xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision b264d69de7dfcb94da9719a59bdd2fd3a8063b6a)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/DomTreeUpdater.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalObject.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/KnownBits.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 
95 //===----------------------------------------------------------------------===//
96 //  Local constant propagation.
97 //
98 
99 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
100 /// constant value, convert it into an unconditional branch to the constant
101 /// destination.  This is a nontrivial operation because the successors of this
102 /// basic block must have their PHI nodes updated.
103 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
104 /// conditions and indirectbr addresses this might make dead if
105 /// DeleteDeadConditions is true.
106 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
107                                   const TargetLibraryInfo *TLI,
108                                   DomTreeUpdater *DTU) {
109   Instruction *T = BB->getTerminator();
110   IRBuilder<> Builder(T);
111 
112   // Branch - See if we are conditional jumping on constant
113   if (auto *BI = dyn_cast<BranchInst>(T)) {
114     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
115     BasicBlock *Dest1 = BI->getSuccessor(0);
116     BasicBlock *Dest2 = BI->getSuccessor(1);
117 
118     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
119       // Are we branching on constant?
120       // YES.  Change to unconditional branch...
121       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
122       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
123 
124       // Let the basic block know that we are letting go of it.  Based on this,
125       // it will adjust it's PHI nodes.
126       OldDest->removePredecessor(BB);
127 
128       // Replace the conditional branch with an unconditional one.
129       Builder.CreateBr(Destination);
130       BI->eraseFromParent();
131       if (DTU)
132         DTU->deleteEdgeRelaxed(BB, OldDest);
133       return true;
134     }
135 
136     if (Dest2 == Dest1) {       // Conditional branch to same location?
137       // This branch matches something like this:
138       //     br bool %cond, label %Dest, label %Dest
139       // and changes it into:  br label %Dest
140 
141       // Let the basic block know that we are letting go of one copy of it.
142       assert(BI->getParent() && "Terminator not inserted in block!");
143       Dest1->removePredecessor(BI->getParent());
144 
145       // Replace the conditional branch with an unconditional one.
146       Builder.CreateBr(Dest1);
147       Value *Cond = BI->getCondition();
148       BI->eraseFromParent();
149       if (DeleteDeadConditions)
150         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
151       return true;
152     }
153     return false;
154   }
155 
156   if (auto *SI = dyn_cast<SwitchInst>(T)) {
157     // If we are switching on a constant, we can convert the switch to an
158     // unconditional branch.
159     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
160     BasicBlock *DefaultDest = SI->getDefaultDest();
161     BasicBlock *TheOnlyDest = DefaultDest;
162 
163     // If the default is unreachable, ignore it when searching for TheOnlyDest.
164     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
165         SI->getNumCases() > 0) {
166       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
167     }
168 
169     // Figure out which case it goes to.
170     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
171       // Found case matching a constant operand?
172       if (i->getCaseValue() == CI) {
173         TheOnlyDest = i->getCaseSuccessor();
174         break;
175       }
176 
177       // Check to see if this branch is going to the same place as the default
178       // dest.  If so, eliminate it as an explicit compare.
179       if (i->getCaseSuccessor() == DefaultDest) {
180         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
181         unsigned NCases = SI->getNumCases();
182         // Fold the case metadata into the default if there will be any branches
183         // left, unless the metadata doesn't match the switch.
184         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
185           // Collect branch weights into a vector.
186           SmallVector<uint32_t, 8> Weights;
187           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
188                ++MD_i) {
189             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
190             Weights.push_back(CI->getValue().getZExtValue());
191           }
192           // Merge weight of this case to the default weight.
193           unsigned idx = i->getCaseIndex();
194           Weights[0] += Weights[idx+1];
195           // Remove weight for this case.
196           std::swap(Weights[idx+1], Weights.back());
197           Weights.pop_back();
198           SI->setMetadata(LLVMContext::MD_prof,
199                           MDBuilder(BB->getContext()).
200                           createBranchWeights(Weights));
201         }
202         // Remove this entry.
203         BasicBlock *ParentBB = SI->getParent();
204         DefaultDest->removePredecessor(ParentBB);
205         i = SI->removeCase(i);
206         e = SI->case_end();
207         if (DTU)
208           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
209         continue;
210       }
211 
212       // Otherwise, check to see if the switch only branches to one destination.
213       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
214       // destinations.
215       if (i->getCaseSuccessor() != TheOnlyDest)
216         TheOnlyDest = nullptr;
217 
218       // Increment this iterator as we haven't removed the case.
219       ++i;
220     }
221 
222     if (CI && !TheOnlyDest) {
223       // Branching on a constant, but not any of the cases, go to the default
224       // successor.
225       TheOnlyDest = SI->getDefaultDest();
226     }
227 
228     // If we found a single destination that we can fold the switch into, do so
229     // now.
230     if (TheOnlyDest) {
231       // Insert the new branch.
232       Builder.CreateBr(TheOnlyDest);
233       BasicBlock *BB = SI->getParent();
234       std::vector <DominatorTree::UpdateType> Updates;
235       if (DTU)
236         Updates.reserve(SI->getNumSuccessors() - 1);
237 
238       // Remove entries from PHI nodes which we no longer branch to...
239       for (BasicBlock *Succ : successors(SI)) {
240         // Found case matching a constant operand?
241         if (Succ == TheOnlyDest) {
242           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
243         } else {
244           Succ->removePredecessor(BB);
245           if (DTU)
246             Updates.push_back({DominatorTree::Delete, BB, Succ});
247         }
248       }
249 
250       // Delete the old switch.
251       Value *Cond = SI->getCondition();
252       SI->eraseFromParent();
253       if (DeleteDeadConditions)
254         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
255       if (DTU)
256         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
257       return true;
258     }
259 
260     if (SI->getNumCases() == 1) {
261       // Otherwise, we can fold this switch into a conditional branch
262       // instruction if it has only one non-default destination.
263       auto FirstCase = *SI->case_begin();
264       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
265           FirstCase.getCaseValue(), "cond");
266 
267       // Insert the new branch.
268       BranchInst *NewBr = Builder.CreateCondBr(Cond,
269                                                FirstCase.getCaseSuccessor(),
270                                                SI->getDefaultDest());
271       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
272       if (MD && MD->getNumOperands() == 3) {
273         ConstantInt *SICase =
274             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
275         ConstantInt *SIDef =
276             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
277         assert(SICase && SIDef);
278         // The TrueWeight should be the weight for the single case of SI.
279         NewBr->setMetadata(LLVMContext::MD_prof,
280                         MDBuilder(BB->getContext()).
281                         createBranchWeights(SICase->getValue().getZExtValue(),
282                                             SIDef->getValue().getZExtValue()));
283       }
284 
285       // Update make.implicit metadata to the newly-created conditional branch.
286       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
287       if (MakeImplicitMD)
288         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
289 
290       // Delete the old switch.
291       SI->eraseFromParent();
292       return true;
293     }
294     return false;
295   }
296 
297   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
298     // indirectbr blockaddress(@F, @BB) -> br label @BB
299     if (auto *BA =
300           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
301       BasicBlock *TheOnlyDest = BA->getBasicBlock();
302       std::vector <DominatorTree::UpdateType> Updates;
303       if (DTU)
304         Updates.reserve(IBI->getNumDestinations() - 1);
305 
306       // Insert the new branch.
307       Builder.CreateBr(TheOnlyDest);
308 
309       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
310         if (IBI->getDestination(i) == TheOnlyDest) {
311           TheOnlyDest = nullptr;
312         } else {
313           BasicBlock *ParentBB = IBI->getParent();
314           BasicBlock *DestBB = IBI->getDestination(i);
315           DestBB->removePredecessor(ParentBB);
316           if (DTU)
317             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
318         }
319       }
320       Value *Address = IBI->getAddress();
321       IBI->eraseFromParent();
322       if (DeleteDeadConditions)
323         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
324 
325       // If we didn't find our destination in the IBI successor list, then we
326       // have undefined behavior.  Replace the unconditional branch with an
327       // 'unreachable' instruction.
328       if (TheOnlyDest) {
329         BB->getTerminator()->eraseFromParent();
330         new UnreachableInst(BB->getContext(), BB);
331       }
332 
333       if (DTU)
334         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
335       return true;
336     }
337   }
338 
339   return false;
340 }
341 
342 //===----------------------------------------------------------------------===//
343 //  Local dead code elimination.
344 //
345 
346 /// isInstructionTriviallyDead - Return true if the result produced by the
347 /// instruction is not used, and the instruction has no side effects.
348 ///
349 bool llvm::isInstructionTriviallyDead(Instruction *I,
350                                       const TargetLibraryInfo *TLI) {
351   if (!I->use_empty())
352     return false;
353   return wouldInstructionBeTriviallyDead(I, TLI);
354 }
355 
356 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
357                                            const TargetLibraryInfo *TLI) {
358   if (I->isTerminator())
359     return false;
360 
361   // We don't want the landingpad-like instructions removed by anything this
362   // general.
363   if (I->isEHPad())
364     return false;
365 
366   // We don't want debug info removed by anything this general, unless
367   // debug info is empty.
368   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
369     if (DDI->getAddress())
370       return false;
371     return true;
372   }
373   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
374     if (DVI->getValue())
375       return false;
376     return true;
377   }
378   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
379     if (DLI->getLabel())
380       return false;
381     return true;
382   }
383 
384   if (!I->mayHaveSideEffects())
385     return true;
386 
387   // Special case intrinsics that "may have side effects" but can be deleted
388   // when dead.
389   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
390     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
391     if (II->getIntrinsicID() == Intrinsic::stacksave ||
392         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
393       return true;
394 
395     // Lifetime intrinsics are dead when their right-hand is undef.
396     if (II->isLifetimeStartOrEnd())
397       return isa<UndefValue>(II->getArgOperand(1));
398 
399     // Assumptions are dead if their condition is trivially true.  Guards on
400     // true are operationally no-ops.  In the future we can consider more
401     // sophisticated tradeoffs for guards considering potential for check
402     // widening, but for now we keep things simple.
403     if (II->getIntrinsicID() == Intrinsic::assume ||
404         II->getIntrinsicID() == Intrinsic::experimental_guard) {
405       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
406         return !Cond->isZero();
407 
408       return false;
409     }
410   }
411 
412   if (isAllocLikeFn(I, TLI))
413     return true;
414 
415   if (CallInst *CI = isFreeCall(I, TLI))
416     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
417       return C->isNullValue() || isa<UndefValue>(C);
418 
419   if (CallSite CS = CallSite(I))
420     if (isMathLibCallNoop(CS, TLI))
421       return true;
422 
423   return false;
424 }
425 
426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
427 /// trivially dead instruction, delete it.  If that makes any of its operands
428 /// trivially dead, delete them too, recursively.  Return true if any
429 /// instructions were deleted.
430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
431     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
432   Instruction *I = dyn_cast<Instruction>(V);
433   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
434     return false;
435 
436   SmallVector<Instruction*, 16> DeadInsts;
437   DeadInsts.push_back(I);
438   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439 
440   return true;
441 }
442 
443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
445     MemorySSAUpdater *MSSAU) {
446   // Process the dead instruction list until empty.
447   while (!DeadInsts.empty()) {
448     Instruction &I = *DeadInsts.pop_back_val();
449     assert(I.use_empty() && "Instructions with uses are not dead.");
450     assert(isInstructionTriviallyDead(&I, TLI) &&
451            "Live instruction found in dead worklist!");
452 
453     // Don't lose the debug info while deleting the instructions.
