1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 BasicBlock *Dest1 = BI->getSuccessor(0); 138 BasicBlock *Dest2 = BI->getSuccessor(1); 139 140 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 141 // Are we branching on constant? 142 // YES. Change to unconditional branch... 143 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 144 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 145 146 // Let the basic block know that we are letting go of it. Based on this, 147 // it will adjust it's PHI nodes. 148 OldDest->removePredecessor(BB); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Destination); 152 BI->eraseFromParent(); 153 if (DTU) 154 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 155 return true; 156 } 157 158 if (Dest2 == Dest1) { // Conditional branch to same location? 159 // This branch matches something like this: 160 // br bool %cond, label %Dest, label %Dest 161 // and changes it into: br label %Dest 162 163 // Let the basic block know that we are letting go of one copy of it. 164 assert(BI->getParent() && "Terminator not inserted in block!"); 165 Dest1->removePredecessor(BI->getParent()); 166 167 // Replace the conditional branch with an unconditional one. 168 Builder.CreateBr(Dest1); 169 Value *Cond = BI->getCondition(); 170 BI->eraseFromParent(); 171 if (DeleteDeadConditions) 172 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 173 return true; 174 } 175 return false; 176 } 177 178 if (auto *SI = dyn_cast<SwitchInst>(T)) { 179 // If we are switching on a constant, we can convert the switch to an 180 // unconditional branch. 181 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 182 BasicBlock *DefaultDest = SI->getDefaultDest(); 183 BasicBlock *TheOnlyDest = DefaultDest; 184 185 // If the default is unreachable, ignore it when searching for TheOnlyDest. 186 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 187 SI->getNumCases() > 0) { 188 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 189 } 190 191 bool Changed = false; 192 193 // Figure out which case it goes to. 194 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 195 // Found case matching a constant operand? 196 if (i->getCaseValue() == CI) { 197 TheOnlyDest = i->getCaseSuccessor(); 198 break; 199 } 200 201 // Check to see if this branch is going to the same place as the default 202 // dest. If so, eliminate it as an explicit compare. 203 if (i->getCaseSuccessor() == DefaultDest) { 204 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 205 unsigned NCases = SI->getNumCases(); 206 // Fold the case metadata into the default if there will be any branches 207 // left, unless the metadata doesn't match the switch. 208 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 209 // Collect branch weights into a vector. 210 SmallVector<uint32_t, 8> Weights; 211 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 212 ++MD_i) { 213 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 214 Weights.push_back(CI->getValue().getZExtValue()); 215 } 216 // Merge weight of this case to the default weight. 217 unsigned idx = i->getCaseIndex(); 218 Weights[0] += Weights[idx+1]; 219 // Remove weight for this case. 220 std::swap(Weights[idx+1], Weights.back()); 221 Weights.pop_back(); 222 SI->setMetadata(LLVMContext::MD_prof, 223 MDBuilder(BB->getContext()). 224 createBranchWeights(Weights)); 225 } 226 // Remove this entry. 227 BasicBlock *ParentBB = SI->getParent(); 228 DefaultDest->removePredecessor(ParentBB); 229 i = SI->removeCase(i); 230 e = SI->case_end(); 231 Changed = true; 232 if (DTU) 233 DTU->applyUpdatesPermissive( 234 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 235 continue; 236 } 237 238 // Otherwise, check to see if the switch only branches to one destination. 239 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 240 // destinations. 241 if (i->getCaseSuccessor() != TheOnlyDest) 242 TheOnlyDest = nullptr; 243 244 // Increment this iterator as we haven't removed the case. 245 ++i; 246 } 247 248 if (CI && !TheOnlyDest) { 249 // Branching on a constant, but not any of the cases, go to the default 250 // successor. 251 TheOnlyDest = SI->getDefaultDest(); 252 } 253 254 // If we found a single destination that we can fold the switch into, do so 255 // now. 256 if (TheOnlyDest) { 257 // Insert the new branch. 258 Builder.CreateBr(TheOnlyDest); 259 BasicBlock *BB = SI->getParent(); 260 std::vector <DominatorTree::UpdateType> Updates; 261 if (DTU) 262 Updates.reserve(SI->getNumSuccessors() - 1); 263 264 // Remove entries from PHI nodes which we no longer branch to... 265 for (BasicBlock *Succ : successors(SI)) { 266 // Found case matching a constant operand? 267 if (Succ == TheOnlyDest) { 268 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 269 } else { 270 Succ->removePredecessor(BB); 271 if (DTU) 272 Updates.push_back({DominatorTree::Delete, BB, Succ}); 273 } 274 } 275 276 // Delete the old switch. 277 Value *Cond = SI->getCondition(); 278 SI->eraseFromParent(); 279 if (DeleteDeadConditions) 280 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 281 if (DTU) 282 DTU->applyUpdatesPermissive(Updates); 283 return true; 284 } 285 286 if (SI->getNumCases() == 1) { 287 // Otherwise, we can fold this switch into a conditional branch 288 // instruction if it has only one non-default destination. 289 auto FirstCase = *SI->case_begin(); 290 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 291 FirstCase.getCaseValue(), "cond"); 292 293 // Insert the new branch. 294 BranchInst *NewBr = Builder.CreateCondBr(Cond, 295 FirstCase.getCaseSuccessor(), 296 SI->getDefaultDest()); 297 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 298 if (MD && MD->getNumOperands() == 3) { 299 ConstantInt *SICase = 300 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 301 ConstantInt *SIDef = 302 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 303 assert(SICase && SIDef); 304 // The TrueWeight should be the weight for the single case of SI. 305 NewBr->setMetadata(LLVMContext::MD_prof, 306 MDBuilder(BB->getContext()). 307 createBranchWeights(SICase->getValue().getZExtValue(), 308 SIDef->getValue().getZExtValue())); 309 } 310 311 // Update make.implicit metadata to the newly-created conditional branch. 312 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 313 if (MakeImplicitMD) 314 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 315 316 // Delete the old switch. 317 SI->eraseFromParent(); 318 return true; 319 } 320 return Changed; 321 } 322 323 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 324 // indirectbr blockaddress(@F, @BB) -> br label @BB 325 if (auto *BA = 326 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 327 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 328 std::vector <DominatorTree::UpdateType> Updates; 329 if (DTU) 330 Updates.reserve(IBI->getNumDestinations() - 1); 331 332 // Insert the new branch. 333 Builder.CreateBr(TheOnlyDest); 334 335 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 336 if (IBI->getDestination(i) == TheOnlyDest) { 337 TheOnlyDest = nullptr; 338 } else { 339 BasicBlock *ParentBB = IBI->getParent(); 340 BasicBlock *DestBB = IBI->getDestination(i); 341 DestBB->removePredecessor(ParentBB); 342 if (DTU) 343 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 344 } 345 } 346 Value *Address = IBI->getAddress(); 347 IBI->eraseFromParent(); 348 if (DeleteDeadConditions) 349 // Delete pointer cast instructions. 350 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 351 352 // Also zap the blockaddress constant if there are no users remaining, 353 // otherwise the destination is still marked as having its address taken. 354 if (BA->use_empty()) 355 BA->destroyConstant(); 356 357 // If we didn't find our destination in the IBI successor list, then we 358 // have undefined behavior. Replace the unconditional branch with an 359 // 'unreachable' instruction. 360 if (TheOnlyDest) { 361 BB->getTerminator()->eraseFromParent(); 362 new UnreachableInst(BB->getContext(), BB); 363 } 364 365 if (DTU) 366 DTU->applyUpdatesPermissive(Updates); 367 return true; 368 } 369 } 370 371 return false; 372 } 373 374 //===----------------------------------------------------------------------===// 375 // Local dead code elimination. 376 // 377 378 /// isInstructionTriviallyDead - Return true if the result produced by the 379 /// instruction is not used, and the instruction has no side effects. 380 /// 381 bool llvm::isInstructionTriviallyDead(Instruction *I, 382 const TargetLibraryInfo *TLI) { 383 if (!I->use_empty()) 384 return false; 385 return wouldInstructionBeTriviallyDead(I, TLI); 386 } 387 388 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (I->isTerminator()) 391 return false; 392 393 // We don't want the landingpad-like instructions removed by anything this 394 // general. 395 if (I->isEHPad()) 396 return false; 397 398 // We don't want debug info removed by anything this general, unless 399 // debug info is empty. 400 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 401 if (DDI->getAddress()) 402 return false; 403 return true; 404 } 405 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 406 if (DVI->getValue()) 407 return false; 408 return true; 409 } 410 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 411 if (DLI->getLabel()) 412 return false; 413 return true; 414 } 415 416 if (!I->mayHaveSideEffects()) 417 return true; 418 419 // Special case intrinsics that "may have side effects" but can be deleted 420 // when dead. 421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 422 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 423 if (II->getIntrinsicID() == Intrinsic::stacksave || 424 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 425 return true; 426 427 if (II->isLifetimeStartOrEnd()) { 428 auto *Arg = II->getArgOperand(1); 429 // Lifetime intrinsics are dead when their right-hand is undef. 430 if (isa<UndefValue>(Arg)) 431 return true; 432 // If the right-hand is an alloc, global, or argument and the only uses 433 // are lifetime intrinsics then the intrinsics are dead. 434 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 435 return llvm::all_of(Arg->uses(), [](Use &Use) { 436 if (IntrinsicInst *IntrinsicUse = 437 dyn_cast<IntrinsicInst>(Use.getUser())) 438 return IntrinsicUse->isLifetimeStartOrEnd(); 439 return false; 440 }); 441 return false; 442 } 443 444 // Assumptions are dead if their condition is trivially true. Guards on 445 // true are operationally no-ops. In the future we can consider more 446 // sophisticated tradeoffs for guards considering potential for check 447 // widening, but for now we keep things simple. 448 if ((II->getIntrinsicID() == Intrinsic::assume && 449 isAssumeWithEmptyBundle(*II)) || 450 II->getIntrinsicID() == Intrinsic::experimental_guard) { 451 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 452 return !Cond->isZero(); 453 454 return false; 455 } 456 } 457 458 if (isAllocLikeFn(I, TLI)) 459 return true; 460 461 if (CallInst *CI = isFreeCall(I, TLI)) 462 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 463 return C->isNullValue() || isa<UndefValue>(C); 464 465 if (auto *Call = dyn_cast<CallBase>(I)) 466 if (isMathLibCallNoop(Call, TLI)) 467 return true; 468 469 return false; 470 } 471 472 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 473 /// trivially dead instruction, delete it. If that makes any of its operands 474 /// trivially dead, delete them too, recursively. Return true if any 475 /// instructions were deleted. 476 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 477 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 478 std::function<void(Value *)> AboutToDeleteCallback) { 479 Instruction *I = dyn_cast<Instruction>(V); 480 if (!I || !isInstructionTriviallyDead(I, TLI)) 481 return false; 482 483 SmallVector<WeakTrackingVH, 16> DeadInsts; 484 DeadInsts.push_back(I); 485 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 486 AboutToDeleteCallback); 487 488 return true; 489 } 490 491 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 492 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 493 MemorySSAUpdater *MSSAU, 494 std::function<void(Value *)> AboutToDeleteCallback) { 495 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 496 for (; S != E; ++S) { 497 auto *I = cast<Instruction>(DeadInsts[S]); 498 if (!isInstructionTriviallyDead(I)) { 499 DeadInsts[S] = nullptr; 500 ++Alive; 501 } 502 } 503 if (Alive == E) 504 return false; 505 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 506 AboutToDeleteCallback); 507 return true; 508 } 509 510 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 511 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 512 MemorySSAUpdater *MSSAU, 513 std::function<void(Value *)> AboutToDeleteCallback) { 514 // Process the dead instruction list until empty. 515 while (!DeadInsts.empty()) { 516 Value *V = DeadInsts.pop_back_val(); 517 Instruction *I = cast_or_null<Instruction>(V); 518 if (!I) 519 continue; 520 assert(isInstructionTriviallyDead(I, TLI) && 521 "Live instruction found in dead worklist!"); 522 assert(I->use_empty() && "Instructions with uses are not dead."); 523 524 // Don't lose the debug info while deleting the instructions. 525 salvageDebugInfo(*I); 526 527 if (AboutToDeleteCallback) 528 AboutToDeleteCallback(I); 529 530 // Null out all of the instruction's operands to see if any operand becomes 531 // dead as we go. 532 for (Use &OpU : I->operands()) { 533 Value *OpV = OpU.get(); 534 OpU.set(nullptr); 535 536 if (!OpV->use_empty()) 537 continue; 538 539 // If the operand is an instruction that became dead as we nulled out the 540 // operand, and if it is 'trivially' dead, delete it in a future loop 541 // iteration. 