlign > Align) 953 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 954 955 // We don't need to make any adjustment. 956 return Align; 957 } 958 959 ///===---------------------------------------------------------------------===// 960 /// Dbg Intrinsic utilities 961 /// 962 963 /// See if there is a dbg.value intrinsic for DIVar before I. 964 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) { 965 // Since we can't guarantee that the original dbg.declare instrinsic 966 // is removed by LowerDbgDeclare(), we need to make sure that we are 967 // not inserting the same dbg.value intrinsic over and over. 968 llvm::BasicBlock::InstListType::iterator PrevI(I); 969 if (PrevI != I->getParent()->getInstList().begin()) { 970 --PrevI; 971 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 972 if (DVI->getValue() == I->getOperand(0) && 973 DVI->getOffset() == 0 && 974 DVI->getVariable() == DIVar) 975 return true; 976 } 977 return false; 978 } 979 980 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 981 /// that has an associated llvm.dbg.decl intrinsic. 982 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 983 StoreInst *SI, DIBuilder &Builder) { 984 auto *DIVar = DDI->getVariable(); 985 auto *DIExpr = DDI->getExpression(); 986 assert(DIVar && "Missing variable"); 987 988 if (LdStHasDebugValue(DIVar, SI)) 989 return true; 990 991 // If an argument is zero extended then use argument directly. The ZExt 992 // may be zapped by an optimization pass in future. 993 Argument *ExtendedArg = nullptr; 994 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 995 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 996 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 997 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 998 if (ExtendedArg) 999 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, 1000 DDI->getDebugLoc(), SI); 1001 else 1002 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1003 DDI->getDebugLoc(), SI); 1004 return true; 1005 } 1006 1007 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1008 /// that has an associated llvm.dbg.decl intrinsic. 1009 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1010 LoadInst *LI, DIBuilder &Builder) { 1011 auto *DIVar = DDI->getVariable(); 1012 auto *DIExpr = DDI->getExpression(); 1013 assert(DIVar && "Missing variable"); 1014 1015 if (LdStHasDebugValue(DIVar, LI)) 1016 return true; 1017 1018 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, 1019 DDI->getDebugLoc(), LI); 1020 return true; 1021 } 1022 1023 /// Determine whether this alloca is either a VLA or an array. 1024 static bool isArray(AllocaInst *AI) { 1025 return AI->isArrayAllocation() || 1026 AI->getType()->getElementType()->isArrayTy(); 1027 } 1028 1029 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1030 /// of llvm.dbg.value intrinsics. 1031 bool llvm::LowerDbgDeclare(Function &F) { 1032 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1033 SmallVector<DbgDeclareInst *, 4> Dbgs; 1034 for (auto &FI : F) 1035 for (BasicBlock::iterator BI : FI) 1036 if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) 1037 Dbgs.push_back(DDI); 1038 1039 if (Dbgs.empty()) 1040 return false; 1041 1042 for (auto &I : Dbgs) { 1043 DbgDeclareInst *DDI = I; 1044 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1045 // If this is an alloca for a scalar variable, insert a dbg.value 1046 // at each load and store to the alloca and erase the dbg.declare. 1047 // The dbg.values allow tracking a variable even if it is not 1048 // stored on the stack, while the dbg.declare can only describe 1049 // the stack slot (and at a lexical-scope granularity). Later 1050 // passes will attempt to elide the stack slot. 1051 if (AI && !isArray(AI)) { 1052 for (User *U : AI->users()) 1053 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1054 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1055 else if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1056 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1057 else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1058 // This is a call by-value or some other instruction that 1059 // takes a pointer to the variable. Insert a *value* 1060 // intrinsic that describes the alloca. 