xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision d34e60ca8532511acb8c93ef26297e349fbec86a)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
87 
88 #define DEBUG_TYPE "local"
89 
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
91 
92 //===----------------------------------------------------------------------===//
93 //  Local constant propagation.
94 //
95 
96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
97 /// constant value, convert it into an unconditional branch to the constant
98 /// destination.  This is a nontrivial operation because the successors of this
99 /// basic block must have their PHI nodes updated.
100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
101 /// conditions and indirectbr addresses this might make dead if
102 /// DeleteDeadConditions is true.
103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
104                                   const TargetLibraryInfo *TLI,
105                                   DeferredDominance *DDT) {
106   TerminatorInst *T = BB->getTerminator();
107   IRBuilder<> Builder(T);
108 
109   // Branch - See if we are conditional jumping on constant
110   if (auto *BI = dyn_cast<BranchInst>(T)) {
111     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
112     BasicBlock *Dest1 = BI->getSuccessor(0);
113     BasicBlock *Dest2 = BI->getSuccessor(1);
114 
115     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
116       // Are we branching on constant?
117       // YES.  Change to unconditional branch...
118       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
119       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
120 
121       // Let the basic block know that we are letting go of it.  Based on this,
122       // it will adjust it's PHI nodes.
123       OldDest->removePredecessor(BB);
124 
125       // Replace the conditional branch with an unconditional one.
126       Builder.CreateBr(Destination);
127       BI->eraseFromParent();
128       if (DDT)
129         DDT->deleteEdge(BB, OldDest);
130       return true;
131     }
132 
133     if (Dest2 == Dest1) {       // Conditional branch to same location?
134       // This branch matches something like this:
135       //     br bool %cond, label %Dest, label %Dest
136       // and changes it into:  br label %Dest
137 
138       // Let the basic block know that we are letting go of one copy of it.
139       assert(BI->getParent() && "Terminator not inserted in block!");
140       Dest1->removePredecessor(BI->getParent());
141 
142       // Replace the conditional branch with an unconditional one.
143       Builder.CreateBr(Dest1);
144       Value *Cond = BI->getCondition();
145       BI->eraseFromParent();
146       if (DeleteDeadConditions)
147         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
148       return true;
149     }
150     return false;
151   }
152 
153   if (auto *SI = dyn_cast<SwitchInst>(T)) {
154     // If we are switching on a constant, we can convert the switch to an
155     // unconditional branch.
156     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
157     BasicBlock *DefaultDest = SI->getDefaultDest();
158     BasicBlock *TheOnlyDest = DefaultDest;
159 
160     // If the default is unreachable, ignore it when searching for TheOnlyDest.
161     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
162         SI->getNumCases() > 0) {
163       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
164     }
165 
166     // Figure out which case it goes to.
167     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
168       // Found case matching a constant operand?
169       if (i->getCaseValue() == CI) {
170         TheOnlyDest = i->getCaseSuccessor();
171         break;
172       }
173 
174       // Check to see if this branch is going to the same place as the default
175       // dest.  If so, eliminate it as an explicit compare.
176       if (i->getCaseSuccessor() == DefaultDest) {
177         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
178         unsigned NCases = SI->getNumCases();
179         // Fold the case metadata into the default if there will be any branches
180         // left, unless the metadata doesn't match the switch.
181         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
182           // Collect branch weights into a vector.
183           SmallVector<uint32_t, 8> Weights;
184           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
185                ++MD_i) {
186             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
187             Weights.push_back(CI->getValue().getZExtValue());
188           }
189           // Merge weight of this case to the default weight.
190           unsigned idx = i->getCaseIndex();
191           Weights[0] += Weights[idx+1];
192           // Remove weight for this case.
193           std::swap(Weights[idx+1], Weights.back());
194           Weights.pop_back();
195           SI->setMetadata(LLVMContext::MD_prof,
196                           MDBuilder(BB->getContext()).
197                           createBranchWeights(Weights));
198         }
199         // Remove this entry.
200         BasicBlock *ParentBB = SI->getParent();
201         DefaultDest->removePredecessor(ParentBB);
202         i = SI->removeCase(i);
203         e = SI->case_end();
204         if (DDT)
205           DDT->deleteEdge(ParentBB, DefaultDest);
206         continue;
207       }
208 
209       // Otherwise, check to see if the switch only branches to one destination.
210       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
211       // destinations.
212       if (i->getCaseSuccessor() != TheOnlyDest)
213         TheOnlyDest = nullptr;
214 
215       // Increment this iterator as we haven't removed the case.
216       ++i;
217     }
218 
219     if (CI && !TheOnlyDest) {
220       // Branching on a constant, but not any of the cases, go to the default
221       // successor.
222       TheOnlyDest = SI->getDefaultDest();
223     }
224 
225     // If we found a single destination that we can fold the switch into, do so
226     // now.
227     if (TheOnlyDest) {
228       // Insert the new branch.
229       Builder.CreateBr(TheOnlyDest);
230       BasicBlock *BB = SI->getParent();
231       std::vector <DominatorTree::UpdateType> Updates;
232       if (DDT)
233         Updates.reserve(SI->getNumSuccessors() - 1);
234 
235       // Remove entries from PHI nodes which we no longer branch to...
236       for (BasicBlock *Succ : SI->successors()) {
237         // Found case matching a constant operand?
238         if (Succ == TheOnlyDest) {
239           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
240         } else {
241           Succ->removePredecessor(BB);
242           if (DDT)
243             Updates.push_back({DominatorTree::Delete, BB, Succ});
244         }
245       }
246 
247       // Delete the old switch.
248       Value *Cond = SI->getCondition();
249       SI->eraseFromParent();
250       if (DeleteDeadConditions)
251         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
252       if (DDT)
253         DDT->applyUpdates(Updates);
254       return true;
255     }
256 
257     if (SI->getNumCases() == 1) {
258       // Otherwise, we can fold this switch into a conditional branch
259       // instruction if it has only one non-default destination.
260       auto FirstCase = *SI->case_begin();
261       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
262           FirstCase.getCaseValue(), "cond");
263 
264       // Insert the new branch.
265       BranchInst *NewBr = Builder.CreateCondBr(Cond,
266                                                FirstCase.getCaseSuccessor(),
267                                                SI->getDefaultDest());
268       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
269       if (MD && MD->getNumOperands() == 3) {
270         ConstantInt *SICase =
271             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
272         ConstantInt *SIDef =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
274         assert(SICase && SIDef);
275         // The TrueWeight should be the weight for the single case of SI.
276         NewBr->setMetadata(LLVMContext::MD_prof,
277                         MDBuilder(BB->getContext()).
278                         createBranchWeights(SICase->getValue().getZExtValue(),
279                                             SIDef->getValue().getZExtValue()));
280       }
281 
282       // Update make.implicit metadata to the newly-created conditional branch.
283       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
284       if (MakeImplicitMD)
285         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
286 
287       // Delete the old switch.
288       SI->eraseFromParent();
289       return true;
290     }
291     return false;
292   }
293 
294   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
295     // indirectbr blockaddress(@F, @BB) -> br label @BB
296     if (auto *BA =
297           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
298       BasicBlock *TheOnlyDest = BA->getBasicBlock();
299       std::vector <DominatorTree::UpdateType> Updates;
300       if (DDT)
301         Updates.reserve(IBI->getNumDestinations() - 1);
302 
303       // Insert the new branch.
304       Builder.CreateBr(TheOnlyDest);
305 
306       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
307         if (IBI->getDestination(i) == TheOnlyDest) {
308           TheOnlyDest = nullptr;
309         } else {
310           BasicBlock *ParentBB = IBI->getParent();
311           BasicBlock *DestBB = IBI->getDestination(i);
312           DestBB->removePredecessor(ParentBB);
313           if (DDT)
314             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
315         }
316       }
317       Value *Address = IBI->getAddress();
318       IBI->eraseFromParent();
319       if (DeleteDeadConditions)
320         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
321 
322       // If we didn't find our destination in the IBI successor list, then we
323       // have undefined behavior.  Replace the unconditional branch with an
324       // 'unreachable' instruction.
325       if (TheOnlyDest) {
326         BB->getTerminator()->eraseFromParent();
327         new UnreachableInst(BB->getContext(), BB);
328       }
329 
330       if (DDT)
331         DDT->applyUpdates(Updates);
332       return true;
333     }
334   }
335 
336   return false;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 //  Local dead code elimination.
341 //
342 
343 /// isInstructionTriviallyDead - Return true if the result produced by the
344 /// instruction is not used, and the instruction has no side effects.
345 ///
346 bool llvm::isInstructionTriviallyDead(Instruction *I,
347                                       const TargetLibraryInfo *TLI) {
348   if (!I->use_empty())
349     return false;
350   return wouldInstructionBeTriviallyDead(I, TLI);
351 }
352 
353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
354                                            const TargetLibraryInfo *TLI) {
355   if (isa<TerminatorInst>(I))
356     return false;
357 
358   // We don't want the landingpad-like instructions removed by anything this
359   // general.
360   if (I->isEHPad())
361     return false;
362 
363   // We don't want debug info removed by anything this general, unless
364   // debug info is empty.
365   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
366     if (DDI->getAddress())
367       return false;
368     return true;
369   }
370   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
371     if (DVI->getValue())
372       return false;
373     return true;
374   }
375   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
376     if (DLI->getLabel())
377       return false;
378     return true;
379   }
380 
381   if (!I->mayHaveSideEffects())
382     return true;
383 
384   // Special case intrinsics that "may have side effects" but can be deleted
385   // when dead.
386   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
387     // Safe to delete llvm.stacksave if dead.
388     if (II->getIntrinsicID() == Intrinsic::stacksave)
389       return true;
390 
391     // Lifetime intrinsics are dead when their right-hand is undef.
392     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
393         II->getIntrinsicID() == Intrinsic::lifetime_end)
394       return isa<UndefValue>(II->getArgOperand(1));
395 
396     // Assumptions are dead if their condition is trivially true.  Guards on
397     // true are operationally no-ops.  In the future we can consider more
398     // sophisticated tradeoffs for guards considering potential for check
399     // widening, but for now we keep things simple.
