xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision d346a377375a4780c95f4d30150bdeaed1a35b65)
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/ValueHandle.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 using namespace llvm;
51 using namespace llvm::PatternMatch;
52 
53 #define DEBUG_TYPE "local"
54 
55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
56 
57 //===----------------------------------------------------------------------===//
58 //  Local constant propagation.
59 //
60 
61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
62 /// constant value, convert it into an unconditional branch to the constant
63 /// destination.  This is a nontrivial operation because the successors of this
64 /// basic block must have their PHI nodes updated.
65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
66 /// conditions and indirectbr addresses this might make dead if
67 /// DeleteDeadConditions is true.
68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
69                                   const TargetLibraryInfo *TLI) {
70   TerminatorInst *T = BB->getTerminator();
71   IRBuilder<> Builder(T);
72 
73   // Branch - See if we are conditional jumping on constant
74   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
75     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
76     BasicBlock *Dest1 = BI->getSuccessor(0);
77     BasicBlock *Dest2 = BI->getSuccessor(1);
78 
79     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
80       // Are we branching on constant?
81       // YES.  Change to unconditional branch...
82       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
83       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
84 
85       //cerr << "Function: " << T->getParent()->getParent()
86       //     << "\nRemoving branch from " << T->getParent()
87       //     << "\n\nTo: " << OldDest << endl;
88 
89       // Let the basic block know that we are letting go of it.  Based on this,
90       // it will adjust it's PHI nodes.
91       OldDest->removePredecessor(BB);
92 
93       // Replace the conditional branch with an unconditional one.
94       Builder.CreateBr(Destination);
95       BI->eraseFromParent();
96       return true;
97     }
98 
99     if (Dest2 == Dest1) {       // Conditional branch to same location?
100       // This branch matches something like this:
101       //     br bool %cond, label %Dest, label %Dest
102       // and changes it into:  br label %Dest
103 
104       // Let the basic block know that we are letting go of one copy of it.
105       assert(BI->getParent() && "Terminator not inserted in block!");
106       Dest1->removePredecessor(BI->getParent());
107 
108       // Replace the conditional branch with an unconditional one.
109       Builder.CreateBr(Dest1);
110       Value *Cond = BI->getCondition();
111       BI->eraseFromParent();
112       if (DeleteDeadConditions)
113         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
114       return true;
115     }
116     return false;
117   }
118 
119   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
120     // If we are switching on a constant, we can convert the switch to an
121     // unconditional branch.
122     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
123     BasicBlock *DefaultDest = SI->getDefaultDest();
124     BasicBlock *TheOnlyDest = DefaultDest;
125 
126     // If the default is unreachable, ignore it when searching for TheOnlyDest.
127     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
128         SI->getNumCases() > 0) {
129       TheOnlyDest = SI->case_begin().getCaseSuccessor();
130     }
131 
132     // Figure out which case it goes to.
133     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
134          i != e; ++i) {
135       // Found case matching a constant operand?
136       if (i.getCaseValue() == CI) {
137         TheOnlyDest = i.getCaseSuccessor();
138         break;
139       }
140 
141       // Check to see if this branch is going to the same place as the default
142       // dest.  If so, eliminate it as an explicit compare.
143       if (i.getCaseSuccessor() == DefaultDest) {
144         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
145         unsigned NCases = SI->getNumCases();
146         // Fold the case metadata into the default if there will be any branches
147         // left, unless the metadata doesn't match the switch.
148         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
149           // Collect branch weights into a vector.
150           SmallVector<uint32_t, 8> Weights;
151           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
152                ++MD_i) {
153             ConstantInt *CI =
154                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
155             assert(CI);
156             Weights.push_back(CI->getValue().getZExtValue());
157           }
158           // Merge weight of this case to the default weight.
159           unsigned idx = i.getCaseIndex();
160           Weights[0] += Weights[idx+1];
161           // Remove weight for this case.
162           std::swap(Weights[idx+1], Weights.back());
163           Weights.pop_back();
164           SI->setMetadata(LLVMContext::MD_prof,
165                           MDBuilder(BB->getContext()).
166                           createBranchWeights(Weights));
167         }
168         // Remove this entry.
169         DefaultDest->removePredecessor(SI->getParent());
170         SI->removeCase(i);
171         --i; --e;
172         continue;
173       }
174 
175       // Otherwise, check to see if the switch only branches to one destination.
176       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
177       // destinations.
178       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
179     }
180 
181     if (CI && !TheOnlyDest) {
182       // Branching on a constant, but not any of the cases, go to the default
183       // successor.
184       TheOnlyDest = SI->getDefaultDest();
185     }
186 
187     // If we found a single destination that we can fold the switch into, do so
188     // now.
189     if (TheOnlyDest) {
190       // Insert the new branch.
191       Builder.CreateBr(TheOnlyDest);
192       BasicBlock *BB = SI->getParent();
193 
194       // Remove entries from PHI nodes which we no longer branch to...
195       for (BasicBlock *Succ : SI->successors()) {
196         // Found case matching a constant operand?
197         if (Succ == TheOnlyDest)
198           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
199         else
200           Succ->removePredecessor(BB);
201       }
202 
203       // Delete the old switch.
204       Value *Cond = SI->getCondition();
205       SI->eraseFromParent();
206       if (DeleteDeadConditions)
207         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
208       return true;
209     }
210 
211     if (SI->getNumCases() == 1) {
212       // Otherwise, we can fold this switch into a conditional branch
213       // instruction if it has only one non-default destination.
214       SwitchInst::CaseIt FirstCase = SI->case_begin();
215       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
216           FirstCase.getCaseValue(), "cond");
217 
218       // Insert the new branch.
219       BranchInst *NewBr = Builder.CreateCondBr(Cond,
220                                                FirstCase.getCaseSuccessor(),
221                                                SI->getDefaultDest());
222       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
223       if (MD && MD->getNumOperands() == 3) {
224         ConstantInt *SICase =
225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
226         ConstantInt *SIDef =
227             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
228         assert(SICase && SIDef);
229         // The TrueWeight should be the weight for the single case of SI.
230         NewBr->setMetadata(LLVMContext::MD_prof,
231                         MDBuilder(BB->getContext()).
232                         createBranchWeights(SICase->getValue().getZExtValue(),
233                                             SIDef->getValue().getZExtValue()));
234       }
235 
236       // Update make.implicit metadata to the newly-created conditional branch.
237       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
238       if (MakeImplicitMD)
239         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
240 
241       // Delete the old switch.
242       SI->eraseFromParent();
243       return true;
244     }
245     return false;
246   }
247 
248   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
249     // indirectbr blockaddress(@F, @BB) -> br label @BB
250     if (BlockAddress *BA =
251           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
252       BasicBlock *TheOnlyDest = BA->getBasicBlock();
253       // Insert the new branch.
254       Builder.CreateBr(TheOnlyDest);
255 
256       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
257         if (IBI->getDestination(i) == TheOnlyDest)
258           TheOnlyDest = nullptr;
259         else
260           IBI->getDestination(i)->removePredecessor(IBI->getParent());
261       }
262       Value *Address = IBI->getAddress();
263       IBI->eraseFromParent();
264       if (DeleteDeadConditions)
265         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
266 
267       // If we didn't find our destination in the IBI successor list, then we
268       // have undefined behavior.  Replace the unconditional branch with an
269       // 'unreachable' instruction.
270       if (TheOnlyDest) {
271         BB->getTerminator()->eraseFromParent();
272         new UnreachableInst(BB->getContext(), BB);
273       }
274 
275       return true;
276     }
277   }
278 
279   return false;
280 }
281 
282 
283 //===----------------------------------------------------------------------===//
284 //  Local dead code elimination.
285 //
286 
287 /// isInstructionTriviallyDead - Return true if the result produced by the
288 /// instruction is not used, and the instruction has no side effects.
289 ///
290 bool llvm::isInstructionTriviallyDead(Instruction *I,
291                                       const TargetLibraryInfo *TLI) {
292   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
293 
294   // We don't want the landingpad-like instructions removed by anything this
295   // general.
