1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "local" 54 55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 56 57 //===----------------------------------------------------------------------===// 58 // Local constant propagation. 59 // 60 61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 62 /// constant value, convert it into an unconditional branch to the constant 63 /// destination. This is a nontrivial operation because the successors of this 64 /// basic block must have their PHI nodes updated. 65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 66 /// conditions and indirectbr addresses this might make dead if 67 /// DeleteDeadConditions is true. 68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 69 const TargetLibraryInfo *TLI) { 70 TerminatorInst *T = BB->getTerminator(); 71 IRBuilder<> Builder(T); 72 73 // Branch - See if we are conditional jumping on constant 74 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 75 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 76 BasicBlock *Dest1 = BI->getSuccessor(0); 77 BasicBlock *Dest2 = BI->getSuccessor(1); 78 79 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 80 // Are we branching on constant? 81 // YES. Change to unconditional branch... 82 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 83 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 84 85 //cerr << "Function: " << T->getParent()->getParent() 86 // << "\nRemoving branch from " << T->getParent() 87 // << "\n\nTo: " << OldDest << endl; 88 89 // Let the basic block know that we are letting go of it. Based on this, 90 // it will adjust it's PHI nodes. 91 OldDest->removePredecessor(BB); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Destination); 95 BI->eraseFromParent(); 96 return true; 97 } 98 99 if (Dest2 == Dest1) { // Conditional branch to same location? 100 // This branch matches something like this: 101 // br bool %cond, label %Dest, label %Dest 102 // and changes it into: br label %Dest 103 104 // Let the basic block know that we are letting go of one copy of it. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 Dest1->removePredecessor(BI->getParent()); 107 108 // Replace the conditional branch with an unconditional one. 109 Builder.CreateBr(Dest1); 110 Value *Cond = BI->getCondition(); 111 BI->eraseFromParent(); 112 if (DeleteDeadConditions) 113 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 114 return true; 115 } 116 return false; 117 } 118 119 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 120 // If we are switching on a constant, we can convert the switch to an 121 // unconditional branch. 122 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 123 BasicBlock *DefaultDest = SI->getDefaultDest(); 124 BasicBlock *TheOnlyDest = DefaultDest; 125 126 // If the default is unreachable, ignore it when searching for TheOnlyDest. 127 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 128 SI->getNumCases() > 0) { 129 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 130 } 131 132 // Figure out which case it goes to. 133 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 134 i != e; ++i) { 135 // Found case matching a constant operand? 136 if (i.getCaseValue() == CI) { 137 TheOnlyDest = i.getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i.getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 291 292 // We don't want the landingpad-like instructions removed by anything this 293 // general. 294 if (I->isEHPad()) 295 return false; 296 297 // We don't want debug info removed by anything this general, unless 298 // debug info is empty. 299 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 300 if (DDI->getAddress()) 301 return false; 302 return true; 303 } 304 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 305 if (DVI->getValue()) 306 return false; 307 return true; 308 } 309 310 if (!I->mayHaveSideEffects()) return true; 311 312 // Special case intrinsics that "may have side effects" but can be deleted 313 // when dead. 314 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 315 // Safe to delete llvm.stacksave if dead. 316 if (II->getIntrinsicID() == Intrinsic::stacksave) 317 return true; 318 319 // Lifetime intrinsics are dead when their right-hand is undef. 320 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 321 II->getIntrinsicID() == Intrinsic::lifetime_end) 322 return isa<UndefValue>(II->getArgOperand(1)); 323 324 // Assumptions are dead if their condition is trivially true. Guards on 325 // true are operationally no-ops. In the future we can consider more 326 // sophisticated tradeoffs for guards considering potential for check 327 // widening, but for now we keep things simple. 328 if (II->getIntrinsicID() == Intrinsic::assume || 329 II->getIntrinsicID() == Intrinsic::experimental_guard) { 330 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 331 return !Cond->isZero(); 332 333 return false; 334 } 335 } 336 337 if (isAllocLikeFn(I, TLI)) return true; 338 339 if (CallInst *CI = isFreeCall(I, TLI)) 340 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 341 return C->isNullValue() || isa<UndefValue>(C); 342 343 return false; 344 } 345 346 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 347 /// trivially dead instruction, delete it. If that makes any of its operands 348 /// trivially dead, delete them too, recursively. Return true if any 349 /// instructions were deleted. 350 bool 351 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 352 const TargetLibraryInfo *TLI) { 353 Instruction *I = dyn_cast<Instruction>(V); 354 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 355 return false; 356 357 SmallVector<Instruction*, 16> DeadInsts; 358 DeadInsts.push_back(I); 359 360 do { 361 I = DeadInsts.pop_back_val(); 362 363 // Null out all of the instruction's operands to see if any operand becomes 364 // dead as we go. 365 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 366 Value *OpV = I->getOperand(i); 367 I->setOperand(i, nullptr); 368 369 if (!OpV->use_empty()) continue; 370 371 // If the operand is an instruction that became dead as we nulled out the 372 // operand, and if it is 'trivially' dead, delete it in a future loop 373 // iteration. 374 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 375 if (isInstructionTriviallyDead(OpI, TLI)) 376 DeadInsts.push_back(OpI); 377 } 378 379 I->eraseFromParent(); 380 } while (!DeadInsts.empty()); 381 382 return true; 383 } 384 385 /// areAllUsesEqual - Check whether the uses of a value are all the same. 386 /// This is similar to Instruction::hasOneUse() except this will also return 387 /// true when there are no uses or multiple uses that all refer to the same 388 /// value. 389 static bool areAllUsesEqual(Instruction *I) { 390 Value::user_iterator UI = I->user_begin(); 391 Value::user_iterator UE = I->user_end(); 392 if (UI == UE) 393 return true; 394 395 User *TheUse = *UI; 396 for (++UI; UI != UE; ++UI) { 397 if (*UI != TheUse) 398 return false; 399 } 400 return true; 401 } 402 403 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 404 /// dead PHI node, due to being a def-use chain of single-use nodes that 405 /// either forms a cycle or is terminated by a trivially dead instruction, 406 /// delete it. If that makes any of its operands trivially dead, delete them 407 /// too, recursively. Return true if a change was made. 408 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 409 const TargetLibraryInfo *TLI) { 410 SmallPtrSet<Instruction*, 4> Visited; 411 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 412 I = cast<Instruction>(*I->user_begin())) { 413 if (I->use_empty()) 414 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 415 416 // If we find an instruction more than once, we're on a cycle that 417 // won't prove fruitful. 418 if (!Visited.insert(I).second) { 419 // Break the cycle and delete the instruction and its operands. 420 I->replaceAllUsesWith(UndefValue::get(I->getType())); 421 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 422 return true; 423 } 424 } 425 return false; 426 } 427 428 static bool 429 simplifyAndDCEInstruction(Instruction *I, 430 SmallSetVector<Instruction *, 16> &WorkList, 431 const DataLayout &DL, 432 const TargetLibraryInfo *TLI) { 433 if (isInstructionTriviallyDead(I, TLI)) { 434 // Null out all of the instruction's operands to see if any operand becomes 435 // dead as we go. 436 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 437 Value *OpV = I->getOperand(i); 438 I->setOperand(i, nullptr); 439 440 if (!OpV->use_empty() || I == OpV) 441 continue; 442 443 // If the operand is an instruction that became dead as we nulled out the 444 // operand, and if it is 'trivially' dead, delete it in a future loop 445 // iteration. 