400     if (II->getIntrinsicID() == Intrinsic::assume ||
401         II->getIntrinsicID() == Intrinsic::experimental_guard) {
402       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
403         return !Cond->isZero();
404 
405       return false;
406     }
407   }
408 
409   if (isAllocLikeFn(I, TLI))
410     return true;
411 
412   if (CallInst *CI = isFreeCall(I, TLI))
413     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
414       return C->isNullValue() || isa<UndefValue>(C);
415 
416   if (CallSite CS = CallSite(I))
417     if (isMathLibCallNoop(CS, TLI))
418       return true;
419 
420   return false;
421 }
422 
423 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
424 /// trivially dead instruction, delete it.  If that makes any of its operands
425 /// trivially dead, delete them too, recursively.  Return true if any
426 /// instructions were deleted.
427 bool
428 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
429                                                  const TargetLibraryInfo *TLI) {
430   Instruction *I = dyn_cast<Instruction>(V);
431   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
432     return false;
433 
434   SmallVector<Instruction*, 16> DeadInsts;
435   DeadInsts.push_back(I);
436 
437   do {
438     I = DeadInsts.pop_back_val();
439     salvageDebugInfo(*I);
440 
441     // Null out all of the instruction's operands to see if any operand becomes
442     // dead as we go.
443     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
444       Value *OpV = I->getOperand(i);
445       I->setOperand(i, nullptr);
446 
447       if (!OpV->use_empty()) continue;
448 
449       // If the operand is an instruction that became dead as we nulled out the
450       // operand, and if it is 'trivially' dead, delete it in a future loop
451       // iteration.
452       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
453         if (isInstructionTriviallyDead(OpI, TLI))
454           DeadInsts.push_back(OpI);
455     }
456 
457     I->eraseFromParent();
458   } while (!DeadInsts.empty());
459 
460   return true;
461 }
462 
463 /// areAllUsesEqual - Check whether the uses of a value are all the same.
464 /// This is similar to Instruction::hasOneUse() except this will also return
465 /// true when there are no uses or multiple uses that all refer to the same
466 /// value.
467 static bool areAllUsesEqual(Instruction *I) {
468   Value::user_iterator UI = I->user_begin();
469   Value::user_iterator UE = I->user_end();
470   if (UI == UE)
471     return true;
472 
473   User *TheUse = *UI;
474   for (++UI; UI != UE; ++UI) {
475     if (*UI != TheUse)
476       return false;
477   }
478   return true;
479 }
480 
481 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
482 /// dead PHI node, due to being a def-use chain of single-use nodes that
483 /// either forms a cycle or is terminated by a trivially dead instruction,
484 /// delete it.  If that makes any of its operands trivially dead, delete them
485 /// too, recursively.  Return true if a change was made.
486 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
487                                         const TargetLibraryInfo *TLI) {
488   SmallPtrSet<Instruction*, 4> Visited;
489   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
490        I = cast<Instruction>(*I->user_begin())) {
491     if (I->use_empty())
492       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
493 
494     // If we find an instruction more than once, we're on a cycle that
495     // won't prove fruitful.
496     if (!Visited.insert(I).second) {
497       // Break the cycle and delete the instruction and its operands.
498       I->replaceAllUsesWith(UndefValue::get(I->getType()));
499       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
500       return true;
501     }
502   }
503   return false;
504 }
505 
506 static bool
507 simplifyAndDCEInstruction(Instruction *I,
508                           SmallSetVector<Instruction *, 16> &WorkList,
509                           const DataLayout &DL,
510                           const TargetLibraryInfo *TLI) {
511   if (isInstructionTriviallyDead(I, TLI)) {
512     salvageDebugInfo(*I);
513 
514     // Null out all of the instruction's operands to see if any operand becomes
515     // dead as we go.
516     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
517       Value *OpV = I->getOperand(i);
518       I->setOperand(i, nullptr);
519 
520       if (!OpV->use_empty() || I == OpV)
521         continue;
522 
523       // If the operand is an instruction that became dead as we nulled out the
524       // operand, and if it is 'trivially' dead, delete it in a future loop
525       // iteration.
526       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
527         if (isInstructionTriviallyDead(OpI, TLI))
528           WorkList.insert(OpI);
529     }
530 
531     I->eraseFromParent();
532 
533     return true;
534   }
535 
536   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
537     // Add the users to the worklist. CAREFUL: an instruction can use itself,
538     // in the case of a phi node.
539     for (User *U : I->users()) {
540       if (U != I) {
541         WorkList.insert(cast<Instruction>(U));
542       }
543     }
544 
545     // Replace the instruction with its simplified value.
546     bool Changed = false;
547     if (!I->use_empty()) {
548       I->replaceAllUsesWith(SimpleV);
549       Changed = true;
550     }
551     if (isInstructionTriviallyDead(I, TLI)) {
552       I->eraseFromParent();
553       Changed = true;
554     }
555     return Changed;
556   }
557   return false;
558 }
559 
560 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
561 /// simplify any instructions in it and recursively delete dead instructions.
562 ///
563 /// This returns true if it changed the code, note that it can delete
564 /// instructions in other blocks as well in this block.
565 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
566                                        const TargetLibraryInfo *TLI) {
567   bool MadeChange = false;
568   const DataLayout &DL = BB->getModule()->getDataLayout();
569 
570 #ifndef NDEBUG
571   // In debug builds, ensure that the terminator of the block is never replaced
572   // or deleted by these simplifications. The idea of simplification is that it
573   // cannot introduce new instructions, and there is no way to replace the
574   // terminator of a block without introducing a new instruction.
575   AssertingVH<Instruction> TerminatorVH(&BB->back());
576 #endif
577 
578   SmallSetVector<Instruction *, 16> WorkList;
579   // Iterate over the original function, only adding insts to the worklist
580   // if they actually need to be revisited. This avoids having to pre-init
581   // the worklist with the entire function's worth of instructions.
582   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
583        BI != E;) {
584     assert(!BI->isTerminator());
585     Instruction *I = &*BI;
586     ++BI;
587 
588     // We're visiting this instruction now, so make sure it's not in the
589     // worklist from an earlier visit.
590     if (!WorkList.count(I))
591       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
592   }
593 
594   while (!WorkList.empty()) {
595     Instruction *I = WorkList.pop_back_val();
596     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
597   }
598   return MadeChange;
599 }
600 
601 //===----------------------------------------------------------------------===//
602 //  Control Flow Graph Restructuring.
603 //
604 
605 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
606 /// method is called when we're about to delete Pred as a predecessor of BB.  If
607 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
608 ///
609 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
610 /// nodes that collapse into identity values.  For example, if we have:
611 ///   x = phi(1, 0, 0, 0)
612 ///   y = and x, z
613 ///
614 /// .. and delete the predecessor corresponding to the '1', this will attempt to
615 /// recursively fold the and to 0.
616 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
617                                         DeferredDominance *DDT) {
618   // This only adjusts blocks with PHI nodes.
619   if (!isa<PHINode>(BB->begin()))
620     return;
621 
622   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
623   // them down.  This will leave us with single entry phi nodes and other phis
624   // that can be removed.
625   BB->removePredecessor(Pred, true);
626 
627   WeakTrackingVH PhiIt = &BB->front();
628   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
629     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
630     Value *OldPhiIt = PhiIt;
631 
632     if (!recursivelySimplifyInstruction(PN))
633       continue;
634 
635     // If recursive simplification ended up deleting the next PHI node we would
636     // iterate to, then our iterator is invalid, restart scanning from the top
637     // of the block.
638     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
639   }
640   if (DDT)
641     DDT->deleteEdge(Pred, BB);
642 }
643 
644 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
645 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
646 /// between them, moving the instructions in the predecessor into DestBB and
647 /// deleting the predecessor block.
648 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT,
649                                        DeferredDominance *DDT) {
650   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
651 
652   // If BB has single-entry PHI nodes, fold them.
653   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
654     Value *NewVal = PN->getIncomingValue(0);
655     // Replace self referencing PHI with undef, it must be dead.
656     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
657     PN->replaceAllUsesWith(NewVal);
658     PN->eraseFromParent();
659   }
660 
661   BasicBlock *PredBB = DestBB->getSinglePredecessor();
662   assert(PredBB && "Block doesn't have a single predecessor!");
663 
664   bool ReplaceEntryBB = false;
665   if (PredBB == &DestBB->getParent()->getEntryBlock())
666     ReplaceEntryBB = true;
667 
668   // Deferred DT update: Collect all the edges that enter PredBB. These
669   // dominator edges will be redirected to DestBB.
670   std::vector <DominatorTree::UpdateType> Updates;
671   if (DDT && !ReplaceEntryBB) {
672     Updates.reserve(1 + (2 * pred_size(PredBB)));
673     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
674     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
675       Updates.push_back({DominatorTree::Delete, *I, PredBB});
676       // This predecessor of PredBB may already have DestBB as a successor.
677       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
678         Updates.push_back({DominatorTree::Insert, *I, DestBB});
679     }
680   }
681 
682   // Zap anything that took the address of DestBB.  Not doing this will give the
683   // address an invalid value.
684   if (DestBB->hasAddressTaken()) {
685     BlockAddress *BA = BlockAddress::get(DestBB);
686     Constant *Replacement =
687       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
688     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
689                                                      BA->getType()));
690     BA->destroyConstant();
691   }
692 
693   // Anything that branched to PredBB now branches to DestBB.
694   PredBB->replaceAllUsesWith(DestBB);
695 
696   // Splice all the instructions from PredBB to DestBB.
697   PredBB->getTerminator()->eraseFromParent();
698   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
699 
700   // If the PredBB is the entry block of the function, move DestBB up to
701   // become the entry block after we erase PredBB.
702   if (ReplaceEntryBB)
703     DestBB->moveAfter(PredBB);
704 
705   if (DT) {
706     // For some irreducible CFG we end up having forward-unreachable blocks
707     // so check if getNode returns a valid node before updating the domtree.