542 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 543 if (isInstructionTriviallyDead(OpI, TLI)) 544 DeadInsts.push_back(OpI); 545 } 546 if (MSSAU) 547 MSSAU->removeMemoryAccess(I); 548 549 I->eraseFromParent(); 550 } 551 } 552 553 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 554 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 555 findDbgUsers(DbgUsers, I); 556 for (auto *DII : DbgUsers) { 557 Value *Undef = UndefValue::get(I->getType()); 558 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 559 ValueAsMetadata::get(Undef))); 560 } 561 return !DbgUsers.empty(); 562 } 563 564 /// areAllUsesEqual - Check whether the uses of a value are all the same. 565 /// This is similar to Instruction::hasOneUse() except this will also return 566 /// true when there are no uses or multiple uses that all refer to the same 567 /// value. 568 static bool areAllUsesEqual(Instruction *I) { 569 Value::user_iterator UI = I->user_begin(); 570 Value::user_iterator UE = I->user_end(); 571 if (UI == UE) 572 return true; 573 574 User *TheUse = *UI; 575 for (++UI; UI != UE; ++UI) { 576 if (*UI != TheUse) 577 return false; 578 } 579 return true; 580 } 581 582 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 583 /// dead PHI node, due to being a def-use chain of single-use nodes that 584 /// either forms a cycle or is terminated by a trivially dead instruction, 585 /// delete it. If that makes any of its operands trivially dead, delete them 586 /// too, recursively. Return true if a change was made. 587 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 588 const TargetLibraryInfo *TLI, 589 llvm::MemorySSAUpdater *MSSAU) { 590 SmallPtrSet<Instruction*, 4> Visited; 591 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 592 I = cast<Instruction>(*I->user_begin())) { 593 if (I->use_empty()) 594 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 595 596 // If we find an instruction more than once, we're on a cycle that 597 // won't prove fruitful. 598 if (!Visited.insert(I).second) { 599 // Break the cycle and delete the instruction and its operands. 600 I->replaceAllUsesWith(UndefValue::get(I->getType())); 601 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 602 return true; 603 } 604 } 605 return false; 606 } 607 608 static bool 609 simplifyAndDCEInstruction(Instruction *I, 610 SmallSetVector<Instruction *, 16> &WorkList, 611 const DataLayout &DL, 612 const TargetLibraryInfo *TLI) { 613 if (isInstructionTriviallyDead(I, TLI)) { 614 salvageDebugInfo(*I); 615 616 // Null out all of the instruction's operands to see if any operand becomes 617 // dead as we go. 618 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 619 Value *OpV = I->getOperand(i); 620 I->setOperand(i, nullptr); 621 622 if (!OpV->use_empty() || I == OpV) 623 continue; 624 625 // If the operand is an instruction that became dead as we nulled out the 626 // operand, and if it is 'trivially' dead, delete it in a future loop 627 // iteration. 628 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 629 if (isInstructionTriviallyDead(OpI, TLI)) 630 WorkList.insert(OpI); 631 } 632 633 I->eraseFromParent(); 634 635 return true; 636 } 637 638 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 639 // Add the users to the worklist. CAREFUL: an instruction can use itself, 640 // in the case of a phi node. 641 for (User *U : I->users()) { 642 if (U != I) { 643 WorkList.insert(cast<Instruction>(U)); 644 } 645 } 646 647 // Replace the instruction with its simplified value. 648 bool Changed = false; 649 if (!I->use_empty()) { 650 I->replaceAllUsesWith(SimpleV); 651 Changed = true; 652 } 653 if (isInstructionTriviallyDead(I, TLI)) { 654 I->eraseFromParent(); 655 Changed = true; 656 } 657 return Changed; 658 } 659 return false; 660 } 661 662 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 663 /// simplify any instructions in it and recursively delete dead instructions. 664 /// 665 /// This returns true if it changed the code, note that it can delete 666 /// instructions in other blocks as well in this block. 667 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 668 const TargetLibraryInfo *TLI) { 669 bool MadeChange = false; 670 const DataLayout &DL = BB->getModule()->getDataLayout(); 671 672 #ifndef NDEBUG 673 // In debug builds, ensure that the terminator of the block is never replaced 674 // or deleted by these simplifications. The idea of simplification is that it 675 // cannot introduce new instructions, and there is no way to replace the 676 // terminator of a block without introducing a new instruction. 677 AssertingVH<Instruction> TerminatorVH(&BB->back()); 678 #endif 679 680 SmallSetVector<Instruction *, 16> WorkList; 681 // Iterate over the original function, only adding insts to the worklist 682 // if they actually need to be revisited. This avoids having to pre-init 683 // the worklist with the entire function's worth of instructions. 684 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 685 BI != E;) { 686 assert(!BI->isTerminator()); 687 Instruction *I = &*BI; 688 ++BI; 689 690 // We're visiting this instruction now, so make sure it's not in the 691 // worklist from an earlier visit. 692 if (!WorkList.count(I)) 693 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 694 } 695 696 while (!WorkList.empty()) { 697 Instruction *I = WorkList.pop_back_val(); 698 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 699 } 700 return MadeChange; 701 } 702 703 //===----------------------------------------------------------------------===// 704 // Control Flow Graph Restructuring. 705 // 706 707 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 708 DomTreeUpdater *DTU) { 709 // This only adjusts blocks with PHI nodes. 710 if (!isa<PHINode>(BB->begin())) 711 return; 712 713 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 714 // them down. This will leave us with single entry phi nodes and other phis 715 // that can be removed. 716 BB->removePredecessor(Pred, true); 717 718 WeakTrackingVH PhiIt = &BB->front(); 719 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 720 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 721 Value *OldPhiIt = PhiIt; 722 723 if (!recursivelySimplifyInstruction(PN)) 724 continue; 725 726 // If recursive simplification ended up deleting the next PHI node we would 727 // iterate to, then our iterator is invalid, restart scanning from the top 728 // of the block. 729 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 730 } 731 if (DTU) 732 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 733 } 734 735 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 736 DomTreeUpdater *DTU) { 737 738 // If BB has single-entry PHI nodes, fold them. 739 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 740 Value *NewVal = PN->getIncomingValue(0); 741 // Replace self referencing PHI with undef, it must be dead. 742 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 743 PN->replaceAllUsesWith(NewVal); 744 PN->eraseFromParent(); 745 } 746 747 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 748 assert(PredBB && "Block doesn't have a single predecessor!"); 749 750 bool ReplaceEntryBB = false; 751 if (PredBB == &DestBB->getParent()->getEntryBlock()) 752 ReplaceEntryBB = true; 753 754 // DTU updates: Collect all the edges that enter 755 // PredBB. These dominator edges will be redirected to DestBB. 756 SmallVector<DominatorTree::UpdateType, 32> Updates; 757 758 if (DTU) { 759 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 760 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 761 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 762 // This predecessor of PredBB may already have DestBB as a successor. 763 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 764 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 765 } 766 } 767 768 // Zap anything that took the address of DestBB. Not doing this will give the 769 // address an invalid value. 770 if (DestBB->hasAddressTaken()) { 771 BlockAddress *BA = BlockAddress::get(DestBB); 772 Constant *Replacement = 773 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 774 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 775 BA->getType())); 776 BA->destroyConstant(); 777 } 778 779 // Anything that branched to PredBB now branches to DestBB. 780 PredBB->replaceAllUsesWith(DestBB); 781 782 // Splice all the instructions from PredBB to DestBB. 783 PredBB->getTerminator()->eraseFromParent(); 784 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 785 new UnreachableInst(PredBB->getContext(), PredBB); 786 787 // If the PredBB is the entry block of the function, move DestBB up to 788 // become the entry block after we erase PredBB. 789 if (ReplaceEntryBB) 790 DestBB->moveAfter(PredBB); 791 792 if (DTU) { 793 assert(PredBB->getInstList().size() == 1 && 794 isa<UnreachableInst>(PredBB->getTerminator()) && 795 "The successor list of PredBB isn't empty before " 796 "applying corresponding DTU updates."); 797 DTU->applyUpdatesPermissive(Updates); 798 DTU->deleteBB(PredBB); 799 // Recalculation of DomTree is needed when updating a forward DomTree and 800 // the Entry BB is replaced. 801 if (ReplaceEntryBB && DTU->hasDomTree()) { 802 // The entry block was removed and there is no external interface for 803 // the dominator tree to be notified of this change. In this corner-case 804 // we recalculate the entire tree. 805 DTU->recalculate(*(DestBB->getParent())); 806 } 807 } 808 809 else { 810 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 811 } 812 } 813 814 /// Return true if we can choose one of these values to use in place of the 815 /// other. Note that we will always choose the non-undef value to keep. 816 static bool CanMergeValues(Value *First, Value *Second) { 817 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 818 } 819 820 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 821 /// branch to Succ, into Succ. 822 /// 823 /// Assumption: Succ is the single successor for BB. 824 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 825 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 826 827 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 828 << Succ->getName() << "\n"); 829 // Shortcut, if there is only a single predecessor it must be BB and merging 830 // is always safe 831 if (Succ->getSinglePredecessor()) return true; 832 833 // Make a list of the predecessors of BB 834 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 835 836 // Look at all the phi nodes in Succ, to see if they present a conflict when 837 // merging these blocks 838 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 839 PHINode *PN = cast<PHINode>(I); 840 841 // If the incoming value from BB is again a PHINode in 842 // BB which has the same incoming value for *PI as PN does, we can 843 // merge the phi nodes and then the blocks can still be merged 844 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 845 if (BBPN && BBPN->getParent() == BB) { 846 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 847 BasicBlock *IBB = PN->getIncomingBlock(PI); 848 if (BBPreds.count(IBB) && 849 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 850 PN->getIncomingValue(PI))) { 851 LLVM_DEBUG(dbgs() 852 << "Can't fold, phi node " << PN->getName() << " in " 853 << Succ->getName() << " is conflicting with " 854 << BBPN->getName() << " with regard to common predecessor " 855 << IBB->getName() << "\n"); 856 return false; 857 } 858 } 859 } else { 860 Value* Val = PN->getIncomingValueForBlock(BB); 861 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 862 // See if the incoming value for the common predecessor is equal to the 863 // one for BB, in which case this phi node will not prevent the merging 864 // of the block. 865 BasicBlock *IBB = PN->getIncomingBlock(PI); 866 if (BBPreds.count(IBB) && 867 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 868 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 869 << " in " << Succ->getName() 870 << " is conflicting with regard to common " 871 << "predecessor " << IBB->getName() << "\n"); 872 return false; 873 } 874 } 875 } 876 } 877 878 return true; 879 } 880 881 using PredBlockVector = SmallVector<BasicBlock *, 16>; 882 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 883 884 /// Determines the value to use as the phi node input for a block. 885 /// 886 /// Select between \p OldVal any value that we know flows from \p BB 887 /// to a particular phi on the basis of which one (if either) is not 888 /// undef. Update IncomingValues based on the selected value. 889 /// 890 /// \param OldVal The value we are considering selecting. 891 /// \param BB The block that the value flows in from. 892 /// \param IncomingValues A map from block-to-value for other phi inputs 893 /// that we have examined. 894 /// 895 /// \returns the selected value. 896 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 897 IncomingValueMap &IncomingValues) { 898 if (!isa<UndefValue>(OldVal)) { 899 assert((!IncomingValues.count(BB) || 900 IncomingValues.find(BB)->second == OldVal) && 901 "Expected OldVal to match incoming value from BB!"); 902 903 IncomingValues.insert(std::make_pair(BB, OldVal)); 904 return OldVal; 905 } 906 907 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 908 if (It != IncomingValues.end()) return It->second; 909 910 return OldVal; 911 } 912 913 /// Create a map from block to value for the operands of a 914 /// given phi. 915 /// 916 /// Create a map from block to value for each non-undef value flowing 917 /// into \p PN. 918 /// 919 /// \param PN The phi we are collecting the map for. 920 /// \param IncomingValues [out] The map from block to value for this phi. 921 static void gatherIncomingValuesToPhi(PHINode *PN, 922 IncomingValueMap &IncomingValues) { 923 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 924 BasicBlock *BB = PN->getIncomingBlock(i); 925 Value *V = PN->getIncomingValue(i); 926 927 if (!isa<UndefValue>(V)) 928 IncomingValues.insert(std::make_pair(BB, V)); 929 } 930 } 931 932 /// Replace the incoming undef values to a phi with the values 933 /// from a block-to-value map. 934 /// 935 /// \param PN The phi we are replacing the undefs in. 936 /// \param IncomingValues A map from block to value. 