454     salvageDebugInfo(I);
455 
456     // Null out all of the instruction's operands to see if any operand becomes
457     // dead as we go.
458     for (Use &OpU : I.operands()) {
459       Value *OpV = OpU.get();
460       OpU.set(nullptr);
461 
462       if (!OpV->use_empty())
463         continue;
464 
465       // If the operand is an instruction that became dead as we nulled out the
466       // operand, and if it is 'trivially' dead, delete it in a future loop
467       // iteration.
468       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
469         if (isInstructionTriviallyDead(OpI, TLI))
470           DeadInsts.push_back(OpI);
471     }
472     if (MSSAU)
473       MSSAU->removeMemoryAccess(&I);
474 
475     I.eraseFromParent();
476   }
477 }
478 
479 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
480   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
481   findDbgUsers(DbgUsers, I);
482   for (auto *DII : DbgUsers) {
483     Value *Undef = UndefValue::get(I->getType());
484     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
485                                             ValueAsMetadata::get(Undef)));
486   }
487   return !DbgUsers.empty();
488 }
489 
490 /// areAllUsesEqual - Check whether the uses of a value are all the same.
491 /// This is similar to Instruction::hasOneUse() except this will also return
492 /// true when there are no uses or multiple uses that all refer to the same
493 /// value.
494 static bool areAllUsesEqual(Instruction *I) {
495   Value::user_iterator UI = I->user_begin();
496   Value::user_iterator UE = I->user_end();
497   if (UI == UE)
498     return true;
499 
500   User *TheUse = *UI;
501   for (++UI; UI != UE; ++UI) {
502     if (*UI != TheUse)
503       return false;
504   }
505   return true;
506 }
507 
508 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
509 /// dead PHI node, due to being a def-use chain of single-use nodes that
510 /// either forms a cycle or is terminated by a trivially dead instruction,
511 /// delete it.  If that makes any of its operands trivially dead, delete them
512 /// too, recursively.  Return true if a change was made.
513 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
514                                         const TargetLibraryInfo *TLI) {
515   SmallPtrSet<Instruction*, 4> Visited;
516   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
517        I = cast<Instruction>(*I->user_begin())) {
518     if (I->use_empty())
519       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
520 
521     // If we find an instruction more than once, we're on a cycle that
522     // won't prove fruitful.
523     if (!Visited.insert(I).second) {
524       // Break the cycle and delete the instruction and its operands.
525       I->replaceAllUsesWith(UndefValue::get(I->getType()));
526       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
527       return true;
528     }
529   }
530   return false;
531 }
532 
533 static bool
534 simplifyAndDCEInstruction(Instruction *I,
535                           SmallSetVector<Instruction *, 16> &WorkList,
536                           const DataLayout &DL,
537                           const TargetLibraryInfo *TLI) {
538   if (isInstructionTriviallyDead(I, TLI)) {
539     salvageDebugInfo(*I);
540 
541     // Null out all of the instruction's operands to see if any operand becomes
542     // dead as we go.
543     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
544       Value *OpV = I->getOperand(i);
545       I->setOperand(i, nullptr);
546 
547       if (!OpV->use_empty() || I == OpV)
548         continue;
549 
550       // If the operand is an instruction that became dead as we nulled out the
551       // operand, and if it is 'trivially' dead, delete it in a future loop
552       // iteration.
553       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
554         if (isInstructionTriviallyDead(OpI, TLI))
555           WorkList.insert(OpI);
556     }
557 
558     I->eraseFromParent();
559 
560     return true;
561   }
562 
563   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
564     // Add the users to the worklist. CAREFUL: an instruction can use itself,
565     // in the case of a phi node.
566     for (User *U : I->users()) {
567       if (U != I) {
568         WorkList.insert(cast<Instruction>(U));
569       }
570     }
571 
572     // Replace the instruction with its simplified value.
573     bool Changed = false;
574     if (!I->use_empty()) {
575       I->replaceAllUsesWith(SimpleV);
576       Changed = true;
577     }
578     if (isInstructionTriviallyDead(I, TLI)) {
579       I->eraseFromParent();
580       Changed = true;
581     }
582     return Changed;
583   }
584   return false;
585 }
586 
587 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
588 /// simplify any instructions in it and recursively delete dead instructions.
589 ///
590 /// This returns true if it changed the code, note that it can delete
591 /// instructions in other blocks as well in this block.
592 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
593                                        const TargetLibraryInfo *TLI) {
594   bool MadeChange = false;
595   const DataLayout &DL = BB->getModule()->getDataLayout();
596 
597 #ifndef NDEBUG
598   // In debug builds, ensure that the terminator of the block is never replaced
599   // or deleted by these simplifications. The idea of simplification is that it
600   // cannot introduce new instructions, and there is no way to replace the
601   // terminator of a block without introducing a new instruction.
602   AssertingVH<Instruction> TerminatorVH(&BB->back());
603 #endif
604 
605   SmallSetVector<Instruction *, 16> WorkList;
606   // Iterate over the original function, only adding insts to the worklist
607   // if they actually need to be revisited. This avoids having to pre-init
608   // the worklist with the entire function's worth of instructions.
609   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
610        BI != E;) {
611     assert(!BI->isTerminator());
612     Instruction *I = &*BI;
613     ++BI;
614 
615     // We're visiting this instruction now, so make sure it's not in the
616     // worklist from an earlier visit.
617     if (!WorkList.count(I))
618       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
619   }
620 
621   while (!WorkList.empty()) {
622     Instruction *I = WorkList.pop_back_val();
623     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
624   }
625   return MadeChange;
626 }
627 
628 //===----------------------------------------------------------------------===//
629 //  Control Flow Graph Restructuring.
630 //
631 
632 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
633 /// method is called when we're about to delete Pred as a predecessor of BB.  If
634 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
635 ///
636 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
637 /// nodes that collapse into identity values.  For example, if we have:
638 ///   x = phi(1, 0, 0, 0)
639 ///   y = and x, z
640 ///
641 /// .. and delete the predecessor corresponding to the '1', this will attempt to
642 /// recursively fold the and to 0.
643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
644                                         DomTreeUpdater *DTU) {
645   // This only adjusts blocks with PHI nodes.
646   if (!isa<PHINode>(BB->begin()))
647     return;
648 
649   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
650   // them down.  This will leave us with single entry phi nodes and other phis
651   // that can be removed.
652   BB->removePredecessor(Pred, true);
653 
654   WeakTrackingVH PhiIt = &BB->front();
655   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
656     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
657     Value *OldPhiIt = PhiIt;
658 
659     if (!recursivelySimplifyInstruction(PN))
660       continue;
661 
662     // If recursive simplification ended up deleting the next PHI node we would
663     // iterate to, then our iterator is invalid, restart scanning from the top
664     // of the block.
665     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
666   }
667   if (DTU)
668     DTU->deleteEdgeRelaxed(Pred, BB);
669 }
670 
671 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
672 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
673 /// between them, moving the instructions in the predecessor into DestBB and
674 /// deleting the predecessor block.
675 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
676                                        DomTreeUpdater *DTU) {
677 
678   // If BB has single-entry PHI nodes, fold them.
679   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
680     Value *NewVal = PN->getIncomingValue(0);
681     // Replace self referencing PHI with undef, it must be dead.
682     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
683     PN->replaceAllUsesWith(NewVal);
684     PN->eraseFromParent();
685   }
686 
687   BasicBlock *PredBB = DestBB->getSinglePredecessor();
688   assert(PredBB && "Block doesn't have a single predecessor!");
689 
690   bool ReplaceEntryBB = false;
691   if (PredBB == &DestBB->getParent()->getEntryBlock())
692     ReplaceEntryBB = true;
693 
694   // DTU updates: Collect all the edges that enter
695   // PredBB. These dominator edges will be redirected to DestBB.
696   SmallVector<DominatorTree::UpdateType, 32> Updates;
697 
698   if (DTU) {
699     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
700     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
701       Updates.push_back({DominatorTree::Delete, *I, PredBB});
702       // This predecessor of PredBB may already have DestBB as a successor.
703       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
704         Updates.push_back({DominatorTree::Insert, *I, DestBB});
705     }
706   }
707 
708   // Zap anything that took the address of DestBB.  Not doing this will give the
709   // address an invalid value.
710   if (DestBB->hasAddressTaken()) {
711     BlockAddress *BA = BlockAddress::get(DestBB);
712     Constant *Replacement =
713       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
714     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
715                                                      BA->getType()));
716     BA->destroyConstant();
717   }
718 
719   // Anything that branched to PredBB now branches to DestBB.
720   PredBB->replaceAllUsesWith(DestBB);
721 
722   // Splice all the instructions from PredBB to DestBB.
723   PredBB->getTerminator()->eraseFromParent();
724   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
725   new UnreachableInst(PredBB->getContext(), PredBB);
726 
727   // If the PredBB is the entry block of the function, move DestBB up to
728   // become the entry block after we erase PredBB.
729   if (ReplaceEntryBB)
730     DestBB->moveAfter(PredBB);
731 
732   if (DTU) {
733     assert(PredBB->getInstList().size() == 1 &&
734            isa<UnreachableInst>(PredBB->getTerminator()) &&
735            "The successor list of PredBB isn't empty before "
736            "applying corresponding DTU updates.");
737     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
738     DTU->deleteBB(PredBB);
739     // Recalculation of DomTree is needed when updating a forward DomTree and
740     // the Entry BB is replaced.
741     if (ReplaceEntryBB && DTU->hasDomTree()) {
742       // The entry block was removed and there is no external interface for
743       // the dominator tree to be notified of this change. In this corner-case
744       // we recalculate the entire tree.
745       DTU->recalculate(*(DestBB->getParent()));
746     }
747   }
748 
749   else {
750     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
751   }
752 }
753 
754 /// CanMergeValues - Return true if we can choose one of these values to use
755 /// in place of the other. Note that we will always choose the non-undef
756 /// value to keep.
757 static bool CanMergeValues(Value *First, Value *Second) {
758   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
759 }
760 
761 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
762 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
763 ///
764 /// Assumption: Succ is the single successor for BB.
765 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
766   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
767 
768   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
769                     << Succ->getName() << "\n");
770   // Shortcut, if there is only a single predecessor it must be BB and merging
771   // is always safe
772   if (Succ->getSinglePredecessor()) return true;
773 
774   // Make a list of the predecessors of BB
775   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
776 
777   // Look at all the phi nodes in Succ, to see if they present a conflict when
778   // merging these blocks
779   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
780     PHINode *PN = cast<PHINode>(I);
781 
782     // If the incoming value from BB is again a PHINode in
783     // BB which has the same incoming value for *PI as PN does, we can
784     // merge the phi nodes and then the blocks can still be merged
785     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
786     if (BBPN && BBPN->getParent() == BB) {
787       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
788         BasicBlock *IBB = PN->getIncomingBlock(PI);
789         if (BBPreds.count(IBB) &&
790             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
791                             PN->getIncomingValue(PI))) {
792           LLVM_DEBUG(dbgs()
793                      << "Can't fold, phi node " << PN->getName() << " in "
794                      << Succ->getName() << " is conflicting with "
795                      << BBPN->getName() << " with regard to common predecessor "
796                      << IBB->getName() << "\n");
797           return false;
798         }
799       }
800     } else {
801       Value* Val = PN->getIncomingValueForBlock(BB);
802       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
803         // See if the incoming value for the common predecessor is equal to the
804         // one for BB, in which case this phi node will not prevent the merging
805         // of the block.