296   if (I->isEHPad())
297     return false;
298 
299   // We don't want debug info removed by anything this general, unless
300   // debug info is empty.
301   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
302     if (DDI->getAddress())
303       return false;
304     return true;
305   }
306   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
307     if (DVI->getValue())
308       return false;
309     return true;
310   }
311 
312   if (!I->mayHaveSideEffects()) return true;
313 
314   // Special case intrinsics that "may have side effects" but can be deleted
315   // when dead.
316   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
317     // Safe to delete llvm.stacksave if dead.
318     if (II->getIntrinsicID() == Intrinsic::stacksave)
319       return true;
320 
321     // Lifetime intrinsics are dead when their right-hand is undef.
322     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
323         II->getIntrinsicID() == Intrinsic::lifetime_end)
324       return isa<UndefValue>(II->getArgOperand(1));
325 
326     // Assumptions are dead if their condition is trivially true.  Guards on
327     // true are operationally no-ops.  In the future we can consider more
328     // sophisticated tradeoffs for guards considering potential for check
329     // widening, but for now we keep things simple.
330     if (II->getIntrinsicID() == Intrinsic::assume ||
331         II->getIntrinsicID() == Intrinsic::experimental_guard) {
332       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
333         return !Cond->isZero();
334 
335       return false;
336     }
337   }
338 
339   if (isAllocLikeFn(I, TLI)) return true;
340 
341   if (CallInst *CI = isFreeCall(I, TLI))
342     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
343       return C->isNullValue() || isa<UndefValue>(C);
344 
345   return false;
346 }
347 
348 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
349 /// trivially dead instruction, delete it.  If that makes any of its operands
350 /// trivially dead, delete them too, recursively.  Return true if any
351 /// instructions were deleted.
352 bool
353 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
354                                                  const TargetLibraryInfo *TLI) {
355   Instruction *I = dyn_cast<Instruction>(V);
356   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
357     return false;
358 
359   SmallVector<Instruction*, 16> DeadInsts;
360   DeadInsts.push_back(I);
361 
362   do {
363     I = DeadInsts.pop_back_val();
364 
365     // Null out all of the instruction's operands to see if any operand becomes
366     // dead as we go.
367     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
368       Value *OpV = I->getOperand(i);
369       I->setOperand(i, nullptr);
370 
371       if (!OpV->use_empty()) continue;
372 
373       // If the operand is an instruction that became dead as we nulled out the
374       // operand, and if it is 'trivially' dead, delete it in a future loop
375       // iteration.
376       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
377         if (isInstructionTriviallyDead(OpI, TLI))
378           DeadInsts.push_back(OpI);
379     }
380 
381     I->eraseFromParent();
382   } while (!DeadInsts.empty());
383 
384   return true;
385 }
386 
387 /// areAllUsesEqual - Check whether the uses of a value are all the same.
388 /// This is similar to Instruction::hasOneUse() except this will also return
389 /// true when there are no uses or multiple uses that all refer to the same
390 /// value.
391 static bool areAllUsesEqual(Instruction *I) {
392   Value::user_iterator UI = I->user_begin();
393   Value::user_iterator UE = I->user_end();
394   if (UI == UE)
395     return true;
396 
397   User *TheUse = *UI;
398   for (++UI; UI != UE; ++UI) {
399     if (*UI != TheUse)
400       return false;
401   }
402   return true;
403 }
404 
405 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
406 /// dead PHI node, due to being a def-use chain of single-use nodes that
407 /// either forms a cycle or is terminated by a trivially dead instruction,
408 /// delete it.  If that makes any of its operands trivially dead, delete them
409 /// too, recursively.  Return true if a change was made.
410 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
411                                         const TargetLibraryInfo *TLI) {
412   SmallPtrSet<Instruction*, 4> Visited;
413   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
414        I = cast<Instruction>(*I->user_begin())) {
415     if (I->use_empty())
416       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
417 
418     // If we find an instruction more than once, we're on a cycle that
419     // won't prove fruitful.
420     if (!Visited.insert(I).second) {
421       // Break the cycle and delete the instruction and its operands.
422       I->replaceAllUsesWith(UndefValue::get(I->getType()));
423       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
424       return true;
425     }
426   }
427   return false;
428 }
429 
430 static bool
431 simplifyAndDCEInstruction(Instruction *I,
432                           SmallSetVector<Instruction *, 16> &WorkList,
433                           const DataLayout &DL,
434                           const TargetLibraryInfo *TLI) {
435   if (isInstructionTriviallyDead(I, TLI)) {
436     // Null out all of the instruction's operands to see if any operand becomes
437     // dead as we go.
438     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
439       Value *OpV = I->getOperand(i);
440       I->setOperand(i, nullptr);
441 
442       if (!OpV->use_empty() || I == OpV)
443         continue;
444 
445       // If the operand is an instruction that became dead as we nulled out the
446       // operand, and if it is 'trivially' dead, delete it in a future loop
447       // iteration.
448       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
449         if (isInstructionTriviallyDead(OpI, TLI))
450           WorkList.insert(OpI);
451     }
452 
453     I->eraseFromParent();
454 
455     return true;
456   }
457 
458   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
459     // Add the users to the worklist. CAREFUL: an instruction can use itself,
460     // in the case of a phi node.
461     for (User *U : I->users()) {
462       if (U != I) {
463         WorkList.insert(cast<Instruction>(U));
464       }
465     }
466 
467     // Replace the instruction with its simplified value.
468     bool Changed = false;
469     if (!I->use_empty()) {
470       I->replaceAllUsesWith(SimpleV);
471       Changed = true;
472     }
473     if (isInstructionTriviallyDead(I, TLI)) {
474       I->eraseFromParent();
475       Changed = true;
476     }
477     return Changed;
478   }
479   return false;
480 }
481 
482 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
483 /// simplify any instructions in it and recursively delete dead instructions.
484 ///
485 /// This returns true if it changed the code, note that it can delete
486 /// instructions in other blocks as well in this block.
487 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
488                                        const TargetLibraryInfo *TLI) {
489   bool MadeChange = false;
490   const DataLayout &DL = BB->getModule()->getDataLayout();
491 
492 #ifndef NDEBUG
493   // In debug builds, ensure that the terminator of the block is never replaced
494   // or deleted by these simplifications. The idea of simplification is that it
495   // cannot introduce new instructions, and there is no way to replace the
496   // terminator of a block without introducing a new instruction.
497   AssertingVH<Instruction> TerminatorVH(&BB->back());
498 #endif
499 
500   SmallSetVector<Instruction *, 16> WorkList;
501   // Iterate over the original function, only adding insts to the worklist
502   // if they actually need to be revisited. This avoids having to pre-init
503   // the worklist with the entire function's worth of instructions.
504   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
505        BI != E;) {
506     assert(!BI->isTerminator());
507     Instruction *I = &*BI;
508     ++BI;
509 
510     // We're visiting this instruction now, so make sure it's not in the
511     // worklist from an earlier visit.
512     if (!WorkList.count(I))
513       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
514   }
515 
516   while (!WorkList.empty()) {
517     Instruction *I = WorkList.pop_back_val();
518     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
519   }
520   return MadeChange;
521 }
522 
523 //===----------------------------------------------------------------------===//
524 //  Control Flow Graph Restructuring.
525 //
526 
527 
528 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
529 /// method is called when we're about to delete Pred as a predecessor of BB.  If
530 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
531 ///
532 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
533 /// nodes that collapse into identity values.  For example, if we have:
534 ///   x = phi(1, 0, 0, 0)
535 ///   y = and x, z
536 ///
537 /// .. and delete the predecessor corresponding to the '1', this will attempt to
538 /// recursively fold the and to 0.
539 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
540   // This only adjusts blocks with PHI nodes.
541   if (!isa<PHINode>(BB->begin()))
542     return;
543 
544   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
545   // them down.  This will leave us with single entry phi nodes and other phis
546   // that can be removed.
