1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/DIBuilder.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GetElementPtrTypeIterator.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/ValueHandle.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 47 48 //===----------------------------------------------------------------------===// 49 // Local constant propagation. 50 // 51 52 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 53 /// constant value, convert it into an unconditional branch to the constant 54 /// destination. This is a nontrivial operation because the successors of this 55 /// basic block must have their PHI nodes updated. 56 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 57 /// conditions and indirectbr addresses this might make dead if 58 /// DeleteDeadConditions is true. 59 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 60 const TargetLibraryInfo *TLI) { 61 TerminatorInst *T = BB->getTerminator(); 62 IRBuilder<> Builder(T); 63 64 // Branch - See if we are conditional jumping on constant 65 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 66 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 67 BasicBlock *Dest1 = BI->getSuccessor(0); 68 BasicBlock *Dest2 = BI->getSuccessor(1); 69 70 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 71 // Are we branching on constant? 72 // YES. Change to unconditional branch... 73 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 74 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 75 76 //cerr << "Function: " << T->getParent()->getParent() 77 // << "\nRemoving branch from " << T->getParent() 78 // << "\n\nTo: " << OldDest << endl; 79 80 // Let the basic block know that we are letting go of it. Based on this, 81 // it will adjust it's PHI nodes. 82 OldDest->removePredecessor(BB); 83 84 // Replace the conditional branch with an unconditional one. 85 Builder.CreateBr(Destination); 86 BI->eraseFromParent(); 87 return true; 88 } 89 90 if (Dest2 == Dest1) { // Conditional branch to same location? 91 // This branch matches something like this: 92 // br bool %cond, label %Dest, label %Dest 93 // and changes it into: br label %Dest 94 95 // Let the basic block know that we are letting go of one copy of it. 96 assert(BI->getParent() && "Terminator not inserted in block!"); 97 Dest1->removePredecessor(BI->getParent()); 98 99 // Replace the conditional branch with an unconditional one. 100 Builder.CreateBr(Dest1); 101 Value *Cond = BI->getCondition(); 102 BI->eraseFromParent(); 103 if (DeleteDeadConditions) 104 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 105 return true; 106 } 107 return false; 108 } 109 110 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 111 // If we are switching on a constant, we can convert the switch into a 112 // single branch instruction! 113 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 114 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 115 BasicBlock *DefaultDest = TheOnlyDest; 116 117 // Figure out which case it goes to. 118 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 119 i != e; ++i) { 120 // Found case matching a constant operand? 121 if (i.getCaseValue() == CI) { 122 TheOnlyDest = i.getCaseSuccessor(); 123 break; 124 } 125 126 // Check to see if this branch is going to the same place as the default 127 // dest. If so, eliminate it as an explicit compare. 128 if (i.getCaseSuccessor() == DefaultDest) { 129 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 130 unsigned NCases = SI->getNumCases(); 131 // Fold the case metadata into the default if there will be any branches 132 // left, unless the metadata doesn't match the switch. 133 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 134 // Collect branch weights into a vector. 135 SmallVector<uint32_t, 8> Weights; 136 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 137 ++MD_i) { 138 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 139 assert(CI); 140 Weights.push_back(CI->getValue().getZExtValue()); 141 } 142 // Merge weight of this case to the default weight. 143 unsigned idx = i.getCaseIndex(); 144 Weights[0] += Weights[idx+1]; 145 // Remove weight for this case. 146 std::swap(Weights[idx+1], Weights.back()); 147 Weights.pop_back(); 148 SI->setMetadata(LLVMContext::MD_prof, 149 MDBuilder(BB->getContext()). 150 createBranchWeights(Weights)); 151 } 152 // Remove this entry. 153 DefaultDest->removePredecessor(SI->getParent()); 154 SI->removeCase(i); 155 --i; --e; 156 continue; 157 } 158 159 // Otherwise, check to see if the switch only branches to one destination. 160 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 161 // destinations. 162 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0; 163 } 164 165 if (CI && !TheOnlyDest) { 166 // Branching on a constant, but not any of the cases, go to the default 167 // successor. 168 TheOnlyDest = SI->getDefaultDest(); 169 } 170 171 // If we found a single destination that we can fold the switch into, do so 172 // now. 173 if (TheOnlyDest) { 174 // Insert the new branch. 175 Builder.CreateBr(TheOnlyDest); 176 BasicBlock *BB = SI->getParent(); 177 178 // Remove entries from PHI nodes which we no longer branch to... 179 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 180 // Found case matching a constant operand? 181 BasicBlock *Succ = SI->getSuccessor(i); 182 if (Succ == TheOnlyDest) 183 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 184 else 185 Succ->removePredecessor(BB); 186 } 187 188 // Delete the old switch. 189 Value *Cond = SI->getCondition(); 190 SI->eraseFromParent(); 191 if (DeleteDeadConditions) 192 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 193 return true; 194 } 195 196 if (SI->getNumCases() == 1) { 197 // Otherwise, we can fold this switch into a conditional branch 198 // instruction if it has only one non-default destination. 