806         BasicBlock *IBB = PN->getIncomingBlock(PI);
807         if (BBPreds.count(IBB) &&
808             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
809           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
810                             << " in " << Succ->getName()
811                             << " is conflicting with regard to common "
812                             << "predecessor " << IBB->getName() << "\n");
813           return false;
814         }
815       }
816     }
817   }
818 
819   return true;
820 }
821 
822 using PredBlockVector = SmallVector<BasicBlock *, 16>;
823 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
824 
825 /// Determines the value to use as the phi node input for a block.
826 ///
827 /// Select between \p OldVal any value that we know flows from \p BB
828 /// to a particular phi on the basis of which one (if either) is not
829 /// undef. Update IncomingValues based on the selected value.
830 ///
831 /// \param OldVal The value we are considering selecting.
832 /// \param BB The block that the value flows in from.
833 /// \param IncomingValues A map from block-to-value for other phi inputs
834 /// that we have examined.
835 ///
836 /// \returns the selected value.
837 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
838                                           IncomingValueMap &IncomingValues) {
839   if (!isa<UndefValue>(OldVal)) {
840     assert((!IncomingValues.count(BB) ||
841             IncomingValues.find(BB)->second == OldVal) &&
842            "Expected OldVal to match incoming value from BB!");
843 
844     IncomingValues.insert(std::make_pair(BB, OldVal));
845     return OldVal;
846   }
847 
848   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
849   if (It != IncomingValues.end()) return It->second;
850 
851   return OldVal;
852 }
853 
854 /// Create a map from block to value for the operands of a
855 /// given phi.
856 ///
857 /// Create a map from block to value for each non-undef value flowing
858 /// into \p PN.
859 ///
860 /// \param PN The phi we are collecting the map for.
861 /// \param IncomingValues [out] The map from block to value for this phi.
862 static void gatherIncomingValuesToPhi(PHINode *PN,
863                                       IncomingValueMap &IncomingValues) {
864   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
865     BasicBlock *BB = PN->getIncomingBlock(i);
866     Value *V = PN->getIncomingValue(i);
867 
868     if (!isa<UndefValue>(V))
869       IncomingValues.insert(std::make_pair(BB, V));
870   }
871 }
872 
873 /// Replace the incoming undef values to a phi with the values
874 /// from a block-to-value map.
875 ///
876 /// \param PN The phi we are replacing the undefs in.
877 /// \param IncomingValues A map from block to value.
878 static void replaceUndefValuesInPhi(PHINode *PN,
879                                     const IncomingValueMap &IncomingValues) {
880   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
881     Value *V = PN->getIncomingValue(i);
882 
883     if (!isa<UndefValue>(V)) continue;
884 
885     BasicBlock *BB = PN->getIncomingBlock(i);
886     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887     if (It == IncomingValues.end()) continue;
888 
889     PN->setIncomingValue(i, It->second);
890   }
891 }
892 
893 /// Replace a value flowing from a block to a phi with
894 /// potentially multiple instances of that value flowing from the
895 /// block's predecessors to the phi.
896 ///
897 /// \param BB The block with the value flowing into the phi.
898 /// \param BBPreds The predecessors of BB.
899 /// \param PN The phi that we are updating.
900 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
901                                                 const PredBlockVector &BBPreds,
902                                                 PHINode *PN) {
903   Value *OldVal = PN->removeIncomingValue(BB, false);
904   assert(OldVal && "No entry in PHI for Pred BB!");
905 
906   IncomingValueMap IncomingValues;
907 
908   // We are merging two blocks - BB, and the block containing PN - and
909   // as a result we need to redirect edges from the predecessors of BB
910   // to go to the block containing PN, and update PN
911   // accordingly. Since we allow merging blocks in the case where the
912   // predecessor and successor blocks both share some predecessors,
913   // and where some of those common predecessors might have undef
914   // values flowing into PN, we want to rewrite those values to be
915   // consistent with the non-undef values.
916 
917   gatherIncomingValuesToPhi(PN, IncomingValues);
918 
919   // If this incoming value is one of the PHI nodes in BB, the new entries
920   // in the PHI node are the entries from the old PHI.
921   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
922     PHINode *OldValPN = cast<PHINode>(OldVal);
923     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
924       // Note that, since we are merging phi nodes and BB and Succ might
925       // have common predecessors, we could end up with a phi node with
926       // identical incoming branches. This will be cleaned up later (and
927       // will trigger asserts if we try to clean it up now, without also
928       // simplifying the corresponding conditional branch).
929       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
930       Value *PredVal = OldValPN->getIncomingValue(i);
931       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
932                                                     IncomingValues);
933 
934       // And add a new incoming value for this predecessor for the
935       // newly retargeted branch.
936       PN->addIncoming(Selected, PredBB);
937     }
938   } else {
939     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
940       // Update existing incoming values in PN for this
941       // predecessor of BB.
942       BasicBlock *PredBB = BBPreds[i];
943       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
944                                                     IncomingValues);
945 
946       // And add a new incoming value for this predecessor for the
947       // newly retargeted branch.
948       PN->addIncoming(Selected, PredBB);
949     }
950   }
951 
952   replaceUndefValuesInPhi(PN, IncomingValues);
953 }
954 
955 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
956 /// unconditional branch, and contains no instructions other than PHI nodes,
957 /// potential side-effect free intrinsics and the branch.  If possible,
958 /// eliminate BB by rewriting all the predecessors to branch to the successor
959 /// block and return true.  If we can't transform, return false.
960 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
961                                                    DomTreeUpdater *DTU) {
962   assert(BB != &BB->getParent()->getEntryBlock() &&
963          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
964 
965   // We can't eliminate infinite loops.
966   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
967   if (BB == Succ) return false;
968 
969   // Check to see if merging these blocks would cause conflicts for any of the
970   // phi nodes in BB or Succ. If not, we can safely merge.
971   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
972 
973   // Check for cases where Succ has multiple predecessors and a PHI node in BB
974   // has uses which will not disappear when the PHI nodes are merged.  It is
975   // possible to handle such cases, but difficult: it requires checking whether
976   // BB dominates Succ, which is non-trivial to calculate in the case where
977   // Succ has multiple predecessors.  Also, it requires checking whether
978   // constructing the necessary self-referential PHI node doesn't introduce any
979   // conflicts; this isn't too difficult, but the previous code for doing this
980   // was incorrect.
981   //
982   // Note that if this check finds a live use, BB dominates Succ, so BB is
983   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
984   // folding the branch isn't profitable in that case anyway.
985   if (!Succ->getSinglePredecessor()) {
986     BasicBlock::iterator BBI = BB->begin();
987     while (isa<PHINode>(*BBI)) {
988       for (Use &U : BBI->uses()) {
989         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
990           if (PN->getIncomingBlock(U) != BB)
991             return false;
992         } else {
993           return false;
994         }
995       }
996       ++BBI;
997     }
998   }
999 
1000   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1001 
1002   SmallVector<DominatorTree::UpdateType, 32> Updates;
1003   if (DTU) {
1004     Updates.push_back({DominatorTree::Delete, BB, Succ});
1005     // All predecessors of BB will be moved to Succ.
1006     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1007       Updates.push_back({DominatorTree::Delete, *I, BB});
1008       // This predecessor of BB may already have Succ as a successor.
1009       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1010         Updates.push_back({DominatorTree::Insert, *I, Succ});
1011     }
1012   }
1013 
1014   if (isa<PHINode>(Succ->begin())) {
1015     // If there is more than one pred of succ, and there are PHI nodes in
1016     // the successor, then we need to add incoming edges for the PHI nodes
1017     //
1018     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1019 
1020     // Loop over all of the PHI nodes in the successor of BB.
1021     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1022       PHINode *PN = cast<PHINode>(I);
1023 
1024       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1025     }
1026   }
1027 
1028   if (Succ->getSinglePredecessor()) {
1029     // BB is the only predecessor of Succ, so Succ will end up with exactly
1030     // the same predecessors BB had.
1031 
1032     // Copy over any phi, debug or lifetime instruction.
1033     BB->getTerminator()->eraseFromParent();
1034     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1035                                BB->getInstList());
1036   } else {
1037     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1038       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1039       assert(PN->use_empty() && "There shouldn't be any uses here!");
1040       PN->eraseFromParent();
1041     }
1042   }
1043 
1044   // If the unconditional branch we replaced contains llvm.loop metadata, we
1045   // add the metadata to the branch instructions in the predecessors.
1046   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1047   Instruction *TI = BB->getTerminator();
1048   if (TI)
1049     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1050       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1051         BasicBlock *Pred = *PI;
1052         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1053       }
1054 
1055   // Everything that jumped to BB now goes to Succ.
1056   BB->replaceAllUsesWith(Succ);
1057   if (!Succ->hasName()) Succ->takeName(BB);
1058 
1059   // Clear the successor list of BB to match updates applying to DTU later.
1060   if (BB->getTerminator())
1061     BB->getInstList().pop_back();
1062   new UnreachableInst(BB->getContext(), BB);
1063   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1064                            "applying corresponding DTU updates.");
1065 
1066   if (DTU) {
1067     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1068     DTU->deleteBB(BB);
1069   } else {
1070     BB->eraseFromParent(); // Delete the old basic block.
1071   }
1072   return true;
1073 }
1074 
1075 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1076 /// nodes in this block. This doesn't try to be clever about PHI nodes
1077 /// which differ only in the order of the incoming values, but instcombine
1078 /// orders them so it usually won't matter.
1079 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1080   // This implementation doesn't currently consider undef operands
1081   // specially. Theoretically, two phis which are identical except for
1082   // one having an undef where the other doesn't could be collapsed.
1083 
1084   struct PHIDenseMapInfo {
1085     static PHINode *getEmptyKey() {
1086       return DenseMapInfo<PHINode *>::getEmptyKey();
1087     }
1088 
1089     static PHINode *getTombstoneKey() {
1090       return DenseMapInfo<PHINode *>::getTombstoneKey();
1091     }
1092 
1093     static unsigned getHashValue(PHINode *PN) {
1094       // Compute a hash value on the operands. Instcombine will likely have
1095       // sorted them, which helps expose duplicates, but we have to check all
1096       // the operands to be safe in case instcombine hasn't run.
1097       return static_cast<unsigned>(hash_combine(
1098           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1099           hash_combine_range(PN->block_begin(), PN->block_end())));
1100     }
1101 
1102     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1103       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1104           RHS == getEmptyKey() || RHS == getTombstoneKey())
1105         return LHS == RHS;
1106       return LHS->isIdenticalTo(RHS);
1107     }
1108   };
1109 
1110   // Set of unique PHINodes.
1111   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1112 
1113   // Examine each PHI.
1114   bool Changed = false;
1115   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1116     auto Inserted = PHISet.insert(PN);
1117     if (!Inserted.second) {
1118       // A duplicate. Replace this PHI with its duplicate.
1119       PN->replaceAllUsesWith(*Inserted.first);
1120       PN->eraseFromParent();
1121       Changed = true;
1122 
1123       // The RAUW can change PHIs that we already visited. Start over from the
1124       // beginning.