937 static void replaceUndefValuesInPhi(PHINode *PN, 938 const IncomingValueMap &IncomingValues) { 939 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 940 Value *V = PN->getIncomingValue(i); 941 942 if (!isa<UndefValue>(V)) continue; 943 944 BasicBlock *BB = PN->getIncomingBlock(i); 945 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 946 if (It == IncomingValues.end()) continue; 947 948 PN->setIncomingValue(i, It->second); 949 } 950 } 951 952 /// Replace a value flowing from a block to a phi with 953 /// potentially multiple instances of that value flowing from the 954 /// block's predecessors to the phi. 955 /// 956 /// \param BB The block with the value flowing into the phi. 957 /// \param BBPreds The predecessors of BB. 958 /// \param PN The phi that we are updating. 959 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 960 const PredBlockVector &BBPreds, 961 PHINode *PN) { 962 Value *OldVal = PN->removeIncomingValue(BB, false); 963 assert(OldVal && "No entry in PHI for Pred BB!"); 964 965 IncomingValueMap IncomingValues; 966 967 // We are merging two blocks - BB, and the block containing PN - and 968 // as a result we need to redirect edges from the predecessors of BB 969 // to go to the block containing PN, and update PN 970 // accordingly. Since we allow merging blocks in the case where the 971 // predecessor and successor blocks both share some predecessors, 972 // and where some of those common predecessors might have undef 973 // values flowing into PN, we want to rewrite those values to be 974 // consistent with the non-undef values. 975 976 gatherIncomingValuesToPhi(PN, IncomingValues); 977 978 // If this incoming value is one of the PHI nodes in BB, the new entries 979 // in the PHI node are the entries from the old PHI. 980 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 981 PHINode *OldValPN = cast<PHINode>(OldVal); 982 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 983 // Note that, since we are merging phi nodes and BB and Succ might 984 // have common predecessors, we could end up with a phi node with 985 // identical incoming branches. This will be cleaned up later (and 986 // will trigger asserts if we try to clean it up now, without also 987 // simplifying the corresponding conditional branch). 988 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 989 Value *PredVal = OldValPN->getIncomingValue(i); 990 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 991 IncomingValues); 992 993 // And add a new incoming value for this predecessor for the 994 // newly retargeted branch. 995 PN->addIncoming(Selected, PredBB); 996 } 997 } else { 998 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 999 // Update existing incoming values in PN for this 1000 // predecessor of BB. 1001 BasicBlock *PredBB = BBPreds[i]; 1002 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1003 IncomingValues); 1004 1005 // And add a new incoming value for this predecessor for the 1006 // newly retargeted branch. 1007 PN->addIncoming(Selected, PredBB); 1008 } 1009 } 1010 1011 replaceUndefValuesInPhi(PN, IncomingValues); 1012 } 1013 1014 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1015 DomTreeUpdater *DTU) { 1016 assert(BB != &BB->getParent()->getEntryBlock() && 1017 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1018 1019 // We can't eliminate infinite loops. 1020 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1021 if (BB == Succ) return false; 1022 1023 // Check to see if merging these blocks would cause conflicts for any of the 1024 // phi nodes in BB or Succ. If not, we can safely merge. 1025 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1026 1027 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1028 // has uses which will not disappear when the PHI nodes are merged. It is 1029 // possible to handle such cases, but difficult: it requires checking whether 1030 // BB dominates Succ, which is non-trivial to calculate in the case where 1031 // Succ has multiple predecessors. Also, it requires checking whether 1032 // constructing the necessary self-referential PHI node doesn't introduce any 1033 // conflicts; this isn't too difficult, but the previous code for doing this 1034 // was incorrect. 1035 // 1036 // Note that if this check finds a live use, BB dominates Succ, so BB is 1037 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1038 // folding the branch isn't profitable in that case anyway. 1039 if (!Succ->getSinglePredecessor()) { 1040 BasicBlock::iterator BBI = BB->begin(); 1041 while (isa<PHINode>(*BBI)) { 1042 for (Use &U : BBI->uses()) { 1043 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1044 if (PN->getIncomingBlock(U) != BB) 1045 return false; 1046 } else { 1047 return false; 1048 } 1049 } 1050 ++BBI; 1051 } 1052 } 1053 1054 // We cannot fold the block if it's a branch to an already present callbr 1055 // successor because that creates duplicate successors. 1056 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1057 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1058 if (Succ == CBI->getDefaultDest()) 1059 return false; 1060 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1061 if (Succ == CBI->getIndirectDest(i)) 1062 return false; 1063 } 1064 } 1065 1066 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1067 1068 SmallVector<DominatorTree::UpdateType, 32> Updates; 1069 if (DTU) { 1070 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1071 // All predecessors of BB will be moved to Succ. 1072 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1073 Updates.push_back({DominatorTree::Delete, *I, BB}); 1074 // This predecessor of BB may already have Succ as a successor. 1075 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1076 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1077 } 1078 } 1079 1080 if (isa<PHINode>(Succ->begin())) { 1081 // If there is more than one pred of succ, and there are PHI nodes in 1082 // the successor, then we need to add incoming edges for the PHI nodes 1083 // 1084 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1085 1086 // Loop over all of the PHI nodes in the successor of BB. 1087 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1088 PHINode *PN = cast<PHINode>(I); 1089 1090 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1091 } 1092 } 1093 1094 if (Succ->getSinglePredecessor()) { 1095 // BB is the only predecessor of Succ, so Succ will end up with exactly 1096 // the same predecessors BB had. 1097 1098 // Copy over any phi, debug or lifetime instruction. 1099 BB->getTerminator()->eraseFromParent(); 1100 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1101 BB->getInstList()); 1102 } else { 1103 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1104 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1105 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1106 PN->eraseFromParent(); 1107 } 1108 } 1109 1110 // If the unconditional branch we replaced contains llvm.loop metadata, we 1111 // add the metadata to the branch instructions in the predecessors. 1112 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1113 Instruction *TI = BB->getTerminator(); 1114 if (TI) 1115 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1116 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1117 BasicBlock *Pred = *PI; 1118 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1119 } 1120 1121 // Everything that jumped to BB now goes to Succ. 1122 BB->replaceAllUsesWith(Succ); 1123 if (!Succ->hasName()) Succ->takeName(BB); 1124 1125 // Clear the successor list of BB to match updates applying to DTU later. 1126 if (BB->getTerminator()) 1127 BB->getInstList().pop_back(); 1128 new UnreachableInst(BB->getContext(), BB); 1129 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1130 "applying corresponding DTU updates."); 1131 1132 if (DTU) { 1133 DTU->applyUpdatesPermissive(Updates); 1134 DTU->deleteBB(BB); 1135 } else { 1136 BB->eraseFromParent(); // Delete the old basic block. 1137 } 1138 return true; 1139 } 1140 1141 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1142 // This implementation doesn't currently consider undef operands 1143 // specially. Theoretically, two phis which are identical except for 1144 // one having an undef where the other doesn't could be collapsed. 1145 1146 bool Changed = false; 1147 1148 // Examine each PHI. 1149 // Note that increment of I must *NOT* be in the iteration_expression, since 1150 // we don't want to immediately advance when we restart from the beginning. 1151 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1152 ++I; 1153 // Is there an identical PHI node in this basic block? 1154 // Note that we only look in the upper square's triangle, 1155 // we already checked that the lower triangle PHI's aren't identical. 1156 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1157 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1158 continue; 1159 // A duplicate. Replace this PHI with the base PHI. 1160 ++NumPHICSEs; 1161 DuplicatePN->replaceAllUsesWith(PN); 1162 DuplicatePN->eraseFromParent(); 1163 Changed = true; 1164 1165 // The RAUW can change PHIs that we already visited. 1166 I = BB->begin(); 1167 break; // Start over from the beginning. 1168 } 1169 } 1170 return Changed; 1171 } 1172 1173 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1174 // This implementation doesn't currently consider undef operands 1175 // specially. Theoretically, two phis which are identical except for 1176 // one having an undef where the other doesn't could be collapsed. 1177 1178 struct PHIDenseMapInfo { 1179 static PHINode *getEmptyKey() { 1180 return DenseMapInfo<PHINode *>::getEmptyKey(); 1181 } 1182 1183 static PHINode *getTombstoneKey() { 1184 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1185 } 1186 1187 static bool isSentinel(PHINode *PN) { 1188 return PN == getEmptyKey() || PN == getTombstoneKey(); 1189 } 1190 1191 // WARNING: this logic must be kept in sync with 1192 // Instruction::isIdenticalToWhenDefined()! 1193 static unsigned getHashValueImpl(PHINode *PN) { 1194 // Compute a hash value on the operands. Instcombine will likely have 1195 // sorted them, which helps expose duplicates, but we have to check all 1196 // the operands to be safe in case instcombine hasn't run. 1197 return static_cast<unsigned>(hash_combine( 1198 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1199 hash_combine_range(PN->block_begin(), PN->block_end()))); 1200 } 1201 1202 static unsigned getHashValue(PHINode *PN) { 1203 #ifndef NDEBUG 1204 // If -phicse-debug-hash was specified, return a constant -- this 1205 // will force all hashing to collide, so we'll exhaustively search 1206 // the table for a match, and the assertion in isEqual will fire if 1207 // there's a bug causing equal keys to hash differently. 1208 if (PHICSEDebugHash) 1209 return 0; 1210 #endif 1211 return getHashValueImpl(PN); 1212 } 1213 1214 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1215 if (isSentinel(LHS) || isSentinel(RHS)) 1216 return LHS == RHS; 1217 return LHS->isIdenticalTo(RHS); 1218 } 1219 1220 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1221 // These comparisons are nontrivial, so assert that equality implies 1222 // hash equality (DenseMap demands this as an invariant). 1223 bool Result = isEqualImpl(LHS, RHS); 1224 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1225 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1226 return Result; 1227 } 1228 }; 1229 1230 // Set of unique PHINodes. 1231 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1232 PHISet.reserve(4 * PHICSENumPHISmallSize); 1233 1234 // Examine each PHI. 1235 bool Changed = false; 1236 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1237 auto Inserted = PHISet.insert(PN); 1238 if (!Inserted.second) { 1239 // A duplicate. Replace this PHI with its duplicate. 1240 ++NumPHICSEs; 1241 PN->replaceAllUsesWith(*Inserted.first); 1242 PN->eraseFromParent(); 1243 Changed = true; 1244 1245 // The RAUW can change PHIs that we already visited. Start over from the 1246 // beginning. 1247 PHISet.clear(); 1248 I = BB->begin(); 1249 } 1250 } 1251 1252 return Changed; 1253 } 1254 1255 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1256 if ( 1257 #ifndef NDEBUG 1258 !PHICSEDebugHash && 1259 #endif 1260 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1261 return EliminateDuplicatePHINodesNaiveImpl(BB); 1262 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1263 } 1264 1265 /// If the specified pointer points to an object that we control, try to modify 1266 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1267 /// the value after the operation, which may be lower than PrefAlign. 1268 /// 1269 /// Increating value alignment isn't often possible though. If alignment is 1270 /// important, a more reliable approach is to simply align all global variables 1271 /// and allocation instructions to their preferred alignment from the beginning. 1272 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1273 const DataLayout &DL) { 1274 V = V->stripPointerCasts(); 1275 1276 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1277 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1278 // than the current alignment, as the known bits calculation should have 1279 // already taken it into account. However, this is not always the case, 1280 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1281 // doesn't. 1282 Align CurrentAlign = AI->getAlign(); 1283 if (PrefAlign <= CurrentAlign) 1284 return CurrentAlign; 1285 1286 // If the preferred alignment is greater than the natural stack alignment 1287 // then don't round up. This avoids dynamic stack realignment. 1288 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1289 return CurrentAlign; 1290 AI->setAlignment(PrefAlign); 1291 return PrefAlign; 1292 } 1293 1294 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1295 // TODO: as above, this shouldn't be necessary. 