199 SwitchInst::CaseIt FirstCase = SI->case_begin(); 200 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 201 FirstCase.getCaseValue(), "cond"); 202 203 // Insert the new branch. 204 BranchInst *NewBr = Builder.CreateCondBr(Cond, 205 FirstCase.getCaseSuccessor(), 206 SI->getDefaultDest()); 207 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 208 if (MD && MD->getNumOperands() == 3) { 209 ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); 210 ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); 211 assert(SICase && SIDef); 212 // The TrueWeight should be the weight for the single case of SI. 213 NewBr->setMetadata(LLVMContext::MD_prof, 214 MDBuilder(BB->getContext()). 215 createBranchWeights(SICase->getValue().getZExtValue(), 216 SIDef->getValue().getZExtValue())); 217 } 218 219 // Delete the old switch. 220 SI->eraseFromParent(); 221 return true; 222 } 223 return false; 224 } 225 226 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 227 // indirectbr blockaddress(@F, @BB) -> br label @BB 228 if (BlockAddress *BA = 229 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 230 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 231 // Insert the new branch. 232 Builder.CreateBr(TheOnlyDest); 233 234 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 235 if (IBI->getDestination(i) == TheOnlyDest) 236 TheOnlyDest = 0; 237 else 238 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 239 } 240 Value *Address = IBI->getAddress(); 241 IBI->eraseFromParent(); 242 if (DeleteDeadConditions) 243 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 244 245 // If we didn't find our destination in the IBI successor list, then we 246 // have undefined behavior. Replace the unconditional branch with an 247 // 'unreachable' instruction. 248 if (TheOnlyDest) { 249 BB->getTerminator()->eraseFromParent(); 250 new UnreachableInst(BB->getContext(), BB); 251 } 252 253 return true; 254 } 255 } 256 257 return false; 258 } 259 260 261 //===----------------------------------------------------------------------===// 262 // Local dead code elimination. 263 // 264 265 /// isInstructionTriviallyDead - Return true if the result produced by the 266 /// instruction is not used, and the instruction has no side effects. 267 /// 268 bool llvm::isInstructionTriviallyDead(Instruction *I, 269 const TargetLibraryInfo *TLI) { 270 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 271 272 // We don't want the landingpad instruction removed by anything this general. 273 if (isa<LandingPadInst>(I)) 274 return false; 275 276 // We don't want debug info removed by anything this general, unless 277 // debug info is empty. 278 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 279 if (DDI->getAddress()) 280 return false; 281 return true; 282 } 283 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 284 if (DVI->getValue()) 285 return false; 286 return true; 287 } 288 289 if (!I->mayHaveSideEffects()) return true; 290 291 // Special case intrinsics that "may have side effects" but can be deleted 292 // when dead. 293 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 294 // Safe to delete llvm.stacksave if dead. 295 if (II->getIntrinsicID() == Intrinsic::stacksave) 296 return true; 297 298 // Lifetime intrinsics are dead when their right-hand is undef. 299 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 300 II->getIntrinsicID() == Intrinsic::lifetime_end) 301 return isa<UndefValue>(II->getArgOperand(1)); 302 } 303 304 if (isAllocLikeFn(I, TLI)) return true; 305 306 if (CallInst *CI = isFreeCall(I, TLI)) 307 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 308 return C->isNullValue() || isa<UndefValue>(C); 309 310 return false; 311 } 312 313 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 314 /// trivially dead instruction, delete it. If that makes any of its operands 315 /// trivially dead, delete them too, recursively. Return true if any 316 /// instructions were deleted. 317 bool 318 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 319 const TargetLibraryInfo *TLI) { 320 Instruction *I = dyn_cast<Instruction>(V); 321 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 322 return false; 323 324 SmallVector<Instruction*, 16> DeadInsts; 325 DeadInsts.push_back(I); 326 327 do { 328 I = DeadInsts.pop_back_val(); 329 330 // Null out all of the instruction's operands to see if any operand becomes 331 // dead as we go. 332 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 333 Value *OpV = I->getOperand(i); 334 I->setOperand(i, 0); 335 336 if (!OpV->use_empty()) continue; 337 338 // If the operand is an instruction that became dead as we nulled out the 339 // operand, and if it is 'trivially' dead, delete it in a future loop 340 // iteration. 341 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 342 if (isInstructionTriviallyDead(OpI, TLI)) 343 DeadInsts.push_back(OpI); 344 } 345 346 I->eraseFromParent(); 347 } while (!DeadInsts.empty()); 348 349 return true; 350 } 351 352 /// areAllUsesEqual - Check whether the uses of a value are all the same. 353 /// This is similar to Instruction::hasOneUse() except this will also return 354 /// true when there are no uses or multiple uses that all refer to the same 355 /// value. 