1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "local" 54 55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 56 57 //===----------------------------------------------------------------------===// 58 // Local constant propagation. 59 // 60 61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 62 /// constant value, convert it into an unconditional branch to the constant 63 /// destination. This is a nontrivial operation because the successors of this 64 /// basic block must have their PHI nodes updated. 65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 66 /// conditions and indirectbr addresses this might make dead if 67 /// DeleteDeadConditions is true. 68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 69 const TargetLibraryInfo *TLI) { 70 TerminatorInst *T = BB->getTerminator(); 71 IRBuilder<> Builder(T); 72 73 // Branch - See if we are conditional jumping on constant 74 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 75 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 76 BasicBlock *Dest1 = BI->getSuccessor(0); 77 BasicBlock *Dest2 = BI->getSuccessor(1); 78 79 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 80 // Are we branching on constant? 81 // YES. Change to unconditional branch... 82 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 83 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 84 85 //cerr << "Function: " << T->getParent()->getParent() 86 // << "\nRemoving branch from " << T->getParent() 87 // << "\n\nTo: " << OldDest << endl; 88 89 // Let the basic block know that we are letting go of it. Based on this, 90 // it will adjust it's PHI nodes. 91 OldDest->removePredecessor(BB); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Destination); 95 BI->eraseFromParent(); 96 return true; 97 } 98 99 if (Dest2 == Dest1) { // Conditional branch to same location? 100 // This branch matches something like this: 101 // br bool %cond, label %Dest, label %Dest 102 // and changes it into: br label %Dest 103 104 // Let the basic block know that we are letting go of one copy of it. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 Dest1->removePredecessor(BI->getParent()); 107 108 // Replace the conditional branch with an unconditional one. 109 Builder.CreateBr(Dest1); 110 Value *Cond = BI->getCondition(); 111 BI->eraseFromParent(); 112 if (DeleteDeadConditions) 113 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 114 return true; 115 } 116 return false; 117 } 118 119 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 120 // If we are switching on a constant, we can convert the switch to an 121 // unconditional branch. 122 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 123 BasicBlock *DefaultDest = SI->getDefaultDest(); 124 BasicBlock *TheOnlyDest = DefaultDest; 125 126 // If the default is unreachable, ignore it when searching for TheOnlyDest. 127 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 128 SI->getNumCases() > 0) { 129 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 130 } 131 132 // Figure out which case it goes to. 133 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 134 i != e; ++i) { 135 // Found case matching a constant operand? 136 if (i.getCaseValue() == CI) { 137 TheOnlyDest = i.getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i.getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 ConstantInt *CI = 154 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 155 assert(CI); 156 Weights.push_back(CI->getValue().getZExtValue()); 157 } 158 // Merge weight of this case to the default weight. 159 unsigned idx = i.getCaseIndex(); 160 Weights[0] += Weights[idx+1]; 161 // Remove weight for this case. 162 std::swap(Weights[idx+1], Weights.back()); 163 Weights.pop_back(); 164 SI->setMetadata(LLVMContext::MD_prof, 165 MDBuilder(BB->getContext()). 166 createBranchWeights(Weights)); 167 } 168 // Remove this entry. 169 DefaultDest->removePredecessor(SI->getParent()); 170 SI->removeCase(i); 171 --i; --e; 172 continue; 173 } 174 175 // Otherwise, check to see if the switch only branches to one destination. 176 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 177 // destinations. 178 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 179 } 180 181 if (CI && !TheOnlyDest) { 182 // Branching on a constant, but not any of the cases, go to the default 183 // successor. 184 TheOnlyDest = SI->getDefaultDest(); 185 } 186 187 // If we found a single destination that we can fold the switch into, do so 188 // now. 189 if (TheOnlyDest) { 190 // Insert the new branch. 191 Builder.CreateBr(TheOnlyDest); 192 BasicBlock *BB = SI->getParent(); 193 194 // Remove entries from PHI nodes which we no longer branch to... 195 for (BasicBlock *Succ : SI->successors()) { 196 // Found case matching a constant operand? 197 if (Succ == TheOnlyDest) 198 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 199 else 200 Succ->removePredecessor(BB); 201 } 202 203 // Delete the old switch. 204 Value *Cond = SI->getCondition(); 205 SI->eraseFromParent(); 206 if (DeleteDeadConditions) 207 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 208 return true; 209 } 210 211 if (SI->getNumCases() == 1) { 212 // Otherwise, we can fold this switch into a conditional branch 213 // instruction if it has only one non-default destination. 214 SwitchInst::CaseIt FirstCase = SI->case_begin(); 215 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 216 FirstCase.getCaseValue(), "cond"); 217 218 // Insert the new branch. 219 BranchInst *NewBr = Builder.CreateCondBr(Cond, 220 FirstCase.getCaseSuccessor(), 221 SI->getDefaultDest()); 222 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 223 if (MD && MD->getNumOperands() == 3) { 224 ConstantInt *SICase = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 226 ConstantInt *SIDef = 227 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 228 assert(SICase && SIDef); 229 // The TrueWeight should be the weight for the single case of SI. 230 NewBr->setMetadata(LLVMContext::MD_prof, 231 MDBuilder(BB->getContext()). 232 createBranchWeights(SICase->getValue().getZExtValue(), 233 SIDef->getValue().getZExtValue())); 234 } 235 236 // Update make.implicit metadata to the newly-created conditional branch. 237 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 238 if (MakeImplicitMD) 239 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 240 241 // Delete the old switch. 242 SI->eraseFromParent(); 243 return true; 244 } 245 return false; 246 } 247 248 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 249 // indirectbr blockaddress(@F, @BB) -> br label @BB 250 if (BlockAddress *BA = 251 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 252 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 253 // Insert the new branch. 254 Builder.CreateBr(TheOnlyDest); 255 256 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 257 if (IBI->getDestination(i) == TheOnlyDest) 258 TheOnlyDest = nullptr; 259 else 260 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 261 } 262 Value *Address = IBI->getAddress(); 263 IBI->eraseFromParent(); 264 if (DeleteDeadConditions) 265 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 266 267 // If we didn't find our destination in the IBI successor list, then we 268 // have undefined behavior. Replace the unconditional branch with an 269 // 'unreachable' instruction. 270 if (TheOnlyDest) { 271 BB->getTerminator()->eraseFromParent(); 272 new UnreachableInst(BB->getContext(), BB); 273 } 274 275 return true; 276 } 277 } 278 279 return false; 280 } 281 282 283 //===----------------------------------------------------------------------===// 284 // Local dead code elimination. 285 // 286 287 /// isInstructionTriviallyDead - Return true if the result produced by the 288 /// instruction is not used, and the instruction has no side effects. 289 /// 290 bool llvm::isInstructionTriviallyDead(Instruction *I, 291 const TargetLibraryInfo *TLI) { 292 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 293 294 // We don't want the landingpad-like instructions removed by anything this 295 // general. 296 if (I->isEHPad()) 297 return false; 298 299 // We don't want debug info removed by anything this general, unless 300 // debug info is empty. 301 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 302 if (DDI->getAddress()) 303 return false; 304 return true; 305 } 306 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 307 if (DVI->getValue()) 308 return false; 309 return true; 310 } 311 312 if (!I->mayHaveSideEffects()) return true; 313 314 // Special case intrinsics that "may have side effects" but can be deleted 315 // when dead. 316 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 317 // Safe to delete llvm.stacksave if dead. 318 if (II->getIntrinsicID() == Intrinsic::stacksave) 319 return true; 320 321 // Lifetime intrinsics are dead when their right-hand is undef. 