1296 Align CurrentAlign = GO->getPointerAlignment(DL); 1297 if (PrefAlign <= CurrentAlign) 1298 return CurrentAlign; 1299 1300 // If there is a large requested alignment and we can, bump up the alignment 1301 // of the global. If the memory we set aside for the global may not be the 1302 // memory used by the final program then it is impossible for us to reliably 1303 // enforce the preferred alignment. 1304 if (!GO->canIncreaseAlignment()) 1305 return CurrentAlign; 1306 1307 GO->setAlignment(PrefAlign); 1308 return PrefAlign; 1309 } 1310 1311 return Align(1); 1312 } 1313 1314 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1315 const DataLayout &DL, 1316 const Instruction *CxtI, 1317 AssumptionCache *AC, 1318 const DominatorTree *DT) { 1319 assert(V->getType()->isPointerTy() && 1320 "getOrEnforceKnownAlignment expects a pointer!"); 1321 1322 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1323 unsigned TrailZ = Known.countMinTrailingZeros(); 1324 1325 // Avoid trouble with ridiculously large TrailZ values, such as 1326 // those computed from a null pointer. 1327 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1328 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1329 1330 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1331 1332 if (PrefAlign && *PrefAlign > Alignment) 1333 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1334 1335 // We don't need to make any adjustment. 1336 return Alignment; 1337 } 1338 1339 ///===---------------------------------------------------------------------===// 1340 /// Dbg Intrinsic utilities 1341 /// 1342 1343 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1344 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1345 DIExpression *DIExpr, 1346 PHINode *APN) { 1347 // Since we can't guarantee that the original dbg.declare instrinsic 1348 // is removed by LowerDbgDeclare(), we need to make sure that we are 1349 // not inserting the same dbg.value intrinsic over and over. 1350 SmallVector<DbgValueInst *, 1> DbgValues; 1351 findDbgValues(DbgValues, APN); 1352 for (auto *DVI : DbgValues) { 1353 assert(DVI->getValue() == APN); 1354 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1355 return true; 1356 } 1357 return false; 1358 } 1359 1360 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1361 /// (or fragment of the variable) described by \p DII. 1362 /// 1363 /// This is primarily intended as a helper for the different 1364 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1365 /// converted describes an alloca'd variable, so we need to use the 1366 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1367 /// identified as covering an n-bit fragment, if the store size of i1 is at 1368 /// least n bits. 1369 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1370 const DataLayout &DL = DII->getModule()->getDataLayout(); 1371 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1372 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1373 return ValueSize >= *FragmentSize; 1374 // We can't always calculate the size of the DI variable (e.g. if it is a 1375 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1376 // intead. 1377 if (DII->isAddressOfVariable()) 1378 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1379 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1380 return ValueSize >= *FragmentSize; 1381 // Could not determine size of variable. Conservatively return false. 1382 return false; 1383 } 1384 1385 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1386 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1387 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1388 /// case this DebugLoc leaks into any adjacent instructions. 1389 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1390 // Original dbg.declare must have a location. 1391 DebugLoc DeclareLoc = DII->getDebugLoc(); 1392 MDNode *Scope = DeclareLoc.getScope(); 1393 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1394 // Produce an unknown location with the correct scope / inlinedAt fields. 1395 return DebugLoc::get(0, 0, Scope, InlinedAt); 1396 } 1397 1398 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1399 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1400 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1401 StoreInst *SI, DIBuilder &Builder) { 1402 assert(DII->isAddressOfVariable()); 1403 auto *DIVar = DII->getVariable(); 1404 assert(DIVar && "Missing variable"); 1405 auto *DIExpr = DII->getExpression(); 1406 Value *DV = SI->getValueOperand(); 1407 1408 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1409 1410 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1411 // FIXME: If storing to a part of the variable described by the dbg.declare, 1412 // then we want to insert a dbg.value for the corresponding fragment. 1413 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1414 << *DII << '\n'); 1415 // For now, when there is a store to parts of the variable (but we do not 1416 // know which part) we insert an dbg.value instrinsic to indicate that we 1417 // know nothing about the variable's content. 1418 DV = UndefValue::get(DV->getType()); 1419 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1420 return; 1421 } 1422 1423 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1424 } 1425 1426 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1427 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1428 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1429 LoadInst *LI, DIBuilder &Builder) { 1430 auto *DIVar = DII->getVariable(); 1431 auto *DIExpr = DII->getExpression(); 1432 assert(DIVar && "Missing variable"); 1433 1434 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1435 // FIXME: If only referring to a part of the variable described by the 1436 // dbg.declare, then we want to insert a dbg.value for the corresponding 1437 // fragment. 1438 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1439 << *DII << '\n'); 1440 return; 1441 } 1442 1443 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1444 1445 // We are now tracking the loaded value instead of the address. In the 1446 // future if multi-location support is added to the IR, it might be 1447 // preferable to keep tracking both the loaded value and the original 1448 // address in case the alloca can not be elided. 1449 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1450 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1451 DbgValue->insertAfter(LI); 1452 } 1453 1454 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1455 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1456 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1457 PHINode *APN, DIBuilder &Builder) { 1458 auto *DIVar = DII->getVariable(); 1459 auto *DIExpr = DII->getExpression(); 1460 assert(DIVar && "Missing variable"); 1461 1462 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1463 return; 1464 1465 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1466 // FIXME: If only referring to a part of the variable described by the 1467 // dbg.declare, then we want to insert a dbg.value for the corresponding 1468 // fragment. 1469 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1470 << *DII << '\n'); 1471 return; 1472 } 1473 1474 BasicBlock *BB = APN->getParent(); 1475 auto InsertionPt = BB->getFirstInsertionPt(); 1476 1477 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1478 1479 // The block may be a catchswitch block, which does not have a valid 1480 // insertion point. 1481 // FIXME: Insert dbg.value markers in the successors when appropriate. 1482 if (InsertionPt != BB->end()) 1483 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1484 } 1485 1486 /// Determine whether this alloca is either a VLA or an array. 1487 static bool isArray(AllocaInst *AI) { 1488 return AI->isArrayAllocation() || 1489 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1490 } 1491 1492 /// Determine whether this alloca is a structure. 1493 static bool isStructure(AllocaInst *AI) { 1494 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1495 } 1496 1497 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1498 /// of llvm.dbg.value intrinsics. 1499 bool llvm::LowerDbgDeclare(Function &F) { 1500 bool Changed = false; 1501 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1502 SmallVector<DbgDeclareInst *, 4> Dbgs; 1503 for (auto &FI : F) 1504 for (Instruction &BI : FI) 1505 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1506 Dbgs.push_back(DDI); 1507 1508 if (Dbgs.empty()) 1509 return Changed; 1510 1511 for (auto &I : Dbgs) { 1512 DbgDeclareInst *DDI = I; 1513 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1514 // If this is an alloca for a scalar variable, insert a dbg.value 1515 // at each load and store to the alloca and erase the dbg.declare. 1516 // The dbg.values allow tracking a variable even if it is not 1517 // stored on the stack, while the dbg.declare can only describe 1518 // the stack slot (and at a lexical-scope granularity). Later 1519 // passes will attempt to elide the stack slot. 1520 if (!AI || isArray(AI) || isStructure(AI)) 1521 continue; 1522 1523 // A volatile load/store means that the alloca can't be elided anyway. 1524 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1525 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1526 return LI->isVolatile(); 1527 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1528 return SI->isVolatile(); 1529 return false; 1530 })) 1531 continue; 1532 1533 SmallVector<const Value *, 8> WorkList; 1534 WorkList.push_back(AI); 1535 while (!WorkList.empty()) { 1536 const Value *V = WorkList.pop_back_val(); 1537 for (auto &AIUse : V->uses()) { 1538 User *U = AIUse.getUser(); 1539 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1540 if (AIUse.getOperandNo() == 1) 1541 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1542 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1543 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1544 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1545 // This is a call by-value or some other instruction that takes a 1546 // pointer to the variable. Insert a *value* intrinsic that describes 1547 // the variable by dereferencing the alloca. 1548 if (!CI->isLifetimeStartOrEnd()) { 1549 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1550 auto *DerefExpr = 1551 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1552 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1553 NewLoc, CI); 1554 } 1555 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1556 if (BI->getType()->isPointerTy()) 1557 WorkList.push_back(BI); 1558 } 1559 } 1560 } 1561 DDI->eraseFromParent(); 1562 Changed = true; 1563 } 1564 1565 if (Changed) 1566 for (BasicBlock &BB : F) 1567 RemoveRedundantDbgInstrs(&BB); 1568 1569 return Changed; 1570 } 1571 1572 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1573 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1574 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1575 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1576 if (InsertedPHIs.size() == 0) 1577 return; 1578 1579 // Map existing PHI nodes to their dbg.values. 1580 ValueToValueMapTy DbgValueMap; 1581 for (auto &I : *BB) { 1582 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1583 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1584 DbgValueMap.insert({Loc, DbgII}); 1585 } 1586 } 1587 if (DbgValueMap.size() == 0) 1588 return; 1589 1590 // Then iterate through the new PHIs and look to see if they use one of the 1591 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1592 // propagate the info through the new PHI. 1593 LLVMContext &C = BB->getContext(); 1594 for (auto PHI : InsertedPHIs) { 1595 BasicBlock *Parent = PHI->getParent(); 1596 // Avoid inserting an intrinsic into an EH block. 1597 if (Parent->getFirstNonPHI()->isEHPad()) 1598 continue; 1599 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1600 for (auto VI : PHI->operand_values()) { 1601 auto V = DbgValueMap.find(VI); 1602 if (V != DbgValueMap.end()) { 1603 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1604 Instruction *NewDbgII = DbgII->clone(); 1605 NewDbgII->setOperand(0, PhiMAV); 1606 auto InsertionPt = Parent->getFirstInsertionPt(); 1607 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1608 NewDbgII->insertBefore(&*InsertionPt); 1609 } 1610 } 1611 } 1612 } 1613 1614 /// Finds all intrinsics declaring local variables as living in the memory that 1615 /// 'V' points to. This may include a mix of dbg.declare and 1616 /// dbg.addr intrinsics. 1617 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1618 // This function is hot. Check whether the value has any metadata to avoid a 1619 // DenseMap lookup. 1620 if (!V->isUsedByMetadata()) 1621 return {}; 1622 auto *L = LocalAsMetadata::getIfExists(V); 1623 if (!L) 1624 return {}; 1625 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1626 if (!MDV) 1627 return {}; 1628 1629 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1630 for (User *U : MDV->users()) { 1631 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1632 if (DII->isAddressOfVariable()) 1633 Declares.push_back(DII); 1634 } 1635 1636 return Declares; 1637 } 1638 1639 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1640 TinyPtrVector<DbgDeclareInst *> DDIs; 1641 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1642 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1643 DDIs.push_back(DDI); 1644 return DDIs; 1645 } 1646 1647 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1648 // This function is hot. Check whether the value has any metadata to avoid a 1649 // DenseMap lookup. 1650 if (!V->isUsedByMetadata()) 1651 return; 1652 if (auto *L = LocalAsMetadata::getIfExists(V)) 1653 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1654 for (User *U : MDV->users()) 1655 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1656 DbgValues.push_back(DVI); 1657 } 1658 1659 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1660 Value *V) { 1661 // This function is hot. Check whether the value has any metadata to avoid a 1662 // DenseMap lookup. 