356 static bool areAllUsesEqual(Instruction *I) { 357 Value::use_iterator UI = I->use_begin(); 358 Value::use_iterator UE = I->use_end(); 359 if (UI == UE) 360 return true; 361 362 User *TheUse = *UI; 363 for (++UI; UI != UE; ++UI) { 364 if (*UI != TheUse) 365 return false; 366 } 367 return true; 368 } 369 370 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 371 /// dead PHI node, due to being a def-use chain of single-use nodes that 372 /// either forms a cycle or is terminated by a trivially dead instruction, 373 /// delete it. If that makes any of its operands trivially dead, delete them 374 /// too, recursively. Return true if a change was made. 375 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 376 const TargetLibraryInfo *TLI) { 377 SmallPtrSet<Instruction*, 4> Visited; 378 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 379 I = cast<Instruction>(*I->use_begin())) { 380 if (I->use_empty()) 381 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 382 383 // If we find an instruction more than once, we're on a cycle that 384 // won't prove fruitful. 385 if (!Visited.insert(I)) { 386 // Break the cycle and delete the instruction and its operands. 387 I->replaceAllUsesWith(UndefValue::get(I->getType())); 388 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 389 return true; 390 } 391 } 392 return false; 393 } 394 395 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 396 /// simplify any instructions in it and recursively delete dead instructions. 397 /// 398 /// This returns true if it changed the code, note that it can delete 399 /// instructions in other blocks as well in this block. 400 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 401 const TargetLibraryInfo *TLI) { 402 bool MadeChange = false; 403 404 #ifndef NDEBUG 405 // In debug builds, ensure that the terminator of the block is never replaced 406 // or deleted by these simplifications. The idea of simplification is that it 407 // cannot introduce new instructions, and there is no way to replace the 408 // terminator of a block without introducing a new instruction. 409 AssertingVH<Instruction> TerminatorVH(--BB->end()); 410 #endif 411 412 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 413 assert(!BI->isTerminator()); 414 Instruction *Inst = BI++; 415 416 WeakVH BIHandle(BI); 417 if (recursivelySimplifyInstruction(Inst, TD, TLI)) { 418 MadeChange = true; 419 if (BIHandle != BI) 420 BI = BB->begin(); 421 continue; 422 } 423 424 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 425 if (BIHandle != BI) 426 BI = BB->begin(); 427 } 428 return MadeChange; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // Control Flow Graph Restructuring. 433 // 434 435 436 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 437 /// method is called when we're about to delete Pred as a predecessor of BB. If 438 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 439 /// 440 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 441 /// nodes that collapse into identity values. For example, if we have: 442 /// x = phi(1, 0, 0, 0) 443 /// y = and x, z 444 /// 445 /// .. and delete the predecessor corresponding to the '1', this will attempt to 446 /// recursively fold the and to 0. 447 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 448 DataLayout *TD) { 449 // This only adjusts blocks with PHI nodes. 450 if (!isa<PHINode>(BB->begin())) 451 return; 452 453 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 454 // them down. This will leave us with single entry phi nodes and other phis 455 // that can be removed. 456 BB->removePredecessor(Pred, true); 457 458 WeakVH PhiIt = &BB->front(); 459 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 460 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 461 Value *OldPhiIt = PhiIt; 462 463 if (!recursivelySimplifyInstruction(PN, TD)) 464 continue; 465 466 // If recursive simplification ended up deleting the next PHI node we would 467 // iterate to, then our iterator is invalid, restart scanning from the top 468 // of the block. 469 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 470 } 471 } 472 473 474 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 475 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 476 /// between them, moving the instructions in the predecessor into DestBB and 477 /// deleting the predecessor block. 478 /// 479 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 480 // If BB has single-entry PHI nodes, fold them. 481 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 482 Value *NewVal = PN->getIncomingValue(0); 483 // Replace self referencing PHI with undef, it must be dead. 484 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 485 PN->replaceAllUsesWith(NewVal); 486 PN->eraseFromParent(); 487 } 488 489 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 490 assert(PredBB && "Block doesn't have a single predecessor!"); 491 492 // Zap anything that took the address of DestBB. Not doing this will give the 493 // address an invalid value. 494 if (DestBB->hasAddressTaken()) { 495 BlockAddress *BA = BlockAddress::get(DestBB); 496 Constant *Replacement = 497 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 498 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 499 BA->getType())); 500 BA->destroyConstant(); 501 } 502 503 // Anything that branched to PredBB now branches to DestBB. 504 PredBB->replaceAllUsesWith(DestBB); 505 506 // Splice all the instructions from PredBB to DestBB. 