1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DIBuilder.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 #define DEBUG_TYPE "local" 47 48 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 49 50 //===----------------------------------------------------------------------===// 51 // Local constant propagation. 52 // 53 54 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 55 /// constant value, convert it into an unconditional branch to the constant 56 /// destination. This is a nontrivial operation because the successors of this 57 /// basic block must have their PHI nodes updated. 58 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 59 /// conditions and indirectbr addresses this might make dead if 60 /// DeleteDeadConditions is true. 61 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 62 const TargetLibraryInfo *TLI) { 63 TerminatorInst *T = BB->getTerminator(); 64 IRBuilder<> Builder(T); 65 66 // Branch - See if we are conditional jumping on constant 67 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 68 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 69 BasicBlock *Dest1 = BI->getSuccessor(0); 70 BasicBlock *Dest2 = BI->getSuccessor(1); 71 72 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 73 // Are we branching on constant? 74 // YES. Change to unconditional branch... 75 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 76 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 77 78 //cerr << "Function: " << T->getParent()->getParent() 79 // << "\nRemoving branch from " << T->getParent() 80 // << "\n\nTo: " << OldDest << endl; 81 82 // Let the basic block know that we are letting go of it. Based on this, 83 // it will adjust it's PHI nodes. 84 OldDest->removePredecessor(BB); 85 86 // Replace the conditional branch with an unconditional one. 87 Builder.CreateBr(Destination); 88 BI->eraseFromParent(); 89 return true; 90 } 91 92 if (Dest2 == Dest1) { // Conditional branch to same location? 93 // This branch matches something like this: 94 // br bool %cond, label %Dest, label %Dest 95 // and changes it into: br label %Dest 96 97 // Let the basic block know that we are letting go of one copy of it. 98 assert(BI->getParent() && "Terminator not inserted in block!"); 99 Dest1->removePredecessor(BI->getParent()); 100 101 // Replace the conditional branch with an unconditional one. 102 Builder.CreateBr(Dest1); 103 Value *Cond = BI->getCondition(); 104 BI->eraseFromParent(); 105 if (DeleteDeadConditions) 106 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 107 return true; 108 } 109 return false; 110 } 111 112 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 113 // If we are switching on a constant, we can convert the switch to an 114 // unconditional branch. 115 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 116 BasicBlock *DefaultDest = SI->getDefaultDest(); 117 BasicBlock *TheOnlyDest = DefaultDest; 118 119 // If the default is unreachable, ignore it when searching for TheOnlyDest. 120 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 121 SI->getNumCases() > 0) { 122 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 123 } 124 125 // Figure out which case it goes to. 126 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 127 i != e; ++i) { 128 // Found case matching a constant operand? 129 if (i.getCaseValue() == CI) { 130 TheOnlyDest = i.getCaseSuccessor(); 131 break; 132 } 133 134 // Check to see if this branch is going to the same place as the default 135 // dest. If so, eliminate it as an explicit compare. 136 if (i.getCaseSuccessor() == DefaultDest) { 137 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 138 unsigned NCases = SI->getNumCases(); 139 // Fold the case metadata into the default if there will be any branches 140 // left, unless the metadata doesn't match the switch. 141 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 142 // Collect branch weights into a vector. 143 SmallVector<uint32_t, 8> Weights; 144 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 145 ++MD_i) { 146 ConstantInt *CI = 147 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 148 assert(CI); 149 Weights.push_back(CI->getValue().getZExtValue()); 150 } 151 // Merge weight of this case to the default weight. 152 unsigned idx = i.getCaseIndex(); 153 Weights[0] += Weights[idx+1]; 154 // Remove weight for this case. 155 std::swap(Weights[idx+1], Weights.back()); 156 Weights.pop_back(); 157 SI->setMetadata(LLVMContext::MD_prof, 158 MDBuilder(BB->getContext()). 159 createBranchWeights(Weights)); 160 } 161 // Remove this entry. 162 DefaultDest->removePredecessor(SI->getParent()); 163 SI->removeCase(i); 164 --i; --e; 165 continue; 166 } 167 168 // Otherwise, check to see if the switch only branches to one destination. 169 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 170 // destinations. 171 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 172 } 173 174 if (CI && !TheOnlyDest) { 175 // Branching on a constant, but not any of the cases, go to the default 176 // successor. 177 TheOnlyDest = SI->getDefaultDest(); 178 } 179 180 // If we found a single destination that we can fold the switch into, do so 181 // now. 182 if (TheOnlyDest) { 183 // Insert the new branch. 184 Builder.CreateBr(TheOnlyDest); 185 BasicBlock *BB = SI->getParent(); 186 187 // Remove entries from PHI nodes which we no longer branch to... 188 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 189 // Found case matching a constant operand? 190 BasicBlock *Succ = SI->getSuccessor(i); 191 if (Succ == TheOnlyDest) 192 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 193 else 194 Succ->removePredecessor(BB); 195 } 196 197 // Delete the old switch. 198 Value *Cond = SI->getCondition(); 199 SI->eraseFromParent(); 200 if (DeleteDeadConditions) 201 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 202 return true; 203 } 204 205 if (SI->getNumCases() == 1) { 206 // Otherwise, we can fold this switch into a conditional branch 207 // instruction if it has only one non-default destination. 