1663 if (!V->isUsedByMetadata()) 1664 return; 1665 if (auto *L = LocalAsMetadata::getIfExists(V)) 1666 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1667 for (User *U : MDV->users()) 1668 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1669 DbgUsers.push_back(DII); 1670 } 1671 1672 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1673 DIBuilder &Builder, uint8_t DIExprFlags, 1674 int Offset) { 1675 auto DbgAddrs = FindDbgAddrUses(Address); 1676 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1677 DebugLoc Loc = DII->getDebugLoc(); 1678 auto *DIVar = DII->getVariable(); 1679 auto *DIExpr = DII->getExpression(); 1680 assert(DIVar && "Missing variable"); 1681 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1682 // Insert llvm.dbg.declare immediately before DII, and remove old 1683 // llvm.dbg.declare. 1684 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1685 DII->eraseFromParent(); 1686 } 1687 return !DbgAddrs.empty(); 1688 } 1689 1690 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1691 DIBuilder &Builder, int Offset) { 1692 DebugLoc Loc = DVI->getDebugLoc(); 1693 auto *DIVar = DVI->getVariable(); 1694 auto *DIExpr = DVI->getExpression(); 1695 assert(DIVar && "Missing variable"); 1696 1697 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1698 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1699 // it and give up. 1700 if (!DIExpr || DIExpr->getNumElements() < 1 || 1701 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1702 return; 1703 1704 // Insert the offset before the first deref. 1705 // We could just change the offset argument of dbg.value, but it's unsigned... 1706 if (Offset) 1707 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1708 1709 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1710 DVI->eraseFromParent(); 1711 } 1712 1713 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1714 DIBuilder &Builder, int Offset) { 1715 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1716 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1717 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1718 Use &U = *UI++; 1719 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1720 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1721 } 1722 } 1723 1724 /// Wrap \p V in a ValueAsMetadata instance. 1725 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1726 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1727 } 1728 1729 /// Where possible to salvage debug information for \p I do so 1730 /// and return True. If not possible mark undef and return False. 1731 void llvm::salvageDebugInfo(Instruction &I) { 1732 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1733 findDbgUsers(DbgUsers, &I); 1734 salvageDebugInfoForDbgValues(I, DbgUsers); 1735 } 1736 1737 void llvm::salvageDebugInfoForDbgValues( 1738 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1739 auto &Ctx = I.getContext(); 1740 bool Salvaged = false; 1741 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1742 1743 for (auto *DII : DbgUsers) { 1744 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1745 // are implicitly pointing out the value as a DWARF memory location 1746 // description. 1747 bool StackValue = isa<DbgValueInst>(DII); 1748 1749 DIExpression *DIExpr = 1750 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1751 1752 // salvageDebugInfoImpl should fail on examining the first element of 1753 // DbgUsers, or none of them. 1754 if (!DIExpr) 1755 break; 1756 1757 DII->setOperand(0, wrapMD(I.getOperand(0))); 1758 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1759 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1760 Salvaged = true; 1761 } 1762 1763 if (Salvaged) 1764 return; 1765 1766 for (auto *DII : DbgUsers) { 1767 Value *Undef = UndefValue::get(I.getType()); 1768 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1769 ValueAsMetadata::get(Undef))); 1770 } 1771 } 1772 1773 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1774 DIExpression *SrcDIExpr, 1775 bool WithStackValue) { 1776 auto &M = *I.getModule(); 1777 auto &DL = M.getDataLayout(); 1778 1779 // Apply a vector of opcodes to the source DIExpression. 1780 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1781 DIExpression *DIExpr = SrcDIExpr; 1782 if (!Ops.empty()) { 1783 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1784 } 1785 return DIExpr; 1786 }; 1787 1788 // Apply the given offset to the source DIExpression. 1789 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1790 SmallVector<uint64_t, 8> Ops; 1791 DIExpression::appendOffset(Ops, Offset); 1792 return doSalvage(Ops); 1793 }; 1794 1795 // initializer-list helper for applying operators to the source DIExpression. 1796 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1797 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1798 return doSalvage(Ops); 1799 }; 1800 1801 if (auto *CI = dyn_cast<CastInst>(&I)) { 1802 // No-op casts are irrelevant for debug info. 1803 if (CI->isNoopCast(DL)) 1804 return SrcDIExpr; 1805 1806 Type *Type = CI->getType(); 1807 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1808 if (Type->isVectorTy() || 1809 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1810 return nullptr; 1811 1812 Value *FromValue = CI->getOperand(0); 1813 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1814 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1815 1816 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1817 isa<SExtInst>(&I))); 1818 } 1819 1820 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1821 unsigned BitWidth = 1822 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1823 // Rewrite a constant GEP into a DIExpression. 1824 APInt Offset(BitWidth, 0); 1825 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1826 return applyOffset(Offset.getSExtValue()); 1827 } else { 1828 return nullptr; 1829 } 1830 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1831 // Rewrite binary operations with constant integer operands. 1832 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1833 if (!ConstInt || ConstInt->getBitWidth() > 64) 1834 return nullptr; 1835 1836 uint64_t Val = ConstInt->getSExtValue(); 1837 switch (BI->getOpcode()) { 1838 case Instruction::Add: 1839 return applyOffset(Val); 1840 case Instruction::Sub: 1841 return applyOffset(-int64_t(Val)); 1842 case Instruction::Mul: 1843 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1844 case Instruction::SDiv: 1845 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1846 case Instruction::SRem: 1847 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1848 case Instruction::Or: 1849 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1850 case Instruction::And: 1851 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1852 case Instruction::Xor: 1853 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1854 case Instruction::Shl: 1855 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1856 case Instruction::LShr: 1857 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1858 case Instruction::AShr: 1859 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1860 default: 1861 // TODO: Salvage constants from each kind of binop we know about. 1862 return nullptr; 1863 } 1864 // *Not* to do: we should not attempt to salvage load instructions, 1865 // because the validity and lifetime of a dbg.value containing 1866 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1867 } 1868 return nullptr; 1869 } 1870 1871 /// A replacement for a dbg.value expression. 1872 using DbgValReplacement = Optional<DIExpression *>; 1873 1874 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1875 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1876 /// changes are made. 1877 static bool rewriteDebugUsers( 1878 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1879 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1880 // Find debug users of From. 1881 SmallVector<DbgVariableIntrinsic *, 1> Users; 1882 findDbgUsers(Users, &From); 1883 if (Users.empty()) 1884 return false; 1885 1886 // Prevent use-before-def of To. 1887 bool Changed = false; 1888 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1889 if (isa<Instruction>(&To)) { 1890 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1891 1892 for (auto *DII : Users) { 1893 // It's common to see a debug user between From and DomPoint. Move it 1894 // after DomPoint to preserve the variable update without any reordering. 1895 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1896 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1897 DII->moveAfter(&DomPoint); 1898 Changed = true; 1899 1900 // Users which otherwise aren't dominated by the replacement value must 1901 // be salvaged or deleted. 1902 } else if (!DT.dominates(&DomPoint, DII)) { 1903 UndefOrSalvage.insert(DII); 1904 } 1905 } 1906 } 1907 1908 // Update debug users without use-before-def risk. 1909 for (auto *DII : Users) { 1910 if (UndefOrSalvage.count(DII)) 1911 continue; 1912 1913 LLVMContext &Ctx = DII->getContext(); 1914 DbgValReplacement DVR = RewriteExpr(*DII); 1915 if (!DVR) 1916 continue; 1917 1918 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1919 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1920 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1921 Changed = true; 1922 } 1923 1924 if (!UndefOrSalvage.empty()) { 1925 // Try to salvage the remaining debug users. 1926 salvageDebugInfo(From); 1927 Changed = true; 1928 } 1929 1930 return Changed; 1931 } 1932 1933 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1934 /// losslessly preserve the bits and semantics of the value. This predicate is 1935 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1936 /// 1937 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1938 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1939 /// and also does not allow lossless pointer <-> integer conversions. 1940 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1941 Type *ToTy) { 1942 // Trivially compatible types. 1943 if (FromTy == ToTy) 1944 return true; 1945 1946 // Handle compatible pointer <-> integer conversions. 1947 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1948 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1949 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1950 !DL.isNonIntegralPointerType(ToTy); 1951 return SameSize && LosslessConversion; 1952 } 1953 1954 // TODO: This is not exhaustive. 1955 return false; 1956 } 1957 1958 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1959 Instruction &DomPoint, DominatorTree &DT) { 1960 // Exit early if From has no debug users. 1961 if (!From.isUsedByMetadata()) 1962 return false; 1963 1964 assert(&From != &To && "Can't replace something with itself"); 1965 1966 Type *FromTy = From.getType(); 1967 Type *ToTy = To.getType(); 1968 1969 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1970 return DII.getExpression(); 1971 }; 1972 1973 // Handle no-op conversions. 1974 Module &M = *From.getModule(); 1975 const DataLayout &DL = M.getDataLayout(); 1976 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1977 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1978 1979 // Handle integer-to-integer widening and narrowing. 1980 // FIXME: Use DW_OP_convert when it's available everywhere. 1981 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1982 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1983 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1984 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1985 1986 // When the width of the result grows, assume that a debugger will only 1987 // access the low `FromBits` bits when inspecting the source variable. 1988 if (FromBits < ToBits) 1989 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1990 1991 // The width of the result has shrunk. Use sign/zero extension to describe 1992 // the source variable's high bits. 1993 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1994 DILocalVariable *Var = DII.getVariable(); 1995 1996 // Without knowing signedness, sign/zero extension isn't possible. 1997 auto Signedness = Var->getSignedness(); 1998 if (!Signedness) 1999 return None; 2000 2001 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2002 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2003 Signed); 2004 }; 2005 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2006 } 2007 2008 // TODO: Floating-point conversions, vectors. 2009 return false; 2010 } 2011 2012 std::pair<unsigned, unsigned> 2013 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2014 unsigned NumDeadInst = 0; 2015 unsigned NumDeadDbgInst = 0; 2016 // Delete the instructions backwards, as it has a reduced likelihood of 2017 // having to update as many def-use and use-def chains. 2018 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2019 while (EndInst != &BB->front()) { 2020 // Delete the next to last instruction. 2021 Instruction *Inst = &*--EndInst->getIterator(); 2022 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2023 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2024 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2025 EndInst = Inst; 2026 continue; 2027 } 2028 if (isa<DbgInfoIntrinsic>(Inst)) 2029 ++NumDeadDbgInst; 2030 else 2031 ++NumDeadInst; 2032 Inst->eraseFromParent(); 2033 } 2034 return {NumDeadInst, NumDeadDbgInst}; 2035 } 2036 2037 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2038 bool PreserveLCSSA, DomTreeUpdater *DTU, 2039 MemorySSAUpdater *MSSAU) { 2040 BasicBlock *BB = I->getParent(); 2041 std::vector <DominatorTree::UpdateType> Updates; 2042 2043 if (MSSAU) 2044 MSSAU->changeToUnreachable(I); 2045 2046 // Loop over all of the successors, removing BB's entry from any PHI 2047 // nodes. 