446 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 447 if (isInstructionTriviallyDead(OpI, TLI)) 448 WorkList.insert(OpI); 449 } 450 451 I->eraseFromParent(); 452 453 return true; 454 } 455 456 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 457 // Add the users to the worklist. CAREFUL: an instruction can use itself, 458 // in the case of a phi node. 459 for (User *U : I->users()) { 460 if (U != I) { 461 WorkList.insert(cast<Instruction>(U)); 462 } 463 } 464 465 // Replace the instruction with its simplified value. 466 bool Changed = false; 467 if (!I->use_empty()) { 468 I->replaceAllUsesWith(SimpleV); 469 Changed = true; 470 } 471 if (isInstructionTriviallyDead(I, TLI)) { 472 I->eraseFromParent(); 473 Changed = true; 474 } 475 return Changed; 476 } 477 return false; 478 } 479 480 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 481 /// simplify any instructions in it and recursively delete dead instructions. 482 /// 483 /// This returns true if it changed the code, note that it can delete 484 /// instructions in other blocks as well in this block. 485 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 486 const TargetLibraryInfo *TLI) { 487 bool MadeChange = false; 488 const DataLayout &DL = BB->getModule()->getDataLayout(); 489 490 #ifndef NDEBUG 491 // In debug builds, ensure that the terminator of the block is never replaced 492 // or deleted by these simplifications. The idea of simplification is that it 493 // cannot introduce new instructions, and there is no way to replace the 494 // terminator of a block without introducing a new instruction. 495 AssertingVH<Instruction> TerminatorVH(&BB->back()); 496 #endif 497 498 SmallSetVector<Instruction *, 16> WorkList; 499 // Iterate over the original function, only adding insts to the worklist 500 // if they actually need to be revisited. This avoids having to pre-init 501 // the worklist with the entire function's worth of instructions. 502 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 503 BI != E;) { 504 assert(!BI->isTerminator()); 505 Instruction *I = &*BI; 506 ++BI; 507 508 // We're visiting this instruction now, so make sure it's not in the 509 // worklist from an earlier visit. 510 if (!WorkList.count(I)) 511 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 512 } 513 514 while (!WorkList.empty()) { 515 Instruction *I = WorkList.pop_back_val(); 516 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 517 } 518 return MadeChange; 519 } 520 521 //===----------------------------------------------------------------------===// 522 // Control Flow Graph Restructuring. 523 // 524 525 526 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 527 /// method is called when we're about to delete Pred as a predecessor of BB. If 528 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 529 /// 530 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 531 /// nodes that collapse into identity values. For example, if we have: 532 /// x = phi(1, 0, 0, 0) 533 /// y = and x, z 534 /// 535 /// .. and delete the predecessor corresponding to the '1', this will attempt to 536 /// recursively fold the and to 0. 537 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 538 // This only adjusts blocks with PHI nodes. 539 if (!isa<PHINode>(BB->begin())) 540 return; 541 542 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 543 // them down. This will leave us with single entry phi nodes and other phis 544 // that can be removed. 545 BB->removePredecessor(Pred, true); 546 547 WeakVH PhiIt = &BB->front(); 548 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 549 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 550 Value *OldPhiIt = PhiIt; 551 552 if (!recursivelySimplifyInstruction(PN)) 553 continue; 554 555 // If recursive simplification ended up deleting the next PHI node we would 556 // iterate to, then our iterator is invalid, restart scanning from the top 557 // of the block. 558 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 559 } 560 } 561 562 563 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 564 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 565 /// between them, moving the instructions in the predecessor into DestBB and 566 /// deleting the predecessor block. 567 /// 568 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 569 // If BB has single-entry PHI nodes, fold them. 570 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 571 Value *NewVal = PN->getIncomingValue(0); 572 // Replace self referencing PHI with undef, it must be dead. 573 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 574 PN->replaceAllUsesWith(NewVal); 575 PN->eraseFromParent(); 576 } 577 578 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 579 assert(PredBB && "Block doesn't have a single predecessor!"); 580 581 // Zap anything that took the address of DestBB. Not doing this will give the 582 // address an invalid value. 583 if (DestBB->hasAddressTaken()) { 584 BlockAddress *BA = BlockAddress::get(DestBB); 585 Constant *Replacement = 586 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 587 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 588 BA->getType())); 589 BA->destroyConstant(); 590 } 591 592 // Anything that branched to PredBB now branches to DestBB. 593 PredBB->replaceAllUsesWith(DestBB); 594 595 // Splice all the instructions from PredBB to DestBB. 596 PredBB->getTerminator()->eraseFromParent(); 597 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 598 599 // If the PredBB is the entry block of the function, move DestBB up to 600 // become the entry block after we erase PredBB. 601 if (PredBB == &DestBB->getParent()->getEntryBlock()) 602 DestBB->moveAfter(PredBB); 603 604 if (DT) { 605 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 606 DT->changeImmediateDominator(DestBB, PredBBIDom); 607 DT->eraseNode(PredBB); 608 } 609 // Nuke BB. 610 PredBB->eraseFromParent(); 611 } 612 613 /// CanMergeValues - Return true if we can choose one of these values to use 614 /// in place of the other. Note that we will always choose the non-undef 615 /// value to keep. 616 static bool CanMergeValues(Value *First, Value *Second) { 617 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 618 } 619 620 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 621 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 622 /// 623 /// Assumption: Succ is the single successor for BB. 624 /// 625 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 626 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 627 628 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 629 << Succ->getName() << "\n"); 630 // Shortcut, if there is only a single predecessor it must be BB and merging 631 // is always safe 632 if (Succ->getSinglePredecessor()) return true; 633 634 // Make a list of the predecessors of BB 635 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 636 637 // Look at all the phi nodes in Succ, to see if they present a conflict when 638 // merging these blocks 639 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 640 PHINode *PN = cast<PHINode>(I); 641 642 // If the incoming value from BB is again a PHINode in 643 // BB which has the same incoming value for *PI as PN does, we can 644 // merge the phi nodes and then the blocks can still be merged 645 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 646 if (BBPN && BBPN->getParent() == BB) { 647 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 648 BasicBlock *IBB = PN->getIncomingBlock(PI); 649 if (BBPreds.count(IBB) && 650 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 651 PN->getIncomingValue(PI))) { 652 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 653 << Succ->getName() << " is conflicting with " 654 << BBPN->getName() << " with regard to common predecessor " 655 << IBB->getName() << "\n"); 656 return false; 657 } 658 } 659 } else { 660 Value* Val = PN->getIncomingValueForBlock(BB); 661 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 662 // See if the incoming value for the common predecessor is equal to the 663 // one for BB, in which case this phi node will not prevent the merging 664 // of the block. 