507 PredBB->getTerminator()->eraseFromParent(); 508 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 509 510 if (P) { 511 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 512 if (DT) { 513 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 514 DT->changeImmediateDominator(DestBB, PredBBIDom); 515 DT->eraseNode(PredBB); 516 } 517 } 518 // Nuke BB. 519 PredBB->eraseFromParent(); 520 } 521 522 /// CanMergeValues - Return true if we can choose one of these values to use 523 /// in place of the other. Note that we will always choose the non-undef 524 /// value to keep. 525 static bool CanMergeValues(Value *First, Value *Second) { 526 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 527 } 528 529 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 530 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 531 /// 532 /// Assumption: Succ is the single successor for BB. 533 /// 534 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 535 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 536 537 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 538 << Succ->getName() << "\n"); 539 // Shortcut, if there is only a single predecessor it must be BB and merging 540 // is always safe 541 if (Succ->getSinglePredecessor()) return true; 542 543 // Make a list of the predecessors of BB 544 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 545 546 // Look at all the phi nodes in Succ, to see if they present a conflict when 547 // merging these blocks 548 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 549 PHINode *PN = cast<PHINode>(I); 550 551 // If the incoming value from BB is again a PHINode in 552 // BB which has the same incoming value for *PI as PN does, we can 553 // merge the phi nodes and then the blocks can still be merged 554 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 555 if (BBPN && BBPN->getParent() == BB) { 556 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 557 BasicBlock *IBB = PN->getIncomingBlock(PI); 558 if (BBPreds.count(IBB) && 559 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 560 PN->getIncomingValue(PI))) { 561 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 562 << Succ->getName() << " is conflicting with " 563 << BBPN->getName() << " with regard to common predecessor " 564 << IBB->getName() << "\n"); 565 return false; 566 } 567 } 568 } else { 569 Value* Val = PN->getIncomingValueForBlock(BB); 570 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 571 // See if the incoming value for the common predecessor is equal to the 572 // one for BB, in which case this phi node will not prevent the merging 573 // of the block. 574 BasicBlock *IBB = PN->getIncomingBlock(PI); 575 if (BBPreds.count(IBB) && 576 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 577 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 578 << Succ->getName() << " is conflicting with regard to common " 579 << "predecessor " << IBB->getName() << "\n"); 580 return false; 581 } 582 } 583 } 584 } 585 586 return true; 587 } 588 589 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 590 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 591 592 /// \brief Determines the value to use as the phi node input for a block. 593 /// 594 /// Select between \p OldVal any value that we know flows from \p BB 595 /// to a particular phi on the basis of which one (if either) is not 596 /// undef. Update IncomingValues based on the selected value. 597 /// 598 /// \param OldVal The value we are considering selecting. 599 /// \param BB The block that the value flows in from. 600 /// \param IncomingValues A map from block-to-value for other phi inputs 601 /// that we have examined. 602 /// 603 /// \returns the selected value. 604 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 605 IncomingValueMap &IncomingValues) { 606 if (!isa<UndefValue>(OldVal)) { 607 assert((!IncomingValues.count(BB) || 608 IncomingValues.find(BB)->second == OldVal) && 609 "Expected OldVal to match incoming value from BB!"); 610 611 IncomingValues.insert(std::make_pair(BB, OldVal)); 612 return OldVal; 613 } 614 615 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 616 if (It != IncomingValues.end()) return It->second; 617 618 return OldVal; 619 } 620 621 /// \brief Create a map from block to value for the operands of a 622 /// given phi. 623 /// 624 /// Create a map from block to value for each non-undef value flowing 625 /// into \p PN. 626 /// 627 /// \param PN The phi we are collecting the map for. 628 /// \param IncomingValues [out] The map from block to value for this phi. 629 static void gatherIncomingValuesToPhi(PHINode *PN, 630 IncomingValueMap &IncomingValues) { 631 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 632 BasicBlock *BB = PN->getIncomingBlock(i); 633 Value *V = PN->getIncomingValue(i); 634 635 if (!isa<UndefValue>(V)) 636 IncomingValues.insert(std::make_pair(BB, V)); 637 } 638 } 639 640 /// \brief Replace the incoming undef values to a phi with the values 641 /// from a block-to-value map. 642 /// 643 /// \param PN The phi we are replacing the undefs in. 644 /// \param IncomingValues A map from block to value. 645 static void replaceUndefValuesInPhi(PHINode *PN, 646 const IncomingValueMap &IncomingValues) { 647 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 648 Value *V = PN->getIncomingValue(i); 649 650 if (!isa<UndefValue>(V)) continue; 651 652 BasicBlock *BB = PN->getIncomingBlock(i); 653 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 654 if (It == IncomingValues.end()) continue; 655 656 PN->setIncomingValue(i, It->second); 657 } 658 } 659 660 /// \brief Replace a value flowing from a block to a phi with 661 /// potentially multiple instances of that value flowing from the 662 /// block's predecessors to the phi. 663 /// 664 /// \param BB The block with the value flowing into the phi. 665 /// \param BBPreds The predecessors of BB. 666 /// \param PN The phi that we are updating. 667 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 668 const PredBlockVector &BBPreds, 669 PHINode *PN) { 670 Value *OldVal = PN->removeIncomingValue(BB, false); 671 assert(OldVal && "No entry in PHI for Pred BB!"); 672 673 IncomingValueMap IncomingValues; 674 675 // We are merging two blocks - BB, and the block containing PN - and 676 // as a result we need to redirect edges from the predecessors of BB 677 // to go to the block containing PN, and update PN 678 // accordingly. Since we allow merging blocks in the case where the 679 // predecessor and successor blocks both share some predecessors, 680 // and where some of those common predecessors might have undef 681 // values flowing into PN, we want to rewrite those values to be 682 // consistent with the non-undef values. 