322 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 323 II->getIntrinsicID() == Intrinsic::lifetime_end) 324 return isa<UndefValue>(II->getArgOperand(1)); 325 326 // Assumptions are dead if their condition is trivially true. Guards on 327 // true are operationally no-ops. In the future we can consider more 328 // sophisticated tradeoffs for guards considering potential for check 329 // widening, but for now we keep things simple. 330 if (II->getIntrinsicID() == Intrinsic::assume || 331 II->getIntrinsicID() == Intrinsic::experimental_guard) { 332 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 333 return !Cond->isZero(); 334 335 return false; 336 } 337 } 338 339 if (isAllocLikeFn(I, TLI)) return true; 340 341 if (CallInst *CI = isFreeCall(I, TLI)) 342 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 343 return C->isNullValue() || isa<UndefValue>(C); 344 345 return false; 346 } 347 348 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 349 /// trivially dead instruction, delete it. If that makes any of its operands 350 /// trivially dead, delete them too, recursively. Return true if any 351 /// instructions were deleted. 352 bool 353 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 354 const TargetLibraryInfo *TLI) { 355 Instruction *I = dyn_cast<Instruction>(V); 356 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 357 return false; 358 359 SmallVector<Instruction*, 16> DeadInsts; 360 DeadInsts.push_back(I); 361 362 do { 363 I = DeadInsts.pop_back_val(); 364 365 // Null out all of the instruction's operands to see if any operand becomes 366 // dead as we go. 367 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 368 Value *OpV = I->getOperand(i); 369 I->setOperand(i, nullptr); 370 371 if (!OpV->use_empty()) continue; 372 373 // If the operand is an instruction that became dead as we nulled out the 374 // operand, and if it is 'trivially' dead, delete it in a future loop 375 // iteration. 376 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 377 if (isInstructionTriviallyDead(OpI, TLI)) 378 DeadInsts.push_back(OpI); 379 } 380 381 I->eraseFromParent(); 382 } while (!DeadInsts.empty()); 383 384 return true; 385 } 386 387 /// areAllUsesEqual - Check whether the uses of a value are all the same. 388 /// This is similar to Instruction::hasOneUse() except this will also return 389 /// true when there are no uses or multiple uses that all refer to the same 390 /// value. 391 static bool areAllUsesEqual(Instruction *I) { 392 Value::user_iterator UI = I->user_begin(); 393 Value::user_iterator UE = I->user_end(); 394 if (UI == UE) 395 return true; 396 397 User *TheUse = *UI; 398 for (++UI; UI != UE; ++UI) { 399 if (*UI != TheUse) 400 return false; 401 } 402 return true; 403 } 404 405 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 406 /// dead PHI node, due to being a def-use chain of single-use nodes that 407 /// either forms a cycle or is terminated by a trivially dead instruction, 408 /// delete it. If that makes any of its operands trivially dead, delete them 409 /// too, recursively. Return true if a change was made. 410 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 411 const TargetLibraryInfo *TLI) { 412 SmallPtrSet<Instruction*, 4> Visited; 413 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 414 I = cast<Instruction>(*I->user_begin())) { 415 if (I->use_empty()) 416 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 417 418 // If we find an instruction more than once, we're on a cycle that 419 // won't prove fruitful. 420 if (!Visited.insert(I).second) { 421 // Break the cycle and delete the instruction and its operands. 422 I->replaceAllUsesWith(UndefValue::get(I->getType())); 423 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 424 return true; 425 } 426 } 427 return false; 428 } 429 430 static bool 431 simplifyAndDCEInstruction(Instruction *I, 432 SmallSetVector<Instruction *, 16> &WorkList, 433 const DataLayout &DL, 434 const TargetLibraryInfo *TLI) { 435 if (isInstructionTriviallyDead(I, TLI)) { 436 // Null out all of the instruction's operands to see if any operand becomes 437 // dead as we go. 438 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 439 Value *OpV = I->getOperand(i); 440 I->setOperand(i, nullptr); 441 442 if (!OpV->use_empty() || I == OpV) 443 continue; 444 445 // If the operand is an instruction that became dead as we nulled out the 446 // operand, and if it is 'trivially' dead, delete it in a future loop 447 // iteration. 448 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 449 if (isInstructionTriviallyDead(OpI, TLI)) 450 WorkList.insert(OpI); 451 } 452 453 I->eraseFromParent(); 454 455 return true; 456 } 457 458 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 459 // Add the users to the worklist. CAREFUL: an instruction can use itself, 460 // in the case of a phi node. 461 for (User *U : I->users()) { 462 if (U != I) { 463 WorkList.insert(cast<Instruction>(U)); 464 } 465 } 466 467 // Replace the instruction with its simplified value. 468 bool Changed = false; 469 if (!I->use_empty()) { 470 I->replaceAllUsesWith(SimpleV); 471 Changed = true; 472 } 473 if (isInstructionTriviallyDead(I, TLI)) { 474 I->eraseFromParent(); 475 Changed = true; 476 } 477 return Changed; 478 } 479 return false; 480 } 481 482 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 483 /// simplify any instructions in it and recursively delete dead instructions. 484 /// 485 /// This returns true if it changed the code, note that it can delete 486 /// instructions in other blocks as well in this block. 487 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 488 const TargetLibraryInfo *TLI) { 489 bool MadeChange = false; 490 const DataLayout &DL = BB->getModule()->getDataLayout(); 491 492 #ifndef NDEBUG 493 // In debug builds, ensure that the terminator of the block is never replaced 494 // or deleted by these simplifications. The idea of simplification is that it 495 // cannot introduce new instructions, and there is no way to replace the 496 // terminator of a block without introducing a new instruction. 497 AssertingVH<Instruction> TerminatorVH(&BB->back()); 498 #endif 499 500 SmallSetVector<Instruction *, 16> WorkList; 501 // Iterate over the original function, only adding insts to the worklist 502 // if they actually need to be revisited. This avoids having to pre-init 503 // the worklist with the entire function's worth of instructions. 504 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 505 BI != E;) { 506 assert(!BI->isTerminator()); 507 Instruction *I = &*BI; 508 ++BI; 509 510 // We're visiting this instruction now, so make sure it's not in the 511 // worklist from an earlier visit. 512 if (!WorkList.count(I)) 513 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 514 } 515 516 while (!WorkList.empty()) { 517 Instruction *I = WorkList.pop_back_val(); 518 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 519 } 520 return MadeChange; 521 } 522 523 //===----------------------------------------------------------------------===// 524 // Control Flow Graph Restructuring. 525 // 526 527 528 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 529 /// method is called when we're about to delete Pred as a predecessor of BB. If 530 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 531 /// 532 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 533 /// nodes that collapse into identity values. For example, if we have: 534 /// x = phi(1, 0, 0, 0) 535 /// y = and x, z 536 /// 537 /// .. and delete the predecessor corresponding to the '1', this will attempt to 538 /// recursively fold the and to 0. 539 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 540 // This only adjusts blocks with PHI nodes. 541 if (!isa<PHINode>(BB->begin())) 542 return; 543 544 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 545 // them down. This will leave us with single entry phi nodes and other phis 546 // that can be removed. 547 BB->removePredecessor(Pred, true); 548 549 WeakVH PhiIt = &BB->front(); 550 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 551 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 552 Value *OldPhiIt = PhiIt; 553 554 if (!recursivelySimplifyInstruction(PN)) 555 continue; 556 557 // If recursive simplification ended up deleting the next PHI node we would 558 // iterate to, then our iterator is invalid, restart scanning from the top 559 // of the block. 