665 BasicBlock *IBB = PN->getIncomingBlock(PI); 666 if (BBPreds.count(IBB) && 667 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 668 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 669 << Succ->getName() << " is conflicting with regard to common " 670 << "predecessor " << IBB->getName() << "\n"); 671 return false; 672 } 673 } 674 } 675 } 676 677 return true; 678 } 679 680 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 681 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 682 683 /// \brief Determines the value to use as the phi node input for a block. 684 /// 685 /// Select between \p OldVal any value that we know flows from \p BB 686 /// to a particular phi on the basis of which one (if either) is not 687 /// undef. Update IncomingValues based on the selected value. 688 /// 689 /// \param OldVal The value we are considering selecting. 690 /// \param BB The block that the value flows in from. 691 /// \param IncomingValues A map from block-to-value for other phi inputs 692 /// that we have examined. 693 /// 694 /// \returns the selected value. 695 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 696 IncomingValueMap &IncomingValues) { 697 if (!isa<UndefValue>(OldVal)) { 698 assert((!IncomingValues.count(BB) || 699 IncomingValues.find(BB)->second == OldVal) && 700 "Expected OldVal to match incoming value from BB!"); 701 702 IncomingValues.insert(std::make_pair(BB, OldVal)); 703 return OldVal; 704 } 705 706 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 707 if (It != IncomingValues.end()) return It->second; 708 709 return OldVal; 710 } 711 712 /// \brief Create a map from block to value for the operands of a 713 /// given phi. 714 /// 715 /// Create a map from block to value for each non-undef value flowing 716 /// into \p PN. 717 /// 718 /// \param PN The phi we are collecting the map for. 719 /// \param IncomingValues [out] The map from block to value for this phi. 720 static void gatherIncomingValuesToPhi(PHINode *PN, 721 IncomingValueMap &IncomingValues) { 722 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 723 BasicBlock *BB = PN->getIncomingBlock(i); 724 Value *V = PN->getIncomingValue(i); 725 726 if (!isa<UndefValue>(V)) 727 IncomingValues.insert(std::make_pair(BB, V)); 728 } 729 } 730 731 /// \brief Replace the incoming undef values to a phi with the values 732 /// from a block-to-value map. 733 /// 734 /// \param PN The phi we are replacing the undefs in. 735 /// \param IncomingValues A map from block to value. 736 static void replaceUndefValuesInPhi(PHINode *PN, 737 const IncomingValueMap &IncomingValues) { 738 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 739 Value *V = PN->getIncomingValue(i); 740 741 if (!isa<UndefValue>(V)) continue; 742 743 BasicBlock *BB = PN->getIncomingBlock(i); 744 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 745 if (It == IncomingValues.end()) continue; 746 747 PN->setIncomingValue(i, It->second); 748 } 749 } 750 751 /// \brief Replace a value flowing from a block to a phi with 752 /// potentially multiple instances of that value flowing from the 753 /// block's predecessors to the phi. 754 /// 755 /// \param BB The block with the value flowing into the phi. 756 /// \param BBPreds The predecessors of BB. 757 /// \param PN The phi that we are updating. 758 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 759 const PredBlockVector &BBPreds, 760 PHINode *PN) { 761 Value *OldVal = PN->removeIncomingValue(BB, false); 762 assert(OldVal && "No entry in PHI for Pred BB!"); 763 764 IncomingValueMap IncomingValues; 765 766 // We are merging two blocks - BB, and the block containing PN - and 767 // as a result we need to redirect edges from the predecessors of BB 768 // to go to the block containing PN, and update PN 769 // accordingly. Since we allow merging blocks in the case where the 770 // predecessor and successor blocks both share some predecessors, 771 // and where some of those common predecessors might have undef 772 // values flowing into PN, we want to rewrite those values to be 773 // consistent with the non-undef values. 774 775 gatherIncomingValuesToPhi(PN, IncomingValues); 776 777 // If this incoming value is one of the PHI nodes in BB, the new entries 778 // in the PHI node are the entries from the old PHI. 779 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 780 PHINode *OldValPN = cast<PHINode>(OldVal); 781 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 782 // Note that, since we are merging phi nodes and BB and Succ might 783 // have common predecessors, we could end up with a phi node with 784 // identical incoming branches. This will be cleaned up later (and 785 // will trigger asserts if we try to clean it up now, without also 786 // simplifying the corresponding conditional branch). 787 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 788 Value *PredVal = OldValPN->getIncomingValue(i); 789 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 790 IncomingValues); 791 792 // And add a new incoming value for this predecessor for the 793 // newly retargeted branch. 794 PN->addIncoming(Selected, PredBB); 795 } 796 } else { 797 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 798 // Update existing incoming values in PN for this 799 // predecessor of BB. 800 BasicBlock *PredBB = BBPreds[i]; 801 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 802 IncomingValues); 803 804 // And add a new incoming value for this predecessor for the 805 // newly retargeted branch. 806 PN->addIncoming(Selected, PredBB); 807 } 808 } 809 810 replaceUndefValuesInPhi(PN, IncomingValues); 811 } 812 813 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 814 /// unconditional branch, and contains no instructions other than PHI nodes, 815 /// potential side-effect free intrinsics and the branch. If possible, 816 /// eliminate BB by rewriting all the predecessors to branch to the successor 817 /// block and return true. If we can't transform, return false. 818 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 819 assert(BB != &BB->getParent()->getEntryBlock() && 820 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 821 822 // We can't eliminate infinite loops. 823 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 824 if (BB == Succ) return false; 825 826 // Check to see if merging these blocks would cause conflicts for any of the 827 // phi nodes in BB or Succ. If not, we can safely merge. 828 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 829 830 // Check for cases where Succ has multiple predecessors and a PHI node in BB 831 // has uses which will not disappear when the PHI nodes are merged. It is 832 // possible to handle such cases, but difficult: it requires checking whether 833 // BB dominates Succ, which is non-trivial to calculate in the case where 834 // Succ has multiple predecessors. Also, it requires checking whether 835 // constructing the necessary self-referential PHI node doesn't introduce any 836 // conflicts; this isn't too difficult, but the previous code for doing this 837 // was incorrect. 838 // 839 // Note that if this check finds a live use, BB dominates Succ, so BB is 840 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 841 // folding the branch isn't profitable in that case anyway. 842 if (!Succ->getSinglePredecessor()) { 843 BasicBlock::iterator BBI = BB->begin(); 844 while (isa<PHINode>(*BBI)) { 845 for (Use &U : BBI->uses()) { 846 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 847 if (PN->getIncomingBlock(U) != BB) 848 return false; 849 } else { 850 return false; 851 } 852 } 853 ++BBI; 854 } 855 } 856 857 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 858 859 if (isa<PHINode>(Succ->begin())) { 860 // If there is more than one pred of succ, and there are PHI nodes in 861 // the successor, then we need to add incoming edges for the PHI nodes 862 // 863 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 864 865 // Loop over all of the PHI nodes in the successor of BB. 866 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 867 PHINode *PN = cast<PHINode>(I); 868 869 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 870 } 871 } 872 873 if (Succ->getSinglePredecessor()) { 874 // BB is the only predecessor of Succ, so Succ will end up with exactly 875 // the same predecessors BB had. 876 877 // Copy over any phi, debug or lifetime instruction. 