1125       PHISet.clear();
1126       I = BB->begin();
1127     }
1128   }
1129 
1130   return Changed;
1131 }
1132 
1133 /// enforceKnownAlignment - If the specified pointer points to an object that
1134 /// we control, modify the object's alignment to PrefAlign. This isn't
1135 /// often possible though. If alignment is important, a more reliable approach
1136 /// is to simply align all global variables and allocation instructions to
1137 /// their preferred alignment from the beginning.
1138 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1139                                       unsigned PrefAlign,
1140                                       const DataLayout &DL) {
1141   assert(PrefAlign > Align);
1142 
1143   V = V->stripPointerCasts();
1144 
1145   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1146     // TODO: ideally, computeKnownBits ought to have used
1147     // AllocaInst::getAlignment() in its computation already, making
1148     // the below max redundant. But, as it turns out,
1149     // stripPointerCasts recurses through infinite layers of bitcasts,
1150     // while computeKnownBits is not allowed to traverse more than 6
1151     // levels.
1152     Align = std::max(AI->getAlignment(), Align);
1153     if (PrefAlign <= Align)
1154       return Align;
1155 
1156     // If the preferred alignment is greater than the natural stack alignment
1157     // then don't round up. This avoids dynamic stack realignment.
1158     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1159       return Align;
1160     AI->setAlignment(PrefAlign);
1161     return PrefAlign;
1162   }
1163 
1164   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1165     // TODO: as above, this shouldn't be necessary.
1166     Align = std::max(GO->getAlignment(), Align);
1167     if (PrefAlign <= Align)
1168       return Align;
1169 
1170     // If there is a large requested alignment and we can, bump up the alignment
1171     // of the global.  If the memory we set aside for the global may not be the
1172     // memory used by the final program then it is impossible for us to reliably
1173     // enforce the preferred alignment.
1174     if (!GO->canIncreaseAlignment())
1175       return Align;
1176 
1177     GO->setAlignment(PrefAlign);
1178     return PrefAlign;
1179   }
1180 
1181   return Align;
1182 }
1183 
1184 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1185                                           const DataLayout &DL,
1186                                           const Instruction *CxtI,
1187                                           AssumptionCache *AC,
1188                                           const DominatorTree *DT) {
1189   assert(V->getType()->isPointerTy() &&
1190          "getOrEnforceKnownAlignment expects a pointer!");
1191 
1192   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1193   unsigned TrailZ = Known.countMinTrailingZeros();
1194 
1195   // Avoid trouble with ridiculously large TrailZ values, such as
1196   // those computed from a null pointer.
1197   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1198 
1199   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1200 
1201   // LLVM doesn't support alignments larger than this currently.
1202   Align = std::min(Align, +Value::MaximumAlignment);
1203 
1204   if (PrefAlign > Align)
1205     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1206 
1207   // We don't need to make any adjustment.
1208   return Align;
1209 }
1210 
1211 ///===---------------------------------------------------------------------===//
1212 ///  Dbg Intrinsic utilities
1213 ///
1214 
1215 /// See if there is a dbg.value intrinsic for DIVar before I.
1216 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1217                               Instruction *I) {
1218   // Since we can't guarantee that the original dbg.declare instrinsic
1219   // is removed by LowerDbgDeclare(), we need to make sure that we are
1220   // not inserting the same dbg.value intrinsic over and over.
1221   BasicBlock::InstListType::iterator PrevI(I);
1222   if (PrevI != I->getParent()->getInstList().begin()) {
1223     --PrevI;
1224     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1225       if (DVI->getValue() == I->getOperand(0) &&
1226           DVI->getVariable() == DIVar &&
1227           DVI->getExpression() == DIExpr)
1228         return true;
1229   }
1230   return false;
1231 }
1232 
1233 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1234 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1235                              DIExpression *DIExpr,
1236                              PHINode *APN) {
1237   // Since we can't guarantee that the original dbg.declare instrinsic
1238   // is removed by LowerDbgDeclare(), we need to make sure that we are
1239   // not inserting the same dbg.value intrinsic over and over.
1240   SmallVector<DbgValueInst *, 1> DbgValues;
1241   findDbgValues(DbgValues, APN);
1242   for (auto *DVI : DbgValues) {
1243     assert(DVI->getValue() == APN);
1244     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1245       return true;
1246   }
1247   return false;
1248 }
1249 
1250 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1251 /// (or fragment of the variable) described by \p DII.
1252 ///
1253 /// This is primarily intended as a helper for the different
1254 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1255 /// converted describes an alloca'd variable, so we need to use the
1256 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1257 /// identified as covering an n-bit fragment, if the store size of i1 is at
1258 /// least n bits.
1259 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1260   const DataLayout &DL = DII->getModule()->getDataLayout();
1261   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1262   if (auto FragmentSize = DII->getFragmentSizeInBits())
1263     return ValueSize >= *FragmentSize;
1264   // We can't always calculate the size of the DI variable (e.g. if it is a
1265   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1266   // intead.
1267   if (DII->isAddressOfVariable())
1268     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1269       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1270         return ValueSize >= *FragmentSize;
1271   // Could not determine size of variable. Conservatively return false.
1272   return false;
1273 }
1274 
1275 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1276 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1277 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1278                                            StoreInst *SI, DIBuilder &Builder) {
1279   assert(DII->isAddressOfVariable());
1280   auto *DIVar = DII->getVariable();
1281   assert(DIVar && "Missing variable");
1282   auto *DIExpr = DII->getExpression();
1283   Value *DV = SI->getOperand(0);
1284 
1285   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1286     // FIXME: If storing to a part of the variable described by the dbg.declare,
1287     // then we want to insert a dbg.value for the corresponding fragment.
1288     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1289                       << *DII << '\n');
1290     // For now, when there is a store to parts of the variable (but we do not
1291     // know which part) we insert an dbg.value instrinsic to indicate that we
1292     // know nothing about the variable's content.
1293     DV = UndefValue::get(DV->getType());
1294     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1295       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1296                                       SI);
1297     return;
1298   }
1299 
1300   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1301     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1302                                     SI);
1303 }
1304 
1305 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1306 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1307 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1308                                            LoadInst *LI, DIBuilder &Builder) {
1309   auto *DIVar = DII->getVariable();
1310   auto *DIExpr = DII->getExpression();
1311   assert(DIVar && "Missing variable");
1312 
1313   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1314     return;
1315 
1316   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1317     // FIXME: If only referring to a part of the variable described by the
1318     // dbg.declare, then we want to insert a dbg.value for the corresponding
1319     // fragment.
1320     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1321                       << *DII << '\n');
1322     return;
1323   }
1324 
1325   // We are now tracking the loaded value instead of the address. In the
1326   // future if multi-location support is added to the IR, it might be
1327   // preferable to keep tracking both the loaded value and the original
1328   // address in case the alloca can not be elided.
1329   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1330       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1331   DbgValue->insertAfter(LI);
1332 }
1333 
1334 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1335 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1336 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1337                                            PHINode *APN, DIBuilder &Builder) {
1338   auto *DIVar = DII->getVariable();
1339   auto *DIExpr = DII->getExpression();
1340   assert(DIVar && "Missing variable");
1341 
1342   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1343     return;
1344 
1345   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1346     // FIXME: If only referring to a part of the variable described by the
1347     // dbg.declare, then we want to insert a dbg.value for the corresponding
1348     // fragment.
1349     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1350                       << *DII << '\n');
1351     return;
1352   }
1353 
1354   BasicBlock *BB = APN->getParent();
1355   auto InsertionPt = BB->getFirstInsertionPt();
1356 
1357   // The block may be a catchswitch block, which does not have a valid
1358   // insertion point.
1359   // FIXME: Insert dbg.value markers in the successors when appropriate.
1360   if (InsertionPt != BB->end())
1361     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1362                                     &*InsertionPt);
1363 }
1364 
1365 /// Determine whether this alloca is either a VLA or an array.
1366 static bool isArray(AllocaInst *AI) {
1367   return AI->isArrayAllocation() ||
1368     AI->getType()->getElementType()->isArrayTy();
1369 }
1370 
1371 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1372 /// of llvm.dbg.value intrinsics.
1373 bool llvm::LowerDbgDeclare(Function &F) {
1374   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1375   SmallVector<DbgDeclareInst *, 4> Dbgs;
1376   for (auto &FI : F)
1377     for (Instruction &BI : FI)
1378       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1379         Dbgs.push_back(DDI);
1380 
1381   if (Dbgs.empty())
1382     return false;
1383 
1384   for (auto &I : Dbgs) {
1385     DbgDeclareInst *DDI = I;
1386     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1387     // If this is an alloca for a scalar variable, insert a dbg.value
1388     // at each load and store to the alloca and erase the dbg.declare.
1389     // The dbg.values allow tracking a variable even if it is not
1390     // stored on the stack, while the dbg.declare can only describe
1391     // the stack slot (and at a lexical-scope granularity). Later
1392     // passes will attempt to elide the stack slot.
1393     if (!AI || isArray(AI))
1394       continue;
1395 
1396     // A volatile load/store means that the alloca can't be elided anyway.
1397     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1398           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1399             return LI->isVolatile();
1400           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1401             return SI->isVolatile();
1402           return false;
1403         }))
1404       continue;
1405 
1406     for (auto &AIUse : AI->uses()) {
1407       User *U = AIUse.getUser();
1408       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1409         if (AIUse.getOperandNo() == 1)
1410           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1411       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1412         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1413       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1414         // This is a call by-value or some other instruction that takes a
1415         // pointer to the variable. Insert a *value* intrinsic that describes
1416         // the variable by dereferencing the alloca.
1417         auto *DerefExpr =
1418             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1419         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1420                                     DDI->getDebugLoc(), CI);
1421       }
1422     }
1423     DDI->eraseFromParent();
1424   }
1425   return true;
1426 }
1427 
1428 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1429 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1430                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1431   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1432   if (InsertedPHIs.size() == 0)
1433     return;
1434 
1435   // Map existing PHI nodes to their dbg.values.
1436   ValueToValueMapTy DbgValueMap;
1437   for (auto &I : *BB) {
1438     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1439       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1440         DbgValueMap.insert({Loc, DbgII});
1441     }
1442   }
1443   if (DbgValueMap.size() == 0)
1444     return;
1445 
1446   // Then iterate through the new PHIs and look to see if they use one of the
1447   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1448   // propagate the info through the new PHI.
1449   LLVMContext &C = BB->getContext();
1450   for (auto PHI : InsertedPHIs) {
1451     BasicBlock *Parent = PHI->getParent();
1452     // Avoid inserting an intrinsic into an EH block.
1453     if (Parent->getFirstNonPHI()->isEHPad())
1454       continue;
1455     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1456     for (auto VI : PHI->operand_values()) {
1457       auto V = DbgValueMap.find(VI);
1458       if (V != DbgValueMap.end()) {
1459         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1460         Instruction *NewDbgII = DbgII->clone();
1461         NewDbgII->setOperand(0, PhiMAV);
1462         auto InsertionPt = Parent->getFirstInsertionPt();
1463         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1464         NewDbgII->insertBefore(&*InsertionPt);
1465       }
1466     }
1467   }
1468 }
1469 
1470 /// Finds all intrinsics declaring local variables as living in the memory that
1471 /// 'V' points to. This may include a mix of dbg.declare and
1472 /// dbg.addr intrinsics.