560 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 561 } 562 } 563 564 565 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 566 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 567 /// between them, moving the instructions in the predecessor into DestBB and 568 /// deleting the predecessor block. 569 /// 570 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 571 // If BB has single-entry PHI nodes, fold them. 572 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 573 Value *NewVal = PN->getIncomingValue(0); 574 // Replace self referencing PHI with undef, it must be dead. 575 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 576 PN->replaceAllUsesWith(NewVal); 577 PN->eraseFromParent(); 578 } 579 580 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 581 assert(PredBB && "Block doesn't have a single predecessor!"); 582 583 // Zap anything that took the address of DestBB. Not doing this will give the 584 // address an invalid value. 585 if (DestBB->hasAddressTaken()) { 586 BlockAddress *BA = BlockAddress::get(DestBB); 587 Constant *Replacement = 588 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 589 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 590 BA->getType())); 591 BA->destroyConstant(); 592 } 593 594 // Anything that branched to PredBB now branches to DestBB. 595 PredBB->replaceAllUsesWith(DestBB); 596 597 // Splice all the instructions from PredBB to DestBB. 598 PredBB->getTerminator()->eraseFromParent(); 599 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 600 601 // If the PredBB is the entry block of the function, move DestBB up to 602 // become the entry block after we erase PredBB. 603 if (PredBB == &DestBB->getParent()->getEntryBlock()) 604 DestBB->moveAfter(PredBB); 605 606 if (DT) { 607 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 608 DT->changeImmediateDominator(DestBB, PredBBIDom); 609 DT->eraseNode(PredBB); 610 } 611 // Nuke BB. 612 PredBB->eraseFromParent(); 613 } 614 615 /// CanMergeValues - Return true if we can choose one of these values to use 616 /// in place of the other. Note that we will always choose the non-undef 617 /// value to keep. 618 static bool CanMergeValues(Value *First, Value *Second) { 619 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 620 } 621 622 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 623 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 624 /// 625 /// Assumption: Succ is the single successor for BB. 626 /// 627 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 628 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 629 630 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 631 << Succ->getName() << "\n"); 632 // Shortcut, if there is only a single predecessor it must be BB and merging 633 // is always safe 634 if (Succ->getSinglePredecessor()) return true; 635 636 // Make a list of the predecessors of BB 637 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 638 639 // Look at all the phi nodes in Succ, to see if they present a conflict when 640 // merging these blocks 641 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 642 PHINode *PN = cast<PHINode>(I); 643 644 // If the incoming value from BB is again a PHINode in 645 // BB which has the same incoming value for *PI as PN does, we can 646 // merge the phi nodes and then the blocks can still be merged 647 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 648 if (BBPN && BBPN->getParent() == BB) { 649 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 650 BasicBlock *IBB = PN->getIncomingBlock(PI); 651 if (BBPreds.count(IBB) && 652 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 653 PN->getIncomingValue(PI))) { 654 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 655 << Succ->getName() << " is conflicting with " 656 << BBPN->getName() << " with regard to common predecessor " 657 << IBB->getName() << "\n"); 658 return false; 659 } 660 } 661 } else { 662 Value* Val = PN->getIncomingValueForBlock(BB); 663 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 664 // See if the incoming value for the common predecessor is equal to the 665 // one for BB, in which case this phi node will not prevent the merging 666 // of the block. 667 BasicBlock *IBB = PN->getIncomingBlock(PI); 668 if (BBPreds.count(IBB) && 669 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 670 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 671 << Succ->getName() << " is conflicting with regard to common " 672 << "predecessor " << IBB->getName() << "\n"); 673 return false; 674 } 675 } 676 } 677 } 678 679 return true; 680 } 681 682 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 683 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 684 685 /// \brief Determines the value to use as the phi node input for a block. 686 /// 687 /// Select between \p OldVal any value that we know flows from \p BB 688 /// to a particular phi on the basis of which one (if either) is not 689 /// undef. Update IncomingValues based on the selected value. 690 /// 691 /// \param OldVal The value we are considering selecting. 692 /// \param BB The block that the value flows in from. 693 /// \param IncomingValues A map from block-to-value for other phi inputs 694 /// that we have examined. 695 /// 696 /// \returns the selected value. 697 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 698 IncomingValueMap &IncomingValues) { 699 if (!isa<UndefValue>(OldVal)) { 700 assert((!IncomingValues.count(BB) || 701 IncomingValues.find(BB)->second == OldVal) && 702 "Expected OldVal to match incoming value from BB!"); 703 704 IncomingValues.insert(std::make_pair(BB, OldVal)); 705 return OldVal; 706 } 707 708 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 709 if (It != IncomingValues.end()) return It->second; 710 711 return OldVal; 712 } 713 714 /// \brief Create a map from block to value for the operands of a 715 /// given phi. 716 /// 717 /// Create a map from block to value for each non-undef value flowing 718 /// into \p PN. 719 /// 720 /// \param PN The phi we are collecting the map for. 721 /// \param IncomingValues [out] The map from block to value for this phi. 722 static void gatherIncomingValuesToPhi(PHINode *PN, 723 IncomingValueMap &IncomingValues) { 724 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 725 BasicBlock *BB = PN->getIncomingBlock(i); 726 Value *V = PN->getIncomingValue(i); 727 728 if (!isa<UndefValue>(V)) 729 IncomingValues.insert(std::make_pair(BB, V)); 730 } 731 } 732 733 /// \brief Replace the incoming undef values to a phi with the values 734 /// from a block-to-value map. 735 /// 736 /// \param PN The phi we are replacing the undefs in. 737 /// \param IncomingValues A map from block to value. 738 static void replaceUndefValuesInPhi(PHINode *PN, 739 const IncomingValueMap &IncomingValues) { 740 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 741 Value *V = PN->getIncomingValue(i); 742 743 if (!isa<UndefValue>(V)) continue; 744 745 BasicBlock *BB = PN->getIncomingBlock(i); 746 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 747 if (It == IncomingValues.end()) continue; 748 749 PN->setIncomingValue(i, It->second); 750 } 751 } 752 753 /// \brief Replace a value flowing from a block to a phi with 754 /// potentially multiple instances of that value flowing from the 755 /// block's predecessors to the phi. 756 /// 757 /// \param BB The block with the value flowing into the phi. 758 /// \param BBPreds The predecessors of BB. 759 /// \param PN The phi that we are updating. 760 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 761 const PredBlockVector &BBPreds, 762 PHINode *PN) { 763 Value *OldVal = PN->removeIncomingValue(BB, false); 764 assert(OldVal && "No entry in PHI for Pred BB!"); 765 766 IncomingValueMap IncomingValues; 767 768 // We are merging two blocks - BB, and the block containing PN - and 769 // as a result we need to redirect edges from the predecessors of BB 770 // to go to the block containing PN, and update PN 771 // accordingly. Since we allow merging blocks in the case where the 772 // predecessor and successor blocks both share some predecessors, 773 // and where some of those common predecessors might have undef 774 // values flowing into PN, we want to rewrite those values to be 775 // consistent with the non-undef values. 776 777 gatherIncomingValuesToPhi(PN, IncomingValues); 778 779 // If this incoming value is one of the PHI nodes in BB, the new entries 780 // in the PHI node are the entries from the old PHI. 781 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 782 PHINode *OldValPN = cast<PHINode>(OldVal); 783 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 784 // Note that, since we are merging phi nodes and BB and Succ might 785 // have common predecessors, we could end up with a phi node with 786 // identical incoming branches. This will be cleaned up later (and 787 // will trigger asserts if we try to clean it up now, without also 788 // simplifying the corresponding conditional branch). 