878 BB->getTerminator()->eraseFromParent(); 879 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 880 BB->getInstList()); 881 } else { 882 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 883 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 884 assert(PN->use_empty() && "There shouldn't be any uses here!"); 885 PN->eraseFromParent(); 886 } 887 } 888 889 // Everything that jumped to BB now goes to Succ. 890 BB->replaceAllUsesWith(Succ); 891 if (!Succ->hasName()) Succ->takeName(BB); 892 BB->eraseFromParent(); // Delete the old basic block. 893 return true; 894 } 895 896 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 897 /// nodes in this block. This doesn't try to be clever about PHI nodes 898 /// which differ only in the order of the incoming values, but instcombine 899 /// orders them so it usually won't matter. 900 /// 901 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 902 // This implementation doesn't currently consider undef operands 903 // specially. Theoretically, two phis which are identical except for 904 // one having an undef where the other doesn't could be collapsed. 905 906 struct PHIDenseMapInfo { 907 static PHINode *getEmptyKey() { 908 return DenseMapInfo<PHINode *>::getEmptyKey(); 909 } 910 static PHINode *getTombstoneKey() { 911 return DenseMapInfo<PHINode *>::getTombstoneKey(); 912 } 913 static unsigned getHashValue(PHINode *PN) { 914 // Compute a hash value on the operands. Instcombine will likely have 915 // sorted them, which helps expose duplicates, but we have to check all 916 // the operands to be safe in case instcombine hasn't run. 917 return static_cast<unsigned>(hash_combine( 918 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 919 hash_combine_range(PN->block_begin(), PN->block_end()))); 920 } 921 static bool isEqual(PHINode *LHS, PHINode *RHS) { 922 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 923 RHS == getEmptyKey() || RHS == getTombstoneKey()) 924 return LHS == RHS; 925 return LHS->isIdenticalTo(RHS); 926 } 927 }; 928 929 // Set of unique PHINodes. 930 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 931 932 // Examine each PHI. 933 bool Changed = false; 934 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 935 auto Inserted = PHISet.insert(PN); 936 if (!Inserted.second) { 937 // A duplicate. Replace this PHI with its duplicate. 938 PN->replaceAllUsesWith(*Inserted.first); 939 PN->eraseFromParent(); 940 Changed = true; 941 942 // The RAUW can change PHIs that we already visited. Start over from the 943 // beginning. 944 PHISet.clear(); 945 I = BB->begin(); 946 } 947 } 948 949 return Changed; 950 } 951 952 /// enforceKnownAlignment - If the specified pointer points to an object that 953 /// we control, modify the object's alignment to PrefAlign. This isn't 954 /// often possible though. If alignment is important, a more reliable approach 955 /// is to simply align all global variables and allocation instructions to 956 /// their preferred alignment from the beginning. 957 /// 958 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 959 unsigned PrefAlign, 960 const DataLayout &DL) { 961 assert(PrefAlign > Align); 962 963 V = V->stripPointerCasts(); 964 965 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 966 // TODO: ideally, computeKnownBits ought to have used 967 // AllocaInst::getAlignment() in its computation already, making 968 // the below max redundant. But, as it turns out, 969 // stripPointerCasts recurses through infinite layers of bitcasts, 970 // while computeKnownBits is not allowed to traverse more than 6 971 // levels. 972 Align = std::max(AI->getAlignment(), Align); 973 if (PrefAlign <= Align) 974 return Align; 975 976 // If the preferred alignment is greater than the natural stack alignment 977 // then don't round up. This avoids dynamic stack realignment. 978 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 979 return Align; 980 AI->setAlignment(PrefAlign); 981 return PrefAlign; 982 } 983 984 if (auto *GO = dyn_cast<GlobalObject>(V)) { 985 // TODO: as above, this shouldn't be necessary. 986 Align = std::max(GO->getAlignment(), Align); 987 if (PrefAlign <= Align) 988 return Align; 989 990 // If there is a large requested alignment and we can, bump up the alignment 991 // of the global. If the memory we set aside for the global may not be the 992 // memory used by the final program then it is impossible for us to reliably 993 // enforce the preferred alignment. 994 if (!GO->canIncreaseAlignment()) 995 return Align; 996 997 GO->setAlignment(PrefAlign); 998 return PrefAlign; 999 } 1000 1001 return Align; 1002 } 1003 1004 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1005 const DataLayout &DL, 1006 const Instruction *CxtI, 1007 AssumptionCache *AC, 1008 const DominatorTree *DT) { 1009 assert(V->getType()->isPointerTy() && 1010 "getOrEnforceKnownAlignment expects a pointer!"); 1011 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1012 1013 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1014 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1015 unsigned TrailZ = KnownZero.countTrailingOnes(); 1016 1017 // Avoid trouble with ridiculously large TrailZ values, such as 1018 // those computed from a null pointer. 1019 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1020 1021 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1022 1023 // LLVM doesn't support alignments larger than this currently. 1024 Align = std::min(Align, +Value::MaximumAlignment); 1025 1026 if (PrefAlign > Align) 1027 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1028 1029 // We don't need to make any adjustment. 1030 return Align; 1031 } 1032 1033 ///===---------------------------------------------------------------------===// 1034 /// Dbg Intrinsic utilities 1035 /// 1036 1037 /// See if there is a dbg.value intrinsic for DIVar before I. 1038 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1039 Instruction *I) { 1040 // Since we can't guarantee that the original dbg.declare instrinsic 1041 // is removed by LowerDbgDeclare(), we need to make sure that we are 1042 // not inserting the same dbg.value intrinsic over and over. 1043 llvm::BasicBlock::InstListType::iterator PrevI(I); 1044 if (PrevI != I->getParent()->getInstList().begin()) { 1045 --PrevI; 1046 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1047 if (DVI->getValue() == I->getOperand(0) && 1048 DVI->getOffset() == 0 && 1049 DVI->getVariable() == DIVar && 1050 DVI->getExpression() == DIExpr) 1051 return true; 1052 } 1053 return false; 1054 } 1055 1056 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1057 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1058 DIExpression *DIExpr, 1059 PHINode *APN) { 1060 // Since we can't guarantee that the original dbg.declare instrinsic 1061 // is removed by LowerDbgDeclare(), we need to make sure that we are 1062 // not inserting the same dbg.value intrinsic over and over. 1063 DbgValueList DbgValues; 1064 FindAllocaDbgValues(DbgValues, APN); 1065 for (auto DVI : DbgValues) { 1066 assert (DVI->getValue() == APN); 1067 assert (DVI->getOffset() == 0); 1068 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1069 return true; 1070 } 1071 return false; 1072 } 1073 1074 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1075 /// that has an associated llvm.dbg.decl intrinsic. 1076 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1077 StoreInst *SI, DIBuilder &Builder) { 1078 auto *DIVar = DDI->getVariable(); 1079 auto *DIExpr = DDI->getExpression(); 1080 assert(DIVar && "Missing variable"); 1081 1082 // If an argument is zero extended then use argument directly. The ZExt 1083 // may be zapped by an optimization pass in future. 1084 Argument *ExtendedArg = nullptr; 1085 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1086 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1087 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1088 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1089 if (ExtendedArg) { 1090 // We're now only describing a subset of the variable. The piece we're 1091 // describing will always be smaller than the variable size, because 1092 // VariableSize == Size of Alloca described by DDI. Since SI stores 1093 // to the alloca described by DDI, if it's first operand is an extend, 1094 // we're guaranteed that before extension, the value was narrower than 1095 // the size of the alloca, hence the size of the described variable. 