683 684 gatherIncomingValuesToPhi(PN, IncomingValues); 685 686 // If this incoming value is one of the PHI nodes in BB, the new entries 687 // in the PHI node are the entries from the old PHI. 688 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 689 PHINode *OldValPN = cast<PHINode>(OldVal); 690 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 691 // Note that, since we are merging phi nodes and BB and Succ might 692 // have common predecessors, we could end up with a phi node with 693 // identical incoming branches. This will be cleaned up later (and 694 // will trigger asserts if we try to clean it up now, without also 695 // simplifying the corresponding conditional branch). 696 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 697 Value *PredVal = OldValPN->getIncomingValue(i); 698 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 699 IncomingValues); 700 701 // And add a new incoming value for this predecessor for the 702 // newly retargeted branch. 703 PN->addIncoming(Selected, PredBB); 704 } 705 } else { 706 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 707 // Update existing incoming values in PN for this 708 // predecessor of BB. 709 BasicBlock *PredBB = BBPreds[i]; 710 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 711 IncomingValues); 712 713 // And add a new incoming value for this predecessor for the 714 // newly retargeted branch. 715 PN->addIncoming(Selected, PredBB); 716 } 717 } 718 719 replaceUndefValuesInPhi(PN, IncomingValues); 720 } 721 722 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 723 /// unconditional branch, and contains no instructions other than PHI nodes, 724 /// potential side-effect free intrinsics and the branch. If possible, 725 /// eliminate BB by rewriting all the predecessors to branch to the successor 726 /// block and return true. If we can't transform, return false. 727 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 728 assert(BB != &BB->getParent()->getEntryBlock() && 729 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 730 731 // We can't eliminate infinite loops. 732 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 733 if (BB == Succ) return false; 734 735 // Check to see if merging these blocks would cause conflicts for any of the 736 // phi nodes in BB or Succ. If not, we can safely merge. 737 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 738 739 // Check for cases where Succ has multiple predecessors and a PHI node in BB 740 // has uses which will not disappear when the PHI nodes are merged. It is 741 // possible to handle such cases, but difficult: it requires checking whether 742 // BB dominates Succ, which is non-trivial to calculate in the case where 743 // Succ has multiple predecessors. Also, it requires checking whether 744 // constructing the necessary self-referential PHI node doesn't introduce any 745 // conflicts; this isn't too difficult, but the previous code for doing this 746 // was incorrect. 747 // 748 // Note that if this check finds a live use, BB dominates Succ, so BB is 749 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 750 // folding the branch isn't profitable in that case anyway. 751 if (!Succ->getSinglePredecessor()) { 752 BasicBlock::iterator BBI = BB->begin(); 753 while (isa<PHINode>(*BBI)) { 754 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 755 UI != E; ++UI) { 756 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 757 if (PN->getIncomingBlock(UI) != BB) 758 return false; 759 } else { 760 return false; 761 } 762 } 763 ++BBI; 764 } 765 } 766 767 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 768 769 if (isa<PHINode>(Succ->begin())) { 770 // If there is more than one pred of succ, and there are PHI nodes in 771 // the successor, then we need to add incoming edges for the PHI nodes 772 // 773 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 774 775 // Loop over all of the PHI nodes in the successor of BB. 776 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 777 PHINode *PN = cast<PHINode>(I); 778 779 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 780 } 781 } 782 783 if (Succ->getSinglePredecessor()) { 784 // BB is the only predecessor of Succ, so Succ will end up with exactly 785 // the same predecessors BB had. 786 787 // Copy over any phi, debug or lifetime instruction. 788 BB->getTerminator()->eraseFromParent(); 789 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 790 } else { 791 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 792 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 793 assert(PN->use_empty() && "There shouldn't be any uses here!"); 794 PN->eraseFromParent(); 795 } 796 } 797 798 // Everything that jumped to BB now goes to Succ. 799 BB->replaceAllUsesWith(Succ); 800 if (!Succ->hasName()) Succ->takeName(BB); 801 BB->eraseFromParent(); // Delete the old basic block. 802 return true; 803 } 804 805 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 806 /// nodes in this block. This doesn't try to be clever about PHI nodes 807 /// which differ only in the order of the incoming values, but instcombine 808 /// orders them so it usually won't matter. 809 /// 810 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 811 bool Changed = false; 812 813 // This implementation doesn't currently consider undef operands 814 // specially. Theoretically, two phis which are identical except for 815 // one having an undef where the other doesn't could be collapsed. 