789 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 790 Value *PredVal = OldValPN->getIncomingValue(i); 791 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 792 IncomingValues); 793 794 // And add a new incoming value for this predecessor for the 795 // newly retargeted branch. 796 PN->addIncoming(Selected, PredBB); 797 } 798 } else { 799 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 800 // Update existing incoming values in PN for this 801 // predecessor of BB. 802 BasicBlock *PredBB = BBPreds[i]; 803 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 804 IncomingValues); 805 806 // And add a new incoming value for this predecessor for the 807 // newly retargeted branch. 808 PN->addIncoming(Selected, PredBB); 809 } 810 } 811 812 replaceUndefValuesInPhi(PN, IncomingValues); 813 } 814 815 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 816 /// unconditional branch, and contains no instructions other than PHI nodes, 817 /// potential side-effect free intrinsics and the branch. If possible, 818 /// eliminate BB by rewriting all the predecessors to branch to the successor 819 /// block and return true. If we can't transform, return false. 820 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 821 assert(BB != &BB->getParent()->getEntryBlock() && 822 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 823 824 // We can't eliminate infinite loops. 825 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 826 if (BB == Succ) return false; 827 828 // Check to see if merging these blocks would cause conflicts for any of the 829 // phi nodes in BB or Succ. If not, we can safely merge. 830 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 831 832 // Check for cases where Succ has multiple predecessors and a PHI node in BB 833 // has uses which will not disappear when the PHI nodes are merged. It is 834 // possible to handle such cases, but difficult: it requires checking whether 835 // BB dominates Succ, which is non-trivial to calculate in the case where 836 // Succ has multiple predecessors. Also, it requires checking whether 837 // constructing the necessary self-referential PHI node doesn't introduce any 838 // conflicts; this isn't too difficult, but the previous code for doing this 839 // was incorrect. 840 // 841 // Note that if this check finds a live use, BB dominates Succ, so BB is 842 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 843 // folding the branch isn't profitable in that case anyway. 844 if (!Succ->getSinglePredecessor()) { 845 BasicBlock::iterator BBI = BB->begin(); 846 while (isa<PHINode>(*BBI)) { 847 for (Use &U : BBI->uses()) { 848 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 849 if (PN->getIncomingBlock(U) != BB) 850 return false; 851 } else { 852 return false; 853 } 854 } 855 ++BBI; 856 } 857 } 858 859 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 860 861 if (isa<PHINode>(Succ->begin())) { 862 // If there is more than one pred of succ, and there are PHI nodes in 863 // the successor, then we need to add incoming edges for the PHI nodes 864 // 865 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 866 867 // Loop over all of the PHI nodes in the successor of BB. 868 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 869 PHINode *PN = cast<PHINode>(I); 870 871 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 872 } 873 } 874 875 if (Succ->getSinglePredecessor()) { 876 // BB is the only predecessor of Succ, so Succ will end up with exactly 877 // the same predecessors BB had. 878 879 // Copy over any phi, debug or lifetime instruction. 880 BB->getTerminator()->eraseFromParent(); 881 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 882 BB->getInstList()); 883 } else { 884 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 885 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 886 assert(PN->use_empty() && "There shouldn't be any uses here!"); 887 PN->eraseFromParent(); 888 } 889 } 890 891 // Everything that jumped to BB now goes to Succ. 892 BB->replaceAllUsesWith(Succ); 893 if (!Succ->hasName()) Succ->takeName(BB); 894 BB->eraseFromParent(); // Delete the old basic block. 895 return true; 896 } 897 898 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 899 /// nodes in this block. This doesn't try to be clever about PHI nodes 900 /// which differ only in the order of the incoming values, but instcombine 901 /// orders them so it usually won't matter. 902 /// 903 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 904 // This implementation doesn't currently consider undef operands 905 // specially. Theoretically, two phis which are identical except for 906 // one having an undef where the other doesn't could be collapsed. 907 908 struct PHIDenseMapInfo { 909 static PHINode *getEmptyKey() { 910 return DenseMapInfo<PHINode *>::getEmptyKey(); 911 } 912 static PHINode *getTombstoneKey() { 913 return DenseMapInfo<PHINode *>::getTombstoneKey(); 914 } 915 static unsigned getHashValue(PHINode *PN) { 916 // Compute a hash value on the operands. Instcombine will likely have 917 // sorted them, which helps expose duplicates, but we have to check all 918 // the operands to be safe in case instcombine hasn't run. 919 return static_cast<unsigned>(hash_combine( 920 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 921 hash_combine_range(PN->block_begin(), PN->block_end()))); 922 } 923 static bool isEqual(PHINode *LHS, PHINode *RHS) { 924 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 925 RHS == getEmptyKey() || RHS == getTombstoneKey()) 926 return LHS == RHS; 927 return LHS->isIdenticalTo(RHS); 928 } 929 }; 930 931 // Set of unique PHINodes. 932 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 933 934 // Examine each PHI. 935 bool Changed = false; 936 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 937 auto Inserted = PHISet.insert(PN); 938 if (!Inserted.second) { 939 // A duplicate. Replace this PHI with its duplicate. 940 PN->replaceAllUsesWith(*Inserted.first); 941 PN->eraseFromParent(); 942 Changed = true; 943 944 // The RAUW can change PHIs that we already visited. Start over from the 945 // beginning. 946 PHISet.clear(); 947 I = BB->begin(); 948 } 949 } 950 951 return Changed; 952 } 953 954 /// enforceKnownAlignment - If the specified pointer points to an object that 955 /// we control, modify the object's alignment to PrefAlign. This isn't 956 /// often possible though. If alignment is important, a more reliable approach 957 /// is to simply align all global variables and allocation instructions to 958 /// their preferred alignment from the beginning. 959 /// 960 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 961 unsigned PrefAlign, 962 const DataLayout &DL) { 963 assert(PrefAlign > Align); 964 965 V = V->stripPointerCasts(); 966 967 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 968 // TODO: ideally, computeKnownBits ought to have used 969 // AllocaInst::getAlignment() in its computation already, making 970 // the below max redundant. But, as it turns out, 971 // stripPointerCasts recurses through infinite layers of bitcasts, 972 // while computeKnownBits is not allowed to traverse more than 6 973 // levels. 974 Align = std::max(AI->getAlignment(), Align); 975 if (PrefAlign <= Align) 976 return Align; 977 978 // If the preferred alignment is greater than the natural stack alignment 979 // then don't round up. This avoids dynamic stack realignment. 980 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 981 return Align; 982 AI->setAlignment(PrefAlign); 983 return PrefAlign; 984 } 985 986 if (auto *GO = dyn_cast<GlobalObject>(V)) { 987 // TODO: as above, this shouldn't be necessary. 988 Align = std::max(GO->getAlignment(), Align); 989 if (PrefAlign <= Align) 990 return Align; 991 992 // If there is a large requested alignment and we can, bump up the alignment 993 // of the global. If the memory we set aside for the global may not be the 994 // memory used by the final program then it is impossible for us to reliably 995 // enforce the preferred alignment. 996 if (!GO->canIncreaseAlignment()) 997 return Align; 998 999 GO->setAlignment(PrefAlign); 1000 return PrefAlign; 1001 } 1002 1003 return Align; 1004 } 1005 1006 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 1007 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 1008 /// and it is more than the alignment of the ultimate object, see if we can 1009 /// increase the alignment of the ultimate object, making this check succeed. 