1096 SmallVector<uint64_t, 3> Ops; 1097 unsigned PieceOffset = 0; 1098 // If this already is a bit piece, we drop the bit piece from the expression 1099 // and record the offset. 1100 if (DIExpr->isBitPiece()) { 1101 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1102 PieceOffset = DIExpr->getBitPieceOffset(); 1103 } else { 1104 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1105 } 1106 Ops.push_back(dwarf::DW_OP_bit_piece); 1107 Ops.push_back(PieceOffset); // Offset 1108 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1109 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size 1110 auto NewDIExpr = Builder.createExpression(Ops); 1111 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1112 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1113 DDI->getDebugLoc(), SI); 1114 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1115 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1116 DDI->getDebugLoc(), SI); 1117 } 1118 1119 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1120 /// that has an associated llvm.dbg.decl intrinsic. 1121 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1122 LoadInst *LI, DIBuilder &Builder) { 1123 auto *DIVar = DDI->getVariable(); 1124 auto *DIExpr = DDI->getExpression(); 1125 assert(DIVar && "Missing variable"); 1126 1127 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1128 return; 1129 1130 // We are now tracking the loaded value instead of the address. In the 1131 // future if multi-location support is added to the IR, it might be 1132 // preferable to keep tracking both the loaded value and the original 1133 // address in case the alloca can not be elided. 1134 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1135 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1136 DbgValue->insertAfter(LI); 1137 } 1138 1139 /// Inserts a llvm.dbg.value intrinsic after a phi 1140 /// that has an associated llvm.dbg.decl intrinsic. 1141 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1142 PHINode *APN, DIBuilder &Builder) { 1143 auto *DIVar = DDI->getVariable(); 1144 auto *DIExpr = DDI->getExpression(); 1145 assert(DIVar && "Missing variable"); 1146 1147 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1148 return; 1149 1150 auto BB = APN->getParent(); 1151 auto InsertionPt = BB->getFirstInsertionPt(); 1152 if (InsertionPt != BB->end()) { 1153 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1154 APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1155 DbgValue->insertBefore(&*InsertionPt); 1156 } 1157 } 1158 1159 /// Determine whether this alloca is either a VLA or an array. 1160 static bool isArray(AllocaInst *AI) { 1161 return AI->isArrayAllocation() || 1162 AI->getType()->getElementType()->isArrayTy(); 1163 } 1164 1165 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1166 /// of llvm.dbg.value intrinsics. 1167 bool llvm::LowerDbgDeclare(Function &F) { 1168 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1169 SmallVector<DbgDeclareInst *, 4> Dbgs; 1170 for (auto &FI : F) 1171 for (Instruction &BI : FI) 1172 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1173 Dbgs.push_back(DDI); 1174 1175 if (Dbgs.empty()) 1176 return false; 1177 1178 for (auto &I : Dbgs) { 1179 DbgDeclareInst *DDI = I; 1180 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1181 // If this is an alloca for a scalar variable, insert a dbg.value 1182 // at each load and store to the alloca and erase the dbg.declare. 1183 // The dbg.values allow tracking a variable even if it is not 1184 // stored on the stack, while the dbg.declare can only describe 1185 // the stack slot (and at a lexical-scope granularity). Later 1186 // passes will attempt to elide the stack slot. 1187 if (AI && !isArray(AI)) { 1188 for (auto &AIUse : AI->uses()) { 1189 User *U = AIUse.getUser(); 1190 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1191 if (AIUse.getOperandNo() == 1) 1192 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1193 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1194 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1195 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1196 // This is a call by-value or some other instruction that 1197 // takes a pointer to the variable. Insert a *value* 1198 // intrinsic that describes the alloca. 1199 SmallVector<uint64_t, 1> NewDIExpr; 1200 auto *DIExpr = DDI->getExpression(); 1201 NewDIExpr.push_back(dwarf::DW_OP_deref); 1202 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1203 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1204 DIB.createExpression(NewDIExpr), 1205 DDI->getDebugLoc(), CI); 1206 } 1207 } 1208 DDI->eraseFromParent(); 1209 } 1210 } 1211 return true; 1212 } 1213 1214 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1215 /// alloca 'V', if any. 1216 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1217 if (auto *L = LocalAsMetadata::getIfExists(V)) 1218 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1219 for (User *U : MDV->users()) 1220 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1221 return DDI; 1222 1223 return nullptr; 1224 } 1225 1226 /// FindAllocaDbgValues - Finds the llvm.dbg.value intrinsics describing the 1227 /// alloca 'V', if any. 1228 void llvm::FindAllocaDbgValues(DbgValueList &DbgValues, Value *V) { 1229 if (auto *L = LocalAsMetadata::getIfExists(V)) 1230 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1231 for (User *U : MDV->users()) 1232 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1233 DbgValues.push_back(DVI); 1234 } 1235 1236 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) { 1237 Expr.push_back(dwarf::DW_OP_deref); 1238 } 1239 1240 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) { 1241 if (Offset > 0) { 1242 Expr.push_back(dwarf::DW_OP_plus); 1243 Expr.push_back(Offset); 1244 } else if (Offset < 0) { 1245 Expr.push_back(dwarf::DW_OP_minus); 1246 Expr.push_back(-Offset); 1247 } 1248 } 1249 1250 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder, 1251 DIExpression *DIExpr, bool Deref, 1252 int Offset) { 1253 if (!Deref && !Offset) 1254 return DIExpr; 1255 // Create a copy of the original DIDescriptor for user variable, prepending 1256 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1257 // will take a value storing address of the memory for variable, not 1258 // alloca itself. 1259 SmallVector<uint64_t, 4> NewDIExpr; 1260 if (Deref) 1261 DIExprAddDeref(NewDIExpr); 1262 DIExprAddOffset(NewDIExpr, Offset); 1263 if (DIExpr) 1264 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1265 return Builder.createExpression(NewDIExpr); 1266 } 1267 1268 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1269 Instruction *InsertBefore, DIBuilder &Builder, 1270 bool Deref, int Offset) { 1271 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1272 if (!DDI) 1273 return false; 1274 DebugLoc Loc = DDI->getDebugLoc(); 1275 auto *DIVar = DDI->getVariable(); 1276 auto *DIExpr = DDI->getExpression(); 1277 assert(DIVar && "Missing variable"); 1278 1279 DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset); 1280 1281 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1282 // old llvm.dbg.declare. 1283 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1284 DDI->eraseFromParent(); 1285 return true; 1286 } 1287 1288 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1289 DIBuilder &Builder, bool Deref, int Offset) { 1290 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1291 Deref, Offset); 1292 } 1293 1294 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1295 DIBuilder &Builder, int Offset) { 1296 DebugLoc Loc = DVI->getDebugLoc(); 1297 auto *DIVar = DVI->getVariable(); 1298 auto *DIExpr = DVI->getExpression(); 1299 assert(DIVar && "Missing variable"); 1300 1301 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1302 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1303 // it and give up. 1304 if (!DIExpr || DIExpr->getNumElements() < 1 || 1305 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1306 return; 1307 1308 // Insert the offset immediately after the first deref. 1309 // We could just change the offset argument of dbg.value, but it's unsigned... 