1473 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1474   // This function is hot. Check whether the value has any metadata to avoid a
1475   // DenseMap lookup.
1476   if (!V->isUsedByMetadata())
1477     return {};
1478   auto *L = LocalAsMetadata::getIfExists(V);
1479   if (!L)
1480     return {};
1481   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1482   if (!MDV)
1483     return {};
1484 
1485   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1486   for (User *U : MDV->users()) {
1487     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1488       if (DII->isAddressOfVariable())
1489         Declares.push_back(DII);
1490   }
1491 
1492   return Declares;
1493 }
1494 
1495 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1496   // This function is hot. Check whether the value has any metadata to avoid a
1497   // DenseMap lookup.
1498   if (!V->isUsedByMetadata())
1499     return;
1500   if (auto *L = LocalAsMetadata::getIfExists(V))
1501     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1502       for (User *U : MDV->users())
1503         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1504           DbgValues.push_back(DVI);
1505 }
1506 
1507 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1508                         Value *V) {
1509   // This function is hot. Check whether the value has any metadata to avoid a
1510   // DenseMap lookup.
1511   if (!V->isUsedByMetadata())
1512     return;
1513   if (auto *L = LocalAsMetadata::getIfExists(V))
1514     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1515       for (User *U : MDV->users())
1516         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1517           DbgUsers.push_back(DII);
1518 }
1519 
1520 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1521                              Instruction *InsertBefore, DIBuilder &Builder,
1522                              bool DerefBefore, int Offset, bool DerefAfter) {
1523   auto DbgAddrs = FindDbgAddrUses(Address);
1524   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1525     DebugLoc Loc = DII->getDebugLoc();
1526     auto *DIVar = DII->getVariable();
1527     auto *DIExpr = DII->getExpression();
1528     assert(DIVar && "Missing variable");
1529     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1530     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1531     // llvm.dbg.declare.
1532     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1533     if (DII == InsertBefore)
1534       InsertBefore = InsertBefore->getNextNode();
1535     DII->eraseFromParent();
1536   }
1537   return !DbgAddrs.empty();
1538 }
1539 
1540 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1541                                       DIBuilder &Builder, bool DerefBefore,
1542                                       int Offset, bool DerefAfter) {
1543   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1544                            DerefBefore, Offset, DerefAfter);
1545 }
1546 
1547 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1548                                         DIBuilder &Builder, int Offset) {
1549   DebugLoc Loc = DVI->getDebugLoc();
1550   auto *DIVar = DVI->getVariable();
1551   auto *DIExpr = DVI->getExpression();
1552   assert(DIVar && "Missing variable");
1553 
1554   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1555   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1556   // it and give up.
1557   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1558       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1559     return;
1560 
1561   // Insert the offset immediately after the first deref.
1562   // We could just change the offset argument of dbg.value, but it's unsigned...
1563   if (Offset) {
1564     SmallVector<uint64_t, 4> Ops;
1565     Ops.push_back(dwarf::DW_OP_deref);
1566     DIExpression::appendOffset(Ops, Offset);
1567     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1568     DIExpr = Builder.createExpression(Ops);
1569   }
1570 
1571   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1572   DVI->eraseFromParent();
1573 }
1574 
1575 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1576                                     DIBuilder &Builder, int Offset) {
1577   if (auto *L = LocalAsMetadata::getIfExists(AI))
1578     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1579       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1580         Use &U = *UI++;
1581         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1582           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1583       }
1584 }
1585 
1586 /// Wrap \p V in a ValueAsMetadata instance.
1587 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1588   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1589 }
1590 
1591 bool llvm::salvageDebugInfo(Instruction &I) {
1592   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1593   findDbgUsers(DbgUsers, &I);
1594   if (DbgUsers.empty())
1595     return false;
1596 
1597   auto &M = *I.getModule();
1598   auto &DL = M.getDataLayout();
1599   auto &Ctx = I.getContext();
1600   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1601 
1602   auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1603     auto *DIExpr = DII->getExpression();
1604     if (!Ops.empty()) {
1605       // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1606       // are implicitly pointing out the value as a DWARF memory location
1607       // description.
1608       bool WithStackValue = isa<DbgValueInst>(DII);
1609       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1610     }
1611     DII->setOperand(0, wrapMD(I.getOperand(0)));
1612     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1613     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1614   };
1615 
1616   auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) {
1617     SmallVector<uint64_t, 8> Ops;
1618     DIExpression::appendOffset(Ops, Offset);
1619     doSalvage(DII, Ops);
1620   };
1621 
1622   auto applyOps = [&](DbgVariableIntrinsic *DII,
1623                       std::initializer_list<uint64_t> Opcodes) {
1624     SmallVector<uint64_t, 8> Ops(Opcodes);
1625     doSalvage(DII, Ops);
1626   };
1627 
1628   if (auto *CI = dyn_cast<CastInst>(&I)) {
1629     if (!CI->isNoopCast(DL))
1630       return false;
1631 
1632     // No-op casts are irrelevant for debug info.
1633     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1634     for (auto *DII : DbgUsers) {
1635       DII->setOperand(0, CastSrc);
1636       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1637     }
1638     return true;
1639   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1640     unsigned BitWidth =
1641         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1642     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1643     // arithmetic to compute the variable's *value* in the DIExpression, we
1644     // need to mark the expression with a DW_OP_stack_value.
1645     APInt Offset(BitWidth, 0);
1646     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1647       for (auto *DII : DbgUsers)
1648         applyOffset(DII, Offset.getSExtValue());
1649     return true;
1650   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1651     // Rewrite binary operations with constant integer operands.
1652     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1653     if (!ConstInt || ConstInt->getBitWidth() > 64)
1654       return false;
1655 
1656     uint64_t Val = ConstInt->getSExtValue();
1657     for (auto *DII : DbgUsers) {
1658       switch (BI->getOpcode()) {
1659       case Instruction::Add:
1660         applyOffset(DII, Val);
1661         break;
1662       case Instruction::Sub:
1663         applyOffset(DII, -int64_t(Val));
1664         break;
1665       case Instruction::Mul:
1666         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1667         break;
1668       case Instruction::SDiv:
1669         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1670         break;
1671       case Instruction::SRem:
1672         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1673         break;
1674       case Instruction::Or:
1675         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1676         break;
1677       case Instruction::And:
1678         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1679         break;
1680       case Instruction::Xor:
1681         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1682         break;
1683       case Instruction::Shl:
1684         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1685         break;
1686       case Instruction::LShr:
1687         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1688         break;
1689       case Instruction::AShr:
1690         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1691         break;
1692       default:
1693         // TODO: Salvage constants from each kind of binop we know about.
1694         return false;
1695       }
1696     }
1697     return true;
1698   } else if (isa<LoadInst>(&I)) {
1699     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1700     for (auto *DII : DbgUsers) {
1701       // Rewrite the load into DW_OP_deref.
1702       auto *DIExpr = DII->getExpression();
1703       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1704       DII->setOperand(0, AddrMD);
1705       DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1706       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1707     }
1708     return true;
1709   }
1710   return false;
1711 }
1712 
1713 /// A replacement for a dbg.value expression.
1714 using DbgValReplacement = Optional<DIExpression *>;
1715 
1716 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1717 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1718 /// changes are made.
1719 static bool rewriteDebugUsers(
1720     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1721     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1722   // Find debug users of From.
1723   SmallVector<DbgVariableIntrinsic *, 1> Users;
1724   findDbgUsers(Users, &From);
1725   if (Users.empty())
1726     return false;
1727 
1728   // Prevent use-before-def of To.
1729   bool Changed = false;
1730   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1731   if (isa<Instruction>(&To)) {
1732     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1733 
1734     for (auto *DII : Users) {
1735       // It's common to see a debug user between From and DomPoint. Move it
1736       // after DomPoint to preserve the variable update without any reordering.
1737       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1738         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1739         DII->moveAfter(&DomPoint);
1740         Changed = true;
1741 
1742       // Users which otherwise aren't dominated by the replacement value must
1743       // be salvaged or deleted.
1744       } else if (!DT.dominates(&DomPoint, DII)) {
1745         DeleteOrSalvage.insert(DII);
1746       }
1747     }
1748   }
1749 
1750   // Update debug users without use-before-def risk.
1751   for (auto *DII : Users) {
1752     if (DeleteOrSalvage.count(DII))
1753       continue;
1754 
1755     LLVMContext &Ctx = DII->getContext();
1756     DbgValReplacement DVR = RewriteExpr(*DII);
1757     if (!DVR)
1758       continue;
1759 
1760     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1761     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1762     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1763     Changed = true;
1764   }
1765 
1766   if (!DeleteOrSalvage.empty()) {
1767     // Try to salvage the remaining debug users.
1768     Changed |= salvageDebugInfo(From);
1769 
1770     // Delete the debug users which weren't salvaged.
1771     for (auto *DII : DeleteOrSalvage) {
1772       if (DII->getVariableLocation() == &From) {
1773         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1774         DII->eraseFromParent();
1775         Changed = true;
1776       }
1777     }
1778   }
1779 
1780   return Changed;
1781 }
1782 
1783 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1784 /// losslessly preserve the bits and semantics of the value. This predicate is
1785 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1786 ///
1787 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1788 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1789 /// and also does not allow lossless pointer <-> integer conversions.
1790 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1791                                          Type *ToTy) {
1792   // Trivially compatible types.
1793   if (FromTy == ToTy)
1794     return true;
1795 
1796   // Handle compatible pointer <-> integer conversions.
1797   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1798     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1799     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1800                               !DL.isNonIntegralPointerType(ToTy);
1801     return SameSize && LosslessConversion;
1802   }
1803 
1804   // TODO: This is not exhaustive.
1805   return false;
1806 }
1807 
1808 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1809                                  Instruction &DomPoint, DominatorTree &DT) {
1810   // Exit early if From has no debug users.
1811   if (!From.isUsedByMetadata())
1812     return false;
1813 
1814   assert(&From != &To && "Can't replace something with itself");
1815 
1816   Type *FromTy = From.getType();
1817   Type *ToTy = To.getType();
1818 
1819   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1820     return DII.getExpression();
1821   };
1822 
1823   // Handle no-op conversions.
1824   Module &M = *From.getModule();
1825   const DataLayout &DL = M.getDataLayout();
1826   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1827     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1828 
1829   // Handle integer-to-integer widening and narrowing.
1830   // FIXME: Use DW_OP_convert when it's available everywhere.
1831   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1832     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1833     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1834     assert(FromBits != ToBits && "Unexpected no-op conversion");
1835 
1836     // When the width of the result grows, assume that a debugger will only
1837     // access the low `FromBits` bits when inspecting the source variable.
1838     if (FromBits < ToBits)
1839       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1840 
1841     // The width of the result has shrunk. Use sign/zero extension to describe
1842     // the source variable's high bits.
1843     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1844       DILocalVariable *Var = DII.getVariable();
1845 
1846       // Without knowing signedness, sign/zero extension isn't possible.
1847       auto Signedness = Var->getSignedness();
1848       if (!Signedness)
1849         return None;
1850 
1851       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1852 
1853       if (!Signed) {
1854         // In the unsigned case, assume that a debugger will initialize the
1855         // high bits to 0 and do a no-op conversion.
1856         return Identity(DII);
1857       } else {
1858         // In the signed case, the high bits are given by sign extension, i.e:
1859         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1860         // Calculate the high bits and OR them together with the low bits.