547   BB->removePredecessor(Pred, true);
548 
549   WeakVH PhiIt = &BB->front();
550   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
551     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
552     Value *OldPhiIt = PhiIt;
553 
554     if (!recursivelySimplifyInstruction(PN))
555       continue;
556 
557     // If recursive simplification ended up deleting the next PHI node we would
558     // iterate to, then our iterator is invalid, restart scanning from the top
559     // of the block.
560     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
561   }
562 }
563 
564 
565 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
566 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
567 /// between them, moving the instructions in the predecessor into DestBB and
568 /// deleting the predecessor block.
569 ///
570 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
571   // If BB has single-entry PHI nodes, fold them.
572   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
573     Value *NewVal = PN->getIncomingValue(0);
574     // Replace self referencing PHI with undef, it must be dead.
575     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
576     PN->replaceAllUsesWith(NewVal);
577     PN->eraseFromParent();
578   }
579 
580   BasicBlock *PredBB = DestBB->getSinglePredecessor();
581   assert(PredBB && "Block doesn't have a single predecessor!");
582 
583   // Zap anything that took the address of DestBB.  Not doing this will give the
584   // address an invalid value.
585   if (DestBB->hasAddressTaken()) {
586     BlockAddress *BA = BlockAddress::get(DestBB);
587     Constant *Replacement =
588       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
589     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
590                                                      BA->getType()));
591     BA->destroyConstant();
592   }
593 
594   // Anything that branched to PredBB now branches to DestBB.
595   PredBB->replaceAllUsesWith(DestBB);
596 
597   // Splice all the instructions from PredBB to DestBB.
598   PredBB->getTerminator()->eraseFromParent();
599   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
600 
601   // If the PredBB is the entry block of the function, move DestBB up to
602   // become the entry block after we erase PredBB.
603   if (PredBB == &DestBB->getParent()->getEntryBlock())
604     DestBB->moveAfter(PredBB);
605 
606   if (DT) {
607     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
608     DT->changeImmediateDominator(DestBB, PredBBIDom);
609     DT->eraseNode(PredBB);
610   }
611   // Nuke BB.
612   PredBB->eraseFromParent();
613 }
614 
615 /// CanMergeValues - Return true if we can choose one of these values to use
616 /// in place of the other. Note that we will always choose the non-undef
617 /// value to keep.
618 static bool CanMergeValues(Value *First, Value *Second) {
619   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
620 }
621 
622 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
623 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
624 ///
625 /// Assumption: Succ is the single successor for BB.
626 ///
627 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
628   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
629 
630   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
631         << Succ->getName() << "\n");
632   // Shortcut, if there is only a single predecessor it must be BB and merging
633   // is always safe
634   if (Succ->getSinglePredecessor()) return true;
635 
636   // Make a list of the predecessors of BB
637   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
638 
639   // Look at all the phi nodes in Succ, to see if they present a conflict when
640   // merging these blocks
641   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
642     PHINode *PN = cast<PHINode>(I);
643 
644     // If the incoming value from BB is again a PHINode in
645     // BB which has the same incoming value for *PI as PN does, we can
646     // merge the phi nodes and then the blocks can still be merged
647     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
648     if (BBPN && BBPN->getParent() == BB) {
649       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
650         BasicBlock *IBB = PN->getIncomingBlock(PI);
651         if (BBPreds.count(IBB) &&
652             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
653                             PN->getIncomingValue(PI))) {
654           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
655                 << Succ->getName() << " is conflicting with "
656                 << BBPN->getName() << " with regard to common predecessor "
657                 << IBB->getName() << "\n");
658           return false;
659         }
660       }
661     } else {
662       Value* Val = PN->getIncomingValueForBlock(BB);
663       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
664         // See if the incoming value for the common predecessor is equal to the
665         // one for BB, in which case this phi node will not prevent the merging
666         // of the block.
667         BasicBlock *IBB = PN->getIncomingBlock(PI);
668         if (BBPreds.count(IBB) &&
669             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
670           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
671                 << Succ->getName() << " is conflicting with regard to common "
672                 << "predecessor " << IBB->getName() << "\n");
673           return false;
674         }
675       }
676     }
677   }
678 
679   return true;
680 }
681 
682 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
683 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
684 
685 /// \brief Determines the value to use as the phi node input for a block.
686 ///
687 /// Select between \p OldVal any value that we know flows from \p BB
688 /// to a particular phi on the basis of which one (if either) is not
689 /// undef. Update IncomingValues based on the selected value.
690 ///
691 /// \param OldVal The value we are considering selecting.
692 /// \param BB The block that the value flows in from.
693 /// \param IncomingValues A map from block-to-value for other phi inputs
694 /// that we have examined.
695 ///
696 /// \returns the selected value.
697 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
698                                           IncomingValueMap &IncomingValues) {
699   if (!isa<UndefValue>(OldVal)) {
700     assert((!IncomingValues.count(BB) ||
701             IncomingValues.find(BB)->second == OldVal) &&
702            "Expected OldVal to match incoming value from BB!");
703 
704     IncomingValues.insert(std::make_pair(BB, OldVal));
705     return OldVal;
706   }
707 
708   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
709   if (It != IncomingValues.end()) return It->second;
710 
711   return OldVal;
712 }
713 
714 /// \brief Create a map from block to value for the operands of a
715 /// given phi.
716 ///
717 /// Create a map from block to value for each non-undef value flowing
718 /// into \p PN.
719 ///
720 /// \param PN The phi we are collecting the map for.
721 /// \param IncomingValues [out] The map from block to value for this phi.
722 static void gatherIncomingValuesToPhi(PHINode *PN,
723                                       IncomingValueMap &IncomingValues) {
724   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
725     BasicBlock *BB = PN->getIncomingBlock(i);
726     Value *V = PN->getIncomingValue(i);
727 
728     if (!isa<UndefValue>(V))
729       IncomingValues.insert(std::make_pair(BB, V));
730   }
731 }
732 
733 /// \brief Replace the incoming undef values to a phi with the values
734 /// from a block-to-value map.
735 ///
736 /// \param PN The phi we are replacing the undefs in.
737 /// \param IncomingValues A map from block to value.
738 static void replaceUndefValuesInPhi(PHINode *PN,
739                                     const IncomingValueMap &IncomingValues) {
740   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
741     Value *V = PN->getIncomingValue(i);
742 
743     if (!isa<UndefValue>(V)) continue;
744 
745     BasicBlock *BB = PN->getIncomingBlock(i);
746     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
747     if (It == IncomingValues.end()) continue;
748 
749     PN->setIncomingValue(i, It->second);
750   }
751 }
752 
753 /// \brief Replace a value flowing from a block to a phi with
754 /// potentially multiple instances of that value flowing from the
755 /// block's predecessors to the phi.
756 ///
757 /// \param BB The block with the value flowing into the phi.
758 /// \param BBPreds The predecessors of BB.
759 /// \param PN The phi that we are updating.
760 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
761                                                 const PredBlockVector &BBPreds,
762                                                 PHINode *PN) {
763   Value *OldVal = PN->removeIncomingValue(BB, false);
764   assert(OldVal && "No entry in PHI for Pred BB!");
765 
766   IncomingValueMap IncomingValues;
767 
768   // We are merging two blocks - BB, and the block containing PN - and
769   // as a result we need to redirect edges from the predecessors of BB
770   // to go to the block containing PN, and update PN
771   // accordingly. Since we allow merging blocks in the case where the
772   // predecessor and successor blocks both share some predecessors,
773   // and where some of those common predecessors might have undef
774   // values flowing into PN, we want to rewrite those values to be
775   // consistent with the non-undef values.
776 
777   gatherIncomingValuesToPhi(PN, IncomingValues);
778 
779   // If this incoming value is one of the PHI nodes in BB, the new entries
780   // in the PHI node are the entries from the old PHI.