708     if (DomTreeNode *DTN = DT->getNode(PredBB)) {
709       BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
710       DT->changeImmediateDominator(DestBB, PredBBIDom);
711       DT->eraseNode(PredBB);
712     }
713   }
714 
715   if (DDT) {
716     DDT->deleteBB(PredBB); // Deferred deletion of BB.
717     if (ReplaceEntryBB)
718       // The entry block was removed and there is no external interface for the
719       // dominator tree to be notified of this change. In this corner-case we
720       // recalculate the entire tree.
721       DDT->recalculate(*(DestBB->getParent()));
722     else
723       DDT->applyUpdates(Updates);
724   } else {
725     PredBB->eraseFromParent(); // Nuke BB.
726   }
727 }
728 
729 /// CanMergeValues - Return true if we can choose one of these values to use
730 /// in place of the other. Note that we will always choose the non-undef
731 /// value to keep.
732 static bool CanMergeValues(Value *First, Value *Second) {
733   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
734 }
735 
736 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
737 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
738 ///
739 /// Assumption: Succ is the single successor for BB.
740 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
741   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
742 
743   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
744                     << Succ->getName() << "\n");
745   // Shortcut, if there is only a single predecessor it must be BB and merging
746   // is always safe
747   if (Succ->getSinglePredecessor()) return true;
748 
749   // Make a list of the predecessors of BB
750   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
751 
752   // Look at all the phi nodes in Succ, to see if they present a conflict when
753   // merging these blocks
754   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
755     PHINode *PN = cast<PHINode>(I);
756 
757     // If the incoming value from BB is again a PHINode in
758     // BB which has the same incoming value for *PI as PN does, we can
759     // merge the phi nodes and then the blocks can still be merged
760     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
761     if (BBPN && BBPN->getParent() == BB) {
762       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
763         BasicBlock *IBB = PN->getIncomingBlock(PI);
764         if (BBPreds.count(IBB) &&
765             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
766                             PN->getIncomingValue(PI))) {
767           LLVM_DEBUG(dbgs()
768                      << "Can't fold, phi node " << PN->getName() << " in "
769                      << Succ->getName() << " is conflicting with "
770                      << BBPN->getName() << " with regard to common predecessor "
771                      << IBB->getName() << "\n");
772           return false;
773         }
774       }
775     } else {
776       Value* Val = PN->getIncomingValueForBlock(BB);
777       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
778         // See if the incoming value for the common predecessor is equal to the
779         // one for BB, in which case this phi node will not prevent the merging
780         // of the block.
781         BasicBlock *IBB = PN->getIncomingBlock(PI);
782         if (BBPreds.count(IBB) &&
783             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
784           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
785                             << " in " << Succ->getName()
786                             << " is conflicting with regard to common "
787                             << "predecessor " << IBB->getName() << "\n");
788           return false;
789         }
790       }
791     }
792   }
793 
794   return true;
795 }
796 
797 using PredBlockVector = SmallVector<BasicBlock *, 16>;
798 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
799 
800 /// Determines the value to use as the phi node input for a block.
801 ///
802 /// Select between \p OldVal any value that we know flows from \p BB
803 /// to a particular phi on the basis of which one (if either) is not
804 /// undef. Update IncomingValues based on the selected value.
805 ///
806 /// \param OldVal The value we are considering selecting.
807 /// \param BB The block that the value flows in from.
808 /// \param IncomingValues A map from block-to-value for other phi inputs
809 /// that we have examined.
810 ///
811 /// \returns the selected value.
812 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
813                                           IncomingValueMap &IncomingValues) {
814   if (!isa<UndefValue>(OldVal)) {
815     assert((!IncomingValues.count(BB) ||
816             IncomingValues.find(BB)->second == OldVal) &&
817            "Expected OldVal to match incoming value from BB!");
818 
819     IncomingValues.insert(std::make_pair(BB, OldVal));
820     return OldVal;
821   }
822 
823   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
824   if (It != IncomingValues.end()) return It->second;
825 
826   return OldVal;
827 }
828 
829 /// Create a map from block to value for the operands of a
830 /// given phi.
831 ///
832 /// Create a map from block to value for each non-undef value flowing
833 /// into \p PN.
834 ///
835 /// \param PN The phi we are collecting the map for.
836 /// \param IncomingValues [out] The map from block to value for this phi.
837 static void gatherIncomingValuesToPhi(PHINode *PN,
838                                       IncomingValueMap &IncomingValues) {
839   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
840     BasicBlock *BB = PN->getIncomingBlock(i);
841     Value *V = PN->getIncomingValue(i);
842 
843     if (!isa<UndefValue>(V))
844       IncomingValues.insert(std::make_pair(BB, V));
845   }
846 }
847 
848 /// Replace the incoming undef values to a phi with the values
849 /// from a block-to-value map.
850 ///
851 /// \param PN The phi we are replacing the undefs in.
852 /// \param IncomingValues A map from block to value.
853 static void replaceUndefValuesInPhi(PHINode *PN,
854                                     const IncomingValueMap &IncomingValues) {
855   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
856     Value *V = PN->getIncomingValue(i);
857 
858     if (!isa<UndefValue>(V)) continue;
859 
860     BasicBlock *BB = PN->getIncomingBlock(i);
861     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
862     if (It == IncomingValues.end()) continue;
863 
864     PN->setIncomingValue(i, It->second);
865   }
866 }
867 
868 /// Replace a value flowing from a block to a phi with
869 /// potentially multiple instances of that value flowing from the
870 /// block's predecessors to the phi.
871 ///
872 /// \param BB The block with the value flowing into the phi.
873 /// \param BBPreds The predecessors of BB.
874 /// \param PN The phi that we are updating.
875 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
876                                                 const PredBlockVector &BBPreds,
877                                                 PHINode *PN) {
878   Value *OldVal = PN->removeIncomingValue(BB, false);
879   assert(OldVal && "No entry in PHI for Pred BB!");
880 
881   IncomingValueMap IncomingValues;
882 
883   // We are merging two blocks - BB, and the block containing PN - and
884   // as a result we need to redirect edges from the predecessors of BB
885   // to go to the block containing PN, and update PN
886   // accordingly. Since we allow merging blocks in the case where the
887   // predecessor and successor blocks both share some predecessors,
888   // and where some of those common predecessors might have undef
889   // values flowing into PN, we want to rewrite those values to be
890   // consistent with the non-undef values.
891 
892   gatherIncomingValuesToPhi(PN, IncomingValues);
893 
894   // If this incoming value is one of the PHI nodes in BB, the new entries
895   // in the PHI node are the entries from the old PHI.
896   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
897     PHINode *OldValPN = cast<PHINode>(OldVal);
898     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
899       // Note that, since we are merging phi nodes and BB and Succ might
900       // have common predecessors, we could end up with a phi node with
901       // identical incoming branches. This will be cleaned up later (and
902       // will trigger asserts if we try to clean it up now, without also
903       // simplifying the corresponding conditional branch).
904       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
905       Value *PredVal = OldValPN->getIncomingValue(i);
906       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
907                                                     IncomingValues);
908 
909       // And add a new incoming value for this predecessor for the
910       // newly retargeted branch.
911       PN->addIncoming(Selected, PredBB);
912     }
913   } else {
914     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
915       // Update existing incoming values in PN for this
916       // predecessor of BB.
917       BasicBlock *PredBB = BBPreds[i];
918       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
919                                                     IncomingValues);
920 
921       // And add a new incoming value for this predecessor for the
922       // newly retargeted branch.
923       PN->addIncoming(Selected, PredBB);
924     }
925   }
926 
927   replaceUndefValuesInPhi(PN, IncomingValues);
928 }
929 
930 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
931 /// unconditional branch, and contains no instructions other than PHI nodes,
932 /// potential side-effect free intrinsics and the branch.  If possible,
933 /// eliminate BB by rewriting all the predecessors to branch to the successor
934 /// block and return true.  If we can't transform, return false.
935 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
936                                                    DeferredDominance *DDT) {
937   assert(BB != &BB->getParent()->getEntryBlock() &&
938          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
939 
940   // We can't eliminate infinite loops.
941   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
942   if (BB == Succ) return false;
943 
944   // Check to see if merging these blocks would cause conflicts for any of the
945   // phi nodes in BB or Succ. If not, we can safely merge.
946   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
947 
948   // Check for cases where Succ has multiple predecessors and a PHI node in BB
949   // has uses which will not disappear when the PHI nodes are merged.  It is
950   // possible to handle such cases, but difficult: it requires checking whether
951   // BB dominates Succ, which is non-trivial to calculate in the case where
952   // Succ has multiple predecessors.  Also, it requires checking whether
953   // constructing the necessary self-referential PHI node doesn't introduce any
954   // conflicts; this isn't too difficult, but the previous code for doing this
955   // was incorrect.
956   //
957   // Note that if this check finds a live use, BB dominates Succ, so BB is
958   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
959   // folding the branch isn't profitable in that case anyway.
960   if (!Succ->getSinglePredecessor()) {
961     BasicBlock::iterator BBI = BB->begin();
962     while (isa<PHINode>(*BBI)) {
963       for (Use &U : BBI->uses()) {
964         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
965           if (PN->getIncomingBlock(U) != BB)
966             return false;
967         } else {
968           return false;
969         }
970       }
971       ++BBI;
972     }
973   }
974 
975   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
976 
977   std::vector<DominatorTree::UpdateType> Updates;
978   if (DDT) {
979     Updates.reserve(1 + (2 * pred_size(BB)));
980     Updates.push_back({DominatorTree::Delete, BB, Succ});
981     // All predecessors of BB will be moved to Succ.
982     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
983       Updates.push_back({DominatorTree::Delete, *I, BB});
984       // This predecessor of BB may already have Succ as a successor.