816 817 // Map from PHI hash values to PHI nodes. If multiple PHIs have 818 // the same hash value, the element is the first PHI in the 819 // linked list in CollisionMap. 820 DenseMap<uintptr_t, PHINode *> HashMap; 821 822 // Maintain linked lists of PHI nodes with common hash values. 823 DenseMap<PHINode *, PHINode *> CollisionMap; 824 825 // Examine each PHI. 826 for (BasicBlock::iterator I = BB->begin(); 827 PHINode *PN = dyn_cast<PHINode>(I++); ) { 828 // Compute a hash value on the operands. Instcombine will likely have sorted 829 // them, which helps expose duplicates, but we have to check all the 830 // operands to be safe in case instcombine hasn't run. 831 uintptr_t Hash = 0; 832 // This hash algorithm is quite weak as hash functions go, but it seems 833 // to do a good enough job for this particular purpose, and is very quick. 834 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 835 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 836 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 837 } 838 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 839 I != E; ++I) { 840 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 841 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 842 } 843 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 844 Hash >>= 1; 845 // If we've never seen this hash value before, it's a unique PHI. 846 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 847 HashMap.insert(std::make_pair(Hash, PN)); 848 if (Pair.second) continue; 849 // Otherwise it's either a duplicate or a hash collision. 850 for (PHINode *OtherPN = Pair.first->second; ; ) { 851 if (OtherPN->isIdenticalTo(PN)) { 852 // A duplicate. Replace this PHI with its duplicate. 853 PN->replaceAllUsesWith(OtherPN); 854 PN->eraseFromParent(); 855 Changed = true; 856 break; 857 } 858 // A non-duplicate hash collision. 859 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 860 if (I == CollisionMap.end()) { 861 // Set this PHI to be the head of the linked list of colliding PHIs. 862 PHINode *Old = Pair.first->second; 863 Pair.first->second = PN; 864 CollisionMap[PN] = Old; 865 break; 866 } 867 // Proceed to the next PHI in the list. 868 OtherPN = I->second; 869 } 870 } 871 872 return Changed; 873 } 874 875 /// enforceKnownAlignment - If the specified pointer points to an object that 876 /// we control, modify the object's alignment to PrefAlign. This isn't 877 /// often possible though. If alignment is important, a more reliable approach 878 /// is to simply align all global variables and allocation instructions to 879 /// their preferred alignment from the beginning. 880 /// 881 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 882 unsigned PrefAlign, const DataLayout *TD) { 883 V = V->stripPointerCasts(); 884 885 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 886 // If the preferred alignment is greater than the natural stack alignment 887 // then don't round up. This avoids dynamic stack realignment. 888 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 889 return Align; 890 // If there is a requested alignment and if this is an alloca, round up. 891 if (AI->getAlignment() >= PrefAlign) 892 return AI->getAlignment(); 893 AI->setAlignment(PrefAlign); 894 return PrefAlign; 895 } 896 897 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 898 // If there is a large requested alignment and we can, bump up the alignment 899 // of the global. 900 if (GV->isDeclaration()) return Align; 901 // If the memory we set aside for the global may not be the memory used by 902 // the final program then it is impossible for us to reliably enforce the 903 // preferred alignment. 904 if (GV->isWeakForLinker()) return Align; 905 906 if (GV->getAlignment() >= PrefAlign) 907 return GV->getAlignment(); 908 // We can only increase the alignment of the global if it has no alignment 909 // specified or if it is not assigned a section. If it is assigned a 910 // section, the global could be densely packed with other objects in the 911 // section, increasing the alignment could cause padding issues. 912 if (!GV->hasSection() || GV->getAlignment() == 0) 913 GV->setAlignment(PrefAlign); 914 return GV->getAlignment(); 915 } 916 917 return Align; 918 } 919 920 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 921 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 922 /// and it is more than the alignment of the ultimate object, see if we can 923 /// increase the alignment of the ultimate object, making this check succeed. 924 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 925 const DataLayout *DL) { 926 assert(V->getType()->isPointerTy() && 927 "getOrEnforceKnownAlignment expects a pointer!"); 928 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 929 930 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 931 ComputeMaskedBits(V, KnownZero, KnownOne, DL); 932 unsigned TrailZ = KnownZero.countTrailingOnes(); 933 934 // Avoid trouble with ridiculously large TrailZ values, such as 935 // those computed from a null pointer. 936 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 937 938 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 939 940 // LLVM doesn't support alignments larger than this currently. 941 Align = std::min(Align, +Value::MaximumAlignment); 942 943 if (PrefAlign > Align) 944 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 945 946 // We don't need to make any adjustment. 