781   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
782     PHINode *OldValPN = cast<PHINode>(OldVal);
783     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
784       // Note that, since we are merging phi nodes and BB and Succ might
785       // have common predecessors, we could end up with a phi node with
786       // identical incoming branches. This will be cleaned up later (and
787       // will trigger asserts if we try to clean it up now, without also
788       // simplifying the corresponding conditional branch).
789       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
790       Value *PredVal = OldValPN->getIncomingValue(i);
791       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
792                                                     IncomingValues);
793 
794       // And add a new incoming value for this predecessor for the
795       // newly retargeted branch.
796       PN->addIncoming(Selected, PredBB);
797     }
798   } else {
799     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
800       // Update existing incoming values in PN for this
801       // predecessor of BB.
802       BasicBlock *PredBB = BBPreds[i];
803       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
804                                                     IncomingValues);
805 
806       // And add a new incoming value for this predecessor for the
807       // newly retargeted branch.
808       PN->addIncoming(Selected, PredBB);
809     }
810   }
811 
812   replaceUndefValuesInPhi(PN, IncomingValues);
813 }
814 
815 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
816 /// unconditional branch, and contains no instructions other than PHI nodes,
817 /// potential side-effect free intrinsics and the branch.  If possible,
818 /// eliminate BB by rewriting all the predecessors to branch to the successor
819 /// block and return true.  If we can't transform, return false.
820 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
821   assert(BB != &BB->getParent()->getEntryBlock() &&
822          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
823 
824   // We can't eliminate infinite loops.
825   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
826   if (BB == Succ) return false;
827 
828   // Check to see if merging these blocks would cause conflicts for any of the
829   // phi nodes in BB or Succ. If not, we can safely merge.
830   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
831 
832   // Check for cases where Succ has multiple predecessors and a PHI node in BB
833   // has uses which will not disappear when the PHI nodes are merged.  It is
834   // possible to handle such cases, but difficult: it requires checking whether
835   // BB dominates Succ, which is non-trivial to calculate in the case where
836   // Succ has multiple predecessors.  Also, it requires checking whether
837   // constructing the necessary self-referential PHI node doesn't introduce any
838   // conflicts; this isn't too difficult, but the previous code for doing this
839   // was incorrect.
840   //
841   // Note that if this check finds a live use, BB dominates Succ, so BB is
842   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
843   // folding the branch isn't profitable in that case anyway.
844   if (!Succ->getSinglePredecessor()) {
845     BasicBlock::iterator BBI = BB->begin();
846     while (isa<PHINode>(*BBI)) {
847       for (Use &U : BBI->uses()) {
848         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
849           if (PN->getIncomingBlock(U) != BB)
850             return false;
851         } else {
852           return false;
853         }
854       }
855       ++BBI;
856     }
857   }
858 
859   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
860 
861   if (isa<PHINode>(Succ->begin())) {
862     // If there is more than one pred of succ, and there are PHI nodes in
863     // the successor, then we need to add incoming edges for the PHI nodes
864     //
865     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
866 
867     // Loop over all of the PHI nodes in the successor of BB.
868     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
869       PHINode *PN = cast<PHINode>(I);
870 
871       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
872     }
873   }
874 
875   if (Succ->getSinglePredecessor()) {
876     // BB is the only predecessor of Succ, so Succ will end up with exactly
877     // the same predecessors BB had.
878 
879     // Copy over any phi, debug or lifetime instruction.
880     BB->getTerminator()->eraseFromParent();
881     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
882                                BB->getInstList());
883   } else {
884     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
885       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
886       assert(PN->use_empty() && "There shouldn't be any uses here!");
887       PN->eraseFromParent();
888     }
889   }
890 
891   // Everything that jumped to BB now goes to Succ.
892   BB->replaceAllUsesWith(Succ);
893   if (!Succ->hasName()) Succ->takeName(BB);
894   BB->eraseFromParent();              // Delete the old basic block.
895   return true;
896 }
897 
898 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
899 /// nodes in this block. This doesn't try to be clever about PHI nodes
900 /// which differ only in the order of the incoming values, but instcombine
901 /// orders them so it usually won't matter.
902 ///
903 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
904   // This implementation doesn't currently consider undef operands
905   // specially. Theoretically, two phis which are identical except for
906   // one having an undef where the other doesn't could be collapsed.
907 
908   struct PHIDenseMapInfo {
909     static PHINode *getEmptyKey() {
910       return DenseMapInfo<PHINode *>::getEmptyKey();
911     }
912     static PHINode *getTombstoneKey() {
913       return DenseMapInfo<PHINode *>::getTombstoneKey();
914     }
915     static unsigned getHashValue(PHINode *PN) {
916       // Compute a hash value on the operands. Instcombine will likely have
917       // sorted them, which helps expose duplicates, but we have to check all
918       // the operands to be safe in case instcombine hasn't run.
919       return static_cast<unsigned>(hash_combine(
920           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
921           hash_combine_range(PN->block_begin(), PN->block_end())));
922     }
923     static bool isEqual(PHINode *LHS, PHINode *RHS) {
924       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
925           RHS == getEmptyKey() || RHS == getTombstoneKey())
926         return LHS == RHS;
927       return LHS->isIdenticalTo(RHS);
928     }
929   };
930 
931   // Set of unique PHINodes.
932   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
933 
934   // Examine each PHI.
935   bool Changed = false;
936   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
937     auto Inserted = PHISet.insert(PN);
938     if (!Inserted.second) {
939       // A duplicate. Replace this PHI with its duplicate.
940       PN->replaceAllUsesWith(*Inserted.first);
941       PN->eraseFromParent();
942       Changed = true;
943 
944       // The RAUW can change PHIs that we already visited. Start over from the
945       // beginning.
946       PHISet.clear();
947       I = BB->begin();
948     }
949   }
950 
951   return Changed;
952 }
953 
954 /// enforceKnownAlignment - If the specified pointer points to an object that
955 /// we control, modify the object's alignment to PrefAlign. This isn't
956 /// often possible though. If alignment is important, a more reliable approach
957 /// is to simply align all global variables and allocation instructions to
958 /// their preferred alignment from the beginning.
959 ///
960 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
961                                       unsigned PrefAlign,
962                                       const DataLayout &DL) {
963   assert(PrefAlign > Align);
964 
965   V = V->stripPointerCasts();
966 
967   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
968     // TODO: ideally, computeKnownBits ought to have used
969     // AllocaInst::getAlignment() in its computation already, making
970     // the below max redundant. But, as it turns out,
971     // stripPointerCasts recurses through infinite layers of bitcasts,
972     // while computeKnownBits is not allowed to traverse more than 6
973     // levels.
974     Align = std::max(AI->getAlignment(), Align);
975     if (PrefAlign <= Align)
976       return Align;
977 
978     // If the preferred alignment is greater than the natural stack alignment
979     // then don't round up. This avoids dynamic stack realignment.
980     if (DL.exceedsNaturalStackAlignment(PrefAlign))
981       return Align;
982     AI->setAlignment(PrefAlign);
983     return PrefAlign;
984   }
985 
986   if (auto *GO = dyn_cast<GlobalObject>(V)) {
987     // TODO: as above, this shouldn't be necessary.
988     Align = std::max(GO->getAlignment(), Align);
989     if (PrefAlign <= Align)
990       return Align;
991 
992     // If there is a large requested alignment and we can, bump up the alignment
993     // of the global.  If the memory we set aside for the global may not be the
994     // memory used by the final program then it is impossible for us to reliably
995     // enforce the preferred alignment.
996     if (!GO->canIncreaseAlignment())
997       return Align;
998 
999     GO->setAlignment(PrefAlign);
1000     return PrefAlign;
1001   }
1002 
1003   return Align;
1004 }
1005 
1006 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
1007 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
1008 /// and it is more than the alignment of the ultimate object, see if we can
1009 /// increase the alignment of the ultimate object, making this check succeed.