985       if (llvm::find(successors(*I), Succ) == succ_end(*I))
986         Updates.push_back({DominatorTree::Insert, *I, Succ});
987     }
988   }
989 
990   if (isa<PHINode>(Succ->begin())) {
991     // If there is more than one pred of succ, and there are PHI nodes in
992     // the successor, then we need to add incoming edges for the PHI nodes
993     //
994     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
995 
996     // Loop over all of the PHI nodes in the successor of BB.
997     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
998       PHINode *PN = cast<PHINode>(I);
999 
1000       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1001     }
1002   }
1003 
1004   if (Succ->getSinglePredecessor()) {
1005     // BB is the only predecessor of Succ, so Succ will end up with exactly
1006     // the same predecessors BB had.
1007 
1008     // Copy over any phi, debug or lifetime instruction.
1009     BB->getTerminator()->eraseFromParent();
1010     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1011                                BB->getInstList());
1012   } else {
1013     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1014       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1015       assert(PN->use_empty() && "There shouldn't be any uses here!");
1016       PN->eraseFromParent();
1017     }
1018   }
1019 
1020   // If the unconditional branch we replaced contains llvm.loop metadata, we
1021   // add the metadata to the branch instructions in the predecessors.
1022   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1023   Instruction *TI = BB->getTerminator();
1024   if (TI)
1025     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1026       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1027         BasicBlock *Pred = *PI;
1028         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1029       }
1030 
1031   // Everything that jumped to BB now goes to Succ.
1032   BB->replaceAllUsesWith(Succ);
1033   if (!Succ->hasName()) Succ->takeName(BB);
1034 
1035   if (DDT) {
1036     DDT->deleteBB(BB); // Deferred deletion of the old basic block.
1037     DDT->applyUpdates(Updates);
1038   } else {
1039     BB->eraseFromParent(); // Delete the old basic block.
1040   }
1041   return true;
1042 }
1043 
1044 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1045 /// nodes in this block. This doesn't try to be clever about PHI nodes
1046 /// which differ only in the order of the incoming values, but instcombine
1047 /// orders them so it usually won't matter.
1048 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1049   // This implementation doesn't currently consider undef operands
1050   // specially. Theoretically, two phis which are identical except for
1051   // one having an undef where the other doesn't could be collapsed.
1052 
1053   struct PHIDenseMapInfo {
1054     static PHINode *getEmptyKey() {
1055       return DenseMapInfo<PHINode *>::getEmptyKey();
1056     }
1057 
1058     static PHINode *getTombstoneKey() {
1059       return DenseMapInfo<PHINode *>::getTombstoneKey();
1060     }
1061 
1062     static unsigned getHashValue(PHINode *PN) {
1063       // Compute a hash value on the operands. Instcombine will likely have
1064       // sorted them, which helps expose duplicates, but we have to check all
1065       // the operands to be safe in case instcombine hasn't run.
1066       return static_cast<unsigned>(hash_combine(
1067           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1068           hash_combine_range(PN->block_begin(), PN->block_end())));
1069     }
1070 
1071     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1072       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1073           RHS == getEmptyKey() || RHS == getTombstoneKey())
1074         return LHS == RHS;
1075       return LHS->isIdenticalTo(RHS);
1076     }
1077   };
1078 
1079   // Set of unique PHINodes.
1080   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1081 
1082   // Examine each PHI.
1083   bool Changed = false;
1084   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1085     auto Inserted = PHISet.insert(PN);
1086     if (!Inserted.second) {
1087       // A duplicate. Replace this PHI with its duplicate.
1088       PN->replaceAllUsesWith(*Inserted.first);
1089       PN->eraseFromParent();
1090       Changed = true;
1091 
1092       // The RAUW can change PHIs that we already visited. Start over from the
1093       // beginning.
1094       PHISet.clear();
1095       I = BB->begin();
1096     }
1097   }
1098 
1099   return Changed;
1100 }
1101 
1102 /// enforceKnownAlignment - If the specified pointer points to an object that
1103 /// we control, modify the object's alignment to PrefAlign. This isn't
1104 /// often possible though. If alignment is important, a more reliable approach
1105 /// is to simply align all global variables and allocation instructions to
1106 /// their preferred alignment from the beginning.
1107 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1108                                       unsigned PrefAlign,
1109                                       const DataLayout &DL) {
1110   assert(PrefAlign > Align);
1111 
1112   V = V->stripPointerCasts();
1113 
1114   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1115     // TODO: ideally, computeKnownBits ought to have used
1116     // AllocaInst::getAlignment() in its computation already, making
1117     // the below max redundant. But, as it turns out,
1118     // stripPointerCasts recurses through infinite layers of bitcasts,
1119     // while computeKnownBits is not allowed to traverse more than 6
1120     // levels.
1121     Align = std::max(AI->getAlignment(), Align);
1122     if (PrefAlign <= Align)
1123       return Align;
1124 
1125     // If the preferred alignment is greater than the natural stack alignment
1126     // then don't round up. This avoids dynamic stack realignment.
1127     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1128       return Align;
1129     AI->setAlignment(PrefAlign);
1130     return PrefAlign;
1131   }
1132 
1133   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1134     // TODO: as above, this shouldn't be necessary.
1135     Align = std::max(GO->getAlignment(), Align);
1136     if (PrefAlign <= Align)
1137       return Align;
1138 
1139     // If there is a large requested alignment and we can, bump up the alignment
1140     // of the global.  If the memory we set aside for the global may not be the
1141     // memory used by the final program then it is impossible for us to reliably
1142     // enforce the preferred alignment.
1143     if (!GO->canIncreaseAlignment())
1144       return Align;
1145 
1146     GO->setAlignment(PrefAlign);
1147     return PrefAlign;
1148   }
1149 
1150   return Align;
1151 }
1152 
1153 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1154                                           const DataLayout &DL,
1155                                           const Instruction *CxtI,
1156                                           AssumptionCache *AC,
1157                                           const DominatorTree *DT) {
1158   assert(V->getType()->isPointerTy() &&
1159          "getOrEnforceKnownAlignment expects a pointer!");
1160 
1161   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1162   unsigned TrailZ = Known.countMinTrailingZeros();
1163 
1164   // Avoid trouble with ridiculously large TrailZ values, such as
1165   // those computed from a null pointer.
1166   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1167 
1168   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1169 
1170   // LLVM doesn't support alignments larger than this currently.
1171   Align = std::min(Align, +Value::MaximumAlignment);
1172 
1173   if (PrefAlign > Align)
1174     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1175 
1176   // We don't need to make any adjustment.
1177   return Align;
1178 }
1179 
1180 ///===---------------------------------------------------------------------===//
1181 ///  Dbg Intrinsic utilities
1182 ///
1183 
1184 /// See if there is a dbg.value intrinsic for DIVar before I.
1185 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1186                               Instruction *I) {
1187   // Since we can't guarantee that the original dbg.declare instrinsic
1188   // is removed by LowerDbgDeclare(), we need to make sure that we are
1189   // not inserting the same dbg.value intrinsic over and over.
1190   BasicBlock::InstListType::iterator PrevI(I);
1191   if (PrevI != I->getParent()->getInstList().begin()) {
1192     --PrevI;
1193     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1194       if (DVI->getValue() == I->getOperand(0) &&
1195           DVI->getVariable() == DIVar &&
1196           DVI->getExpression() == DIExpr)
1197         return true;
1198   }
1199   return false;
1200 }
1201 
1202 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1203 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1204                              DIExpression *DIExpr,
1205                              PHINode *APN) {
1206   // Since we can't guarantee that the original dbg.declare instrinsic
1207   // is removed by LowerDbgDeclare(), we need to make sure that we are
1208   // not inserting the same dbg.value intrinsic over and over.
1209   SmallVector<DbgValueInst *, 1> DbgValues;
1210   findDbgValues(DbgValues, APN);
1211   for (auto *DVI : DbgValues) {
1212     assert(DVI->getValue() == APN);
1213     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1214       return true;
1215   }
1216   return false;
1217 }
1218 
1219 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1220 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1221 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1222                                            StoreInst *SI, DIBuilder &Builder) {
1223   assert(DII->isAddressOfVariable());
1224   auto *DIVar = DII->getVariable();
1225   assert(DIVar && "Missing variable");
1226   auto *DIExpr = DII->getExpression();
1227   Value *DV = SI->getOperand(0);
1228 
1229   // If an argument is zero extended then use argument directly. The ZExt
1230   // may be zapped by an optimization pass in future.
1231   Argument *ExtendedArg = nullptr;
1232   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1233     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1234   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1235     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1236   if (ExtendedArg) {
1237     // If this DII was already describing only a fragment of a variable, ensure
1238     // that fragment is appropriately narrowed here.
1239     // But if a fragment wasn't used, describe the value as the original
1240     // argument (rather than the zext or sext) so that it remains described even
1241     // if the sext/zext is optimized away. This widens the variable description,
1242     // leaving it up to the consumer to know how the smaller value may be
1243     // represented in a larger register.
1244     if (auto Fragment = DIExpr->getFragmentInfo()) {
1245       unsigned FragmentOffset = Fragment->OffsetInBits;
1246       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1247                                    DIExpr->elements_end() - 3);
1248       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1249       Ops.push_back(FragmentOffset);
1250       const DataLayout &DL = DII->getModule()->getDataLayout();
1251       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1252       DIExpr = Builder.createExpression(Ops);
1253     }
1254     DV = ExtendedArg;
1255   }
1256   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1257     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1258                                     SI);
1259 }
1260 
1261 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1262 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1263 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1264                                            LoadInst *LI, DIBuilder &Builder) {
1265   auto *DIVar = DII->getVariable();
1266   auto *DIExpr = DII->getExpression();
1267   assert(DIVar && "Missing variable");
1268 
1269   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1270     return;
1271 
1272   // We are now tracking the loaded value instead of the address. In the
1273   // future if multi-location support is added to the IR, it might be
1274   // preferable to keep tracking both the loaded value and the original
1275   // address in case the alloca can not be elided.