1061 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1062 DDI->getExpression(), DDI->getDebugLoc(), 1063 CI); 1064 } 1065 DDI->eraseFromParent(); 1066 } 1067 } 1068 return true; 1069 } 1070 1071 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1072 /// alloca 'V', if any. 1073 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1074 if (auto *L = LocalAsMetadata::getIfExists(V)) 1075 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1076 for (User *U : MDV->users()) 1077 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1078 return DDI; 1079 1080 return nullptr; 1081 } 1082 1083 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1084 DIBuilder &Builder, bool Deref) { 1085 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1086 if (!DDI) 1087 return false; 1088 DebugLoc Loc = DDI->getDebugLoc(); 1089 auto *DIVar = DDI->getVariable(); 1090 auto *DIExpr = DDI->getExpression(); 1091 assert(DIVar && "Missing variable"); 1092 1093 if (Deref) { 1094 // Create a copy of the original DIDescriptor for user variable, prepending 1095 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1096 // will take a value storing address of the memory for variable, not 1097 // alloca itself. 1098 SmallVector<uint64_t, 4> NewDIExpr; 1099 NewDIExpr.push_back(dwarf::DW_OP_deref); 1100 if (DIExpr) 1101 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1102 DIExpr = Builder.createExpression(NewDIExpr); 1103 } 1104 1105 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1106 // and remove old llvm.dbg.declare. 1107 BasicBlock *BB = AI->getParent(); 1108 Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, BB); 1109 DDI->eraseFromParent(); 1110 return true; 1111 } 1112 1113 /// changeToUnreachable - Insert an unreachable instruction before the specified 1114 /// instruction, making it and the rest of the code in the block dead. 1115 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1116 BasicBlock *BB = I->getParent(); 1117 // Loop over all of the successors, removing BB's entry from any PHI 1118 // nodes. 1119 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1120 (*SI)->removePredecessor(BB); 1121 1122 // Insert a call to llvm.trap right before this. This turns the undefined 1123 // behavior into a hard fail instead of falling through into random code. 1124 if (UseLLVMTrap) { 1125 Function *TrapFn = 1126 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1127 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1128 CallTrap->setDebugLoc(I->getDebugLoc()); 1129 } 1130 new UnreachableInst(I->getContext(), I); 1131 1132 // All instructions after this are dead. 1133 BasicBlock::iterator BBI = I, BBE = BB->end(); 1134 while (BBI != BBE) { 1135 if (!BBI->use_empty()) 1136 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1137 BB->getInstList().erase(BBI++); 1138 } 1139 } 1140 1141 /// changeToCall - Convert the specified invoke into a normal call. 1142 static void changeToCall(InvokeInst *II) { 1143 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1144 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1145 NewCall->takeName(II); 1146 NewCall->setCallingConv(II->getCallingConv()); 1147 NewCall->setAttributes(II->getAttributes()); 1148 NewCall->setDebugLoc(II->getDebugLoc()); 1149 II->replaceAllUsesWith(NewCall); 1150 1151 // Follow the call by a branch to the normal destination. 1152 BranchInst::Create(II->getNormalDest(), II); 1153 1154 // Update PHI nodes in the unwind destination 1155 II->getUnwindDest()->removePredecessor(II->getParent()); 1156 II->eraseFromParent(); 1157 } 1158 1159 static bool markAliveBlocks(Function &F, 1160 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1161 1162 SmallVector<BasicBlock*, 128> Worklist; 1163 BasicBlock *BB = F.begin(); 1164 Worklist.push_back(BB); 1165 Reachable.insert(BB); 1166 bool Changed = false; 1167 do { 1168 BB = Worklist.pop_back_val(); 1169 1170 // Do a quick scan of the basic block, turning any obviously unreachable 1171 // instructions into LLVM unreachable insts. The instruction combining pass 1172 // canonicalizes unreachable insts into stores to null or undef. 1173 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1174 // Assumptions that are known to be false are equivalent to unreachable. 1175 // Also, if the condition is undefined, then we make the choice most 1176 // beneficial to the optimizer, and choose that to also be unreachable. 1177 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1178 if (II->getIntrinsicID() == Intrinsic::assume) { 1179 bool MakeUnreachable = false; 1180 if (isa<UndefValue>(II->getArgOperand(0))) 1181 MakeUnreachable = true; 1182 else if (ConstantInt *Cond = 1183 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1184 MakeUnreachable = Cond->isZero(); 1185 1186 if (MakeUnreachable) { 1187 // Don't insert a call to llvm.trap right before the unreachable. 1188 changeToUnreachable(BBI, false); 1189 Changed = true; 1190 break; 1191 } 1192 } 1193 1194 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1195 if (CI->doesNotReturn()) { 1196 // If we found a call to a no-return function, insert an unreachable 1197 // instruction after it. Make sure there isn't *already* one there 1198 // though. 