1010 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1011                                           const DataLayout &DL,
1012                                           const Instruction *CxtI,
1013                                           AssumptionCache *AC,
1014                                           const DominatorTree *DT) {
1015   assert(V->getType()->isPointerTy() &&
1016          "getOrEnforceKnownAlignment expects a pointer!");
1017   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1018 
1019   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1020   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
1021   unsigned TrailZ = KnownZero.countTrailingOnes();
1022 
1023   // Avoid trouble with ridiculously large TrailZ values, such as
1024   // those computed from a null pointer.
1025   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1026 
1027   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1028 
1029   // LLVM doesn't support alignments larger than this currently.
1030   Align = std::min(Align, +Value::MaximumAlignment);
1031 
1032   if (PrefAlign > Align)
1033     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1034 
1035   // We don't need to make any adjustment.
1036   return Align;
1037 }
1038 
1039 ///===---------------------------------------------------------------------===//
1040 ///  Dbg Intrinsic utilities
1041 ///
1042 
1043 /// See if there is a dbg.value intrinsic for DIVar before I.
1044 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1045                               Instruction *I) {
1046   // Since we can't guarantee that the original dbg.declare instrinsic
1047   // is removed by LowerDbgDeclare(), we need to make sure that we are
1048   // not inserting the same dbg.value intrinsic over and over.
1049   llvm::BasicBlock::InstListType::iterator PrevI(I);
1050   if (PrevI != I->getParent()->getInstList().begin()) {
1051     --PrevI;
1052     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1053       if (DVI->getValue() == I->getOperand(0) &&
1054           DVI->getOffset() == 0 &&
1055           DVI->getVariable() == DIVar &&
1056           DVI->getExpression() == DIExpr)
1057         return true;
1058   }
1059   return false;
1060 }
1061 
1062 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1063 /// that has an associated llvm.dbg.decl intrinsic.
1064 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1065                                            StoreInst *SI, DIBuilder &Builder) {
1066   auto *DIVar = DDI->getVariable();
1067   auto *DIExpr = DDI->getExpression();
1068   assert(DIVar && "Missing variable");
1069 
1070   // If an argument is zero extended then use argument directly. The ZExt
1071   // may be zapped by an optimization pass in future.
1072   Argument *ExtendedArg = nullptr;
1073   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1074     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1075   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1076     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1077   if (ExtendedArg) {
1078     // We're now only describing a subset of the variable. The piece we're
1079     // describing will always be smaller than the variable size, because
1080     // VariableSize == Size of Alloca described by DDI. Since SI stores
1081     // to the alloca described by DDI, if it's first operand is an extend,
1082     // we're guaranteed that before extension, the value was narrower than
1083     // the size of the alloca, hence the size of the described variable.
1084     SmallVector<uint64_t, 3> Ops;
1085     unsigned PieceOffset = 0;
1086     // If this already is a bit piece, we drop the bit piece from the expression
1087     // and record the offset.
1088     if (DIExpr->isBitPiece()) {
1089       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1090       PieceOffset = DIExpr->getBitPieceOffset();
1091     } else {
1092       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
1093     }
1094     Ops.push_back(dwarf::DW_OP_bit_piece);
1095     Ops.push_back(PieceOffset); // Offset
1096     const DataLayout &DL = DDI->getModule()->getDataLayout();
1097     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
1098     auto NewDIExpr = Builder.createExpression(Ops);
1099     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
1100       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
1101                                       DDI->getDebugLoc(), SI);
1102   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1103     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1104                                     DDI->getDebugLoc(), SI);
1105   return true;
1106 }
1107 
1108 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1109 /// that has an associated llvm.dbg.decl intrinsic.
1110 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1111                                            LoadInst *LI, DIBuilder &Builder) {
1112   auto *DIVar = DDI->getVariable();
1113   auto *DIExpr = DDI->getExpression();
1114   assert(DIVar && "Missing variable");
1115 
1116   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1117     return true;
1118 
1119   // We are now tracking the loaded value instead of the address. In the
1120   // future if multi-location support is added to the IR, it might be
1121   // preferable to keep tracking both the loaded value and the original
1122   // address in case the alloca can not be elided.
1123   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1124       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1125   DbgValue->insertAfter(LI);
1126   return true;
1127 }
1128 
1129 /// Determine whether this alloca is either a VLA or an array.
1130 static bool isArray(AllocaInst *AI) {
1131   return AI->isArrayAllocation() ||
1132     AI->getType()->getElementType()->isArrayTy();
1133 }
1134 
1135 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1136 /// of llvm.dbg.value intrinsics.
1137 bool llvm::LowerDbgDeclare(Function &F) {
1138   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1139   SmallVector<DbgDeclareInst *, 4> Dbgs;
1140   for (auto &FI : F)
1141     for (Instruction &BI : FI)
1142       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1143         Dbgs.push_back(DDI);
1144 
1145   if (Dbgs.empty())
1146     return false;
1147 
1148   for (auto &I : Dbgs) {
1149     DbgDeclareInst *DDI = I;
1150     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1151     // If this is an alloca for a scalar variable, insert a dbg.value
1152     // at each load and store to the alloca and erase the dbg.declare.
1153     // The dbg.values allow tracking a variable even if it is not
1154     // stored on the stack, while the dbg.declare can only describe
1155     // the stack slot (and at a lexical-scope granularity). Later
1156     // passes will attempt to elide the stack slot.
1157     if (AI && !isArray(AI)) {
1158       for (auto &AIUse : AI->uses()) {
1159         User *U = AIUse.getUser();
1160         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1161           if (AIUse.getOperandNo() == 1)
1162             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1163         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1164           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1165         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1166           // This is a call by-value or some other instruction that
1167           // takes a pointer to the variable. Insert a *value*
1168           // intrinsic that describes the alloca.
1169           SmallVector<uint64_t, 1> NewDIExpr;
1170           auto *DIExpr = DDI->getExpression();
1171           NewDIExpr.push_back(dwarf::DW_OP_deref);
1172           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1173           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1174                                       DIB.createExpression(NewDIExpr),
1175                                       DDI->getDebugLoc(), CI);
1176         }
1177       }
1178       DDI->eraseFromParent();
1179     }
1180   }
1181   return true;
1182 }
1183 
1184 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1185 /// alloca 'V', if any.
1186 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1187   if (auto *L = LocalAsMetadata::getIfExists(V))
1188     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1189       for (User *U : MDV->users())
1190         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1191           return DDI;
1192 
1193   return nullptr;
1194 }
1195 
1196 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) {
1197   Expr.push_back(dwarf::DW_OP_deref);
1198 }
1199 
1200 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) {
1201   if (Offset > 0) {
1202     Expr.push_back(dwarf::DW_OP_plus);
1203     Expr.push_back(Offset);
1204   } else if (Offset < 0) {
1205     Expr.push_back(dwarf::DW_OP_minus);
1206     Expr.push_back(-Offset);
1207   }
1208 }
1209 
1210 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder,
1211                                             DIExpression *DIExpr, bool Deref,
1212                                             int Offset) {
1213   if (!Deref && !Offset)
1214     return DIExpr;
1215   // Create a copy of the original DIDescriptor for user variable, prepending
1216   // "deref" operation to a list of address elements, as new llvm.dbg.declare
1217   // will take a value storing address of the memory for variable, not
1218   // alloca itself.
1219   SmallVector<uint64_t, 4> NewDIExpr;
1220   if (Deref)
1221     DIExprAddDeref(NewDIExpr);
1222   DIExprAddOffset(NewDIExpr, Offset);
1223   if (DIExpr)
1224     NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1225   return Builder.createExpression(NewDIExpr);
1226 }
1227 
1228 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1229                              Instruction *InsertBefore, DIBuilder &Builder,
1230                              bool Deref, int Offset) {
1231   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1232   if (!DDI)
1233     return false;
1234   DebugLoc Loc = DDI->getDebugLoc();
1235   auto *DIVar = DDI->getVariable();
1236   auto *DIExpr = DDI->getExpression();
1237   assert(DIVar && "Missing variable");
1238 
1239   DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset);
1240 
1241   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1242   // old llvm.dbg.declare.