1276   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1277       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1278   DbgValue->insertAfter(LI);
1279 }
1280 
1281 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1282 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1283 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1284                                            PHINode *APN, DIBuilder &Builder) {
1285   auto *DIVar = DII->getVariable();
1286   auto *DIExpr = DII->getExpression();
1287   assert(DIVar && "Missing variable");
1288 
1289   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1290     return;
1291 
1292   BasicBlock *BB = APN->getParent();
1293   auto InsertionPt = BB->getFirstInsertionPt();
1294 
1295   // The block may be a catchswitch block, which does not have a valid
1296   // insertion point.
1297   // FIXME: Insert dbg.value markers in the successors when appropriate.
1298   if (InsertionPt != BB->end())
1299     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1300                                     &*InsertionPt);
1301 }
1302 
1303 /// Determine whether this alloca is either a VLA or an array.
1304 static bool isArray(AllocaInst *AI) {
1305   return AI->isArrayAllocation() ||
1306     AI->getType()->getElementType()->isArrayTy();
1307 }
1308 
1309 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1310 /// of llvm.dbg.value intrinsics.
1311 bool llvm::LowerDbgDeclare(Function &F) {
1312   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1313   SmallVector<DbgDeclareInst *, 4> Dbgs;
1314   for (auto &FI : F)
1315     for (Instruction &BI : FI)
1316       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1317         Dbgs.push_back(DDI);
1318 
1319   if (Dbgs.empty())
1320     return false;
1321 
1322   for (auto &I : Dbgs) {
1323     DbgDeclareInst *DDI = I;
1324     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1325     // If this is an alloca for a scalar variable, insert a dbg.value
1326     // at each load and store to the alloca and erase the dbg.declare.
1327     // The dbg.values allow tracking a variable even if it is not
1328     // stored on the stack, while the dbg.declare can only describe
1329     // the stack slot (and at a lexical-scope granularity). Later
1330     // passes will attempt to elide the stack slot.
1331     if (!AI || isArray(AI))
1332       continue;
1333 
1334     // A volatile load/store means that the alloca can't be elided anyway.
1335     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1336           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1337             return LI->isVolatile();
1338           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1339             return SI->isVolatile();
1340           return false;
1341         }))
1342       continue;
1343 
1344     for (auto &AIUse : AI->uses()) {
1345       User *U = AIUse.getUser();
1346       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1347         if (AIUse.getOperandNo() == 1)
1348           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1349       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1350         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1351       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1352         // This is a call by-value or some other instruction that
1353         // takes a pointer to the variable. Insert a *value*
1354         // intrinsic that describes the alloca.
1355         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1356                                     DDI->getExpression(), DDI->getDebugLoc(),
1357                                     CI);
1358       }
1359     }
1360     DDI->eraseFromParent();
1361   }
1362   return true;
1363 }
1364 
1365 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1366 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1367                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1368   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1369   if (InsertedPHIs.size() == 0)
1370     return;
1371 
1372   // Map existing PHI nodes to their dbg.values.
1373   ValueToValueMapTy DbgValueMap;
1374   for (auto &I : *BB) {
1375     if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
1376       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1377         DbgValueMap.insert({Loc, DbgII});
1378     }
1379   }
1380   if (DbgValueMap.size() == 0)
1381     return;
1382 
1383   // Then iterate through the new PHIs and look to see if they use one of the
1384   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1385   // propagate the info through the new PHI.
1386   LLVMContext &C = BB->getContext();
1387   for (auto PHI : InsertedPHIs) {
1388     BasicBlock *Parent = PHI->getParent();
1389     // Avoid inserting an intrinsic into an EH block.
1390     if (Parent->getFirstNonPHI()->isEHPad())
1391       continue;
1392     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1393     for (auto VI : PHI->operand_values()) {
1394       auto V = DbgValueMap.find(VI);
1395       if (V != DbgValueMap.end()) {
1396         auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
1397         Instruction *NewDbgII = DbgII->clone();
1398         NewDbgII->setOperand(0, PhiMAV);
1399         auto InsertionPt = Parent->getFirstInsertionPt();
1400         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1401         NewDbgII->insertBefore(&*InsertionPt);
1402       }
1403     }
1404   }
1405 }
1406 
1407 /// Finds all intrinsics declaring local variables as living in the memory that
1408 /// 'V' points to. This may include a mix of dbg.declare and
1409 /// dbg.addr intrinsics.
1410 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1411   auto *L = LocalAsMetadata::getIfExists(V);
1412   if (!L)
1413     return {};
1414   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1415   if (!MDV)
1416     return {};
1417 
1418   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1419   for (User *U : MDV->users()) {
1420     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1421       if (DII->isAddressOfVariable())
1422         Declares.push_back(DII);
1423   }
1424 
1425   return Declares;
1426 }
1427 
1428 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1429   if (auto *L = LocalAsMetadata::getIfExists(V))
1430     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1431       for (User *U : MDV->users())
1432         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1433           DbgValues.push_back(DVI);
1434 }
1435 
1436 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1437                         Value *V) {
1438   if (auto *L = LocalAsMetadata::getIfExists(V))
1439     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1440       for (User *U : MDV->users())
1441         if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1442           DbgUsers.push_back(DII);
1443 }
1444 
1445 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1446                              Instruction *InsertBefore, DIBuilder &Builder,
1447                              bool DerefBefore, int Offset, bool DerefAfter) {
1448   auto DbgAddrs = FindDbgAddrUses(Address);
1449   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1450     DebugLoc Loc = DII->getDebugLoc();
1451     auto *DIVar = DII->getVariable();
1452     auto *DIExpr = DII->getExpression();
1453     assert(DIVar && "Missing variable");
1454     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1455     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1456     // llvm.dbg.declare.
1457     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1458     if (DII == InsertBefore)
1459       InsertBefore = &*std::next(InsertBefore->getIterator());
1460     DII->eraseFromParent();
1461   }
1462   return !DbgAddrs.empty();
1463 }
1464 
1465 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1466                                       DIBuilder &Builder, bool DerefBefore,
1467                                       int Offset, bool DerefAfter) {
1468   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1469                            DerefBefore, Offset, DerefAfter);
1470 }
1471 
1472 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1473                                         DIBuilder &Builder, int Offset) {
1474   DebugLoc Loc = DVI->getDebugLoc();
1475   auto *DIVar = DVI->getVariable();
1476   auto *DIExpr = DVI->getExpression();
1477   assert(DIVar && "Missing variable");
1478 
1479   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1480   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1481   // it and give up.
1482   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1483       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1484     return;
1485 
1486   // Insert the offset immediately after the first deref.
1487   // We could just change the offset argument of dbg.value, but it's unsigned...
1488   if (Offset) {
1489     SmallVector<uint64_t, 4> Ops;
1490     Ops.push_back(dwarf::DW_OP_deref);
1491     DIExpression::appendOffset(Ops, Offset);
1492     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1493     DIExpr = Builder.createExpression(Ops);
1494   }
1495 
1496   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1497   DVI->eraseFromParent();
1498 }
1499 
1500 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1501                                     DIBuilder &Builder, int Offset) {
1502   if (auto *L = LocalAsMetadata::getIfExists(AI))
1503     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1504       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1505         Use &U = *UI++;
1506         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1507           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1508       }
1509 }
1510 
1511 void llvm::salvageDebugInfo(Instruction &I) {
1512   // This function is hot. An early check to determine whether the instruction
1513   // has any metadata to save allows it to return earlier on average.
1514   if (!I.isUsedByMetadata())
1515     return;
1516 
1517   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1518   findDbgUsers(DbgUsers, &I);
1519   if (DbgUsers.empty())
1520     return;
1521 
1522   auto &M = *I.getModule();
1523   auto &DL = M.getDataLayout();
1524 
1525   auto wrapMD = [&](Value *V) {
1526     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1527   };
1528 
1529   auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1530     auto *DIExpr = DII->getExpression();
1531     DIExpr =
1532         DIExpression::prependOpcodes(DIExpr, Ops, DIExpression::WithStackValue);
1533     DII->setOperand(0, wrapMD(I.getOperand(0)));
1534     DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1535     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1536   };
1537 
1538   auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1539     SmallVector<uint64_t, 8> Ops;
1540     DIExpression::appendOffset(Ops, Offset);
1541     doSalvage(DII, Ops);
1542   };
1543 
1544   auto applyOps = [&](DbgInfoIntrinsic *DII,
1545                       std::initializer_list<uint64_t> Opcodes) {
1546     SmallVector<uint64_t, 8> Ops(Opcodes);
1547     doSalvage(DII, Ops);
1548   };
1549 
1550   if (auto *CI = dyn_cast<CastInst>(&I)) {
1551     if (!CI->isNoopCast(DL))
1552       return;
1553 
1554     // No-op casts are irrelevant for debug info.
1555     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1556     for (auto *DII : DbgUsers) {
1557       DII->setOperand(0, CastSrc);
1558       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1559     }
1560   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1561     unsigned BitWidth =
1562         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1563     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1564     // arithmetic to compute the variable's *value* in the DIExpression, we
1565     // need to mark the expression with a DW_OP_stack_value.
1566     APInt Offset(BitWidth, 0);
1567     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1568       for (auto *DII : DbgUsers)
1569         applyOffset(DII, Offset.getSExtValue());
1570   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1571     // Rewrite binary operations with constant integer operands.
1572     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1573     if (!ConstInt || ConstInt->getBitWidth() > 64)
1574       return;
1575 
1576     uint64_t Val = ConstInt->getSExtValue();
1577     for (auto *DII : DbgUsers) {
1578       switch (BI->getOpcode()) {
1579       case Instruction::Add:
1580         applyOffset(DII, Val);
1581         break;
1582       case Instruction::Sub:
1583         applyOffset(DII, -int64_t(Val));
1584         break;
1585       case Instruction::Mul:
1586         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1587         break;
1588       case Instruction::SDiv:
1589         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1590         break;
1591       case Instruction::SRem:
1592         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1593         break;
1594       case Instruction::Or:
1595         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1596         break;
1597       case Instruction::And:
1598         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1599         break;
1600       case Instruction::Xor:
1601         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1602         break;
1603       case Instruction::Shl:
1604         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1605         break;
1606       case Instruction::LShr:
1607         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1608         break;
1609       case Instruction::AShr:
1610         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1611         break;
1612       default:
1613         // TODO: Salvage constants from each kind of binop we know about.