1310 if (Offset) { 1311 SmallVector<uint64_t, 4> NewDIExpr; 1312 DIExprAddDeref(NewDIExpr); 1313 DIExprAddOffset(NewDIExpr, Offset); 1314 NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1315 DIExpr = Builder.createExpression(NewDIExpr); 1316 } 1317 1318 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1319 Loc, DVI); 1320 DVI->eraseFromParent(); 1321 } 1322 1323 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1324 DIBuilder &Builder, int Offset) { 1325 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1326 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1327 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1328 Use &U = *UI++; 1329 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1330 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1331 } 1332 } 1333 1334 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1335 unsigned NumDeadInst = 0; 1336 // Delete the instructions backwards, as it has a reduced likelihood of 1337 // having to update as many def-use and use-def chains. 1338 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1339 while (EndInst != &BB->front()) { 1340 // Delete the next to last instruction. 1341 Instruction *Inst = &*--EndInst->getIterator(); 1342 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1343 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1344 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1345 EndInst = Inst; 1346 continue; 1347 } 1348 if (!isa<DbgInfoIntrinsic>(Inst)) 1349 ++NumDeadInst; 1350 Inst->eraseFromParent(); 1351 } 1352 return NumDeadInst; 1353 } 1354 1355 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1356 BasicBlock *BB = I->getParent(); 1357 // Loop over all of the successors, removing BB's entry from any PHI 1358 // nodes. 1359 for (BasicBlock *Successor : successors(BB)) 1360 Successor->removePredecessor(BB); 1361 1362 // Insert a call to llvm.trap right before this. This turns the undefined 1363 // behavior into a hard fail instead of falling through into random code. 1364 if (UseLLVMTrap) { 1365 Function *TrapFn = 1366 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1367 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1368 CallTrap->setDebugLoc(I->getDebugLoc()); 1369 } 1370 new UnreachableInst(I->getContext(), I); 1371 1372 // All instructions after this are dead. 1373 unsigned NumInstrsRemoved = 0; 1374 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1375 while (BBI != BBE) { 1376 if (!BBI->use_empty()) 1377 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1378 BB->getInstList().erase(BBI++); 1379 ++NumInstrsRemoved; 1380 } 1381 return NumInstrsRemoved; 1382 } 1383 1384 /// changeToCall - Convert the specified invoke into a normal call. 1385 static void changeToCall(InvokeInst *II) { 1386 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1387 SmallVector<OperandBundleDef, 1> OpBundles; 1388 II->getOperandBundlesAsDefs(OpBundles); 1389 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1390 "", II); 1391 NewCall->takeName(II); 1392 NewCall->setCallingConv(II->getCallingConv()); 1393 NewCall->setAttributes(II->getAttributes()); 1394 NewCall->setDebugLoc(II->getDebugLoc()); 1395 II->replaceAllUsesWith(NewCall); 1396 1397 // Follow the call by a branch to the normal destination. 1398 BranchInst::Create(II->getNormalDest(), II); 1399 1400 // Update PHI nodes in the unwind destination 1401 II->getUnwindDest()->removePredecessor(II->getParent()); 1402 II->eraseFromParent(); 1403 } 1404 1405 static bool markAliveBlocks(Function &F, 1406 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1407 1408 SmallVector<BasicBlock*, 128> Worklist; 1409 BasicBlock *BB = &F.front(); 1410 Worklist.push_back(BB); 1411 Reachable.insert(BB); 1412 bool Changed = false; 1413 do { 1414 BB = Worklist.pop_back_val(); 1415 1416 // Do a quick scan of the basic block, turning any obviously unreachable 1417 // instructions into LLVM unreachable insts. The instruction combining pass 1418 // canonicalizes unreachable insts into stores to null or undef. 1419 for (Instruction &I : *BB) { 1420 // Assumptions that are known to be false are equivalent to unreachable. 1421 // Also, if the condition is undefined, then we make the choice most 1422 // beneficial to the optimizer, and choose that to also be unreachable. 1423 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1424 if (II->getIntrinsicID() == Intrinsic::assume) { 1425 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1426 // Don't insert a call to llvm.trap right before the unreachable. 1427 changeToUnreachable(II, false); 1428 Changed = true; 1429 break; 1430 } 1431 } 1432 1433 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1434 // A call to the guard intrinsic bails out of the current compilation 1435 // unit if the predicate passed to it is false. If the predicate is a 1436 // constant false, then we know the guard will bail out of the current 1437 // compile unconditionally, so all code following it is dead. 1438 // 1439 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1440 // guards to treat `undef` as `false` since a guard on `undef` can 1441 // still be useful for widening. 1442 if (match(II->getArgOperand(0), m_Zero())) 1443 if (!isa<UnreachableInst>(II->getNextNode())) { 1444 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1445 Changed = true; 1446 break; 1447 } 1448 } 1449 } 1450 1451 if (auto *CI = dyn_cast<CallInst>(&I)) { 1452 Value *Callee = CI->getCalledValue(); 1453 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1454 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1455 Changed = true; 1456 break; 1457 } 1458 if (CI->doesNotReturn()) { 1459 // If we found a call to a no-return function, insert an unreachable 1460 // instruction after it. Make sure there isn't *already* one there 1461 // though. 1462 if (!isa<UnreachableInst>(CI->getNextNode())) { 1463 // Don't insert a call to llvm.trap right before the unreachable. 1464 changeToUnreachable(CI->getNextNode(), false); 1465 Changed = true; 1466 } 1467 break; 1468 } 1469 } 1470 1471 // Store to undef and store to null are undefined and used to signal that 1472 // they should be changed to unreachable by passes that can't modify the 1473 // CFG. 1474 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1475 // Don't touch volatile stores. 1476 if (SI->isVolatile()) continue; 1477 1478 Value *Ptr = SI->getOperand(1); 1479 1480 if (isa<UndefValue>(Ptr) || 1481 (isa<ConstantPointerNull>(Ptr) && 1482 SI->getPointerAddressSpace() == 0)) { 1483 changeToUnreachable(SI, true); 1484 Changed = true; 1485 break; 1486 } 1487 } 1488 } 1489 1490 TerminatorInst *Terminator = BB->getTerminator(); 1491 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1492 // Turn invokes that call 'nounwind' functions into ordinary calls. 1493 Value *Callee = II->getCalledValue(); 1494 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1495 changeToUnreachable(II, true); 1496 Changed = true; 1497 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1498 if (II->use_empty() && II->onlyReadsMemory()) { 1499 // jump to the normal destination branch. 1500 BranchInst::Create(II->getNormalDest(), II); 1501 II->getUnwindDest()->removePredecessor(II->getParent()); 1502 II->eraseFromParent(); 1503 } else 1504 changeToCall(II); 1505 Changed = true; 1506 } 1507 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1508 // Remove catchpads which cannot be reached. 1509 struct CatchPadDenseMapInfo { 1510 static CatchPadInst *getEmptyKey() { 1511 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1512 } 1513 static CatchPadInst *getTombstoneKey() { 1514 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1515 } 1516 static unsigned getHashValue(CatchPadInst *CatchPad) { 1517 return static_cast<unsigned>(hash_combine_range( 1518 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1519 } 1520 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1521 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1522 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1523 return LHS == RHS; 1524 return LHS->isIdenticalTo(RHS); 1525 } 1526 }; 1527 1528 // Set of unique CatchPads. 