2048 if (DTU) 2049 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 2050 for (BasicBlock *Successor : successors(BB)) { 2051 Successor->removePredecessor(BB, PreserveLCSSA); 2052 if (DTU) 2053 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2054 } 2055 // Insert a call to llvm.trap right before this. This turns the undefined 2056 // behavior into a hard fail instead of falling through into random code. 2057 if (UseLLVMTrap) { 2058 Function *TrapFn = 2059 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2060 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2061 CallTrap->setDebugLoc(I->getDebugLoc()); 2062 } 2063 auto *UI = new UnreachableInst(I->getContext(), I); 2064 UI->setDebugLoc(I->getDebugLoc()); 2065 2066 // All instructions after this are dead. 2067 unsigned NumInstrsRemoved = 0; 2068 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2069 while (BBI != BBE) { 2070 if (!BBI->use_empty()) 2071 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2072 BB->getInstList().erase(BBI++); 2073 ++NumInstrsRemoved; 2074 } 2075 if (DTU) 2076 DTU->applyUpdatesPermissive(Updates); 2077 return NumInstrsRemoved; 2078 } 2079 2080 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2081 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 2082 SmallVector<OperandBundleDef, 1> OpBundles; 2083 II->getOperandBundlesAsDefs(OpBundles); 2084 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2085 II->getCalledOperand(), Args, OpBundles); 2086 NewCall->setCallingConv(II->getCallingConv()); 2087 NewCall->setAttributes(II->getAttributes()); 2088 NewCall->setDebugLoc(II->getDebugLoc()); 2089 NewCall->copyMetadata(*II); 2090 2091 // If the invoke had profile metadata, try converting them for CallInst. 2092 uint64_t TotalWeight; 2093 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2094 // Set the total weight if it fits into i32, otherwise reset. 2095 MDBuilder MDB(NewCall->getContext()); 2096 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2097 ? nullptr 2098 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2099 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2100 } 2101 2102 return NewCall; 2103 } 2104 2105 /// changeToCall - Convert the specified invoke into a normal call. 2106 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2107 CallInst *NewCall = createCallMatchingInvoke(II); 2108 NewCall->takeName(II); 2109 NewCall->insertBefore(II); 2110 II->replaceAllUsesWith(NewCall); 2111 2112 // Follow the call by a branch to the normal destination. 2113 BasicBlock *NormalDestBB = II->getNormalDest(); 2114 BranchInst::Create(NormalDestBB, II); 2115 2116 // Update PHI nodes in the unwind destination 2117 BasicBlock *BB = II->getParent(); 2118 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2119 UnwindDestBB->removePredecessor(BB); 2120 II->eraseFromParent(); 2121 if (DTU) 2122 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 2123 } 2124 2125 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2126 BasicBlock *UnwindEdge) { 2127 BasicBlock *BB = CI->getParent(); 2128 2129 // Convert this function call into an invoke instruction. First, split the 2130 // basic block. 2131 BasicBlock *Split = 2132 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2133 2134 // Delete the unconditional branch inserted by splitBasicBlock 2135 BB->getInstList().pop_back(); 2136 2137 // Create the new invoke instruction. 2138 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2139 SmallVector<OperandBundleDef, 1> OpBundles; 2140 2141 CI->getOperandBundlesAsDefs(OpBundles); 2142 2143 // Note: we're round tripping operand bundles through memory here, and that 2144 // can potentially be avoided with a cleverer API design that we do not have 2145 // as of this time. 2146 2147 InvokeInst *II = 2148 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2149 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2150 II->setDebugLoc(CI->getDebugLoc()); 2151 II->setCallingConv(CI->getCallingConv()); 2152 II->setAttributes(CI->getAttributes()); 2153 2154 // Make sure that anything using the call now uses the invoke! This also 2155 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2156 CI->replaceAllUsesWith(II); 2157 2158 // Delete the original call 2159 Split->getInstList().pop_front(); 2160 return Split; 2161 } 2162 2163 static bool markAliveBlocks(Function &F, 2164 SmallPtrSetImpl<BasicBlock *> &Reachable, 2165 DomTreeUpdater *DTU = nullptr) { 2166 SmallVector<BasicBlock*, 128> Worklist; 2167 BasicBlock *BB = &F.front(); 2168 Worklist.push_back(BB); 2169 Reachable.insert(BB); 2170 bool Changed = false; 2171 do { 2172 BB = Worklist.pop_back_val(); 2173 2174 // Do a quick scan of the basic block, turning any obviously unreachable 2175 // instructions into LLVM unreachable insts. The instruction combining pass 2176 // canonicalizes unreachable insts into stores to null or undef. 2177 for (Instruction &I : *BB) { 2178 if (auto *CI = dyn_cast<CallInst>(&I)) { 2179 Value *Callee = CI->getCalledOperand(); 2180 // Handle intrinsic calls. 2181 if (Function *F = dyn_cast<Function>(Callee)) { 2182 auto IntrinsicID = F->getIntrinsicID(); 2183 // Assumptions that are known to be false are equivalent to 2184 // unreachable. Also, if the condition is undefined, then we make the 2185 // choice most beneficial to the optimizer, and choose that to also be 2186 // unreachable. 2187 if (IntrinsicID == Intrinsic::assume) { 2188 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2189 // Don't insert a call to llvm.trap right before the unreachable. 2190 changeToUnreachable(CI, false, false, DTU); 2191 Changed = true; 2192 break; 2193 } 2194 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2195 // A call to the guard intrinsic bails out of the current 2196 // compilation unit if the predicate passed to it is false. If the 2197 // predicate is a constant false, then we know the guard will bail 2198 // out of the current compile unconditionally, so all code following 2199 // it is dead. 2200 // 2201 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2202 // guards to treat `undef` as `false` since a guard on `undef` can 2203 // still be useful for widening. 2204 if (match(CI->getArgOperand(0), m_Zero())) 2205 if (!isa<UnreachableInst>(CI->getNextNode())) { 2206 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2207 false, DTU); 2208 Changed = true; 2209 break; 2210 } 2211 } 2212 } else if ((isa<ConstantPointerNull>(Callee) && 2213 !NullPointerIsDefined(CI->getFunction())) || 2214 isa<UndefValue>(Callee)) { 2215 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2216 Changed = true; 2217 break; 2218 } 2219 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2220 // If we found a call to a no-return function, insert an unreachable 2221 // instruction after it. Make sure there isn't *already* one there 2222 // though. 2223 if (!isa<UnreachableInst>(CI->getNextNode())) { 2224 // Don't insert a call to llvm.trap right before the unreachable. 2225 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2226 Changed = true; 2227 } 2228 break; 2229 } 2230 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2231 // Store to undef and store to null are undefined and used to signal 2232 // that they should be changed to unreachable by passes that can't 2233 // modify the CFG. 2234 2235 // Don't touch volatile stores. 2236 if (SI->isVolatile()) continue; 2237 2238 Value *Ptr = SI->getOperand(1); 2239 2240 if (isa<UndefValue>(Ptr) || 2241 (isa<ConstantPointerNull>(Ptr) && 2242 !NullPointerIsDefined(SI->getFunction(), 2243 SI->getPointerAddressSpace()))) { 2244 changeToUnreachable(SI, true, false, DTU); 2245 Changed = true; 2246 break; 2247 } 2248 } 2249 } 2250 2251 Instruction *Terminator = BB->getTerminator(); 2252 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2253 // Turn invokes that call 'nounwind' functions into ordinary calls. 2254 Value *Callee = II->getCalledOperand(); 2255 if ((isa<ConstantPointerNull>(Callee) && 2256 !NullPointerIsDefined(BB->getParent())) || 2257 isa<UndefValue>(Callee)) { 2258 changeToUnreachable(II, true, false, DTU); 2259 Changed = true; 2260 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2261 if (II->use_empty() && II->onlyReadsMemory()) { 2262 // jump to the normal destination branch. 2263 BasicBlock *NormalDestBB = II->getNormalDest(); 2264 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2265 BranchInst::Create(NormalDestBB, II); 2266 UnwindDestBB->removePredecessor(II->getParent()); 2267 II->eraseFromParent(); 2268 if (DTU) 2269 DTU->applyUpdatesPermissive( 2270 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2271 } else 2272 changeToCall(II, DTU); 2273 Changed = true; 2274 } 2275 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2276 // Remove catchpads which cannot be reached. 2277 struct CatchPadDenseMapInfo { 2278 static CatchPadInst *getEmptyKey() { 2279 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2280 } 2281 2282 static CatchPadInst *getTombstoneKey() { 2283 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2284 } 2285 2286 static unsigned getHashValue(CatchPadInst *CatchPad) { 2287 return static_cast<unsigned>(hash_combine_range( 2288 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2289 } 2290 2291 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2292 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2293 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2294 return LHS == RHS; 2295 return LHS->isIdenticalTo(RHS); 2296 } 2297 }; 2298 2299 // Set of unique CatchPads. 2300 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2301 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2302 HandlerSet; 2303 detail::DenseSetEmpty Empty; 2304 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2305 E = CatchSwitch->handler_end(); 2306 I != E; ++I) { 2307 BasicBlock *HandlerBB = *I; 2308 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2309 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2310 CatchSwitch->removeHandler(I); 2311 --I; 2312 --E; 2313 Changed = true; 2314 } 2315 } 2316 } 2317 2318 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2319 for (BasicBlock *Successor : successors(BB)) 2320 if (Reachable.insert(Successor).second) 2321 Worklist.push_back(Successor); 2322 } while (!Worklist.empty()); 2323 return Changed; 2324 } 2325 2326 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2327 Instruction *TI = BB->getTerminator(); 2328 2329 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2330 changeToCall(II, DTU); 2331 return; 2332 } 2333 2334 Instruction *NewTI; 2335 BasicBlock *UnwindDest; 2336 2337 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2338 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2339 UnwindDest = CRI->getUnwindDest(); 2340 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2341 auto *NewCatchSwitch = CatchSwitchInst::Create( 2342 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2343 CatchSwitch->getName(), CatchSwitch); 2344 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2345 NewCatchSwitch->addHandler(PadBB); 2346 2347 NewTI = NewCatchSwitch; 2348 UnwindDest = CatchSwitch->getUnwindDest(); 2349 } else { 2350 llvm_unreachable("Could not find unwind successor"); 2351 } 2352 2353 NewTI->takeName(TI); 2354 NewTI->setDebugLoc(TI->getDebugLoc()); 2355 UnwindDest->removePredecessor(BB); 2356 TI->replaceAllUsesWith(NewTI); 2357 TI->eraseFromParent(); 2358 if (DTU) 2359 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2360 } 2361 2362 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2363 /// if they are in a dead cycle. Return true if a change was made, false 2364 /// otherwise. 2365 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2366 MemorySSAUpdater *MSSAU) { 2367 SmallPtrSet<BasicBlock *, 16> Reachable; 2368 bool Changed = markAliveBlocks(F, Reachable, DTU); 2369 2370 // If there are unreachable blocks in the CFG... 2371 if (Reachable.size() == F.size()) 2372 return Changed; 2373 2374 assert(Reachable.size() < F.size()); 2375 NumRemoved += F.size() - Reachable.size(); 2376 2377 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2378 for (BasicBlock &BB : F) { 2379 // Skip reachable basic blocks 2380 if (Reachable.count(&BB)) 2381 continue; 2382 DeadBlockSet.insert(&BB); 2383 } 2384 2385 if (MSSAU) 2386 MSSAU->removeBlocks(DeadBlockSet); 2387 2388 // Loop over all of the basic blocks that are not reachable, dropping all of 2389 // their internal references. Update DTU if available. 2390 std::vector<DominatorTree::UpdateType> Updates; 2391 for (auto *BB : DeadBlockSet) { 2392 for (BasicBlock *Successor : successors(BB)) { 2393 if (!DeadBlockSet.count(Successor)) 2394 Successor->removePredecessor(BB); 2395 if (DTU) 2396 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2397 } 2398 BB->dropAllReferences(); 2399 if (DTU) { 2400 Instruction *TI = BB->getTerminator(); 2401 assert(TI && "Basic block should have a terminator"); 2402 // Terminators like invoke can have users. We have to replace their users, 2403 // before removing them. 2404 if (!TI->use_empty()) 2405 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2406 TI->eraseFromParent(); 2407 new UnreachableInst(BB->getContext(), BB); 2408 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2409 "applying corresponding DTU updates."); 2410 } 2411 } 2412 2413 if (DTU) { 2414 DTU->applyUpdatesPermissive(Updates); 2415 bool Deleted = false; 2416 for (auto *BB : DeadBlockSet) { 2417 if (DTU->isBBPendingDeletion(BB)) 2418 --NumRemoved; 2419 else 2420 Deleted = true; 2421 DTU->deleteBB(BB); 2422 } 2423 if (!Deleted) 2424 return false; 2425 } else { 2426 for (auto *BB : DeadBlockSet) 2427 BB->eraseFromParent(); 2428 } 2429 2430 return true; 2431 } 2432 2433 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2434 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2435 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2436 K->dropUnknownNonDebugMetadata(KnownIDs); 2437 K->getAllMetadataOtherThanDebugLoc(Metadata); 2438 for (const auto &MD : Metadata) { 2439 unsigned Kind = MD.first; 2440 MDNode *JMD = J->getMetadata(Kind); 2441 MDNode *KMD = MD.second; 2442 2443 switch (Kind) { 2444 default: 2445 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2446 break; 2447 case LLVMContext::MD_dbg: 2448 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2449 case LLVMContext::MD_tbaa: 2450 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2451 break; 2452 case LLVMContext::MD_alias_scope: 2453 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2454 break; 2455 case LLVMContext::MD_noalias: 2456 case LLVMContext::MD_mem_parallel_loop_access: 2457 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2458 break; 2459 case LLVMContext::MD_access_group: 2460 K->setMetadata(LLVMContext::MD_access_group, 2461 intersectAccessGroups(K, J)); 2462 break; 2463 case LLVMContext::MD_range: 2464 2465 // If K does move, use most generic range. Otherwise keep the range of 2466 // K. 2467 if (DoesKMove) 2468 // FIXME: If K does move, we should drop the range info and nonnull. 