1243   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1244   DDI->eraseFromParent();
1245   return true;
1246 }
1247 
1248 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1249                                       DIBuilder &Builder, bool Deref, int Offset) {
1250   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1251                            Deref, Offset);
1252 }
1253 
1254 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1255                                         DIBuilder &Builder, int Offset) {
1256   DebugLoc Loc = DVI->getDebugLoc();
1257   auto *DIVar = DVI->getVariable();
1258   auto *DIExpr = DVI->getExpression();
1259   assert(DIVar && "Missing variable");
1260 
1261   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1262   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1263   // it and give up.
1264   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1265       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1266     return;
1267 
1268   // Insert the offset immediately after the first deref.
1269   // We could just change the offset argument of dbg.value, but it's unsigned...
1270   if (Offset) {
1271     SmallVector<uint64_t, 4> NewDIExpr;
1272     DIExprAddDeref(NewDIExpr);
1273     DIExprAddOffset(NewDIExpr, Offset);
1274     NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1275     DIExpr = Builder.createExpression(NewDIExpr);
1276   }
1277 
1278   Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
1279                                   Loc, DVI);
1280   DVI->eraseFromParent();
1281 }
1282 
1283 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1284                                     DIBuilder &Builder, int Offset) {
1285   if (auto *L = LocalAsMetadata::getIfExists(AI))
1286     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1287       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1288         Use &U = *UI++;
1289         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1290           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1291       }
1292 }
1293 
1294 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1295   unsigned NumDeadInst = 0;
1296   // Delete the instructions backwards, as it has a reduced likelihood of
1297   // having to update as many def-use and use-def chains.
1298   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1299   while (EndInst != &BB->front()) {
1300     // Delete the next to last instruction.
1301     Instruction *Inst = &*--EndInst->getIterator();
1302     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1303       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1304     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1305       EndInst = Inst;
1306       continue;
1307     }
1308     if (!isa<DbgInfoIntrinsic>(Inst))
1309       ++NumDeadInst;
1310     Inst->eraseFromParent();
1311   }
1312   return NumDeadInst;
1313 }
1314 
1315 unsigned llvm::changeToUnreachable(Instruction *I) {
1316   BasicBlock *BB = I->getParent();
1317   // Loop over all of the successors, removing BB's entry from any PHI
1318   // nodes.
1319   for (BasicBlock *Succ : successors(BB))
1320     Succ->removePredecessor(BB);
1321 
1322   new UnreachableInst(I->getContext(), I);
1323 
1324   // All instructions after this are dead.
1325   unsigned NumInstrsRemoved = 0;
1326   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1327   while (BBI != BBE) {
1328     if (!BBI->use_empty())
1329       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1330     BB->getInstList().erase(BBI++);
1331     ++NumInstrsRemoved;
1332   }
1333   return NumInstrsRemoved;
1334 }
1335 
1336 /// changeToCall - Convert the specified invoke into a normal call.
1337 static void changeToCall(InvokeInst *II) {
1338   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1339   SmallVector<OperandBundleDef, 1> OpBundles;
1340   II->getOperandBundlesAsDefs(OpBundles);
1341   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1342                                        "", II);
1343   NewCall->takeName(II);
1344   NewCall->setCallingConv(II->getCallingConv());
1345   NewCall->setAttributes(II->getAttributes());
1346   NewCall->setDebugLoc(II->getDebugLoc());
1347   II->replaceAllUsesWith(NewCall);
1348 
1349   // Follow the call by a branch to the normal destination.
1350   BranchInst::Create(II->getNormalDest(), II);
1351 
1352   // Update PHI nodes in the unwind destination
1353   II->getUnwindDest()->removePredecessor(II->getParent());
1354   II->eraseFromParent();
1355 }
1356 
1357 static bool markAliveBlocks(Function &F,
1358                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1359 
1360   SmallVector<BasicBlock*, 128> Worklist;
1361   BasicBlock *BB = &F.front();
1362   Worklist.push_back(BB);
1363   Reachable.insert(BB);
1364   bool Changed = false;
1365   do {
1366     BB = Worklist.pop_back_val();
1367 
1368     // Do a quick scan of the basic block, turning any obviously unreachable
1369     // instructions into LLVM unreachable insts.  The instruction combining pass
1370     // canonicalizes unreachable insts into stores to null or undef.
1371     for (Instruction &I : *BB) {
1372       // Assumptions that are known to be false are equivalent to unreachable.
1373       // Also, if the condition is undefined, then we make the choice most
1374       // beneficial to the optimizer, and choose that to also be unreachable.
1375       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
1376         if (II->getIntrinsicID() == Intrinsic::assume) {
1377           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1378             changeToUnreachable(II);
1379             Changed = true;
1380             break;
1381           }
1382         }
1383 
1384         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1385           // A call to the guard intrinsic bails out of the current compilation
1386           // unit if the predicate passed to it is false.  If the predicate is a
1387           // constant false, then we know the guard will bail out of the current
1388           // compile unconditionally, so all code following it is dead.
1389           //
1390           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1391           // guards to treat `undef` as `false` since a guard on `undef` can
1392           // still be useful for widening.
1393           if (match(II->getArgOperand(0), m_Zero()))
1394             if (!isa<UnreachableInst>(II->getNextNode())) {
1395               changeToUnreachable(II->getNextNode());
1396               Changed = true;
1397               break;
1398             }
1399         }
1400       }
1401 
1402       if (auto *CI = dyn_cast<CallInst>(&I)) {
1403         Value *Callee = CI->getCalledValue();
1404         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1405           changeToUnreachable(CI);
1406           Changed = true;
1407           break;
1408         }
1409         if (CI->doesNotReturn()) {
1410           // If we found a call to a no-return function, insert an unreachable
1411           // instruction after it.  Make sure there isn't *already* one there
1412           // though.
1413           if (!isa<UnreachableInst>(CI->getNextNode())) {
1414             changeToUnreachable(CI->getNextNode());
1415             Changed = true;
1416           }
1417           break;
1418         }
1419       }
1420 
1421       // Store to undef and store to null are undefined and used to signal that
1422       // they should be changed to unreachable by passes that can't modify the
1423       // CFG.
1424       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1425         // Don't touch volatile stores.
1426         if (SI->isVolatile()) continue;
1427 
1428         Value *Ptr = SI->getOperand(1);
1429 
1430         if (isa<UndefValue>(Ptr) ||
1431             (isa<ConstantPointerNull>(Ptr) &&
1432              SI->getPointerAddressSpace() == 0)) {
1433           changeToUnreachable(SI);
1434           Changed = true;
1435           break;
1436         }
1437       }
1438     }
1439 
1440     TerminatorInst *Terminator = BB->getTerminator();
1441     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1442       // Turn invokes that call 'nounwind' functions into ordinary calls.
1443       Value *Callee = II->getCalledValue();
1444       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1445         changeToUnreachable(II);
1446         Changed = true;
1447       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1448         if (II->use_empty() && II->onlyReadsMemory()) {
1449           // jump to the normal destination branch.
1450           BranchInst::Create(II->getNormalDest(), II);
1451           II->getUnwindDest()->removePredecessor(II->getParent());
1452           II->eraseFromParent();
1453         } else
1454           changeToCall(II);
1455         Changed = true;
1456       }
1457     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1458       // Remove catchpads which cannot be reached.
1459       struct CatchPadDenseMapInfo {
1460         static CatchPadInst *getEmptyKey() {
1461           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1462         }
1463         static CatchPadInst *getTombstoneKey() {
1464           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1465         }
1466         static unsigned getHashValue(CatchPadInst *CatchPad) {
1467           return static_cast<unsigned>(hash_combine_range(
1468               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1469         }
1470         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1471           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1472               RHS == getEmptyKey() || RHS == getTombstoneKey())
1473             return LHS == RHS;
1474           return LHS->isIdenticalTo(RHS);
1475         }
1476       };
1477 
1478       // Set of unique CatchPads.