1861         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1862                                       (ToBits - 1), dwarf::DW_OP_shr,
1863                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1864                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1865         return DIExpression::appendToStack(DII.getExpression(), Ops);
1866       }
1867     };
1868     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1869   }
1870 
1871   // TODO: Floating-point conversions, vectors.
1872   return false;
1873 }
1874 
1875 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1876   unsigned NumDeadInst = 0;
1877   // Delete the instructions backwards, as it has a reduced likelihood of
1878   // having to update as many def-use and use-def chains.
1879   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1880   while (EndInst != &BB->front()) {
1881     // Delete the next to last instruction.
1882     Instruction *Inst = &*--EndInst->getIterator();
1883     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1884       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1885     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1886       EndInst = Inst;
1887       continue;
1888     }
1889     if (!isa<DbgInfoIntrinsic>(Inst))
1890       ++NumDeadInst;
1891     Inst->eraseFromParent();
1892   }
1893   return NumDeadInst;
1894 }
1895 
1896 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1897                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1898   BasicBlock *BB = I->getParent();
1899   std::vector <DominatorTree::UpdateType> Updates;
1900 
1901   // Loop over all of the successors, removing BB's entry from any PHI
1902   // nodes.
1903   if (DTU)
1904     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1905   for (BasicBlock *Successor : successors(BB)) {
1906     Successor->removePredecessor(BB, PreserveLCSSA);
1907     if (DTU)
1908       Updates.push_back({DominatorTree::Delete, BB, Successor});
1909   }
1910   // Insert a call to llvm.trap right before this.  This turns the undefined
1911   // behavior into a hard fail instead of falling through into random code.
1912   if (UseLLVMTrap) {
1913     Function *TrapFn =
1914       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1915     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1916     CallTrap->setDebugLoc(I->getDebugLoc());
1917   }
1918   auto *UI = new UnreachableInst(I->getContext(), I);
1919   UI->setDebugLoc(I->getDebugLoc());
1920 
1921   // All instructions after this are dead.
1922   unsigned NumInstrsRemoved = 0;
1923   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1924   while (BBI != BBE) {
1925     if (!BBI->use_empty())
1926       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1927     BB->getInstList().erase(BBI++);
1928     ++NumInstrsRemoved;
1929   }
1930   if (DTU)
1931     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1932   return NumInstrsRemoved;
1933 }
1934 
1935 /// changeToCall - Convert the specified invoke into a normal call.
1936 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1937   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1938   SmallVector<OperandBundleDef, 1> OpBundles;
1939   II->getOperandBundlesAsDefs(OpBundles);
1940   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1941                                        "", II);
1942   NewCall->takeName(II);
1943   NewCall->setCallingConv(II->getCallingConv());
1944   NewCall->setAttributes(II->getAttributes());
1945   NewCall->setDebugLoc(II->getDebugLoc());
1946   NewCall->copyMetadata(*II);
1947   II->replaceAllUsesWith(NewCall);
1948 
1949   // Follow the call by a branch to the normal destination.
1950   BasicBlock *NormalDestBB = II->getNormalDest();
1951   BranchInst::Create(NormalDestBB, II);
1952 
1953   // Update PHI nodes in the unwind destination
1954   BasicBlock *BB = II->getParent();
1955   BasicBlock *UnwindDestBB = II->getUnwindDest();
1956   UnwindDestBB->removePredecessor(BB);
1957   II->eraseFromParent();
1958   if (DTU)
1959     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1960 }
1961 
1962 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1963                                                    BasicBlock *UnwindEdge) {
1964   BasicBlock *BB = CI->getParent();
1965 
1966   // Convert this function call into an invoke instruction.  First, split the
1967   // basic block.
1968   BasicBlock *Split =
1969       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1970 
1971   // Delete the unconditional branch inserted by splitBasicBlock
1972   BB->getInstList().pop_back();
1973 
1974   // Create the new invoke instruction.
1975   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1976   SmallVector<OperandBundleDef, 1> OpBundles;
1977 
1978   CI->getOperandBundlesAsDefs(OpBundles);
1979 
1980   // Note: we're round tripping operand bundles through memory here, and that
1981   // can potentially be avoided with a cleverer API design that we do not have
1982   // as of this time.
1983 
1984   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1985                                       InvokeArgs, OpBundles, CI->getName(), BB);
1986   II->setDebugLoc(CI->getDebugLoc());
1987   II->setCallingConv(CI->getCallingConv());
1988   II->setAttributes(CI->getAttributes());
1989 
1990   // Make sure that anything using the call now uses the invoke!  This also
1991   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1992   CI->replaceAllUsesWith(II);
1993 
1994   // Delete the original call
1995   Split->getInstList().pop_front();
1996   return Split;
1997 }
1998 
1999 static bool markAliveBlocks(Function &F,
2000                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2001                             DomTreeUpdater *DTU = nullptr) {
2002   SmallVector<BasicBlock*, 128> Worklist;
2003   BasicBlock *BB = &F.front();
2004   Worklist.push_back(BB);
2005   Reachable.insert(BB);
2006   bool Changed = false;
2007   do {
2008     BB = Worklist.pop_back_val();
2009 
2010     // Do a quick scan of the basic block, turning any obviously unreachable
2011     // instructions into LLVM unreachable insts.  The instruction combining pass
2012     // canonicalizes unreachable insts into stores to null or undef.
2013     for (Instruction &I : *BB) {
2014       if (auto *CI = dyn_cast<CallInst>(&I)) {
2015         Value *Callee = CI->getCalledValue();
2016         // Handle intrinsic calls.
2017         if (Function *F = dyn_cast<Function>(Callee)) {
2018           auto IntrinsicID = F->getIntrinsicID();
2019           // Assumptions that are known to be false are equivalent to
2020           // unreachable. Also, if the condition is undefined, then we make the
2021           // choice most beneficial to the optimizer, and choose that to also be
2022           // unreachable.
2023           if (IntrinsicID == Intrinsic::assume) {
2024             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2025               // Don't insert a call to llvm.trap right before the unreachable.
2026               changeToUnreachable(CI, false, false, DTU);
2027               Changed = true;
2028               break;
2029             }
2030           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2031             // A call to the guard intrinsic bails out of the current
2032             // compilation unit if the predicate passed to it is false. If the
2033             // predicate is a constant false, then we know the guard will bail
2034             // out of the current compile unconditionally, so all code following
2035             // it is dead.
2036             //
2037             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2038             // guards to treat `undef` as `false` since a guard on `undef` can
2039             // still be useful for widening.
2040             if (match(CI->getArgOperand(0), m_Zero()))
2041               if (!isa<UnreachableInst>(CI->getNextNode())) {
2042                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2043                                     false, DTU);
2044                 Changed = true;
2045                 break;
2046               }
2047           }
2048         } else if ((isa<ConstantPointerNull>(Callee) &&
2049                     !NullPointerIsDefined(CI->getFunction())) ||
2050                    isa<UndefValue>(Callee)) {
2051           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2052           Changed = true;
2053           break;
2054         }
2055         if (CI->doesNotReturn()) {
2056           // If we found a call to a no-return function, insert an unreachable
2057           // instruction after it.  Make sure there isn't *already* one there
2058           // though.
2059           if (!isa<UnreachableInst>(CI->getNextNode())) {
2060             // Don't insert a call to llvm.trap right before the unreachable.
2061             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2062             Changed = true;
2063           }
2064           break;
2065         }
2066       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2067         // Store to undef and store to null are undefined and used to signal
2068         // that they should be changed to unreachable by passes that can't
2069         // modify the CFG.
2070 
2071         // Don't touch volatile stores.
2072         if (SI->isVolatile()) continue;
2073 
2074         Value *Ptr = SI->getOperand(1);
2075 
2076         if (isa<UndefValue>(Ptr) ||
2077             (isa<ConstantPointerNull>(Ptr) &&
2078              !NullPointerIsDefined(SI->getFunction(),
2079                                    SI->getPointerAddressSpace()))) {
2080           changeToUnreachable(SI, true, false, DTU);
2081           Changed = true;
2082           break;
2083         }
2084       }
2085     }
2086 
2087     Instruction *Terminator = BB->getTerminator();
2088     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2089       // Turn invokes that call 'nounwind' functions into ordinary calls.
2090       Value *Callee = II->getCalledValue();
2091       if ((isa<ConstantPointerNull>(Callee) &&
2092            !NullPointerIsDefined(BB->getParent())) ||
2093           isa<UndefValue>(Callee)) {
2094         changeToUnreachable(II, true, false, DTU);
2095         Changed = true;
2096       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2097         if (II->use_empty() && II->onlyReadsMemory()) {
2098           // jump to the normal destination branch.
2099           BasicBlock *NormalDestBB = II->getNormalDest();
2100           BasicBlock *UnwindDestBB = II->getUnwindDest();
2101           BranchInst::Create(NormalDestBB, II);
2102           UnwindDestBB->removePredecessor(II->getParent());
2103           II->eraseFromParent();
2104           if (DTU)
2105             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2106         } else
2107           changeToCall(II, DTU);
2108         Changed = true;
2109       }
2110     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2111       // Remove catchpads which cannot be reached.
2112       struct CatchPadDenseMapInfo {
2113         static CatchPadInst *getEmptyKey() {
2114           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2115         }
2116 
2117         static CatchPadInst *getTombstoneKey() {
2118           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2119         }
2120 
2121         static unsigned getHashValue(CatchPadInst *CatchPad) {
2122           return static_cast<unsigned>(hash_combine_range(
2123               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2124         }
2125 
2126         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2127           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2128               RHS == getEmptyKey() || RHS == getTombstoneKey())
2129             return LHS == RHS;
2130           return LHS->isIdenticalTo(RHS);
2131         }
2132       };
2133 
2134       // Set of unique CatchPads.
2135       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2136                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2137           HandlerSet;
2138       detail::DenseSetEmpty Empty;
2139       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2140                                              E = CatchSwitch->handler_end();
2141            I != E; ++I) {
2142         BasicBlock *HandlerBB = *I;
2143         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2144         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2145           CatchSwitch->removeHandler(I);
2146           --I;
2147           --E;
2148           Changed = true;
2149         }
2150       }
2151     }
2152 
2153     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2154     for (BasicBlock *Successor : successors(BB))
2155       if (Reachable.insert(Successor).second)
2156         Worklist.push_back(Successor);
2157   } while (!Worklist.empty());
2158   return Changed;
2159 }
2160 
2161 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2162   Instruction *TI = BB->getTerminator();
2163 
2164   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2165     changeToCall(II, DTU);
2166     return;
2167   }
2168 
2169   Instruction *NewTI;
2170   BasicBlock *UnwindDest;
2171 
2172   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2173     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2174     UnwindDest = CRI->getUnwindDest();
2175   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2176     auto *NewCatchSwitch = CatchSwitchInst::Create(
2177         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2178         CatchSwitch->getName(), CatchSwitch);
2179     for (BasicBlock *PadBB : CatchSwitch->handlers())
2180       NewCatchSwitch->addHandler(PadBB);
2181 
2182     NewTI = NewCatchSwitch;
2183     UnwindDest = CatchSwitch->getUnwindDest();
2184   } else {
2185     llvm_unreachable("Could not find unwind successor");
2186   }
2187 
2188   NewTI->takeName(TI);
2189   NewTI->setDebugLoc(TI->getDebugLoc());
2190   UnwindDest->removePredecessor(BB);
2191   TI->replaceAllUsesWith(NewTI);
2192   TI->eraseFromParent();
2193   if (DTU)
2194     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2195 }
2196 
2197 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2198 /// if they are in a dead cycle.  Return true if a change was made, false
2199 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2200 /// after modifying the CFG.