2469 // Currently this function is used with DoesKMove in passes 2470 // doing hoisting/sinking and the current behavior of using the 2471 // most generic range is correct in those cases. 2472 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2473 break; 2474 case LLVMContext::MD_fpmath: 2475 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2476 break; 2477 case LLVMContext::MD_invariant_load: 2478 // Only set the !invariant.load if it is present in both instructions. 2479 K->setMetadata(Kind, JMD); 2480 break; 2481 case LLVMContext::MD_nonnull: 2482 // If K does move, keep nonull if it is present in both instructions. 2483 if (DoesKMove) 2484 K->setMetadata(Kind, JMD); 2485 break; 2486 case LLVMContext::MD_invariant_group: 2487 // Preserve !invariant.group in K. 2488 break; 2489 case LLVMContext::MD_align: 2490 K->setMetadata(Kind, 2491 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2492 break; 2493 case LLVMContext::MD_dereferenceable: 2494 case LLVMContext::MD_dereferenceable_or_null: 2495 K->setMetadata(Kind, 2496 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2497 break; 2498 case LLVMContext::MD_preserve_access_index: 2499 // Preserve !preserve.access.index in K. 2500 break; 2501 } 2502 } 2503 // Set !invariant.group from J if J has it. If both instructions have it 2504 // then we will just pick it from J - even when they are different. 2505 // Also make sure that K is load or store - f.e. combining bitcast with load 2506 // could produce bitcast with invariant.group metadata, which is invalid. 2507 // FIXME: we should try to preserve both invariant.group md if they are 2508 // different, but right now instruction can only have one invariant.group. 2509 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2510 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2511 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2512 } 2513 2514 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2515 bool KDominatesJ) { 2516 unsigned KnownIDs[] = { 2517 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2518 LLVMContext::MD_noalias, LLVMContext::MD_range, 2519 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2520 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2521 LLVMContext::MD_dereferenceable, 2522 LLVMContext::MD_dereferenceable_or_null, 2523 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2524 combineMetadata(K, J, KnownIDs, KDominatesJ); 2525 } 2526 2527 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2528 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2529 Source.getAllMetadata(MD); 2530 MDBuilder MDB(Dest.getContext()); 2531 Type *NewType = Dest.getType(); 2532 const DataLayout &DL = Source.getModule()->getDataLayout(); 2533 for (const auto &MDPair : MD) { 2534 unsigned ID = MDPair.first; 2535 MDNode *N = MDPair.second; 2536 // Note, essentially every kind of metadata should be preserved here! This 2537 // routine is supposed to clone a load instruction changing *only its type*. 2538 // The only metadata it makes sense to drop is metadata which is invalidated 2539 // when the pointer type changes. This should essentially never be the case 2540 // in LLVM, but we explicitly switch over only known metadata to be 2541 // conservatively correct. If you are adding metadata to LLVM which pertains 2542 // to loads, you almost certainly want to add it here. 2543 switch (ID) { 2544 case LLVMContext::MD_dbg: 2545 case LLVMContext::MD_tbaa: 2546 case LLVMContext::MD_prof: 2547 case LLVMContext::MD_fpmath: 2548 case LLVMContext::MD_tbaa_struct: 2549 case LLVMContext::MD_invariant_load: 2550 case LLVMContext::MD_alias_scope: 2551 case LLVMContext::MD_noalias: 2552 case LLVMContext::MD_nontemporal: 2553 case LLVMContext::MD_mem_parallel_loop_access: 2554 case LLVMContext::MD_access_group: 2555 // All of these directly apply. 2556 Dest.setMetadata(ID, N); 2557 break; 2558 2559 case LLVMContext::MD_nonnull: 2560 copyNonnullMetadata(Source, N, Dest); 2561 break; 2562 2563 case LLVMContext::MD_align: 2564 case LLVMContext::MD_dereferenceable: 2565 case LLVMContext::MD_dereferenceable_or_null: 2566 // These only directly apply if the new type is also a pointer. 2567 if (NewType->isPointerTy()) 2568 Dest.setMetadata(ID, N); 2569 break; 2570 2571 case LLVMContext::MD_range: 2572 copyRangeMetadata(DL, Source, N, Dest); 2573 break; 2574 } 2575 } 2576 } 2577 2578 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2579 auto *ReplInst = dyn_cast<Instruction>(Repl); 2580 if (!ReplInst) 2581 return; 2582 2583 // Patch the replacement so that it is not more restrictive than the value 2584 // being replaced. 2585 // Note that if 'I' is a load being replaced by some operation, 2586 // for example, by an arithmetic operation, then andIRFlags() 2587 // would just erase all math flags from the original arithmetic 2588 // operation, which is clearly not wanted and not needed. 2589 if (!isa<LoadInst>(I)) 2590 ReplInst->andIRFlags(I); 2591 2592 // FIXME: If both the original and replacement value are part of the 2593 // same control-flow region (meaning that the execution of one 2594 // guarantees the execution of the other), then we can combine the 2595 // noalias scopes here and do better than the general conservative 2596 // answer used in combineMetadata(). 2597 2598 // In general, GVN unifies expressions over different control-flow 2599 // regions, and so we need a conservative combination of the noalias 2600 // scopes. 2601 static const unsigned KnownIDs[] = { 2602 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2603 LLVMContext::MD_noalias, LLVMContext::MD_range, 2604 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2605 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2606 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2607 combineMetadata(ReplInst, I, KnownIDs, false); 2608 } 2609 2610 template <typename RootType, typename DominatesFn> 2611 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2612 const RootType &Root, 2613 const DominatesFn &Dominates) { 2614 assert(From->getType() == To->getType()); 2615 2616 unsigned Count = 0; 2617 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2618 UI != UE;) { 2619 Use &U = *UI++; 2620 if (!Dominates(Root, U)) 2621 continue; 2622 U.set(To); 2623 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2624 << "' as " << *To << " in " << *U << "\n"); 2625 ++Count; 2626 } 2627 return Count; 2628 } 2629 2630 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2631 assert(From->getType() == To->getType()); 2632 auto *BB = From->getParent(); 2633 unsigned Count = 0; 2634 2635 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2636 UI != UE;) { 2637 Use &U = *UI++; 2638 auto *I = cast<Instruction>(U.getUser()); 2639 if (I->getParent() == BB) 2640 continue; 2641 U.set(To); 2642 ++Count; 2643 } 2644 return Count; 2645 } 2646 2647 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2648 DominatorTree &DT, 2649 const BasicBlockEdge &Root) { 2650 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2651 return DT.dominates(Root, U); 2652 }; 2653 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2654 } 2655 2656 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2657 DominatorTree &DT, 2658 const BasicBlock *BB) { 2659 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2660 auto *I = cast<Instruction>(U.getUser())->getParent(); 2661 return DT.properlyDominates(BB, I); 2662 }; 2663 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2664 } 2665 2666 bool llvm::callsGCLeafFunction(const CallBase *Call, 2667 const TargetLibraryInfo &TLI) { 2668 // Check if the function is specifically marked as a gc leaf function. 2669 if (Call->hasFnAttr("gc-leaf-function")) 2670 return true; 2671 if (const Function *F = Call->getCalledFunction()) { 2672 if (F->hasFnAttribute("gc-leaf-function")) 2673 return true; 2674 2675 if (auto IID = F->getIntrinsicID()) 2676 // Most LLVM intrinsics do not take safepoints. 2677 return IID != Intrinsic::experimental_gc_statepoint && 2678 IID != Intrinsic::experimental_deoptimize; 2679 } 2680 2681 // Lib calls can be materialized by some passes, and won't be 2682 // marked as 'gc-leaf-function.' All available Libcalls are 2683 // GC-leaf. 2684 LibFunc LF; 2685 if (TLI.getLibFunc(*Call, LF)) { 2686 return TLI.has(LF); 2687 } 2688 2689 return false; 2690 } 2691 2692 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2693 LoadInst &NewLI) { 2694 auto *NewTy = NewLI.getType(); 2695 2696 // This only directly applies if the new type is also a pointer. 2697 if (NewTy->isPointerTy()) { 2698 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2699 return; 2700 } 2701 2702 // The only other translation we can do is to integral loads with !range 2703 // metadata. 2704 if (!NewTy->isIntegerTy()) 2705 return; 2706 2707 MDBuilder MDB(NewLI.getContext()); 2708 const Value *Ptr = OldLI.getPointerOperand(); 2709 auto *ITy = cast<IntegerType>(NewTy); 2710 auto *NullInt = ConstantExpr::getPtrToInt( 2711 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2712 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2713 NewLI.setMetadata(LLVMContext::MD_range, 2714 MDB.createRange(NonNullInt, NullInt)); 2715 } 2716 2717 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2718 MDNode *N, LoadInst &NewLI) { 2719 auto *NewTy = NewLI.getType(); 2720 2721 // Give up unless it is converted to a pointer where there is a single very 2722 // valuable mapping we can do reliably. 2723 // FIXME: It would be nice to propagate this in more ways, but the type 2724 // conversions make it hard. 2725 if (!NewTy->isPointerTy()) 2726 return; 2727 2728 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2729 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2730 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2731 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2732 } 2733 } 2734 2735 void llvm::dropDebugUsers(Instruction &I) { 2736 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2737 findDbgUsers(DbgUsers, &I); 2738 for (auto *DII : DbgUsers) 2739 DII->eraseFromParent(); 2740 } 2741 2742 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2743 BasicBlock *BB) { 2744 // Since we are moving the instructions out of its basic block, we do not 2745 // retain their original debug locations (DILocations) and debug intrinsic 2746 // instructions. 2747 // 2748 // Doing so would degrade the debugging experience and adversely affect the 2749 // accuracy of profiling information. 2750 // 2751 // Currently, when hoisting the instructions, we take the following actions: 2752 // - Remove their debug intrinsic instructions. 2753 // - Set their debug locations to the values from the insertion point. 2754 // 2755 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2756 // need to be deleted, is because there will not be any instructions with a 2757 // DILocation in either branch left after performing the transformation. We 2758 // can only insert a dbg.value after the two branches are joined again. 2759 // 2760 // See PR38762, PR39243 for more details. 2761 // 2762 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2763 // encode predicated DIExpressions that yield different results on different 2764 // code paths. 2765 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2766 Instruction *I = &*II; 2767 I->dropUnknownNonDebugMetadata(); 2768 if (I->isUsedByMetadata()) 2769 dropDebugUsers(*I); 2770 if (isa<DbgInfoIntrinsic>(I)) { 2771 // Remove DbgInfo Intrinsics. 2772 II = I->eraseFromParent(); 2773 continue; 2774 } 2775 I->setDebugLoc(InsertPt->getDebugLoc()); 2776 ++II; 2777 } 2778 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2779 BB->begin(), 2780 BB->getTerminator()->getIterator()); 2781 } 2782 2783 namespace { 2784 2785 /// A potential constituent of a bitreverse or bswap expression. See 2786 /// collectBitParts for a fuller explanation. 2787 struct BitPart { 2788 BitPart(Value *P, unsigned BW) : Provider(P) { 2789 Provenance.resize(BW); 2790 } 2791 2792 /// The Value that this is a bitreverse/bswap of. 2793 Value *Provider; 2794 2795 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2796 /// in Provider becomes bit B in the result of this expression. 2797 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2798 2799 enum { Unset = -1 }; 2800 }; 2801 2802 } // end anonymous namespace 2803 2804 /// Analyze the specified subexpression and see if it is capable of providing 2805 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2806 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2807 /// the output of the expression came from a corresponding bit in some other 2808 /// value. This function is recursive, and the end result is a mapping of 2809 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2810 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2811 /// 2812 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2813 /// that the expression deposits the low byte of %X into the high byte of the 2814 /// result and that all other bits are zero. This expression is accepted and a 2815 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2816 /// [0-7]. 