947 return Align; 948 } 949 950 ///===---------------------------------------------------------------------===// 951 /// Dbg Intrinsic utilities 952 /// 953 954 /// See if there is a dbg.value intrinsic for DIVar before I. 955 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 956 // Since we can't guarantee that the original dbg.declare instrinsic 957 // is removed by LowerDbgDeclare(), we need to make sure that we are 958 // not inserting the same dbg.value intrinsic over and over. 959 llvm::BasicBlock::InstListType::iterator PrevI(I); 960 if (PrevI != I->getParent()->getInstList().begin()) { 961 --PrevI; 962 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 963 if (DVI->getValue() == I->getOperand(0) && 964 DVI->getOffset() == 0 && 965 DVI->getVariable() == DIVar) 966 return true; 967 } 968 return false; 969 } 970 971 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 972 /// that has an associated llvm.dbg.decl intrinsic. 973 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 974 StoreInst *SI, DIBuilder &Builder) { 975 DIVariable DIVar(DDI->getVariable()); 976 assert((!DIVar || DIVar.isVariable()) && 977 "Variable in DbgDeclareInst should be either null or a DIVariable."); 978 if (!DIVar) 979 return false; 980 981 if (LdStHasDebugValue(DIVar, SI)) 982 return true; 983 984 Instruction *DbgVal = NULL; 985 // If an argument is zero extended then use argument directly. The ZExt 986 // may be zapped by an optimization pass in future. 987 Argument *ExtendedArg = NULL; 988 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 989 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 990 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 991 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 992 if (ExtendedArg) 993 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 994 else 995 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 996 997 // Propagate any debug metadata from the store onto the dbg.value. 998 DebugLoc SIDL = SI->getDebugLoc(); 999 if (!SIDL.isUnknown()) 1000 DbgVal->setDebugLoc(SIDL); 1001 // Otherwise propagate debug metadata from dbg.declare. 1002 else 1003 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1004 return true; 1005 } 1006 1007 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1008 /// that has an associated llvm.dbg.decl intrinsic. 1009 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1010 LoadInst *LI, DIBuilder &Builder) { 1011 DIVariable DIVar(DDI->getVariable()); 1012 assert((!DIVar || DIVar.isVariable()) && 1013 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1014 if (!DIVar) 1015 return false; 1016 1017 if (LdStHasDebugValue(DIVar, LI)) 1018 return true; 1019 1020 Instruction *DbgVal = 1021 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 1022 DIVar, LI); 1023 1024 // Propagate any debug metadata from the store onto the dbg.value. 1025 DebugLoc LIDL = LI->getDebugLoc(); 1026 if (!LIDL.isUnknown()) 1027 DbgVal->setDebugLoc(LIDL); 1028 // Otherwise propagate debug metadata from dbg.declare. 1029 else 1030 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1031 return true; 1032 } 1033 1034 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1035 /// of llvm.dbg.value intrinsics. 1036 bool llvm::LowerDbgDeclare(Function &F) { 1037 DIBuilder DIB(*F.getParent()); 1038 SmallVector<DbgDeclareInst *, 4> Dbgs; 1039 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 1040 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 1041 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 1042 Dbgs.push_back(DDI); 1043 } 1044 if (Dbgs.empty()) 1045 return false; 1046 1047 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(), 1048 E = Dbgs.end(); I != E; ++I) { 1049 DbgDeclareInst *DDI = *I; 1050 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1051 // If this is an alloca for a scalar variable, insert a dbg.value 1052 // at each load and store to the alloca and erase the dbg.declare. 1053 if (AI && !AI->isArrayAllocation()) { 1054 1055 // We only remove the dbg.declare intrinsic if all uses are 1056 // converted to dbg.value intrinsics. 1057 bool RemoveDDI = true; 1058 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 1059 UI != E; ++UI) 1060 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 1061 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1062 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 1063 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1064 else 1065 RemoveDDI = false; 1066 if (RemoveDDI) 1067 DDI->eraseFromParent(); 1068 } 1069 } 1070 return true; 1071 } 1072 1073 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1074 /// alloca 'V', if any. 1075 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1076 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 1077 for (Value::use_iterator UI = DebugNode->use_begin(), 1078 E = DebugNode->use_end(); UI != E; ++UI) 1079 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 1080 return DDI; 1081 1082 return 0; 1083 } 1084 1085 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1086 DIBuilder &Builder) { 1087 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1088 if (!DDI) 1089 return false; 1090 DIVariable DIVar(DDI->getVariable()); 1091 assert((!DIVar || DIVar.isVariable()) && 1092 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1093 if (!DIVar) 1094 return false; 1095 1096 // Create a copy of the original DIDescriptor for user variable, appending 1097 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1098 // will take a value storing address of the memory for variable, not 1099 // alloca itself. 1100 Type *Int64Ty = Type::getInt64Ty(AI->getContext()); 1101 SmallVector<Value*, 4> NewDIVarAddress; 1102 if (DIVar.hasComplexAddress()) { 1103 for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) { 1104 NewDIVarAddress.push_back( 1105 ConstantInt::get(Int64Ty, DIVar.getAddrElement(i))); 1106 } 1107 } 1108 NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref)); 1109 DIVariable NewDIVar = Builder.createComplexVariable( 1110 DIVar.getTag(), DIVar.getContext(), DIVar.getName(), 1111 DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(), 1112 NewDIVarAddress, DIVar.getArgNumber()); 1113 1114 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1115 // and remove old llvm.dbg.declare. 