1529 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1530 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1531 HandlerSet; 1532 detail::DenseSetEmpty Empty; 1533 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1534 E = CatchSwitch->handler_end(); 1535 I != E; ++I) { 1536 BasicBlock *HandlerBB = *I; 1537 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1538 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1539 CatchSwitch->removeHandler(I); 1540 --I; 1541 --E; 1542 Changed = true; 1543 } 1544 } 1545 } 1546 1547 Changed |= ConstantFoldTerminator(BB, true); 1548 for (BasicBlock *Successor : successors(BB)) 1549 if (Reachable.insert(Successor).second) 1550 Worklist.push_back(Successor); 1551 } while (!Worklist.empty()); 1552 return Changed; 1553 } 1554 1555 void llvm::removeUnwindEdge(BasicBlock *BB) { 1556 TerminatorInst *TI = BB->getTerminator(); 1557 1558 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1559 changeToCall(II); 1560 return; 1561 } 1562 1563 TerminatorInst *NewTI; 1564 BasicBlock *UnwindDest; 1565 1566 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1567 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1568 UnwindDest = CRI->getUnwindDest(); 1569 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1570 auto *NewCatchSwitch = CatchSwitchInst::Create( 1571 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1572 CatchSwitch->getName(), CatchSwitch); 1573 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1574 NewCatchSwitch->addHandler(PadBB); 1575 1576 NewTI = NewCatchSwitch; 1577 UnwindDest = CatchSwitch->getUnwindDest(); 1578 } else { 1579 llvm_unreachable("Could not find unwind successor"); 1580 } 1581 1582 NewTI->takeName(TI); 1583 NewTI->setDebugLoc(TI->getDebugLoc()); 1584 UnwindDest->removePredecessor(BB); 1585 TI->replaceAllUsesWith(NewTI); 1586 TI->eraseFromParent(); 1587 } 1588 1589 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1590 /// if they are in a dead cycle. Return true if a change was made, false 1591 /// otherwise. 1592 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1593 SmallPtrSet<BasicBlock*, 16> Reachable; 1594 bool Changed = markAliveBlocks(F, Reachable); 1595 1596 // If there are unreachable blocks in the CFG... 1597 if (Reachable.size() == F.size()) 1598 return Changed; 1599 1600 assert(Reachable.size() < F.size()); 1601 NumRemoved += F.size()-Reachable.size(); 1602 1603 // Loop over all of the basic blocks that are not reachable, dropping all of 1604 // their internal references... 1605 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1606 if (Reachable.count(&*BB)) 1607 continue; 1608 1609 for (BasicBlock *Successor : successors(&*BB)) 1610 if (Reachable.count(Successor)) 1611 Successor->removePredecessor(&*BB); 1612 if (LVI) 1613 LVI->eraseBlock(&*BB); 1614 BB->dropAllReferences(); 1615 } 1616 1617 for (Function::iterator I = ++F.begin(); I != F.end();) 1618 if (!Reachable.count(&*I)) 1619 I = F.getBasicBlockList().erase(I); 1620 else 1621 ++I; 1622 1623 return true; 1624 } 1625 1626 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1627 ArrayRef<unsigned> KnownIDs) { 1628 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1629 K->dropUnknownNonDebugMetadata(KnownIDs); 1630 K->getAllMetadataOtherThanDebugLoc(Metadata); 1631 for (const auto &MD : Metadata) { 1632 unsigned Kind = MD.first; 1633 MDNode *JMD = J->getMetadata(Kind); 1634 MDNode *KMD = MD.second; 1635 1636 switch (Kind) { 1637 default: 1638 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1639 break; 1640 case LLVMContext::MD_dbg: 1641 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1642 case LLVMContext::MD_tbaa: 1643 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1644 break; 1645 case LLVMContext::MD_alias_scope: 1646 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1647 break; 1648 case LLVMContext::MD_noalias: 1649 case LLVMContext::MD_mem_parallel_loop_access: 1650 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1651 break; 1652 case LLVMContext::MD_range: 1653 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1654 break; 1655 case LLVMContext::MD_fpmath: 1656 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1657 break; 1658 case LLVMContext::MD_invariant_load: 1659 // Only set the !invariant.load if it is present in both instructions. 1660 K->setMetadata(Kind, JMD); 1661 break; 1662 case LLVMContext::MD_nonnull: 1663 // Only set the !nonnull if it is present in both instructions. 1664 K->setMetadata(Kind, JMD); 1665 break; 1666 case LLVMContext::MD_invariant_group: 1667 // Preserve !invariant.group in K. 1668 break; 1669 case LLVMContext::MD_align: 1670 K->setMetadata(Kind, 1671 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1672 break; 1673 case LLVMContext::MD_dereferenceable: 1674 case LLVMContext::MD_dereferenceable_or_null: 1675 K->setMetadata(Kind, 1676 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1677 break; 1678 } 1679 } 1680 // Set !invariant.group from J if J has it. If both instructions have it 1681 // then we will just pick it from J - even when they are different. 1682 // Also make sure that K is load or store - f.e. combining bitcast with load 1683 // could produce bitcast with invariant.group metadata, which is invalid. 1684 // FIXME: we should try to preserve both invariant.group md if they are 1685 // different, but right now instruction can only have one invariant.group. 1686 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1687 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1688 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1689 } 1690 1691 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1692 unsigned KnownIDs[] = { 1693 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1694 LLVMContext::MD_noalias, LLVMContext::MD_range, 1695 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1696 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1697 LLVMContext::MD_dereferenceable, 1698 LLVMContext::MD_dereferenceable_or_null}; 1699 combineMetadata(K, J, KnownIDs); 1700 } 1701 1702 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1703 DominatorTree &DT, 1704 const BasicBlockEdge &Root) { 1705 assert(From->getType() == To->getType()); 1706 1707 unsigned Count = 0; 1708 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1709 UI != UE; ) { 1710 Use &U = *UI++; 1711 if (DT.dominates(Root, U)) { 1712 U.set(To); 1713 DEBUG(dbgs() << "Replace dominated use of '" 1714 << From->getName() << "' as " 1715 << *To << " in " << *U << "\n"); 1716 ++Count; 1717 } 1718 } 1719 return Count; 1720 } 1721 1722 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1723 DominatorTree &DT, 1724 const BasicBlock *BB) { 1725 assert(From->getType() == To->getType()); 1726 1727 unsigned Count = 0; 1728 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1729 UI != UE;) { 1730 Use &U = *UI++; 1731 auto *I = cast<Instruction>(U.getUser()); 1732 if (DT.properlyDominates(BB, I->getParent())) { 1733 U.set(To); 1734 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1735 << *To << " in " << *U << "\n"); 1736 ++Count; 1737 } 1738 } 1739 return Count; 1740 } 1741 1742 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1743 // Check if the function is specifically marked as a gc leaf function. 1744 if (CS.hasFnAttr("gc-leaf-function")) 1745 return true; 1746 if (const Function *F = CS.getCalledFunction()) { 1747 if (F->hasFnAttribute("gc-leaf-function")) 1748 return true; 1749 1750 if (auto IID = F->getIntrinsicID()) 1751 // Most LLVM intrinsics do not take safepoints. 1752 return IID != Intrinsic::experimental_gc_statepoint && 1753 IID != Intrinsic::experimental_deoptimize; 1754 } 1755 1756 return false; 1757 } 1758 1759 namespace { 1760 /// A potential constituent of a bitreverse or bswap expression. See 1761 /// collectBitParts for a fuller explanation. 1762 struct BitPart { 1763 BitPart(Value *P, unsigned BW) : Provider(P) { 1764 Provenance.resize(BW); 1765 } 1766 1767 /// The Value that this is a bitreverse/bswap of. 1768 Value *Provider; 1769 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1770 /// in Provider becomes bit B in the result of this expression. 1771 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1772 1773 enum { Unset = -1 }; 1774 }; 1775 } // end anonymous namespace 1776 1777 /// Analyze the specified subexpression and see if it is capable of providing 1778 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1779 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1780 /// the output of the expression came from a corresponding bit in some other 1781 /// value. This function is recursive, and the end result is a mapping of 1782 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1783 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1784 /// 1785 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1786 /// that the expression deposits the low byte of %X into the high byte of the 1787 /// result and that all other bits are zero. This expression is accepted and a 1788 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1789 /// [0-7]. 