1199 ++BBI; 1200 if (!isa<UnreachableInst>(BBI)) { 1201 // Don't insert a call to llvm.trap right before the unreachable. 1202 changeToUnreachable(BBI, false); 1203 Changed = true; 1204 } 1205 break; 1206 } 1207 } 1208 1209 // Store to undef and store to null are undefined and used to signal that 1210 // they should be changed to unreachable by passes that can't modify the 1211 // CFG. 1212 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1213 // Don't touch volatile stores. 1214 if (SI->isVolatile()) continue; 1215 1216 Value *Ptr = SI->getOperand(1); 1217 1218 if (isa<UndefValue>(Ptr) || 1219 (isa<ConstantPointerNull>(Ptr) && 1220 SI->getPointerAddressSpace() == 0)) { 1221 changeToUnreachable(SI, true); 1222 Changed = true; 1223 break; 1224 } 1225 } 1226 } 1227 1228 // Turn invokes that call 'nounwind' functions into ordinary calls. 1229 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1230 Value *Callee = II->getCalledValue(); 1231 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1232 changeToUnreachable(II, true); 1233 Changed = true; 1234 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1235 if (II->use_empty() && II->onlyReadsMemory()) { 1236 // jump to the normal destination branch. 1237 BranchInst::Create(II->getNormalDest(), II); 1238 II->getUnwindDest()->removePredecessor(II->getParent()); 1239 II->eraseFromParent(); 1240 } else 1241 changeToCall(II); 1242 Changed = true; 1243 } 1244 } 1245 1246 Changed |= ConstantFoldTerminator(BB, true); 1247 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1248 if (Reachable.insert(*SI).second) 1249 Worklist.push_back(*SI); 1250 } while (!Worklist.empty()); 1251 return Changed; 1252 } 1253 1254 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1255 /// if they are in a dead cycle. Return true if a change was made, false 1256 /// otherwise. 1257 bool llvm::removeUnreachableBlocks(Function &F) { 1258 SmallPtrSet<BasicBlock*, 128> Reachable; 1259 bool Changed = markAliveBlocks(F, Reachable); 1260 1261 // If there are unreachable blocks in the CFG... 1262 if (Reachable.size() == F.size()) 1263 return Changed; 1264 1265 assert(Reachable.size() < F.size()); 1266 NumRemoved += F.size()-Reachable.size(); 1267 1268 // Loop over all of the basic blocks that are not reachable, dropping all of 1269 // their internal references... 1270 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1271 if (Reachable.count(BB)) 1272 continue; 1273 1274 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1275 if (Reachable.count(*SI)) 1276 (*SI)->removePredecessor(BB); 1277 BB->dropAllReferences(); 1278 } 1279 1280 for (Function::iterator I = ++F.begin(); I != F.end();) 1281 if (!Reachable.count(I)) 1282 I = F.getBasicBlockList().erase(I); 1283 else 1284 ++I; 1285 1286 return true; 1287 } 1288 1289 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { 1290 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1291 K->dropUnknownMetadata(KnownIDs); 1292 K->getAllMetadataOtherThanDebugLoc(Metadata); 1293 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1294 unsigned Kind = Metadata[i].first; 1295 MDNode *JMD = J->getMetadata(Kind); 1296 MDNode *KMD = Metadata[i].second; 1297 1298 switch (Kind) { 1299 default: 1300 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1301 break; 1302 case LLVMContext::MD_dbg: 1303 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1304 case LLVMContext::MD_tbaa: 1305 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1306 break; 1307 case LLVMContext::MD_alias_scope: 1308 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1309 break; 1310 case LLVMContext::MD_noalias: 1311 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1312 break; 1313 case LLVMContext::MD_range: 1314 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1315 break; 1316 case LLVMContext::MD_fpmath: 1317 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1318 break; 1319 case LLVMContext::MD_invariant_load: 1320 // Only set the !invariant.load if it is present in both instructions. 1321 K->setMetadata(Kind, JMD); 1322 break; 1323 case LLVMContext::MD_nonnull: 1324 // Only set the !nonnull if it is present in both instructions. 1325 K->setMetadata(Kind, JMD); 1326 break; 1327 } 1328 } 1329 } 1330 1331 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1332 DominatorTree &DT, 1333 const BasicBlockEdge &Root) { 1334 assert(From->getType() == To->getType()); 1335 1336 unsigned Count = 0; 1337 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1338 UI != UE; ) { 1339 Use &U = *UI++; 1340 if (DT.dominates(Root, U)) { 1341 U.set(To); 1342 DEBUG(dbgs() << "Replace dominated use of '" 1343 << From->getName() << "' as " 1344 << *To << " in " << *U << "\n"); 1345 ++Count; 1346 } 1347 } 1348 return Count; 1349 } 1350