2201 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2202                                    DomTreeUpdater *DTU,
2203                                    MemorySSAUpdater *MSSAU) {
2204   SmallPtrSet<BasicBlock*, 16> Reachable;
2205   bool Changed = markAliveBlocks(F, Reachable, DTU);
2206 
2207   // If there are unreachable blocks in the CFG...
2208   if (Reachable.size() == F.size())
2209     return Changed;
2210 
2211   assert(Reachable.size() < F.size());
2212   NumRemoved += F.size()-Reachable.size();
2213 
2214   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2215   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2216     auto *BB = &*I;
2217     if (Reachable.count(BB))
2218       continue;
2219     DeadBlockSet.insert(BB);
2220   }
2221 
2222   if (MSSAU)
2223     MSSAU->removeBlocks(DeadBlockSet);
2224 
2225   // Loop over all of the basic blocks that are not reachable, dropping all of
2226   // their internal references. Update DTU and LVI if available.
2227   std::vector<DominatorTree::UpdateType> Updates;
2228   for (auto *BB : DeadBlockSet) {
2229     for (BasicBlock *Successor : successors(BB)) {
2230       if (!DeadBlockSet.count(Successor))
2231         Successor->removePredecessor(BB);
2232       if (DTU)
2233         Updates.push_back({DominatorTree::Delete, BB, Successor});
2234     }
2235     if (LVI)
2236       LVI->eraseBlock(BB);
2237     BB->dropAllReferences();
2238   }
2239   for (Function::iterator I = ++F.begin(); I != F.end();) {
2240     auto *BB = &*I;
2241     if (Reachable.count(BB)) {
2242       ++I;
2243       continue;
2244     }
2245     if (DTU) {
2246       // Remove the terminator of BB to clear the successor list of BB.
2247       if (BB->getTerminator())
2248         BB->getInstList().pop_back();
2249       new UnreachableInst(BB->getContext(), BB);
2250       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2251                                "applying corresponding DTU updates.");
2252       ++I;
2253     } else {
2254       I = F.getBasicBlockList().erase(I);
2255     }
2256   }
2257 
2258   if (DTU) {
2259     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2260     bool Deleted = false;
2261     for (auto *BB : DeadBlockSet) {
2262       if (DTU->isBBPendingDeletion(BB))
2263         --NumRemoved;
2264       else
2265         Deleted = true;
2266       DTU->deleteBB(BB);
2267     }
2268     if (!Deleted)
2269       return false;
2270   }
2271   return true;
2272 }
2273 
2274 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2275                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2276   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2277   K->dropUnknownNonDebugMetadata(KnownIDs);
2278   K->getAllMetadataOtherThanDebugLoc(Metadata);
2279   for (const auto &MD : Metadata) {
2280     unsigned Kind = MD.first;
2281     MDNode *JMD = J->getMetadata(Kind);
2282     MDNode *KMD = MD.second;
2283 
2284     switch (Kind) {
2285       default:
2286         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2287         break;
2288       case LLVMContext::MD_dbg:
2289         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2290       case LLVMContext::MD_tbaa:
2291         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2292         break;
2293       case LLVMContext::MD_alias_scope:
2294         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2295         break;
2296       case LLVMContext::MD_noalias:
2297       case LLVMContext::MD_mem_parallel_loop_access:
2298         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2299         break;
2300       case LLVMContext::MD_access_group:
2301         K->setMetadata(LLVMContext::MD_access_group,
2302                        intersectAccessGroups(K, J));
2303         break;
2304       case LLVMContext::MD_range:
2305 
2306         // If K does move, use most generic range. Otherwise keep the range of
2307         // K.
2308         if (DoesKMove)
2309           // FIXME: If K does move, we should drop the range info and nonnull.
2310           //        Currently this function is used with DoesKMove in passes
2311           //        doing hoisting/sinking and the current behavior of using the
2312           //        most generic range is correct in those cases.
2313           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2314         break;
2315       case LLVMContext::MD_fpmath:
2316         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2317         break;
2318       case LLVMContext::MD_invariant_load:
2319         // Only set the !invariant.load if it is present in both instructions.
2320         K->setMetadata(Kind, JMD);
2321         break;
2322       case LLVMContext::MD_nonnull:
2323         // If K does move, keep nonull if it is present in both instructions.
2324         if (DoesKMove)
2325           K->setMetadata(Kind, JMD);
2326         break;
2327       case LLVMContext::MD_invariant_group:
2328         // Preserve !invariant.group in K.
2329         break;
2330       case LLVMContext::MD_align:
2331         K->setMetadata(Kind,
2332           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2333         break;
2334       case LLVMContext::MD_dereferenceable:
2335       case LLVMContext::MD_dereferenceable_or_null:
2336         K->setMetadata(Kind,
2337           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2338         break;
2339     }
2340   }
2341   // Set !invariant.group from J if J has it. If both instructions have it
2342   // then we will just pick it from J - even when they are different.
2343   // Also make sure that K is load or store - f.e. combining bitcast with load
2344   // could produce bitcast with invariant.group metadata, which is invalid.
2345   // FIXME: we should try to preserve both invariant.group md if they are
2346   // different, but right now instruction can only have one invariant.group.
2347   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2348     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2349       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2350 }
2351 
2352 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2353                                  bool KDominatesJ) {
2354   unsigned KnownIDs[] = {
2355       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2356       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2357       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2358       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2359       LLVMContext::MD_dereferenceable,
2360       LLVMContext::MD_dereferenceable_or_null,
2361       LLVMContext::MD_access_group};
2362   combineMetadata(K, J, KnownIDs, KDominatesJ);
2363 }
2364 
2365 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2366   auto *ReplInst = dyn_cast<Instruction>(Repl);
2367   if (!ReplInst)
2368     return;
2369 
2370   // Patch the replacement so that it is not more restrictive than the value
2371   // being replaced.
2372   // Note that if 'I' is a load being replaced by some operation,
2373   // for example, by an arithmetic operation, then andIRFlags()
2374   // would just erase all math flags from the original arithmetic
2375   // operation, which is clearly not wanted and not needed.
2376   if (!isa<LoadInst>(I))
2377     ReplInst->andIRFlags(I);
2378 
2379   // FIXME: If both the original and replacement value are part of the
2380   // same control-flow region (meaning that the execution of one
2381   // guarantees the execution of the other), then we can combine the
2382   // noalias scopes here and do better than the general conservative
2383   // answer used in combineMetadata().
2384 
2385   // In general, GVN unifies expressions over different control-flow
2386   // regions, and so we need a conservative combination of the noalias
2387   // scopes.
2388   static const unsigned KnownIDs[] = {
2389       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2390       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2391       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2392       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2393       LLVMContext::MD_access_group};
2394   combineMetadata(ReplInst, I, KnownIDs, false);
2395 }
2396 
2397 template <typename RootType, typename DominatesFn>
2398 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2399                                          const RootType &Root,
2400                                          const DominatesFn &Dominates) {
2401   assert(From->getType() == To->getType());
2402 
2403   unsigned Count = 0;
2404   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2405        UI != UE;) {
2406     Use &U = *UI++;
2407     if (!Dominates(Root, U))
2408       continue;
2409     U.set(To);
2410     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2411                       << "' as " << *To << " in " << *U << "\n");
2412     ++Count;
2413   }
2414   return Count;
2415 }
2416 
2417 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2418    assert(From->getType() == To->getType());
2419    auto *BB = From->getParent();
2420    unsigned Count = 0;
2421 
2422   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2423        UI != UE;) {
2424     Use &U = *UI++;
2425     auto *I = cast<Instruction>(U.getUser());
2426     if (I->getParent() == BB)
2427       continue;
2428     U.set(To);
2429     ++Count;
2430   }
2431   return Count;
2432 }
2433 
2434 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2435                                         DominatorTree &DT,
2436                                         const BasicBlockEdge &Root) {
2437   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2438     return DT.dominates(Root, U);
2439   };
2440   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2441 }
2442 
2443 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2444                                         DominatorTree &DT,
2445                                         const BasicBlock *BB) {
2446   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2447     auto *I = cast<Instruction>(U.getUser())->getParent();
2448     return DT.properlyDominates(BB, I);
2449   };
2450   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2451 }
2452 
2453 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2454                                const TargetLibraryInfo &TLI) {
2455   // Check if the function is specifically marked as a gc leaf function.
2456   if (CS.hasFnAttr("gc-leaf-function"))
2457     return true;
2458   if (const Function *F = CS.getCalledFunction()) {
2459     if (F->hasFnAttribute("gc-leaf-function"))
2460       return true;
2461 
2462     if (auto IID = F->getIntrinsicID())
2463       // Most LLVM intrinsics do not take safepoints.
2464       return IID != Intrinsic::experimental_gc_statepoint &&
2465              IID != Intrinsic::experimental_deoptimize;
2466   }
2467 
2468   // Lib calls can be materialized by some passes, and won't be
2469   // marked as 'gc-leaf-function.' All available Libcalls are
2470   // GC-leaf.
2471   LibFunc LF;
2472   if (TLI.getLibFunc(CS, LF)) {
2473     return TLI.has(LF);
2474   }
2475 
2476   return false;
2477 }
2478 
2479 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2480                                LoadInst &NewLI) {
2481   auto *NewTy = NewLI.getType();
2482 
2483   // This only directly applies if the new type is also a pointer.
2484   if (NewTy->isPointerTy()) {
2485     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2486     return;
2487   }
2488 
2489   // The only other translation we can do is to integral loads with !range
2490   // metadata.
2491   if (!NewTy->isIntegerTy())
2492     return;
2493 
2494   MDBuilder MDB(NewLI.getContext());
2495   const Value *Ptr = OldLI.getPointerOperand();
2496   auto *ITy = cast<IntegerType>(NewTy);
2497   auto *NullInt = ConstantExpr::getPtrToInt(
2498       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2499   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2500   NewLI.setMetadata(LLVMContext::MD_range,
2501                     MDB.createRange(NonNullInt, NullInt));
2502 }
2503 
2504 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2505                              MDNode *N, LoadInst &NewLI) {
2506   auto *NewTy = NewLI.getType();
2507 
2508   // Give up unless it is converted to a pointer where there is a single very
2509   // valuable mapping we can do reliably.
2510   // FIXME: It would be nice to propagate this in more ways, but the type
2511   // conversions make it hard.
2512   if (!NewTy->isPointerTy())
2513     return;
2514 
2515   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2516   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2517     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2518     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2519   }
2520 }
2521 
2522 void llvm::dropDebugUsers(Instruction &I) {
2523   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2524   findDbgUsers(DbgUsers, &I);
2525   for (auto *DII : DbgUsers)
2526     DII->eraseFromParent();
2527 }
2528 
2529 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2530                                     BasicBlock *BB) {
2531   // Since we are moving the instructions out of its basic block, we do not
2532   // retain their original debug locations (DILocations) and debug intrinsic
2533   // instructions (dbg.values).
2534   //
2535   // Doing so would degrade the debugging experience and adversely affect the
2536   // accuracy of profiling information.