1010 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1011 const DataLayout &DL, 1012 const Instruction *CxtI, 1013 AssumptionCache *AC, 1014 const DominatorTree *DT) { 1015 assert(V->getType()->isPointerTy() && 1016 "getOrEnforceKnownAlignment expects a pointer!"); 1017 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1018 1019 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1020 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1021 unsigned TrailZ = KnownZero.countTrailingOnes(); 1022 1023 // Avoid trouble with ridiculously large TrailZ values, such as 1024 // those computed from a null pointer. 1025 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1026 1027 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1028 1029 // LLVM doesn't support alignments larger than this currently. 1030 Align = std::min(Align, +Value::MaximumAlignment); 1031 1032 if (PrefAlign > Align) 1033 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1034 1035 // We don't need to make any adjustment. 1036 return Align; 1037 } 1038 1039 ///===---------------------------------------------------------------------===// 1040 /// Dbg Intrinsic utilities 1041 /// 1042 1043 /// See if there is a dbg.value intrinsic for DIVar before I. 1044 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1045 Instruction *I) { 1046 // Since we can't guarantee that the original dbg.declare instrinsic 1047 // is removed by LowerDbgDeclare(), we need to make sure that we are 1048 // not inserting the same dbg.value intrinsic over and over. 1049 llvm::BasicBlock::InstListType::iterator PrevI(I); 1050 if (PrevI != I->getParent()->getInstList().begin()) { 1051 --PrevI; 1052 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1053 if (DVI->getValue() == I->getOperand(0) && 1054 DVI->getOffset() == 0 && 1055 DVI->getVariable() == DIVar && 1056 DVI->getExpression() == DIExpr) 1057 return true; 1058 } 1059 return false; 1060 } 1061 1062 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1063 /// that has an associated llvm.dbg.decl intrinsic. 1064 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1065 StoreInst *SI, DIBuilder &Builder) { 1066 auto *DIVar = DDI->getVariable(); 1067 auto *DIExpr = DDI->getExpression(); 1068 assert(DIVar && "Missing variable"); 1069 1070 // If an argument is zero extended then use argument directly. The ZExt 1071 // may be zapped by an optimization pass in future. 1072 Argument *ExtendedArg = nullptr; 1073 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1074 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1075 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1076 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1077 if (ExtendedArg) { 1078 // We're now only describing a subset of the variable. The piece we're 1079 // describing will always be smaller than the variable size, because 1080 // VariableSize == Size of Alloca described by DDI. Since SI stores 1081 // to the alloca described by DDI, if it's first operand is an extend, 1082 // we're guaranteed that before extension, the value was narrower than 1083 // the size of the alloca, hence the size of the described variable. 1084 SmallVector<uint64_t, 3> Ops; 1085 unsigned PieceOffset = 0; 1086 // If this already is a bit piece, we drop the bit piece from the expression 1087 // and record the offset. 1088 if (DIExpr->isBitPiece()) { 1089 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1090 PieceOffset = DIExpr->getBitPieceOffset(); 1091 } else { 1092 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1093 } 1094 Ops.push_back(dwarf::DW_OP_bit_piece); 1095 Ops.push_back(PieceOffset); // Offset 1096 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1097 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size 1098 auto NewDIExpr = Builder.createExpression(Ops); 1099 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1100 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1101 DDI->getDebugLoc(), SI); 1102 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1103 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1104 DDI->getDebugLoc(), SI); 1105 return true; 1106 } 1107 1108 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1109 /// that has an associated llvm.dbg.decl intrinsic. 1110 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1111 LoadInst *LI, DIBuilder &Builder) { 1112 auto *DIVar = DDI->getVariable(); 1113 auto *DIExpr = DDI->getExpression(); 1114 assert(DIVar && "Missing variable"); 1115 1116 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1117 return true; 1118 1119 // We are now tracking the loaded value instead of the address. In the 1120 // future if multi-location support is added to the IR, it might be 1121 // preferable to keep tracking both the loaded value and the original 1122 // address in case the alloca can not be elided. 1123 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1124 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1125 DbgValue->insertAfter(LI); 1126 return true; 1127 } 1128 1129 /// Determine whether this alloca is either a VLA or an array. 1130 static bool isArray(AllocaInst *AI) { 1131 return AI->isArrayAllocation() || 1132 AI->getType()->getElementType()->isArrayTy(); 1133 } 1134 1135 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1136 /// of llvm.dbg.value intrinsics. 1137 bool llvm::LowerDbgDeclare(Function &F) { 1138 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1139 SmallVector<DbgDeclareInst *, 4> Dbgs; 1140 for (auto &FI : F) 1141 for (Instruction &BI : FI) 1142 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1143 Dbgs.push_back(DDI); 1144 1145 if (Dbgs.empty()) 1146 return false; 1147 1148 for (auto &I : Dbgs) { 1149 DbgDeclareInst *DDI = I; 1150 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1151 // If this is an alloca for a scalar variable, insert a dbg.value 1152 // at each load and store to the alloca and erase the dbg.declare. 1153 // The dbg.values allow tracking a variable even if it is not 1154 // stored on the stack, while the dbg.declare can only describe 1155 // the stack slot (and at a lexical-scope granularity). Later 1156 // passes will attempt to elide the stack slot. 1157 if (AI && !isArray(AI)) { 1158 for (auto &AIUse : AI->uses()) { 1159 User *U = AIUse.getUser(); 1160 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1161 if (AIUse.getOperandNo() == 1) 1162 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1163 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1164 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1165 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1166 // This is a call by-value or some other instruction that 1167 // takes a pointer to the variable. Insert a *value* 1168 // intrinsic that describes the alloca. 1169 SmallVector<uint64_t, 1> NewDIExpr; 1170 auto *DIExpr = DDI->getExpression(); 1171 NewDIExpr.push_back(dwarf::DW_OP_deref); 1172 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1173 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1174 DIB.createExpression(NewDIExpr), 1175 DDI->getDebugLoc(), CI); 1176 } 1177 } 1178 DDI->eraseFromParent(); 1179 } 1180 } 1181 return true; 1182 } 1183 1184 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1185 /// alloca 'V', if any. 1186 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1187 if (auto *L = LocalAsMetadata::getIfExists(V)) 1188 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1189 for (User *U : MDV->users()) 1190 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1191 return DDI; 1192 1193 return nullptr; 1194 } 1195 1196 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) { 1197 Expr.push_back(dwarf::DW_OP_deref); 1198 } 1199 1200 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) { 1201 if (Offset > 0) { 1202 Expr.push_back(dwarf::DW_OP_plus); 1203 Expr.push_back(Offset); 1204 } else if (Offset < 0) { 1205 Expr.push_back(dwarf::DW_OP_minus); 1206 Expr.push_back(-Offset); 1207 } 1208 } 1209 1210 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder, 1211 DIExpression *DIExpr, bool Deref, 1212 int Offset) { 1213 if (!Deref && !Offset) 1214 return DIExpr; 1215 // Create a copy of the original DIDescriptor for user variable, prepending 1216 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1217 // will take a value storing address of the memory for variable, not 1218 // alloca itself. 