1116 BasicBlock *BB = AI->getParent(); 1117 Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB); 1118 DDI->eraseFromParent(); 1119 return true; 1120 } 1121 1122 /// changeToUnreachable - Insert an unreachable instruction before the specified 1123 /// instruction, making it and the rest of the code in the block dead. 1124 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1125 BasicBlock *BB = I->getParent(); 1126 // Loop over all of the successors, removing BB's entry from any PHI 1127 // nodes. 1128 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1129 (*SI)->removePredecessor(BB); 1130 1131 // Insert a call to llvm.trap right before this. This turns the undefined 1132 // behavior into a hard fail instead of falling through into random code. 1133 if (UseLLVMTrap) { 1134 Function *TrapFn = 1135 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1136 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1137 CallTrap->setDebugLoc(I->getDebugLoc()); 1138 } 1139 new UnreachableInst(I->getContext(), I); 1140 1141 // All instructions after this are dead. 1142 BasicBlock::iterator BBI = I, BBE = BB->end(); 1143 while (BBI != BBE) { 1144 if (!BBI->use_empty()) 1145 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1146 BB->getInstList().erase(BBI++); 1147 } 1148 } 1149 1150 /// changeToCall - Convert the specified invoke into a normal call. 1151 static void changeToCall(InvokeInst *II) { 1152 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1153 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1154 NewCall->takeName(II); 1155 NewCall->setCallingConv(II->getCallingConv()); 1156 NewCall->setAttributes(II->getAttributes()); 1157 NewCall->setDebugLoc(II->getDebugLoc()); 1158 II->replaceAllUsesWith(NewCall); 1159 1160 // Follow the call by a branch to the normal destination. 1161 BranchInst::Create(II->getNormalDest(), II); 1162 1163 // Update PHI nodes in the unwind destination 1164 II->getUnwindDest()->removePredecessor(II->getParent()); 1165 II->eraseFromParent(); 1166 } 1167 1168 static bool markAliveBlocks(BasicBlock *BB, 1169 SmallPtrSet<BasicBlock*, 128> &Reachable) { 1170 1171 SmallVector<BasicBlock*, 128> Worklist; 1172 Worklist.push_back(BB); 1173 Reachable.insert(BB); 1174 bool Changed = false; 1175 do { 1176 BB = Worklist.pop_back_val(); 1177 1178 // Do a quick scan of the basic block, turning any obviously unreachable 1179 // instructions into LLVM unreachable insts. The instruction combining pass 1180 // canonicalizes unreachable insts into stores to null or undef. 1181 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1182 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1183 if (CI->doesNotReturn()) { 1184 // If we found a call to a no-return function, insert an unreachable 1185 // instruction after it. Make sure there isn't *already* one there 1186 // though. 1187 ++BBI; 1188 if (!isa<UnreachableInst>(BBI)) { 1189 // Don't insert a call to llvm.trap right before the unreachable. 1190 changeToUnreachable(BBI, false); 1191 Changed = true; 1192 } 1193 break; 1194 } 1195 } 1196 1197 // Store to undef and store to null are undefined and used to signal that 1198 // they should be changed to unreachable by passes that can't modify the 1199 // CFG. 1200 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1201 // Don't touch volatile stores. 1202 if (SI->isVolatile()) continue; 1203 1204 Value *Ptr = SI->getOperand(1); 1205 1206 if (isa<UndefValue>(Ptr) || 1207 (isa<ConstantPointerNull>(Ptr) && 1208 SI->getPointerAddressSpace() == 0)) { 1209 changeToUnreachable(SI, true); 1210 Changed = true; 1211 break; 1212 } 1213 } 1214 } 1215 1216 // Turn invokes that call 'nounwind' functions into ordinary calls. 1217 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1218 Value *Callee = II->getCalledValue(); 1219 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1220 changeToUnreachable(II, true); 1221 Changed = true; 1222 } else if (II->doesNotThrow()) { 1223 if (II->use_empty() && II->onlyReadsMemory()) { 1224 // jump to the normal destination branch. 1225 BranchInst::Create(II->getNormalDest(), II); 1226 II->getUnwindDest()->removePredecessor(II->getParent()); 1227 II->eraseFromParent(); 1228 } else 1229 changeToCall(II); 1230 Changed = true; 1231 } 1232 } 1233 1234 Changed |= ConstantFoldTerminator(BB, true); 1235 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1236 if (Reachable.insert(*SI)) 1237 Worklist.push_back(*SI); 1238 } while (!Worklist.empty()); 1239 return Changed; 1240 } 1241 1242 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1243 /// if they are in a dead cycle. Return true if a change was made, false 1244 /// otherwise. 1245 bool llvm::removeUnreachableBlocks(Function &F) { 1246 SmallPtrSet<BasicBlock*, 128> Reachable; 1247 bool Changed = markAliveBlocks(F.begin(), Reachable); 1248 1249 // If there are unreachable blocks in the CFG... 1250 if (Reachable.size() == F.size()) 1251 return Changed; 1252 1253 assert(Reachable.size() < F.size()); 1254 NumRemoved += F.size()-Reachable.size(); 1255 1256 // Loop over all of the basic blocks that are not reachable, dropping all of 1257 // their internal references... 1258 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1259 if (Reachable.count(BB)) 1260 continue; 1261 1262 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1263 if (Reachable.count(*SI)) 1264 (*SI)->removePredecessor(BB); 1265 BB->dropAllReferences(); 1266 } 1267 1268 for (Function::iterator I = ++F.begin(); I != F.end();) 1269 if (!Reachable.count(I)) 1270 I = F.getBasicBlockList().erase(I); 1271 else 1272 ++I; 1273 1274 return true; 1275 } 1276