1614         continue;
1615       }
1616     }
1617   } else if (isa<LoadInst>(&I)) {
1618     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1619     for (auto *DII : DbgUsers) {
1620       // Rewrite the load into DW_OP_deref.
1621       auto *DIExpr = DII->getExpression();
1622       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1623       DII->setOperand(0, AddrMD);
1624       DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1625       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1626     }
1627   }
1628 }
1629 
1630 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1631   unsigned NumDeadInst = 0;
1632   // Delete the instructions backwards, as it has a reduced likelihood of
1633   // having to update as many def-use and use-def chains.
1634   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1635   while (EndInst != &BB->front()) {
1636     // Delete the next to last instruction.
1637     Instruction *Inst = &*--EndInst->getIterator();
1638     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1639       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1640     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1641       EndInst = Inst;
1642       continue;
1643     }
1644     if (!isa<DbgInfoIntrinsic>(Inst))
1645       ++NumDeadInst;
1646     Inst->eraseFromParent();
1647   }
1648   return NumDeadInst;
1649 }
1650 
1651 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1652                                    bool PreserveLCSSA, DeferredDominance *DDT) {
1653   BasicBlock *BB = I->getParent();
1654   std::vector <DominatorTree::UpdateType> Updates;
1655 
1656   // Loop over all of the successors, removing BB's entry from any PHI
1657   // nodes.
1658   if (DDT)
1659     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1660   for (BasicBlock *Successor : successors(BB)) {
1661     Successor->removePredecessor(BB, PreserveLCSSA);
1662     if (DDT)
1663       Updates.push_back({DominatorTree::Delete, BB, Successor});
1664   }
1665   // Insert a call to llvm.trap right before this.  This turns the undefined
1666   // behavior into a hard fail instead of falling through into random code.
1667   if (UseLLVMTrap) {
1668     Function *TrapFn =
1669       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1670     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1671     CallTrap->setDebugLoc(I->getDebugLoc());
1672   }
1673   new UnreachableInst(I->getContext(), I);
1674 
1675   // All instructions after this are dead.
1676   unsigned NumInstrsRemoved = 0;
1677   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1678   while (BBI != BBE) {
1679     if (!BBI->use_empty())
1680       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1681     BB->getInstList().erase(BBI++);
1682     ++NumInstrsRemoved;
1683   }
1684   if (DDT)
1685     DDT->applyUpdates(Updates);
1686   return NumInstrsRemoved;
1687 }
1688 
1689 /// changeToCall - Convert the specified invoke into a normal call.
1690 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) {
1691   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1692   SmallVector<OperandBundleDef, 1> OpBundles;
1693   II->getOperandBundlesAsDefs(OpBundles);
1694   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1695                                        "", II);
1696   NewCall->takeName(II);
1697   NewCall->setCallingConv(II->getCallingConv());
1698   NewCall->setAttributes(II->getAttributes());
1699   NewCall->setDebugLoc(II->getDebugLoc());
1700   II->replaceAllUsesWith(NewCall);
1701 
1702   // Follow the call by a branch to the normal destination.
1703   BasicBlock *NormalDestBB = II->getNormalDest();
1704   BranchInst::Create(NormalDestBB, II);
1705 
1706   // Update PHI nodes in the unwind destination
1707   BasicBlock *BB = II->getParent();
1708   BasicBlock *UnwindDestBB = II->getUnwindDest();
1709   UnwindDestBB->removePredecessor(BB);
1710   II->eraseFromParent();
1711   if (DDT)
1712     DDT->deleteEdge(BB, UnwindDestBB);
1713 }
1714 
1715 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1716                                                    BasicBlock *UnwindEdge) {
1717   BasicBlock *BB = CI->getParent();
1718 
1719   // Convert this function call into an invoke instruction.  First, split the
1720   // basic block.
1721   BasicBlock *Split =
1722       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1723 
1724   // Delete the unconditional branch inserted by splitBasicBlock
1725   BB->getInstList().pop_back();
1726 
1727   // Create the new invoke instruction.
1728   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1729   SmallVector<OperandBundleDef, 1> OpBundles;
1730 
1731   CI->getOperandBundlesAsDefs(OpBundles);
1732 
1733   // Note: we're round tripping operand bundles through memory here, and that
1734   // can potentially be avoided with a cleverer API design that we do not have
1735   // as of this time.
1736 
1737   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1738                                       InvokeArgs, OpBundles, CI->getName(), BB);
1739   II->setDebugLoc(CI->getDebugLoc());
1740   II->setCallingConv(CI->getCallingConv());
1741   II->setAttributes(CI->getAttributes());
1742 
1743   // Make sure that anything using the call now uses the invoke!  This also
1744   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1745   CI->replaceAllUsesWith(II);
1746 
1747   // Delete the original call
1748   Split->getInstList().pop_front();
1749   return Split;
1750 }
1751 
1752 static bool markAliveBlocks(Function &F,
1753                             SmallPtrSetImpl<BasicBlock*> &Reachable,
1754                             DeferredDominance *DDT = nullptr) {
1755   SmallVector<BasicBlock*, 128> Worklist;
1756   BasicBlock *BB = &F.front();
1757   Worklist.push_back(BB);
1758   Reachable.insert(BB);
1759   bool Changed = false;
1760   do {
1761     BB = Worklist.pop_back_val();
1762 
1763     // Do a quick scan of the basic block, turning any obviously unreachable
1764     // instructions into LLVM unreachable insts.  The instruction combining pass
1765     // canonicalizes unreachable insts into stores to null or undef.
1766     for (Instruction &I : *BB) {
1767       // Assumptions that are known to be false are equivalent to unreachable.
1768       // Also, if the condition is undefined, then we make the choice most
1769       // beneficial to the optimizer, and choose that to also be unreachable.
1770       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1771         if (II->getIntrinsicID() == Intrinsic::assume) {
1772           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1773             // Don't insert a call to llvm.trap right before the unreachable.
1774             changeToUnreachable(II, false, false, DDT);
1775             Changed = true;
1776             break;
1777           }
1778         }
1779 
1780         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1781           // A call to the guard intrinsic bails out of the current compilation
1782           // unit if the predicate passed to it is false.  If the predicate is a
1783           // constant false, then we know the guard will bail out of the current
1784           // compile unconditionally, so all code following it is dead.
1785           //
1786           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1787           // guards to treat `undef` as `false` since a guard on `undef` can
1788           // still be useful for widening.
1789           if (match(II->getArgOperand(0), m_Zero()))
1790             if (!isa<UnreachableInst>(II->getNextNode())) {
1791               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false,
1792                                   false, DDT);
1793               Changed = true;
1794               break;
1795             }
1796         }
1797       }
1798 
1799       if (auto *CI = dyn_cast<CallInst>(&I)) {
1800         Value *Callee = CI->getCalledValue();
1801         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1802           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT);
1803           Changed = true;
1804           break;
1805         }
1806         if (CI->doesNotReturn()) {
1807           // If we found a call to a no-return function, insert an unreachable
1808           // instruction after it.  Make sure there isn't *already* one there
1809           // though.
1810           if (!isa<UnreachableInst>(CI->getNextNode())) {
1811             // Don't insert a call to llvm.trap right before the unreachable.
1812             changeToUnreachable(CI->getNextNode(), false, false, DDT);
1813             Changed = true;
1814           }
1815           break;
1816         }
1817       }
1818 
1819       // Store to undef and store to null are undefined and used to signal that
1820       // they should be changed to unreachable by passes that can't modify the
1821       // CFG.
1822       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1823         // Don't touch volatile stores.
1824         if (SI->isVolatile()) continue;
1825 
1826         Value *Ptr = SI->getOperand(1);
1827 
1828         if (isa<UndefValue>(Ptr) ||
1829             (isa<ConstantPointerNull>(Ptr) &&
1830              SI->getPointerAddressSpace() == 0)) {
1831           changeToUnreachable(SI, true, false, DDT);
1832           Changed = true;
1833           break;
1834         }
1835       }
1836     }
1837 
1838     TerminatorInst *Terminator = BB->getTerminator();
1839     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1840       // Turn invokes that call 'nounwind' functions into ordinary calls.
1841       Value *Callee = II->getCalledValue();
1842       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1843         changeToUnreachable(II, true, false, DDT);
1844         Changed = true;
1845       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1846         if (II->use_empty() && II->onlyReadsMemory()) {
1847           // jump to the normal destination branch.
1848           BasicBlock *NormalDestBB = II->getNormalDest();
1849           BasicBlock *UnwindDestBB = II->getUnwindDest();
1850           BranchInst::Create(NormalDestBB, II);
1851           UnwindDestBB->removePredecessor(II->getParent());
1852           II->eraseFromParent();
1853           if (DDT)
1854             DDT->deleteEdge(BB, UnwindDestBB);
1855         } else
1856           changeToCall(II, DDT);
1857         Changed = true;
1858       }
1859     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1860       // Remove catchpads which cannot be reached.
1861       struct CatchPadDenseMapInfo {
1862         static CatchPadInst *getEmptyKey() {
1863           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1864         }
1865 
1866         static CatchPadInst *getTombstoneKey() {
1867           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1868         }
1869 
1870         static unsigned getHashValue(CatchPadInst *CatchPad) {
1871           return static_cast<unsigned>(hash_combine_range(
1872               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1873         }
1874 
1875         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1876           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1877               RHS == getEmptyKey() || RHS == getTombstoneKey())
1878             return LHS == RHS;
1879           return LHS->isIdenticalTo(RHS);
1880         }
1881       };
1882 
1883       // Set of unique CatchPads.