2537   //
2538   // Currently, when hoisting the instructions, we take the following actions:
2539   // - Remove their dbg.values.
2540   // - Set their debug locations to the values from the insertion point.
2541   //
2542   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2543   // need to be deleted, is because there will not be any instructions with a
2544   // DILocation in either branch left after performing the transformation. We
2545   // can only insert a dbg.value after the two branches are joined again.
2546   //
2547   // See PR38762, PR39243 for more details.
2548   //
2549   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2550   // encode predicated DIExpressions that yield different results on different
2551   // code paths.
2552   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2553     Instruction *I = &*II;
2554     I->dropUnknownNonDebugMetadata();
2555     if (I->isUsedByMetadata())
2556       dropDebugUsers(*I);
2557     if (isa<DbgVariableIntrinsic>(I)) {
2558       // Remove DbgInfo Intrinsics.
2559       II = I->eraseFromParent();
2560       continue;
2561     }
2562     I->setDebugLoc(InsertPt->getDebugLoc());
2563     ++II;
2564   }
2565   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2566                                  BB->begin(),
2567                                  BB->getTerminator()->getIterator());
2568 }
2569 
2570 namespace {
2571 
2572 /// A potential constituent of a bitreverse or bswap expression. See
2573 /// collectBitParts for a fuller explanation.
2574 struct BitPart {
2575   BitPart(Value *P, unsigned BW) : Provider(P) {
2576     Provenance.resize(BW);
2577   }
2578 
2579   /// The Value that this is a bitreverse/bswap of.
2580   Value *Provider;
2581 
2582   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2583   /// in Provider becomes bit B in the result of this expression.
2584   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2585 
2586   enum { Unset = -1 };
2587 };
2588 
2589 } // end anonymous namespace
2590 
2591 /// Analyze the specified subexpression and see if it is capable of providing
2592 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2593 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2594 /// the output of the expression came from a corresponding bit in some other
2595 /// value. This function is recursive, and the end result is a mapping of
2596 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2597 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2598 ///
2599 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2600 /// that the expression deposits the low byte of %X into the high byte of the
2601 /// result and that all other bits are zero. This expression is accepted and a
2602 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2603 /// [0-7].
2604 ///
2605 /// To avoid revisiting values, the BitPart results are memoized into the
2606 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2607 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2608 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2609 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2610 /// type instead to provide the same functionality.
2611 ///
2612 /// Because we pass around references into \c BPS, we must use a container that
2613 /// does not invalidate internal references (std::map instead of DenseMap).
2614 static const Optional<BitPart> &
2615 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2616                 std::map<Value *, Optional<BitPart>> &BPS) {
2617   auto I = BPS.find(V);
2618   if (I != BPS.end())
2619     return I->second;
2620 
2621   auto &Result = BPS[V] = None;
2622   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2623 
2624   if (Instruction *I = dyn_cast<Instruction>(V)) {
2625     // If this is an or instruction, it may be an inner node of the bswap.
2626     if (I->getOpcode() == Instruction::Or) {
2627       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2628                                 MatchBitReversals, BPS);
2629       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2630                                 MatchBitReversals, BPS);
2631       if (!A || !B)
2632         return Result;
2633 
2634       // Try and merge the two together.
2635       if (!A->Provider || A->Provider != B->Provider)
2636         return Result;
2637 
2638       Result = BitPart(A->Provider, BitWidth);
2639       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2640         if (A->Provenance[i] != BitPart::Unset &&
2641             B->Provenance[i] != BitPart::Unset &&
2642             A->Provenance[i] != B->Provenance[i])
2643           return Result = None;
2644 
2645         if (A->Provenance[i] == BitPart::Unset)
2646           Result->Provenance[i] = B->Provenance[i];
2647         else
2648           Result->Provenance[i] = A->Provenance[i];
2649       }
2650 
2651       return Result;
2652     }
2653 
2654     // If this is a logical shift by a constant, recurse then shift the result.
2655     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2656       unsigned BitShift =
2657           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2658       // Ensure the shift amount is defined.
2659       if (BitShift > BitWidth)
2660         return Result;
2661 
2662       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2663                                   MatchBitReversals, BPS);
2664       if (!Res)
2665         return Result;
2666       Result = Res;
2667 
2668       // Perform the "shift" on BitProvenance.
2669       auto &P = Result->Provenance;
2670       if (I->getOpcode() == Instruction::Shl) {
2671         P.erase(std::prev(P.end(), BitShift), P.end());
2672         P.insert(P.begin(), BitShift, BitPart::Unset);
2673       } else {
2674         P.erase(P.begin(), std::next(P.begin(), BitShift));
2675         P.insert(P.end(), BitShift, BitPart::Unset);
2676       }
2677 
2678       return Result;
2679     }
2680 
2681     // If this is a logical 'and' with a mask that clears bits, recurse then
2682     // unset the appropriate bits.
2683     if (I->getOpcode() == Instruction::And &&
2684         isa<ConstantInt>(I->getOperand(1))) {
2685       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2686       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2687 
2688       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2689       // early exit.
2690       unsigned NumMaskedBits = AndMask.countPopulation();
2691       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2692         return Result;
2693 
2694       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2695                                   MatchBitReversals, BPS);
2696       if (!Res)
2697         return Result;
2698       Result = Res;
2699 
2700       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2701         // If the AndMask is zero for this bit, clear the bit.
2702         if ((AndMask & Bit) == 0)
2703           Result->Provenance[i] = BitPart::Unset;
2704       return Result;
2705     }
2706 
2707     // If this is a zext instruction zero extend the result.
2708     if (I->getOpcode() == Instruction::ZExt) {
2709       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2710                                   MatchBitReversals, BPS);
2711       if (!Res)
2712         return Result;
2713 
2714       Result = BitPart(Res->Provider, BitWidth);
2715       auto NarrowBitWidth =
2716           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2717       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2718         Result->Provenance[i] = Res->Provenance[i];
2719       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2720         Result->Provenance[i] = BitPart::Unset;
2721       return Result;
2722     }
2723   }
2724 
2725   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2726   // the input value to the bswap/bitreverse.
2727   Result = BitPart(V, BitWidth);
2728   for (unsigned i = 0; i < BitWidth; ++i)
2729     Result->Provenance[i] = i;
2730   return Result;
2731 }
2732 
2733 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2734                                           unsigned BitWidth) {
2735   if (From % 8 != To % 8)
2736     return false;
2737   // Convert from bit indices to byte indices and check for a byte reversal.
2738   From >>= 3;
2739   To >>= 3;
2740   BitWidth >>= 3;
2741   return From == BitWidth - To - 1;
2742 }
2743 
2744 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2745                                                unsigned BitWidth) {
2746   return From == BitWidth - To - 1;
2747 }
2748 
2749 bool llvm::recognizeBSwapOrBitReverseIdiom(
2750     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2751     SmallVectorImpl<Instruction *> &InsertedInsts) {
2752   if (Operator::getOpcode(I) != Instruction::Or)
2753     return false;
2754   if (!MatchBSwaps && !MatchBitReversals)
2755     return false;
2756   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2757   if (!ITy || ITy->getBitWidth() > 128)
2758     return false;   // Can't do vectors or integers > 128 bits.
2759   unsigned BW = ITy->getBitWidth();
2760 
2761   unsigned DemandedBW = BW;
2762   IntegerType *DemandedTy = ITy;
2763   if (I->hasOneUse()) {
2764     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2765       DemandedTy = cast<IntegerType>(Trunc->getType());
2766       DemandedBW = DemandedTy->getBitWidth();
2767     }
2768   }
2769 
2770   // Try to find all the pieces corresponding to the bswap.
2771   std::map<Value *, Optional<BitPart>> BPS;
2772   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2773   if (!Res)
2774     return false;
2775   auto &BitProvenance = Res->Provenance;
2776 
2777   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2778   // only byteswap values with an even number of bytes.
2779   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2780   for (unsigned i = 0; i < DemandedBW; ++i) {
2781     OKForBSwap &=
2782         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2783     OKForBitReverse &=
2784         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2785   }
2786 
2787   Intrinsic::ID Intrin;
2788   if (OKForBSwap && MatchBSwaps)
2789     Intrin = Intrinsic::bswap;
2790   else if (OKForBitReverse && MatchBitReversals)
2791     Intrin = Intrinsic::bitreverse;
2792   else
2793     return false;
2794 
2795   if (ITy != DemandedTy) {
2796     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2797     Value *Provider = Res->Provider;
2798     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2799     // We may need to truncate the provider.
2800     if (DemandedTy != ProviderTy) {
2801       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2802                                      "trunc", I);
2803       InsertedInsts.push_back(Trunc);
2804       Provider = Trunc;
2805     }
2806     auto *CI = CallInst::Create(F, Provider, "rev", I);
2807     InsertedInsts.push_back(CI);
2808     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2809     InsertedInsts.push_back(ExtInst);
2810     return true;
2811   }
2812 
2813   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2814   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2815   return true;
2816 }
2817 
2818 // CodeGen has special handling for some string functions that may replace
2819 // them with target-specific intrinsics.  Since that'd skip our interceptors
2820 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2821 // we mark affected calls as NoBuiltin, which will disable optimization
2822 // in CodeGen.
2823 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2824     CallInst *CI, const TargetLibraryInfo *TLI) {
2825   Function *F = CI->getCalledFunction();
2826   LibFunc Func;
2827   if (F && !F->hasLocalLinkage() && F->hasName() &&
2828       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2829       !F->doesNotAccessMemory())
2830     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2831 }
2832 
2833 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2834   // We can't have a PHI with a metadata type.
2835   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2836     return false;
2837 
2838   // Early exit.
2839   if (!isa<Constant>(I->getOperand(OpIdx)))
2840     return true;
2841 
2842   switch (I->getOpcode()) {
2843   default:
2844     return true;
2845   case Instruction::Call:
2846   case Instruction::Invoke:
2847     // Can't handle inline asm. Skip it.
2848     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2849       return false;
2850     // Many arithmetic intrinsics have no issue taking a
2851     // variable, however it's hard to distingish these from
2852     // specials such as @llvm.frameaddress that require a constant.
2853     if (isa<IntrinsicInst>(I))
2854       return false;
2855 
2856     // Constant bundle operands may need to retain their constant-ness for
2857     // correctness.
2858     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2859       return false;
2860     return true;
2861   case Instruction::ShuffleVector:
2862     // Shufflevector masks are constant.
2863     return OpIdx != 2;
2864   case Instruction::Switch:
2865   case Instruction::ExtractValue:
2866     // All operands apart from the first are constant.
2867     return OpIdx == 0;
2868   case Instruction::InsertValue:
2869     // All operands apart from the first and the second are constant.
2870     return OpIdx < 2;
2871   case Instruction::Alloca:
2872     // Static allocas (constant size in the entry block) are handled by
2873     // prologue/epilogue insertion so they're free anyway. We definitely don't
2874     // want to make them non-constant.
2875     return !cast<AllocaInst>(I)->isStaticAlloca();
2876   case Instruction::GetElementPtr:
2877     if (OpIdx == 0)
2878       return true;
2879     gep_type_iterator It = gep_type_begin(I);
2880     for (auto E = std::next(It, OpIdx); It != E; ++It)
2881       if (It.isStruct())
2882         return false;
2883     return true;
2884   }
2885 }
2886