1790 /// 1791 /// To avoid revisiting values, the BitPart results are memoized into the 1792 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1793 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1794 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1795 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1796 /// type instead to provide the same functionality. 1797 /// 1798 /// Because we pass around references into \c BPS, we must use a container that 1799 /// does not invalidate internal references (std::map instead of DenseMap). 1800 /// 1801 static const Optional<BitPart> & 1802 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1803 std::map<Value *, Optional<BitPart>> &BPS) { 1804 auto I = BPS.find(V); 1805 if (I != BPS.end()) 1806 return I->second; 1807 1808 auto &Result = BPS[V] = None; 1809 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1810 1811 if (Instruction *I = dyn_cast<Instruction>(V)) { 1812 // If this is an or instruction, it may be an inner node of the bswap. 1813 if (I->getOpcode() == Instruction::Or) { 1814 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1815 MatchBitReversals, BPS); 1816 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1817 MatchBitReversals, BPS); 1818 if (!A || !B) 1819 return Result; 1820 1821 // Try and merge the two together. 1822 if (!A->Provider || A->Provider != B->Provider) 1823 return Result; 1824 1825 Result = BitPart(A->Provider, BitWidth); 1826 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1827 if (A->Provenance[i] != BitPart::Unset && 1828 B->Provenance[i] != BitPart::Unset && 1829 A->Provenance[i] != B->Provenance[i]) 1830 return Result = None; 1831 1832 if (A->Provenance[i] == BitPart::Unset) 1833 Result->Provenance[i] = B->Provenance[i]; 1834 else 1835 Result->Provenance[i] = A->Provenance[i]; 1836 } 1837 1838 return Result; 1839 } 1840 1841 // If this is a logical shift by a constant, recurse then shift the result. 1842 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1843 unsigned BitShift = 1844 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1845 // Ensure the shift amount is defined. 1846 if (BitShift > BitWidth) 1847 return Result; 1848 1849 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1850 MatchBitReversals, BPS); 1851 if (!Res) 1852 return Result; 1853 Result = Res; 1854 1855 // Perform the "shift" on BitProvenance. 1856 auto &P = Result->Provenance; 1857 if (I->getOpcode() == Instruction::Shl) { 1858 P.erase(std::prev(P.end(), BitShift), P.end()); 1859 P.insert(P.begin(), BitShift, BitPart::Unset); 1860 } else { 1861 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1862 P.insert(P.end(), BitShift, BitPart::Unset); 1863 } 1864 1865 return Result; 1866 } 1867 1868 // If this is a logical 'and' with a mask that clears bits, recurse then 1869 // unset the appropriate bits. 1870 if (I->getOpcode() == Instruction::And && 1871 isa<ConstantInt>(I->getOperand(1))) { 1872 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1873 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1874 1875 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1876 // early exit. 1877 unsigned NumMaskedBits = AndMask.countPopulation(); 1878 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1879 return Result; 1880 1881 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1882 MatchBitReversals, BPS); 1883 if (!Res) 1884 return Result; 1885 Result = Res; 1886 1887 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1888 // If the AndMask is zero for this bit, clear the bit. 1889 if ((AndMask & Bit) == 0) 1890 Result->Provenance[i] = BitPart::Unset; 1891 return Result; 1892 } 1893 1894 // If this is a zext instruction zero extend the result. 1895 if (I->getOpcode() == Instruction::ZExt) { 1896 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1897 MatchBitReversals, BPS); 1898 if (!Res) 1899 return Result; 1900 1901 Result = BitPart(Res->Provider, BitWidth); 1902 auto NarrowBitWidth = 1903 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1904 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1905 Result->Provenance[i] = Res->Provenance[i]; 1906 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1907 Result->Provenance[i] = BitPart::Unset; 1908 return Result; 1909 } 1910 } 1911 1912 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1913 // the input value to the bswap/bitreverse. 1914 Result = BitPart(V, BitWidth); 1915 for (unsigned i = 0; i < BitWidth; ++i) 1916 Result->Provenance[i] = i; 1917 return Result; 1918 } 1919 1920 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1921 unsigned BitWidth) { 1922 if (From % 8 != To % 8) 1923 return false; 1924 // Convert from bit indices to byte indices and check for a byte reversal. 1925 From >>= 3; 1926 To >>= 3; 1927 BitWidth >>= 3; 1928 return From == BitWidth - To - 1; 1929 } 1930 1931 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1932 unsigned BitWidth) { 1933 return From == BitWidth - To - 1; 1934 } 1935 1936 /// Given an OR instruction, check to see if this is a bitreverse 1937 /// idiom. If so, insert the new intrinsic and return true. 1938 bool llvm::recognizeBSwapOrBitReverseIdiom( 1939 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 1940 SmallVectorImpl<Instruction *> &InsertedInsts) { 1941 if (Operator::getOpcode(I) != Instruction::Or) 1942 return false; 1943 if (!MatchBSwaps && !MatchBitReversals) 1944 return false; 1945 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 1946 if (!ITy || ITy->getBitWidth() > 128) 1947 return false; // Can't do vectors or integers > 128 bits. 1948 unsigned BW = ITy->getBitWidth(); 1949 1950 unsigned DemandedBW = BW; 1951 IntegerType *DemandedTy = ITy; 1952 if (I->hasOneUse()) { 1953 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 1954 DemandedTy = cast<IntegerType>(Trunc->getType()); 1955 DemandedBW = DemandedTy->getBitWidth(); 1956 } 1957 } 1958 1959 // Try to find all the pieces corresponding to the bswap. 1960 std::map<Value *, Optional<BitPart>> BPS; 1961 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 1962 if (!Res) 1963 return false; 1964 auto &BitProvenance = Res->Provenance; 1965 1966 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 1967 // only byteswap values with an even number of bytes. 1968 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 1969 for (unsigned i = 0; i < DemandedBW; ++i) { 1970 OKForBSwap &= 1971 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 1972 OKForBitReverse &= 1973 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 1974 } 1975 1976 Intrinsic::ID Intrin; 1977 if (OKForBSwap && MatchBSwaps) 1978 Intrin = Intrinsic::bswap; 1979 else if (OKForBitReverse && MatchBitReversals) 1980 Intrin = Intrinsic::bitreverse; 1981 else 1982 return false; 1983 1984 if (ITy != DemandedTy) { 1985 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 1986 Value *Provider = Res->Provider; 1987 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 1988 // We may need to truncate the provider. 1989 if (DemandedTy != ProviderTy) { 1990 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 1991 "trunc", I); 1992 InsertedInsts.push_back(Trunc); 1993 Provider = Trunc; 1994 } 1995 auto *CI = CallInst::Create(F, Provider, "rev", I); 1996 InsertedInsts.push_back(CI); 1997 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 1998 InsertedInsts.push_back(ExtInst); 1999 return true; 2000 } 2001 2002 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2003 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2004 return true; 2005 } 2006 2007 // CodeGen has special handling for some string functions that may replace 2008 // them with target-specific intrinsics. Since that'd skip our interceptors 2009 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2010 // we mark affected calls as NoBuiltin, which will disable optimization 2011 // in CodeGen. 2012 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2013 CallInst *CI, const TargetLibraryInfo *TLI) { 2014 Function *F = CI->getCalledFunction(); 2015 LibFunc::Func Func; 2016 if (F && !F->hasLocalLinkage() && F->hasName() && 2017 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2018 !F->doesNotAccessMemory()) 2019 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin); 2020 } 2021