1219 SmallVector<uint64_t, 4> NewDIExpr; 1220 if (Deref) 1221 DIExprAddDeref(NewDIExpr); 1222 DIExprAddOffset(NewDIExpr, Offset); 1223 if (DIExpr) 1224 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1225 return Builder.createExpression(NewDIExpr); 1226 } 1227 1228 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1229 Instruction *InsertBefore, DIBuilder &Builder, 1230 bool Deref, int Offset) { 1231 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1232 if (!DDI) 1233 return false; 1234 DebugLoc Loc = DDI->getDebugLoc(); 1235 auto *DIVar = DDI->getVariable(); 1236 auto *DIExpr = DDI->getExpression(); 1237 assert(DIVar && "Missing variable"); 1238 1239 DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset); 1240 1241 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1242 // old llvm.dbg.declare. 1243 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1244 DDI->eraseFromParent(); 1245 return true; 1246 } 1247 1248 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1249 DIBuilder &Builder, bool Deref, int Offset) { 1250 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1251 Deref, Offset); 1252 } 1253 1254 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1255 DIBuilder &Builder, int Offset) { 1256 DebugLoc Loc = DVI->getDebugLoc(); 1257 auto *DIVar = DVI->getVariable(); 1258 auto *DIExpr = DVI->getExpression(); 1259 assert(DIVar && "Missing variable"); 1260 1261 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1262 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1263 // it and give up. 1264 if (!DIExpr || DIExpr->getNumElements() < 1 || 1265 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1266 return; 1267 1268 // Insert the offset immediately after the first deref. 1269 // We could just change the offset argument of dbg.value, but it's unsigned... 1270 if (Offset) { 1271 SmallVector<uint64_t, 4> NewDIExpr; 1272 DIExprAddDeref(NewDIExpr); 1273 DIExprAddOffset(NewDIExpr, Offset); 1274 NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1275 DIExpr = Builder.createExpression(NewDIExpr); 1276 } 1277 1278 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1279 Loc, DVI); 1280 DVI->eraseFromParent(); 1281 } 1282 1283 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1284 DIBuilder &Builder, int Offset) { 1285 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1286 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1287 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1288 Use &U = *UI++; 1289 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1290 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1291 } 1292 } 1293 1294 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1295 unsigned NumDeadInst = 0; 1296 // Delete the instructions backwards, as it has a reduced likelihood of 1297 // having to update as many def-use and use-def chains. 1298 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1299 while (EndInst != &BB->front()) { 1300 // Delete the next to last instruction. 1301 Instruction *Inst = &*--EndInst->getIterator(); 1302 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1303 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1304 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1305 EndInst = Inst; 1306 continue; 1307 } 1308 if (!isa<DbgInfoIntrinsic>(Inst)) 1309 ++NumDeadInst; 1310 Inst->eraseFromParent(); 1311 } 1312 return NumDeadInst; 1313 } 1314 1315 unsigned llvm::changeToUnreachable(Instruction *I) { 1316 BasicBlock *BB = I->getParent(); 1317 // Loop over all of the successors, removing BB's entry from any PHI 1318 // nodes. 1319 for (BasicBlock *Succ : successors(BB)) 1320 Succ->removePredecessor(BB); 1321 1322 new UnreachableInst(I->getContext(), I); 1323 1324 // All instructions after this are dead. 1325 unsigned NumInstrsRemoved = 0; 1326 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1327 while (BBI != BBE) { 1328 if (!BBI->use_empty()) 1329 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1330 BB->getInstList().erase(BBI++); 1331 ++NumInstrsRemoved; 1332 } 1333 return NumInstrsRemoved; 1334 } 1335 1336 /// changeToCall - Convert the specified invoke into a normal call. 1337 static void changeToCall(InvokeInst *II) { 1338 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1339 SmallVector<OperandBundleDef, 1> OpBundles; 1340 II->getOperandBundlesAsDefs(OpBundles); 1341 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1342 "", II); 1343 NewCall->takeName(II); 1344 NewCall->setCallingConv(II->getCallingConv()); 1345 NewCall->setAttributes(II->getAttributes()); 1346 NewCall->setDebugLoc(II->getDebugLoc()); 1347 II->replaceAllUsesWith(NewCall); 1348 1349 // Follow the call by a branch to the normal destination. 1350 BranchInst::Create(II->getNormalDest(), II); 1351 1352 // Update PHI nodes in the unwind destination 1353 II->getUnwindDest()->removePredecessor(II->getParent()); 1354 II->eraseFromParent(); 1355 } 1356 1357 static bool markAliveBlocks(Function &F, 1358 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1359 1360 SmallVector<BasicBlock*, 128> Worklist; 1361 BasicBlock *BB = &F.front(); 1362 Worklist.push_back(BB); 1363 Reachable.insert(BB); 1364 bool Changed = false; 1365 do { 1366 BB = Worklist.pop_back_val(); 1367 1368 // Do a quick scan of the basic block, turning any obviously unreachable 1369 // instructions into LLVM unreachable insts. The instruction combining pass 1370 // canonicalizes unreachable insts into stores to null or undef. 1371 for (Instruction &I : *BB) { 1372 // Assumptions that are known to be false are equivalent to unreachable. 1373 // Also, if the condition is undefined, then we make the choice most 1374 // beneficial to the optimizer, and choose that to also be unreachable. 1375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 1376 if (II->getIntrinsicID() == Intrinsic::assume) { 1377 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1378 changeToUnreachable(II); 1379 Changed = true; 1380 break; 1381 } 1382 } 1383 1384 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1385 // A call to the guard intrinsic bails out of the current compilation 1386 // unit if the predicate passed to it is false. If the predicate is a 1387 // constant false, then we know the guard will bail out of the current 1388 // compile unconditionally, so all code following it is dead. 1389 // 1390 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1391 // guards to treat `undef` as `false` since a guard on `undef` can 1392 // still be useful for widening. 1393 if (match(II->getArgOperand(0), m_Zero())) 1394 if (!isa<UnreachableInst>(II->getNextNode())) { 1395 changeToUnreachable(II->getNextNode()); 1396 Changed = true; 1397 break; 1398 } 1399 } 1400 } 1401 1402 if (auto *CI = dyn_cast<CallInst>(&I)) { 1403 Value *Callee = CI->getCalledValue(); 1404 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1405 changeToUnreachable(CI); 1406 Changed = true; 1407 break; 1408 } 1409 if (CI->doesNotReturn()) { 1410 // If we found a call to a no-return function, insert an unreachable 1411 // instruction after it. Make sure there isn't *already* one there 1412 // though. 1413 if (!isa<UnreachableInst>(CI->getNextNode())) { 1414 changeToUnreachable(CI->getNextNode()); 1415 Changed = true; 1416 } 1417 break; 1418 } 1419 } 1420 1421 // Store to undef and store to null are undefined and used to signal that 1422 // they should be changed to unreachable by passes that can't modify the 1423 // CFG. 1424 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1425 // Don't touch volatile stores. 1426 if (SI->isVolatile()) continue; 1427 1428 Value *Ptr = SI->getOperand(1); 1429 1430 if (isa<UndefValue>(Ptr) || 1431 (isa<ConstantPointerNull>(Ptr) && 1432 SI->getPointerAddressSpace() == 0)) { 1433 changeToUnreachable(SI); 1434 Changed = true; 1435 break; 1436 } 1437 } 1438 } 1439 1440 TerminatorInst *Terminator = BB->getTerminator(); 1441 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1442 // Turn invokes that call 'nounwind' functions into ordinary calls. 1443 Value *Callee = II->getCalledValue(); 1444 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1445 changeToUnreachable(II); 1446 Changed = true; 1447 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1448 if (II->use_empty() && II->onlyReadsMemory()) { 1449 // jump to the normal destination branch. 1450 BranchInst::Create(II->getNormalDest(), II); 1451 II->getUnwindDest()->removePredecessor(II->getParent()); 1452 II->eraseFromParent(); 1453 } else 1454 changeToCall(II); 1455 Changed = true; 1456 } 1457 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1458 // Remove catchpads which cannot be reached. 1459 struct CatchPadDenseMapInfo { 1460 static CatchPadInst *getEmptyKey() { 1461 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1462 } 1463 static CatchPadInst *getTombstoneKey() { 1464 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1465 } 1466 static unsigned getHashValue(CatchPadInst *CatchPad) { 1467 return static_cast<unsigned>(hash_combine_range( 1468 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1469 } 1470 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1471 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1472 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1473 return LHS == RHS; 1474 return LHS->isIdenticalTo(RHS); 1475 } 1476 }; 1477 1478 // Set of unique CatchPads. 