1479       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1480                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1481           HandlerSet;
1482       detail::DenseSetEmpty Empty;
1483       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1484                                              E = CatchSwitch->handler_end();
1485            I != E; ++I) {
1486         BasicBlock *HandlerBB = *I;
1487         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1488         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1489           CatchSwitch->removeHandler(I);
1490           --I;
1491           --E;
1492           Changed = true;
1493         }
1494       }
1495     }
1496 
1497     Changed |= ConstantFoldTerminator(BB, true);
1498     for (BasicBlock *Succ : successors(BB))
1499       if (Reachable.insert(Succ).second)
1500         Worklist.push_back(Succ);
1501   } while (!Worklist.empty());
1502   return Changed;
1503 }
1504 
1505 void llvm::removeUnwindEdge(BasicBlock *BB) {
1506   TerminatorInst *TI = BB->getTerminator();
1507 
1508   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1509     changeToCall(II);
1510     return;
1511   }
1512 
1513   TerminatorInst *NewTI;
1514   BasicBlock *UnwindDest;
1515 
1516   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1517     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1518     UnwindDest = CRI->getUnwindDest();
1519   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1520     auto *NewCatchSwitch = CatchSwitchInst::Create(
1521         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1522         CatchSwitch->getName(), CatchSwitch);
1523     for (BasicBlock *PadBB : CatchSwitch->handlers())
1524       NewCatchSwitch->addHandler(PadBB);
1525 
1526     NewTI = NewCatchSwitch;
1527     UnwindDest = CatchSwitch->getUnwindDest();
1528   } else {
1529     llvm_unreachable("Could not find unwind successor");
1530   }
1531 
1532   NewTI->takeName(TI);
1533   NewTI->setDebugLoc(TI->getDebugLoc());
1534   UnwindDest->removePredecessor(BB);
1535   TI->replaceAllUsesWith(NewTI);
1536   TI->eraseFromParent();
1537 }
1538 
1539 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1540 /// if they are in a dead cycle.  Return true if a change was made, false
1541 /// otherwise.
1542 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1543   SmallPtrSet<BasicBlock*, 16> Reachable;
1544   bool Changed = markAliveBlocks(F, Reachable);
1545 
1546   // If there are unreachable blocks in the CFG...
1547   if (Reachable.size() == F.size())
1548     return Changed;
1549 
1550   assert(Reachable.size() < F.size());
1551   NumRemoved += F.size()-Reachable.size();
1552 
1553   // Loop over all of the basic blocks that are not reachable, dropping all of
1554   // their internal references...
1555   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1556     if (Reachable.count(&*BB))
1557       continue;
1558 
1559     for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE;
1560          ++SI)
1561       if (Reachable.count(*SI))
1562         (*SI)->removePredecessor(&*BB);
1563     if (LVI)
1564       LVI->eraseBlock(&*BB);
1565     BB->dropAllReferences();
1566   }
1567 
1568   for (Function::iterator I = ++F.begin(); I != F.end();)
1569     if (!Reachable.count(&*I))
1570       I = F.getBasicBlockList().erase(I);
1571     else
1572       ++I;
1573 
1574   return true;
1575 }
1576 
1577 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1578                            ArrayRef<unsigned> KnownIDs) {
1579   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1580   K->dropUnknownNonDebugMetadata(KnownIDs);
1581   K->getAllMetadataOtherThanDebugLoc(Metadata);
1582   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1583     unsigned Kind = Metadata[i].first;
1584     MDNode *JMD = J->getMetadata(Kind);
1585     MDNode *KMD = Metadata[i].second;
1586 
1587     switch (Kind) {
1588       default:
1589         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1590         break;
1591       case LLVMContext::MD_dbg:
1592         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1593       case LLVMContext::MD_tbaa:
1594         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1595         break;
1596       case LLVMContext::MD_alias_scope:
1597         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1598         break;
1599       case LLVMContext::MD_noalias:
1600       case LLVMContext::MD_mem_parallel_loop_access:
1601         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1602         break;
1603       case LLVMContext::MD_range:
1604         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1605         break;
1606       case LLVMContext::MD_fpmath:
1607         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1608         break;
1609       case LLVMContext::MD_invariant_load:
1610         // Only set the !invariant.load if it is present in both instructions.
1611         K->setMetadata(Kind, JMD);
1612         break;
1613       case LLVMContext::MD_nonnull:
1614         // Only set the !nonnull if it is present in both instructions.
1615         K->setMetadata(Kind, JMD);
1616         break;
1617       case LLVMContext::MD_invariant_group:
1618         // Preserve !invariant.group in K.
1619         break;
1620       case LLVMContext::MD_align:
1621         K->setMetadata(Kind,
1622           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1623         break;
1624       case LLVMContext::MD_dereferenceable:
1625       case LLVMContext::MD_dereferenceable_or_null:
1626         K->setMetadata(Kind,
1627           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1628         break;
1629     }
1630   }
1631   // Set !invariant.group from J if J has it. If both instructions have it
1632   // then we will just pick it from J - even when they are different.
1633   // Also make sure that K is load or store - f.e. combining bitcast with load
1634   // could produce bitcast with invariant.group metadata, which is invalid.
1635   // FIXME: we should try to preserve both invariant.group md if they are
1636   // different, but right now instruction can only have one invariant.group.
1637   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1638     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1639       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1640 }
1641 
1642 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1643                                         DominatorTree &DT,
1644                                         const BasicBlockEdge &Root) {
1645   assert(From->getType() == To->getType());
1646 
1647   unsigned Count = 0;
1648   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1649        UI != UE; ) {
1650     Use &U = *UI++;
1651     if (DT.dominates(Root, U)) {
1652       U.set(To);
1653       DEBUG(dbgs() << "Replace dominated use of '"
1654             << From->getName() << "' as "
1655             << *To << " in " << *U << "\n");
1656       ++Count;
1657     }
1658   }
1659   return Count;
1660 }
1661 
1662 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1663                                         DominatorTree &DT,
1664                                         const BasicBlock *BB) {
1665   assert(From->getType() == To->getType());
1666 
1667   unsigned Count = 0;
1668   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1669        UI != UE;) {
1670     Use &U = *UI++;
1671     auto *I = cast<Instruction>(U.getUser());
1672     if (DT.properlyDominates(BB, I->getParent())) {
1673       U.set(To);
1674       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1675                    << *To << " in " << *U << "\n");
1676       ++Count;
1677     }
1678   }
1679   return Count;
1680 }
1681 
1682 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1683   // Check if the function is specifically marked as a gc leaf function.
1684   if (CS.hasFnAttr("gc-leaf-function"))
1685     return true;
1686   if (const Function *F = CS.getCalledFunction()) {
1687     if (F->hasFnAttribute("gc-leaf-function"))
1688       return true;
1689 
1690     if (auto IID = F->getIntrinsicID())
1691       // Most LLVM intrinsics do not take safepoints.
1692       return IID != Intrinsic::experimental_gc_statepoint &&
1693              IID != Intrinsic::experimental_deoptimize;
1694   }
1695 
1696   return false;
1697 }
1698 
1699 /// A potential constituent of a bitreverse or bswap expression. See
1700 /// collectBitParts for a fuller explanation.
1701 struct BitPart {
1702   BitPart(Value *P, unsigned BW) : Provider(P) {
1703     Provenance.resize(BW);
1704   }
1705 
1706   /// The Value that this is a bitreverse/bswap of.
1707   Value *Provider;
1708   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1709   /// in Provider becomes bit B in the result of this expression.
1710   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1711 
1712   enum { Unset = -1 };
1713 };
1714 
1715 /// Analyze the specified subexpression and see if it is capable of providing
1716 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1717 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1718 /// the output of the expression came from a corresponding bit in some other
1719 /// value. This function is recursive, and the end result is a mapping of
1720 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1721 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1722 ///
1723 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1724 /// that the expression deposits the low byte of %X into the high byte of the
1725 /// result and that all other bits are zero. This expression is accepted and a
1726 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1727 /// [0-7].