2817 /// 2818 /// To avoid revisiting values, the BitPart results are memoized into the 2819 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2820 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2821 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2822 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2823 /// type instead to provide the same functionality. 2824 /// 2825 /// Because we pass around references into \c BPS, we must use a container that 2826 /// does not invalidate internal references (std::map instead of DenseMap). 2827 static const Optional<BitPart> & 2828 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2829 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2830 auto I = BPS.find(V); 2831 if (I != BPS.end()) 2832 return I->second; 2833 2834 auto &Result = BPS[V] = None; 2835 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2836 2837 // Prevent stack overflow by limiting the recursion depth 2838 if (Depth == BitPartRecursionMaxDepth) { 2839 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2840 return Result; 2841 } 2842 2843 if (Instruction *I = dyn_cast<Instruction>(V)) { 2844 // If this is an or instruction, it may be an inner node of the bswap. 2845 if (I->getOpcode() == Instruction::Or) { 2846 const auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2847 MatchBitReversals, BPS, Depth + 1); 2848 const auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2849 MatchBitReversals, BPS, Depth + 1); 2850 if (!A || !B) 2851 return Result; 2852 2853 // Try and merge the two together. 2854 if (!A->Provider || A->Provider != B->Provider) 2855 return Result; 2856 2857 Result = BitPart(A->Provider, BitWidth); 2858 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2859 if (A->Provenance[BitIdx] != BitPart::Unset && 2860 B->Provenance[BitIdx] != BitPart::Unset && 2861 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2862 return Result = None; 2863 2864 if (A->Provenance[BitIdx] == BitPart::Unset) 2865 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2866 else 2867 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2868 } 2869 2870 return Result; 2871 } 2872 2873 // If this is a logical shift by a constant, recurse then shift the result. 2874 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2875 const APInt &BitShift = cast<ConstantInt>(I->getOperand(1))->getValue(); 2876 2877 // Ensure the shift amount is defined. 2878 if (BitShift.uge(BitWidth)) 2879 return Result; 2880 2881 const auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2882 MatchBitReversals, BPS, Depth + 1); 2883 if (!Res) 2884 return Result; 2885 Result = Res; 2886 2887 // Perform the "shift" on BitProvenance. 2888 auto &P = Result->Provenance; 2889 if (I->getOpcode() == Instruction::Shl) { 2890 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2891 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2892 } else { 2893 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2894 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2895 } 2896 2897 return Result; 2898 } 2899 2900 // If this is a logical 'and' with a mask that clears bits, recurse then 2901 // unset the appropriate bits. 2902 if (I->getOpcode() == Instruction::And && 2903 isa<ConstantInt>(I->getOperand(1))) { 2904 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2905 2906 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2907 // early exit. 2908 unsigned NumMaskedBits = AndMask.countPopulation(); 2909 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2910 return Result; 2911 2912 const auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2913 MatchBitReversals, BPS, Depth + 1); 2914 if (!Res) 2915 return Result; 2916 Result = Res; 2917 2918 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2919 // If the AndMask is zero for this bit, clear the bit. 2920 if (AndMask[BitIdx] == 0) 2921 Result->Provenance[BitIdx] = BitPart::Unset; 2922 return Result; 2923 } 2924 2925 // If this is a zext instruction zero extend the result. 2926 if (I->getOpcode() == Instruction::ZExt) { 2927 const auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2928 MatchBitReversals, BPS, Depth + 1); 2929 if (!Res) 2930 return Result; 2931 2932 Result = BitPart(Res->Provider, BitWidth); 2933 auto NarrowBitWidth = 2934 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2935 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2936 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2937 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2938 Result->Provenance[BitIdx] = BitPart::Unset; 2939 return Result; 2940 } 2941 2942 // Handle intrinsic calls. 2943 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 2944 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 2945 2946 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2947 // amount (modulo). 2948 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2949 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2950 const APInt *Amt; 2951 if ((IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) && 2952 match(II->getArgOperand(2), m_APInt(Amt))) { 2953 2954 // We can treat fshr as a fshl by flipping the modulo amount. 2955 unsigned ModAmt = Amt->urem(BitWidth); 2956 if (IntrinsicID == Intrinsic::fshr) 2957 ModAmt = BitWidth - ModAmt; 2958 2959 const auto &LHS = collectBitParts(II->getArgOperand(0), MatchBSwaps, 2960 MatchBitReversals, BPS, Depth + 1); 2961 const auto &RHS = collectBitParts(II->getArgOperand(1), MatchBSwaps, 2962 MatchBitReversals, BPS, Depth + 1); 2963 2964 // Check we have both sources and they are from the same provider. 2965 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 2966 return Result; 2967 2968 unsigned StartBitRHS = BitWidth - ModAmt; 2969 Result = BitPart(LHS->Provider, BitWidth); 2970 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 2971 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 2972 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 2973 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 2974 return Result; 2975 } 2976 } 2977 } 2978 2979 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2980 // the input value to the bswap/bitreverse. 2981 Result = BitPart(V, BitWidth); 2982 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2983 Result->Provenance[BitIdx] = BitIdx; 2984 return Result; 2985 } 2986 2987 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2988 unsigned BitWidth) { 2989 if (From % 8 != To % 8) 2990 return false; 2991 // Convert from bit indices to byte indices and check for a byte reversal. 2992 From >>= 3; 2993 To >>= 3; 2994 BitWidth >>= 3; 2995 return From == BitWidth - To - 1; 2996 } 2997 2998 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2999 unsigned BitWidth) { 3000 return From == BitWidth - To - 1; 3001 } 3002 3003 bool llvm::recognizeBSwapOrBitReverseIdiom( 3004 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3005 SmallVectorImpl<Instruction *> &InsertedInsts) { 3006 if (Operator::getOpcode(I) != Instruction::Or) 3007 return false; 3008 if (!MatchBSwaps && !MatchBitReversals) 3009 return false; 3010 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 3011 if (!ITy || ITy->getBitWidth() > 128) 3012 return false; // Can't do vectors or integers > 128 bits. 3013 3014 IntegerType *DemandedTy = ITy; 3015 if (I->hasOneUse()) 3016 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3017 DemandedTy = cast<IntegerType>(Trunc->getType()); 3018 3019 // Try to find all the pieces corresponding to the bswap. 3020 std::map<Value *, Optional<BitPart>> BPS; 3021 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3022 if (!Res) 3023 return false; 3024 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3025 assert(all_of(BitProvenance, 3026 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3027 "Illegal bit provenance index"); 3028 3029 // If the upper bits are zero, then attempt to perform as a truncated op. 3030 if (BitProvenance.back() == BitPart::Unset) { 3031 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3032 BitProvenance = BitProvenance.drop_back(); 3033 if (BitProvenance.empty()) 3034 return false; // TODO - handle null value? 3035 DemandedTy = IntegerType::get(I->getContext(), BitProvenance.size()); 3036 } 3037 3038 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3039 // only byteswap values with an even number of bytes. 3040 unsigned DemandedBW = DemandedTy->getBitWidth(); 3041 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3042 bool OKForBitReverse = MatchBitReversals; 3043 for (unsigned BitIdx = 0; 3044 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3045 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3046 DemandedBW); 3047 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3048 BitIdx, DemandedBW); 3049 } 3050 3051 Intrinsic::ID Intrin; 3052 if (OKForBSwap) 3053 Intrin = Intrinsic::bswap; 3054 else if (OKForBitReverse) 3055 Intrin = Intrinsic::bitreverse; 3056 else 3057 return false; 3058 3059 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3060 Value *Provider = Res->Provider; 3061 3062 // We may need to truncate the provider. 3063 if (DemandedTy != Provider->getType()) { 3064 auto *Trunc = 3065 CastInst::Create(Instruction::Trunc, Provider, DemandedTy, "trunc", I); 3066 InsertedInsts.push_back(Trunc); 3067 Provider = Trunc; 3068 } 3069 3070 auto *CI = CallInst::Create(F, Provider, "rev", I); 3071 InsertedInsts.push_back(CI); 3072 3073 // We may need to zeroextend back to the result type. 3074 if (ITy != CI->getType()) { 3075 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 3076 InsertedInsts.push_back(ExtInst); 3077 } 3078 3079 return true; 3080 } 3081 3082 // CodeGen has special handling for some string functions that may replace 3083 // them with target-specific intrinsics. Since that'd skip our interceptors 3084 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3085 // we mark affected calls as NoBuiltin, which will disable optimization 3086 // in CodeGen. 3087 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3088 CallInst *CI, const TargetLibraryInfo *TLI) { 3089 Function *F = CI->getCalledFunction(); 3090 LibFunc Func; 3091 if (F && !F->hasLocalLinkage() && F->hasName() && 3092 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3093 !F->doesNotAccessMemory()) 3094 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3095 } 3096 3097 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3098 // We can't have a PHI with a metadata type. 3099 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3100 return false; 3101 3102 // Early exit. 3103 if (!isa<Constant>(I->getOperand(OpIdx))) 3104 return true; 3105 3106 switch (I->getOpcode()) { 3107 default: 3108 return true; 3109 case Instruction::Call: 3110 case Instruction::Invoke: { 3111 const auto &CB = cast<CallBase>(*I); 3112 3113 // Can't handle inline asm. Skip it. 3114 if (CB.isInlineAsm()) 3115 return false; 3116 3117 // Constant bundle operands may need to retain their constant-ness for 3118 // correctness. 3119 if (CB.isBundleOperand(OpIdx)) 3120 return false; 3121 3122 if (OpIdx < CB.getNumArgOperands()) { 3123 // Some variadic intrinsics require constants in the variadic arguments, 3124 // which currently aren't markable as immarg. 3125 if (isa<IntrinsicInst>(CB) && 3126 OpIdx >= CB.getFunctionType()->getNumParams()) { 3127 // This is known to be OK for stackmap. 3128 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3129 } 3130 3131 // gcroot is a special case, since it requires a constant argument which 3132 // isn't also required to be a simple ConstantInt. 3133 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3134 return false; 3135 3136 // Some intrinsic operands are required to be immediates. 3137 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3138 } 3139 3140 // It is never allowed to replace the call argument to an intrinsic, but it 3141 // may be possible for a call. 3142 return !isa<IntrinsicInst>(CB); 3143 } 3144 case Instruction::ShuffleVector: 3145 // Shufflevector masks are constant. 3146 return OpIdx != 2; 3147 case Instruction::Switch: 3148 case Instruction::ExtractValue: 3149 // All operands apart from the first are constant. 3150 return OpIdx == 0; 3151 case Instruction::InsertValue: 3152 // All operands apart from the first and the second are constant. 3153 return OpIdx < 2; 3154 case Instruction::Alloca: 3155 // Static allocas (constant size in the entry block) are handled by 3156 // prologue/epilogue insertion so they're free anyway. We definitely don't 3157 // want to make them non-constant. 3158 return !cast<AllocaInst>(I)->isStaticAlloca(); 3159 case Instruction::GetElementPtr: 3160 if (OpIdx == 0) 3161 return true; 3162 gep_type_iterator It = gep_type_begin(I); 3163 for (auto E = std::next(It, OpIdx); It != E; ++It) 3164 if (It.isStruct()) 3165 return false; 3166 return true; 3167 } 3168 } 3169 3170 Value *llvm::invertCondition(Value *Condition) { 3171 // First: Check if it's a constant 3172 if (Constant *C = dyn_cast<Constant>(Condition)) 3173 return ConstantExpr::getNot(C); 3174 3175 // Second: If the condition is already inverted, return the original value 3176 Value *NotCondition; 3177 if (match(Condition, m_Not(m_Value(NotCondition)))) 3178 return NotCondition; 3179 3180 BasicBlock *Parent = nullptr; 3181 Instruction *Inst = dyn_cast<Instruction>(Condition); 3182 if (Inst) 3183 Parent = Inst->getParent(); 3184 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3185 Parent = &Arg->getParent()->getEntryBlock(); 3186 assert(Parent && "Unsupported condition to invert"); 3187 3188 // Third: Check all the users for an invert 3189 for (User *U : Condition->users()) 3190 if (Instruction *I = dyn_cast<Instruction>(U)) 3191 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3192 return I; 3193 3194 // Last option: Create a new instruction 3195 auto *Inverted = 3196 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3197 if (Inst && !isa<PHINode>(Inst)) 3198 Inverted->insertAfter(Inst); 3199 else 3200 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3201 return Inverted; 3202 } 3203