1479 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1480 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1481 HandlerSet; 1482 detail::DenseSetEmpty Empty; 1483 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1484 E = CatchSwitch->handler_end(); 1485 I != E; ++I) { 1486 BasicBlock *HandlerBB = *I; 1487 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1488 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1489 CatchSwitch->removeHandler(I); 1490 --I; 1491 --E; 1492 Changed = true; 1493 } 1494 } 1495 } 1496 1497 Changed |= ConstantFoldTerminator(BB, true); 1498 for (BasicBlock *Succ : successors(BB)) 1499 if (Reachable.insert(Succ).second) 1500 Worklist.push_back(Succ); 1501 } while (!Worklist.empty()); 1502 return Changed; 1503 } 1504 1505 void llvm::removeUnwindEdge(BasicBlock *BB) { 1506 TerminatorInst *TI = BB->getTerminator(); 1507 1508 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1509 changeToCall(II); 1510 return; 1511 } 1512 1513 TerminatorInst *NewTI; 1514 BasicBlock *UnwindDest; 1515 1516 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1517 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1518 UnwindDest = CRI->getUnwindDest(); 1519 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1520 auto *NewCatchSwitch = CatchSwitchInst::Create( 1521 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1522 CatchSwitch->getName(), CatchSwitch); 1523 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1524 NewCatchSwitch->addHandler(PadBB); 1525 1526 NewTI = NewCatchSwitch; 1527 UnwindDest = CatchSwitch->getUnwindDest(); 1528 } else { 1529 llvm_unreachable("Could not find unwind successor"); 1530 } 1531 1532 NewTI->takeName(TI); 1533 NewTI->setDebugLoc(TI->getDebugLoc()); 1534 UnwindDest->removePredecessor(BB); 1535 TI->replaceAllUsesWith(NewTI); 1536 TI->eraseFromParent(); 1537 } 1538 1539 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1540 /// if they are in a dead cycle. Return true if a change was made, false 1541 /// otherwise. 1542 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1543 SmallPtrSet<BasicBlock*, 16> Reachable; 1544 bool Changed = markAliveBlocks(F, Reachable); 1545 1546 // If there are unreachable blocks in the CFG... 1547 if (Reachable.size() == F.size()) 1548 return Changed; 1549 1550 assert(Reachable.size() < F.size()); 1551 NumRemoved += F.size()-Reachable.size(); 1552 1553 // Loop over all of the basic blocks that are not reachable, dropping all of 1554 // their internal references... 1555 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1556 if (Reachable.count(&*BB)) 1557 continue; 1558 1559 for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE; 1560 ++SI) 1561 if (Reachable.count(*SI)) 1562 (*SI)->removePredecessor(&*BB); 1563 if (LVI) 1564 LVI->eraseBlock(&*BB); 1565 BB->dropAllReferences(); 1566 } 1567 1568 for (Function::iterator I = ++F.begin(); I != F.end();) 1569 if (!Reachable.count(&*I)) 1570 I = F.getBasicBlockList().erase(I); 1571 else 1572 ++I; 1573 1574 return true; 1575 } 1576 1577 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1578 ArrayRef<unsigned> KnownIDs) { 1579 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1580 K->dropUnknownNonDebugMetadata(KnownIDs); 1581 K->getAllMetadataOtherThanDebugLoc(Metadata); 1582 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1583 unsigned Kind = Metadata[i].first; 1584 MDNode *JMD = J->getMetadata(Kind); 1585 MDNode *KMD = Metadata[i].second; 1586 1587 switch (Kind) { 1588 default: 1589 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1590 break; 1591 case LLVMContext::MD_dbg: 1592 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1593 case LLVMContext::MD_tbaa: 1594 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1595 break; 1596 case LLVMContext::MD_alias_scope: 1597 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1598 break; 1599 case LLVMContext::MD_noalias: 1600 case LLVMContext::MD_mem_parallel_loop_access: 1601 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1602 break; 1603 case LLVMContext::MD_range: 1604 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1605 break; 1606 case LLVMContext::MD_fpmath: 1607 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1608 break; 1609 case LLVMContext::MD_invariant_load: 1610 // Only set the !invariant.load if it is present in both instructions. 1611 K->setMetadata(Kind, JMD); 1612 break; 1613 case LLVMContext::MD_nonnull: 1614 // Only set the !nonnull if it is present in both instructions. 1615 K->setMetadata(Kind, JMD); 1616 break; 1617 case LLVMContext::MD_invariant_group: 1618 // Preserve !invariant.group in K. 1619 break; 1620 case LLVMContext::MD_align: 1621 K->setMetadata(Kind, 1622 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1623 break; 1624 case LLVMContext::MD_dereferenceable: 1625 case LLVMContext::MD_dereferenceable_or_null: 1626 K->setMetadata(Kind, 1627 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1628 break; 1629 } 1630 } 1631 // Set !invariant.group from J if J has it. If both instructions have it 1632 // then we will just pick it from J - even when they are different. 1633 // Also make sure that K is load or store - f.e. combining bitcast with load 1634 // could produce bitcast with invariant.group metadata, which is invalid. 1635 // FIXME: we should try to preserve both invariant.group md if they are 1636 // different, but right now instruction can only have one invariant.group. 1637 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1638 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1639 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1640 } 1641 1642 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1643 DominatorTree &DT, 1644 const BasicBlockEdge &Root) { 1645 assert(From->getType() == To->getType()); 1646 1647 unsigned Count = 0; 1648 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1649 UI != UE; ) { 1650 Use &U = *UI++; 1651 if (DT.dominates(Root, U)) { 1652 U.set(To); 1653 DEBUG(dbgs() << "Replace dominated use of '" 1654 << From->getName() << "' as " 1655 << *To << " in " << *U << "\n"); 1656 ++Count; 1657 } 1658 } 1659 return Count; 1660 } 1661 1662 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1663 DominatorTree &DT, 1664 const BasicBlock *BB) { 1665 assert(From->getType() == To->getType()); 1666 1667 unsigned Count = 0; 1668 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1669 UI != UE;) { 1670 Use &U = *UI++; 1671 auto *I = cast<Instruction>(U.getUser()); 1672 if (DT.properlyDominates(BB, I->getParent())) { 1673 U.set(To); 1674 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1675 << *To << " in " << *U << "\n"); 1676 ++Count; 1677 } 1678 } 1679 return Count; 1680 } 1681 1682 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1683 // Check if the function is specifically marked as a gc leaf function. 1684 if (CS.hasFnAttr("gc-leaf-function")) 1685 return true; 1686 if (const Function *F = CS.getCalledFunction()) { 1687 if (F->hasFnAttribute("gc-leaf-function")) 1688 return true; 1689 1690 if (auto IID = F->getIntrinsicID()) 1691 // Most LLVM intrinsics do not take safepoints. 1692 return IID != Intrinsic::experimental_gc_statepoint && 1693 IID != Intrinsic::experimental_deoptimize; 1694 } 1695 1696 return false; 1697 } 1698 1699 /// A potential constituent of a bitreverse or bswap expression. See 1700 /// collectBitParts for a fuller explanation. 1701 struct BitPart { 1702 BitPart(Value *P, unsigned BW) : Provider(P) { 1703 Provenance.resize(BW); 1704 } 1705 1706 /// The Value that this is a bitreverse/bswap of. 1707 Value *Provider; 1708 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1709 /// in Provider becomes bit B in the result of this expression. 1710 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1711 1712 enum { Unset = -1 }; 1713 }; 1714 1715 /// Analyze the specified subexpression and see if it is capable of providing 1716 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1717 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1718 /// the output of the expression came from a corresponding bit in some other 1719 /// value. This function is recursive, and the end result is a mapping of 1720 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1721 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1722 /// 1723 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1724 /// that the expression deposits the low byte of %X into the high byte of the 1725 /// result and that all other bits are zero. This expression is accepted and a 1726 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1727 /// [0-7]. 