1884       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1885                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1886           HandlerSet;
1887       detail::DenseSetEmpty Empty;
1888       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1889                                              E = CatchSwitch->handler_end();
1890            I != E; ++I) {
1891         BasicBlock *HandlerBB = *I;
1892         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1893         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1894           CatchSwitch->removeHandler(I);
1895           --I;
1896           --E;
1897           Changed = true;
1898         }
1899       }
1900     }
1901 
1902     Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT);
1903     for (BasicBlock *Successor : successors(BB))
1904       if (Reachable.insert(Successor).second)
1905         Worklist.push_back(Successor);
1906   } while (!Worklist.empty());
1907   return Changed;
1908 }
1909 
1910 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) {
1911   TerminatorInst *TI = BB->getTerminator();
1912 
1913   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1914     changeToCall(II, DDT);
1915     return;
1916   }
1917 
1918   TerminatorInst *NewTI;
1919   BasicBlock *UnwindDest;
1920 
1921   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1922     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1923     UnwindDest = CRI->getUnwindDest();
1924   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1925     auto *NewCatchSwitch = CatchSwitchInst::Create(
1926         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1927         CatchSwitch->getName(), CatchSwitch);
1928     for (BasicBlock *PadBB : CatchSwitch->handlers())
1929       NewCatchSwitch->addHandler(PadBB);
1930 
1931     NewTI = NewCatchSwitch;
1932     UnwindDest = CatchSwitch->getUnwindDest();
1933   } else {
1934     llvm_unreachable("Could not find unwind successor");
1935   }
1936 
1937   NewTI->takeName(TI);
1938   NewTI->setDebugLoc(TI->getDebugLoc());
1939   UnwindDest->removePredecessor(BB);
1940   TI->replaceAllUsesWith(NewTI);
1941   TI->eraseFromParent();
1942   if (DDT)
1943     DDT->deleteEdge(BB, UnwindDest);
1944 }
1945 
1946 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1947 /// if they are in a dead cycle.  Return true if a change was made, false
1948 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1949 /// after modifying the CFG.
1950 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
1951                                    DeferredDominance *DDT) {
1952   SmallPtrSet<BasicBlock*, 16> Reachable;
1953   bool Changed = markAliveBlocks(F, Reachable, DDT);
1954 
1955   // If there are unreachable blocks in the CFG...
1956   if (Reachable.size() == F.size())
1957     return Changed;
1958 
1959   assert(Reachable.size() < F.size());
1960   NumRemoved += F.size()-Reachable.size();
1961 
1962   // Loop over all of the basic blocks that are not reachable, dropping all of
1963   // their internal references. Update DDT and LVI if available.
1964   std::vector <DominatorTree::UpdateType> Updates;
1965   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
1966     auto *BB = &*I;
1967     if (Reachable.count(BB))
1968       continue;
1969     for (BasicBlock *Successor : successors(BB)) {
1970       if (Reachable.count(Successor))
1971         Successor->removePredecessor(BB);
1972       if (DDT)
1973         Updates.push_back({DominatorTree::Delete, BB, Successor});
1974     }
1975     if (LVI)
1976       LVI->eraseBlock(BB);
1977     BB->dropAllReferences();
1978   }
1979 
1980   for (Function::iterator I = ++F.begin(); I != F.end();) {
1981     auto *BB = &*I;
1982     if (Reachable.count(BB)) {
1983       ++I;
1984       continue;
1985     }
1986     if (DDT) {
1987       DDT->deleteBB(BB); // deferred deletion of BB.
1988       ++I;
1989     } else {
1990       I = F.getBasicBlockList().erase(I);
1991     }
1992   }
1993 
1994   if (DDT)
1995     DDT->applyUpdates(Updates);
1996   return true;
1997 }
1998 
1999 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2000                            ArrayRef<unsigned> KnownIDs) {
2001   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2002   K->dropUnknownNonDebugMetadata(KnownIDs);
2003   K->getAllMetadataOtherThanDebugLoc(Metadata);
2004   for (const auto &MD : Metadata) {
2005     unsigned Kind = MD.first;
2006     MDNode *JMD = J->getMetadata(Kind);
2007     MDNode *KMD = MD.second;
2008 
2009     switch (Kind) {
2010       default:
2011         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2012         break;
2013       case LLVMContext::MD_dbg:
2014         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2015       case LLVMContext::MD_tbaa:
2016         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2017         break;
2018       case LLVMContext::MD_alias_scope:
2019         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2020         break;
2021       case LLVMContext::MD_noalias:
2022       case LLVMContext::MD_mem_parallel_loop_access:
2023         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2024         break;
2025       case LLVMContext::MD_range:
2026         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2027         break;
2028       case LLVMContext::MD_fpmath:
2029         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2030         break;
2031       case LLVMContext::MD_invariant_load:
2032         // Only set the !invariant.load if it is present in both instructions.
2033         K->setMetadata(Kind, JMD);
2034         break;
2035       case LLVMContext::MD_nonnull:
2036         // Only set the !nonnull if it is present in both instructions.
2037         K->setMetadata(Kind, JMD);
2038         break;
2039       case LLVMContext::MD_invariant_group:
2040         // Preserve !invariant.group in K.
2041         break;
2042       case LLVMContext::MD_align:
2043         K->setMetadata(Kind,
2044           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2045         break;
2046       case LLVMContext::MD_dereferenceable:
2047       case LLVMContext::MD_dereferenceable_or_null:
2048         K->setMetadata(Kind,
2049           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2050         break;
2051     }
2052   }
2053   // Set !invariant.group from J if J has it. If both instructions have it
2054   // then we will just pick it from J - even when they are different.
2055   // Also make sure that K is load or store - f.e. combining bitcast with load
2056   // could produce bitcast with invariant.group metadata, which is invalid.
2057   // FIXME: we should try to preserve both invariant.group md if they are
2058   // different, but right now instruction can only have one invariant.group.
2059   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2060     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2061       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2062 }
2063 
2064 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
2065   unsigned KnownIDs[] = {
2066       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2067       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2068       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2069       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2070       LLVMContext::MD_dereferenceable,
2071       LLVMContext::MD_dereferenceable_or_null};
2072   combineMetadata(K, J, KnownIDs);
2073 }
2074 
2075 template <typename RootType, typename DominatesFn>
2076 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2077                                          const RootType &Root,
2078                                          const DominatesFn &Dominates) {
2079   assert(From->getType() == To->getType());
2080 
2081   unsigned Count = 0;
2082   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2083        UI != UE;) {
2084     Use &U = *UI++;
2085     if (!Dominates(Root, U))
2086       continue;
2087     U.set(To);
2088     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2089                       << "' as " << *To << " in " << *U << "\n");
2090     ++Count;
2091   }
2092   return Count;
2093 }
2094 
2095 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2096    assert(From->getType() == To->getType());
2097    auto *BB = From->getParent();
2098    unsigned Count = 0;
2099 
2100   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2101        UI != UE;) {
2102     Use &U = *UI++;
2103     auto *I = cast<Instruction>(U.getUser());
2104     if (I->getParent() == BB)
2105       continue;
2106     U.set(To);
2107     ++Count;
2108   }
2109   return Count;
2110 }
2111 
2112 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2113                                         DominatorTree &DT,
2114                                         const BasicBlockEdge &Root) {
2115   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2116     return DT.dominates(Root, U);
2117   };
2118   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2119 }
2120 
2121 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2122                                         DominatorTree &DT,
2123                                         const BasicBlock *BB) {
2124   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2125     auto *I = cast<Instruction>(U.getUser())->getParent();
2126     return DT.properlyDominates(BB, I);
2127   };
2128   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2129 }
2130 
2131 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2132                                const TargetLibraryInfo &TLI) {
2133   // Check if the function is specifically marked as a gc leaf function.
2134   if (CS.hasFnAttr("gc-leaf-function"))
2135     return true;
2136   if (const Function *F = CS.getCalledFunction()) {
2137     if (F->hasFnAttribute("gc-leaf-function"))
2138       return true;
2139 
2140     if (auto IID = F->getIntrinsicID())
2141       // Most LLVM intrinsics do not take safepoints.
2142       return IID != Intrinsic::experimental_gc_statepoint &&
2143              IID != Intrinsic::experimental_deoptimize;
2144   }
2145 
2146   // Lib calls can be materialized by some passes, and won't be
2147   // marked as 'gc-leaf-function.' All available Libcalls are
2148   // GC-leaf.
2149   LibFunc LF;
2150   if (TLI.getLibFunc(CS, LF)) {
2151     return TLI.has(LF);
2152   }
2153 
2154   return false;
2155 }
2156 
2157 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2158                                LoadInst &NewLI) {
2159   auto *NewTy = NewLI.getType();
2160 
2161   // This only directly applies if the new type is also a pointer.
2162   if (NewTy->isPointerTy()) {
2163     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2164     return;
2165   }
2166 
2167   // The only other translation we can do is to integral loads with !range
2168   // metadata.
2169   if (!NewTy->isIntegerTy())
2170     return;
2171 
2172   MDBuilder MDB(NewLI.getContext());
2173   const Value *Ptr = OldLI.getPointerOperand();
2174   auto *ITy = cast<IntegerType>(NewTy);
2175   auto *NullInt = ConstantExpr::getPtrToInt(
2176       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2177   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2178   NewLI.setMetadata(LLVMContext::MD_range,
2179                     MDB.createRange(NonNullInt, NullInt));
2180 }
2181 
2182 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2183                              MDNode *N, LoadInst &NewLI) {
2184   auto *NewTy = NewLI.getType();
2185 
2186   // Give up unless it is converted to a pointer where there is a single very
2187   // valuable mapping we can do reliably.
2188   // FIXME: It would be nice to propagate this in more ways, but the type
2189   // conversions make it hard.
2190   if (!NewTy->isPointerTy())
2191     return;
2192 
2193   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2194   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2195     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2196     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2197   }
2198 }
2199 
2200 namespace {
2201 
2202 /// A potential constituent of a bitreverse or bswap expression. See
2203 /// collectBitParts for a fuller explanation.