1728 ///
1729 /// To avoid revisiting values, the BitPart results are memoized into the
1730 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1731 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1732 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1733 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1734 /// type instead to provide the same functionality.
1735 ///
1736 /// Because we pass around references into \c BPS, we must use a container that
1737 /// does not invalidate internal references (std::map instead of DenseMap).
1738 ///
1739 static const Optional<BitPart> &
1740 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1741                 std::map<Value *, Optional<BitPart>> &BPS) {
1742   auto I = BPS.find(V);
1743   if (I != BPS.end())
1744     return I->second;
1745 
1746   auto &Result = BPS[V] = None;
1747   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1748 
1749   if (Instruction *I = dyn_cast<Instruction>(V)) {
1750     // If this is an or instruction, it may be an inner node of the bswap.
1751     if (I->getOpcode() == Instruction::Or) {
1752       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1753                                 MatchBitReversals, BPS);
1754       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1755                                 MatchBitReversals, BPS);
1756       if (!A || !B)
1757         return Result;
1758 
1759       // Try and merge the two together.
1760       if (!A->Provider || A->Provider != B->Provider)
1761         return Result;
1762 
1763       Result = BitPart(A->Provider, BitWidth);
1764       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1765         if (A->Provenance[i] != BitPart::Unset &&
1766             B->Provenance[i] != BitPart::Unset &&
1767             A->Provenance[i] != B->Provenance[i])
1768           return Result = None;
1769 
1770         if (A->Provenance[i] == BitPart::Unset)
1771           Result->Provenance[i] = B->Provenance[i];
1772         else
1773           Result->Provenance[i] = A->Provenance[i];
1774       }
1775 
1776       return Result;
1777     }
1778 
1779     // If this is a logical shift by a constant, recurse then shift the result.
1780     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1781       unsigned BitShift =
1782           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1783       // Ensure the shift amount is defined.
1784       if (BitShift > BitWidth)
1785         return Result;
1786 
1787       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1788                                   MatchBitReversals, BPS);
1789       if (!Res)
1790         return Result;
1791       Result = Res;
1792 
1793       // Perform the "shift" on BitProvenance.
1794       auto &P = Result->Provenance;
1795       if (I->getOpcode() == Instruction::Shl) {
1796         P.erase(std::prev(P.end(), BitShift), P.end());
1797         P.insert(P.begin(), BitShift, BitPart::Unset);
1798       } else {
1799         P.erase(P.begin(), std::next(P.begin(), BitShift));
1800         P.insert(P.end(), BitShift, BitPart::Unset);
1801       }
1802 
1803       return Result;
1804     }
1805 
1806     // If this is a logical 'and' with a mask that clears bits, recurse then
1807     // unset the appropriate bits.
1808     if (I->getOpcode() == Instruction::And &&
1809         isa<ConstantInt>(I->getOperand(1))) {
1810       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1811       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1812 
1813       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1814       // early exit.
1815       unsigned NumMaskedBits = AndMask.countPopulation();
1816       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1817         return Result;
1818 
1819       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1820                                   MatchBitReversals, BPS);
1821       if (!Res)
1822         return Result;
1823       Result = Res;
1824 
1825       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1826         // If the AndMask is zero for this bit, clear the bit.
1827         if ((AndMask & Bit) == 0)
1828           Result->Provenance[i] = BitPart::Unset;
1829       return Result;
1830     }
1831 
1832     // If this is a zext instruction zero extend the result.
1833     if (I->getOpcode() == Instruction::ZExt) {
1834       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1835                                   MatchBitReversals, BPS);
1836       if (!Res)
1837         return Result;
1838 
1839       Result = BitPart(Res->Provider, BitWidth);
1840       auto NarrowBitWidth =
1841           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
1842       for (unsigned i = 0; i < NarrowBitWidth; ++i)
1843         Result->Provenance[i] = Res->Provenance[i];
1844       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
1845         Result->Provenance[i] = BitPart::Unset;
1846       return Result;
1847     }
1848   }
1849 
1850   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1851   // the input value to the bswap/bitreverse.
1852   Result = BitPart(V, BitWidth);
1853   for (unsigned i = 0; i < BitWidth; ++i)
1854     Result->Provenance[i] = i;
1855   return Result;
1856 }
1857 
1858 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1859                                           unsigned BitWidth) {
1860   if (From % 8 != To % 8)
1861     return false;
1862   // Convert from bit indices to byte indices and check for a byte reversal.
1863   From >>= 3;
1864   To >>= 3;
1865   BitWidth >>= 3;
1866   return From == BitWidth - To - 1;
1867 }
1868 
1869 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1870                                                unsigned BitWidth) {
1871   return From == BitWidth - To - 1;
1872 }
1873 
1874 /// Given an OR instruction, check to see if this is a bitreverse
1875 /// idiom. If so, insert the new intrinsic and return true.
1876 bool llvm::recognizeBSwapOrBitReverseIdiom(
1877     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
1878     SmallVectorImpl<Instruction *> &InsertedInsts) {
1879   if (Operator::getOpcode(I) != Instruction::Or)
1880     return false;
1881   if (!MatchBSwaps && !MatchBitReversals)
1882     return false;
1883   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
1884   if (!ITy || ITy->getBitWidth() > 128)
1885     return false;   // Can't do vectors or integers > 128 bits.
1886   unsigned BW = ITy->getBitWidth();
1887 
1888   unsigned DemandedBW = BW;
1889   IntegerType *DemandedTy = ITy;
1890   if (I->hasOneUse()) {
1891     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
1892       DemandedTy = cast<IntegerType>(Trunc->getType());
1893       DemandedBW = DemandedTy->getBitWidth();
1894     }
1895   }
1896 
1897   // Try to find all the pieces corresponding to the bswap.
1898   std::map<Value *, Optional<BitPart>> BPS;
1899   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
1900   if (!Res)
1901     return false;
1902   auto &BitProvenance = Res->Provenance;
1903 
1904   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
1905   // only byteswap values with an even number of bytes.
1906   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
1907   for (unsigned i = 0; i < DemandedBW; ++i) {
1908     OKForBSwap &=
1909         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
1910     OKForBitReverse &=
1911         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
1912   }
1913 
1914   Intrinsic::ID Intrin;
1915   if (OKForBSwap && MatchBSwaps)
1916     Intrin = Intrinsic::bswap;
1917   else if (OKForBitReverse && MatchBitReversals)
1918     Intrin = Intrinsic::bitreverse;
1919   else
1920     return false;
1921 
1922   if (ITy != DemandedTy) {
1923     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
1924     Value *Provider = Res->Provider;
1925     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
1926     // We may need to truncate the provider.
1927     if (DemandedTy != ProviderTy) {
1928       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
1929                                      "trunc", I);
1930       InsertedInsts.push_back(Trunc);
1931       Provider = Trunc;
1932     }
1933     auto *CI = CallInst::Create(F, Provider, "rev", I);
1934     InsertedInsts.push_back(CI);
1935     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
1936     InsertedInsts.push_back(ExtInst);
1937     return true;
1938   }
1939 
1940   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
1941   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
1942   return true;
1943 }
1944 
1945 // CodeGen has special handling for some string functions that may replace
1946 // them with target-specific intrinsics.  Since that'd skip our interceptors
1947 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
1948 // we mark affected calls as NoBuiltin, which will disable optimization
1949 // in CodeGen.
1950 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
1951                                           const TargetLibraryInfo *TLI) {
1952   Function *F = CI->getCalledFunction();
1953   LibFunc::Func Func;
1954   if (!F || F->hasLocalLinkage() || !F->hasName() ||
1955       !TLI->getLibFunc(F->getName(), Func))
1956     return;
1957   switch (Func) {
1958     default: break;
1959     case LibFunc::memcmp:
1960     case LibFunc::memchr:
1961     case LibFunc::strcpy:
1962     case LibFunc::stpcpy:
1963     case LibFunc::strcmp:
1964     case LibFunc::strlen:
1965     case LibFunc::strnlen:
1966       CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin);
1967       break;
1968   }
1969 }
1970