1728 /// 1729 /// To avoid revisiting values, the BitPart results are memoized into the 1730 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1731 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1732 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1733 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1734 /// type instead to provide the same functionality. 1735 /// 1736 /// Because we pass around references into \c BPS, we must use a container that 1737 /// does not invalidate internal references (std::map instead of DenseMap). 1738 /// 1739 static const Optional<BitPart> & 1740 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1741 std::map<Value *, Optional<BitPart>> &BPS) { 1742 auto I = BPS.find(V); 1743 if (I != BPS.end()) 1744 return I->second; 1745 1746 auto &Result = BPS[V] = None; 1747 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1748 1749 if (Instruction *I = dyn_cast<Instruction>(V)) { 1750 // If this is an or instruction, it may be an inner node of the bswap. 1751 if (I->getOpcode() == Instruction::Or) { 1752 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1753 MatchBitReversals, BPS); 1754 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1755 MatchBitReversals, BPS); 1756 if (!A || !B) 1757 return Result; 1758 1759 // Try and merge the two together. 1760 if (!A->Provider || A->Provider != B->Provider) 1761 return Result; 1762 1763 Result = BitPart(A->Provider, BitWidth); 1764 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1765 if (A->Provenance[i] != BitPart::Unset && 1766 B->Provenance[i] != BitPart::Unset && 1767 A->Provenance[i] != B->Provenance[i]) 1768 return Result = None; 1769 1770 if (A->Provenance[i] == BitPart::Unset) 1771 Result->Provenance[i] = B->Provenance[i]; 1772 else 1773 Result->Provenance[i] = A->Provenance[i]; 1774 } 1775 1776 return Result; 1777 } 1778 1779 // If this is a logical shift by a constant, recurse then shift the result. 1780 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1781 unsigned BitShift = 1782 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1783 // Ensure the shift amount is defined. 1784 if (BitShift > BitWidth) 1785 return Result; 1786 1787 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1788 MatchBitReversals, BPS); 1789 if (!Res) 1790 return Result; 1791 Result = Res; 1792 1793 // Perform the "shift" on BitProvenance. 1794 auto &P = Result->Provenance; 1795 if (I->getOpcode() == Instruction::Shl) { 1796 P.erase(std::prev(P.end(), BitShift), P.end()); 1797 P.insert(P.begin(), BitShift, BitPart::Unset); 1798 } else { 1799 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1800 P.insert(P.end(), BitShift, BitPart::Unset); 1801 } 1802 1803 return Result; 1804 } 1805 1806 // If this is a logical 'and' with a mask that clears bits, recurse then 1807 // unset the appropriate bits. 1808 if (I->getOpcode() == Instruction::And && 1809 isa<ConstantInt>(I->getOperand(1))) { 1810 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1811 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1812 1813 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1814 // early exit. 1815 unsigned NumMaskedBits = AndMask.countPopulation(); 1816 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1817 return Result; 1818 1819 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1820 MatchBitReversals, BPS); 1821 if (!Res) 1822 return Result; 1823 Result = Res; 1824 1825 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1826 // If the AndMask is zero for this bit, clear the bit. 1827 if ((AndMask & Bit) == 0) 1828 Result->Provenance[i] = BitPart::Unset; 1829 return Result; 1830 } 1831 1832 // If this is a zext instruction zero extend the result. 1833 if (I->getOpcode() == Instruction::ZExt) { 1834 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1835 MatchBitReversals, BPS); 1836 if (!Res) 1837 return Result; 1838 1839 Result = BitPart(Res->Provider, BitWidth); 1840 auto NarrowBitWidth = 1841 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1842 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1843 Result->Provenance[i] = Res->Provenance[i]; 1844 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1845 Result->Provenance[i] = BitPart::Unset; 1846 return Result; 1847 } 1848 } 1849 1850 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1851 // the input value to the bswap/bitreverse. 1852 Result = BitPart(V, BitWidth); 1853 for (unsigned i = 0; i < BitWidth; ++i) 1854 Result->Provenance[i] = i; 1855 return Result; 1856 } 1857 1858 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1859 unsigned BitWidth) { 1860 if (From % 8 != To % 8) 1861 return false; 1862 // Convert from bit indices to byte indices and check for a byte reversal. 1863 From >>= 3; 1864 To >>= 3; 1865 BitWidth >>= 3; 1866 return From == BitWidth - To - 1; 1867 } 1868 1869 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1870 unsigned BitWidth) { 1871 return From == BitWidth - To - 1; 1872 } 1873 1874 /// Given an OR instruction, check to see if this is a bitreverse 1875 /// idiom. If so, insert the new intrinsic and return true. 1876 bool llvm::recognizeBSwapOrBitReverseIdiom( 1877 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 1878 SmallVectorImpl<Instruction *> &InsertedInsts) { 1879 if (Operator::getOpcode(I) != Instruction::Or) 1880 return false; 1881 if (!MatchBSwaps && !MatchBitReversals) 1882 return false; 1883 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 1884 if (!ITy || ITy->getBitWidth() > 128) 1885 return false; // Can't do vectors or integers > 128 bits. 1886 unsigned BW = ITy->getBitWidth(); 1887 1888 unsigned DemandedBW = BW; 1889 IntegerType *DemandedTy = ITy; 1890 if (I->hasOneUse()) { 1891 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 1892 DemandedTy = cast<IntegerType>(Trunc->getType()); 1893 DemandedBW = DemandedTy->getBitWidth(); 1894 } 1895 } 1896 1897 // Try to find all the pieces corresponding to the bswap. 1898 std::map<Value *, Optional<BitPart>> BPS; 1899 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 1900 if (!Res) 1901 return false; 1902 auto &BitProvenance = Res->Provenance; 1903 1904 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 1905 // only byteswap values with an even number of bytes. 1906 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 1907 for (unsigned i = 0; i < DemandedBW; ++i) { 1908 OKForBSwap &= 1909 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 1910 OKForBitReverse &= 1911 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 1912 } 1913 1914 Intrinsic::ID Intrin; 1915 if (OKForBSwap && MatchBSwaps) 1916 Intrin = Intrinsic::bswap; 1917 else if (OKForBitReverse && MatchBitReversals) 1918 Intrin = Intrinsic::bitreverse; 1919 else 1920 return false; 1921 1922 if (ITy != DemandedTy) { 1923 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 1924 Value *Provider = Res->Provider; 1925 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 1926 // We may need to truncate the provider. 1927 if (DemandedTy != ProviderTy) { 1928 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 1929 "trunc", I); 1930 InsertedInsts.push_back(Trunc); 1931 Provider = Trunc; 1932 } 1933 auto *CI = CallInst::Create(F, Provider, "rev", I); 1934 InsertedInsts.push_back(CI); 1935 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 1936 InsertedInsts.push_back(ExtInst); 1937 return true; 1938 } 1939 1940 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 1941 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 1942 return true; 1943 } 1944 1945 // CodeGen has special handling for some string functions that may replace 1946 // them with target-specific intrinsics. Since that'd skip our interceptors 1947 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 1948 // we mark affected calls as NoBuiltin, which will disable optimization 1949 // in CodeGen. 1950 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI, 1951 const TargetLibraryInfo *TLI) { 1952 Function *F = CI->getCalledFunction(); 1953 LibFunc::Func Func; 1954 if (!F || F->hasLocalLinkage() || !F->hasName() || 1955 !TLI->getLibFunc(F->getName(), Func)) 1956 return; 1957 switch (Func) { 1958 default: break; 1959 case LibFunc::memcmp: 1960 case LibFunc::memchr: 1961 case LibFunc::strcpy: 1962 case LibFunc::stpcpy: 1963 case LibFunc::strcmp: 1964 case LibFunc::strlen: 1965 case LibFunc::strnlen: 1966 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin); 1967 break; 1968 } 1969 } 1970