2204 struct BitPart {
2205   BitPart(Value *P, unsigned BW) : Provider(P) {
2206     Provenance.resize(BW);
2207   }
2208 
2209   /// The Value that this is a bitreverse/bswap of.
2210   Value *Provider;
2211 
2212   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2213   /// in Provider becomes bit B in the result of this expression.
2214   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2215 
2216   enum { Unset = -1 };
2217 };
2218 
2219 } // end anonymous namespace
2220 
2221 /// Analyze the specified subexpression and see if it is capable of providing
2222 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2223 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2224 /// the output of the expression came from a corresponding bit in some other
2225 /// value. This function is recursive, and the end result is a mapping of
2226 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2227 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2228 ///
2229 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2230 /// that the expression deposits the low byte of %X into the high byte of the
2231 /// result and that all other bits are zero. This expression is accepted and a
2232 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2233 /// [0-7].
2234 ///
2235 /// To avoid revisiting values, the BitPart results are memoized into the
2236 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2237 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2238 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2239 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2240 /// type instead to provide the same functionality.
2241 ///
2242 /// Because we pass around references into \c BPS, we must use a container that
2243 /// does not invalidate internal references (std::map instead of DenseMap).
2244 static const Optional<BitPart> &
2245 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2246                 std::map<Value *, Optional<BitPart>> &BPS) {
2247   auto I = BPS.find(V);
2248   if (I != BPS.end())
2249     return I->second;
2250 
2251   auto &Result = BPS[V] = None;
2252   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2253 
2254   if (Instruction *I = dyn_cast<Instruction>(V)) {
2255     // If this is an or instruction, it may be an inner node of the bswap.
2256     if (I->getOpcode() == Instruction::Or) {
2257       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2258                                 MatchBitReversals, BPS);
2259       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2260                                 MatchBitReversals, BPS);
2261       if (!A || !B)
2262         return Result;
2263 
2264       // Try and merge the two together.
2265       if (!A->Provider || A->Provider != B->Provider)
2266         return Result;
2267 
2268       Result = BitPart(A->Provider, BitWidth);
2269       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2270         if (A->Provenance[i] != BitPart::Unset &&
2271             B->Provenance[i] != BitPart::Unset &&
2272             A->Provenance[i] != B->Provenance[i])
2273           return Result = None;
2274 
2275         if (A->Provenance[i] == BitPart::Unset)
2276           Result->Provenance[i] = B->Provenance[i];
2277         else
2278           Result->Provenance[i] = A->Provenance[i];
2279       }
2280 
2281       return Result;
2282     }
2283 
2284     // If this is a logical shift by a constant, recurse then shift the result.
2285     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2286       unsigned BitShift =
2287           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2288       // Ensure the shift amount is defined.
2289       if (BitShift > BitWidth)
2290         return Result;
2291 
2292       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2293                                   MatchBitReversals, BPS);
2294       if (!Res)
2295         return Result;
2296       Result = Res;
2297 
2298       // Perform the "shift" on BitProvenance.
2299       auto &P = Result->Provenance;
2300       if (I->getOpcode() == Instruction::Shl) {
2301         P.erase(std::prev(P.end(), BitShift), P.end());
2302         P.insert(P.begin(), BitShift, BitPart::Unset);
2303       } else {
2304         P.erase(P.begin(), std::next(P.begin(), BitShift));
2305         P.insert(P.end(), BitShift, BitPart::Unset);
2306       }
2307 
2308       return Result;
2309     }
2310 
2311     // If this is a logical 'and' with a mask that clears bits, recurse then
2312     // unset the appropriate bits.
2313     if (I->getOpcode() == Instruction::And &&
2314         isa<ConstantInt>(I->getOperand(1))) {
2315       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2316       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2317 
2318       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2319       // early exit.
2320       unsigned NumMaskedBits = AndMask.countPopulation();
2321       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2322         return Result;
2323 
2324       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2325                                   MatchBitReversals, BPS);
2326       if (!Res)
2327         return Result;
2328       Result = Res;
2329 
2330       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2331         // If the AndMask is zero for this bit, clear the bit.
2332         if ((AndMask & Bit) == 0)
2333           Result->Provenance[i] = BitPart::Unset;
2334       return Result;
2335     }
2336 
2337     // If this is a zext instruction zero extend the result.
2338     if (I->getOpcode() == Instruction::ZExt) {
2339       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2340                                   MatchBitReversals, BPS);
2341       if (!Res)
2342         return Result;
2343 
2344       Result = BitPart(Res->Provider, BitWidth);
2345       auto NarrowBitWidth =
2346           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2347       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2348         Result->Provenance[i] = Res->Provenance[i];
2349       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2350         Result->Provenance[i] = BitPart::Unset;
2351       return Result;
2352     }
2353   }
2354 
2355   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2356   // the input value to the bswap/bitreverse.
2357   Result = BitPart(V, BitWidth);
2358   for (unsigned i = 0; i < BitWidth; ++i)
2359     Result->Provenance[i] = i;
2360   return Result;
2361 }
2362 
2363 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2364                                           unsigned BitWidth) {
2365   if (From % 8 != To % 8)
2366     return false;
2367   // Convert from bit indices to byte indices and check for a byte reversal.
2368   From >>= 3;
2369   To >>= 3;
2370   BitWidth >>= 3;
2371   return From == BitWidth - To - 1;
2372 }
2373 
2374 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2375                                                unsigned BitWidth) {
2376   return From == BitWidth - To - 1;
2377 }
2378 
2379 bool llvm::recognizeBSwapOrBitReverseIdiom(
2380     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2381     SmallVectorImpl<Instruction *> &InsertedInsts) {
2382   if (Operator::getOpcode(I) != Instruction::Or)
2383     return false;
2384   if (!MatchBSwaps && !MatchBitReversals)
2385     return false;
2386   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2387   if (!ITy || ITy->getBitWidth() > 128)
2388     return false;   // Can't do vectors or integers > 128 bits.
2389   unsigned BW = ITy->getBitWidth();
2390 
2391   unsigned DemandedBW = BW;
2392   IntegerType *DemandedTy = ITy;
2393   if (I->hasOneUse()) {
2394     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2395       DemandedTy = cast<IntegerType>(Trunc->getType());
2396       DemandedBW = DemandedTy->getBitWidth();
2397     }
2398   }
2399 
2400   // Try to find all the pieces corresponding to the bswap.
2401   std::map<Value *, Optional<BitPart>> BPS;
2402   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2403   if (!Res)
2404     return false;
2405   auto &BitProvenance = Res->Provenance;
2406 
2407   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2408   // only byteswap values with an even number of bytes.
2409   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2410   for (unsigned i = 0; i < DemandedBW; ++i) {
2411     OKForBSwap &=
2412         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2413     OKForBitReverse &=
2414         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2415   }
2416 
2417   Intrinsic::ID Intrin;
2418   if (OKForBSwap && MatchBSwaps)
2419     Intrin = Intrinsic::bswap;
2420   else if (OKForBitReverse && MatchBitReversals)
2421     Intrin = Intrinsic::bitreverse;
2422   else
2423     return false;
2424 
2425   if (ITy != DemandedTy) {
2426     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2427     Value *Provider = Res->Provider;
2428     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2429     // We may need to truncate the provider.
2430     if (DemandedTy != ProviderTy) {
2431       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2432                                      "trunc", I);
2433       InsertedInsts.push_back(Trunc);
2434       Provider = Trunc;
2435     }
2436     auto *CI = CallInst::Create(F, Provider, "rev", I);
2437     InsertedInsts.push_back(CI);
2438     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2439     InsertedInsts.push_back(ExtInst);
2440     return true;
2441   }
2442 
2443   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2444   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2445   return true;
2446 }
2447 
2448 // CodeGen has special handling for some string functions that may replace
2449 // them with target-specific intrinsics.  Since that'd skip our interceptors
2450 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2451 // we mark affected calls as NoBuiltin, which will disable optimization
2452 // in CodeGen.
2453 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2454     CallInst *CI, const TargetLibraryInfo *TLI) {
2455   Function *F = CI->getCalledFunction();
2456   LibFunc Func;
2457   if (F && !F->hasLocalLinkage() && F->hasName() &&
2458       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2459       !F->doesNotAccessMemory())
2460     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2461 }
2462 
2463 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2464   // We can't have a PHI with a metadata type.
2465   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2466     return false;
2467 
2468   // Early exit.
2469   if (!isa<Constant>(I->getOperand(OpIdx)))
2470     return true;
2471 
2472   switch (I->getOpcode()) {
2473   default:
2474     return true;
2475   case Instruction::Call:
2476   case Instruction::Invoke:
2477     // Can't handle inline asm. Skip it.
2478     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2479       return false;
2480     // Many arithmetic intrinsics have no issue taking a
2481     // variable, however it's hard to distingish these from
2482     // specials such as @llvm.frameaddress that require a constant.
2483     if (isa<IntrinsicInst>(I))
2484       return false;
2485 
2486     // Constant bundle operands may need to retain their constant-ness for
2487     // correctness.
2488     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2489       return false;
2490     return true;
2491   case Instruction::ShuffleVector:
2492     // Shufflevector masks are constant.
2493     return OpIdx != 2;
2494   case Instruction::Switch:
2495   case Instruction::ExtractValue:
2496     // All operands apart from the first are constant.
2497     return OpIdx == 0;
2498   case Instruction::InsertValue:
2499     // All operands apart from the first and the second are constant.
2500     return OpIdx < 2;
2501   case Instruction::Alloca:
2502     // Static allocas (constant size in the entry block) are handled by
2503     // prologue/epilogue insertion so they're free anyway. We definitely don't
2504     // want to make them non-constant.
2505     return !cast<AllocaInst>(I)->isStaticAlloca();
2506   case Instruction::GetElementPtr:
2507     if (OpIdx == 0)
2508       return true;
2509     gep_type_iterator It = gep_type_begin(I);
2510     for (auto E = std::next(It, OpIdx); It != E; ++It)
2511       if (It.isStruct())
2512         return false;
2513     return true;
2514   }
2515 }
2516