208 SwitchInst::CaseIt FirstCase = SI->case_begin(); 209 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 210 FirstCase.getCaseValue(), "cond"); 211 212 // Insert the new branch. 213 BranchInst *NewBr = Builder.CreateCondBr(Cond, 214 FirstCase.getCaseSuccessor(), 215 SI->getDefaultDest()); 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 if (MD && MD->getNumOperands() == 3) { 218 ConstantInt *SICase = 219 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 220 ConstantInt *SIDef = 221 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 222 assert(SICase && SIDef); 223 // The TrueWeight should be the weight for the single case of SI. 224 NewBr->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(SICase->getValue().getZExtValue(), 227 SIDef->getValue().getZExtValue())); 228 } 229 230 // Delete the old switch. 231 SI->eraseFromParent(); 232 return true; 233 } 234 return false; 235 } 236 237 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 238 // indirectbr blockaddress(@F, @BB) -> br label @BB 239 if (BlockAddress *BA = 240 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 241 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 242 // Insert the new branch. 243 Builder.CreateBr(TheOnlyDest); 244 245 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 246 if (IBI->getDestination(i) == TheOnlyDest) 247 TheOnlyDest = nullptr; 248 else 249 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 250 } 251 Value *Address = IBI->getAddress(); 252 IBI->eraseFromParent(); 253 if (DeleteDeadConditions) 254 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 255 256 // If we didn't find our destination in the IBI successor list, then we 257 // have undefined behavior. Replace the unconditional branch with an 258 // 'unreachable' instruction. 259 if (TheOnlyDest) { 260 BB->getTerminator()->eraseFromParent(); 261 new UnreachableInst(BB->getContext(), BB); 262 } 263 264 return true; 265 } 266 } 267 268 return false; 269 } 270 271 272 //===----------------------------------------------------------------------===// 273 // Local dead code elimination. 274 // 275 276 /// isInstructionTriviallyDead - Return true if the result produced by the 277 /// instruction is not used, and the instruction has no side effects. 278 /// 279 bool llvm::isInstructionTriviallyDead(Instruction *I, 280 const TargetLibraryInfo *TLI) { 281 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 282 283 // We don't want the landingpad instruction removed by anything this general. 284 if (isa<LandingPadInst>(I)) 285 return false; 286 287 // We don't want debug info removed by anything this general, unless 288 // debug info is empty. 289 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 290 if (DDI->getAddress()) 291 return false; 292 return true; 293 } 294 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 295 if (DVI->getValue()) 296 return false; 297 return true; 298 } 299 300 if (!I->mayHaveSideEffects()) return true; 301 302 // Special case intrinsics that "may have side effects" but can be deleted 303 // when dead. 304 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 305 // Safe to delete llvm.stacksave if dead. 306 if (II->getIntrinsicID() == Intrinsic::stacksave) 307 return true; 308 309 // Lifetime intrinsics are dead when their right-hand is undef. 310 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 311 II->getIntrinsicID() == Intrinsic::lifetime_end) 312 return isa<UndefValue>(II->getArgOperand(1)); 313 314 // Assumptions are dead if their condition is trivially true. 315 if (II->getIntrinsicID() == Intrinsic::assume) { 316 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 317 return !Cond->isZero(); 318 319 return false; 320 } 321 } 322 323 if (isAllocLikeFn(I, TLI)) return true; 324 325 if (CallInst *CI = isFreeCall(I, TLI)) 326 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 327 return C->isNullValue() || isa<UndefValue>(C); 328 329 return false; 330 } 331 332 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 333 /// trivially dead instruction, delete it. If that makes any of its operands 334 /// trivially dead, delete them too, recursively. Return true if any 335 /// instructions were deleted. 336 bool 337 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 338 const TargetLibraryInfo *TLI) { 339 Instruction *I = dyn_cast<Instruction>(V); 340 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 341 return false; 342 343 SmallVector<Instruction*, 16> DeadInsts; 344 DeadInsts.push_back(I); 345 346 do { 347 I = DeadInsts.pop_back_val(); 348 349 // Null out all of the instruction's operands to see if any operand becomes 350 // dead as we go. 351 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 352 Value *OpV = I->getOperand(i); 353 I->setOperand(i, nullptr); 354 355 if (!OpV->use_empty()) continue; 356 357 // If the operand is an instruction that became dead as we nulled out the 358 // operand, and if it is 'trivially' dead, delete it in a future loop 359 // iteration. 360 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 361 if (isInstructionTriviallyDead(OpI, TLI)) 362 DeadInsts.push_back(OpI); 363 } 364 365 I->eraseFromParent(); 366 } while (!DeadInsts.empty()); 367 368 return true; 369 } 370 371 /// areAllUsesEqual - Check whether the uses of a value are all the same. 372 /// This is similar to Instruction::hasOneUse() except this will also return 373 /// true when there are no uses or multiple uses that all refer to the same 374 /// value. 375 static bool areAllUsesEqual(Instruction *I) { 376 Value::user_iterator UI = I->user_begin(); 377 Value::user_iterator UE = I->user_end(); 378 if (UI == UE) 379 return true; 380 381 User *TheUse = *UI; 382 for (++UI; UI != UE; ++UI) { 383 if (*UI != TheUse) 384 return false; 385 } 386 return true; 387 } 388 389 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 390 /// dead PHI node, due to being a def-use chain of single-use nodes that 391 /// either forms a cycle or is terminated by a trivially dead instruction, 392 /// delete it. If that makes any of its operands trivially dead, delete them 393 /// too, recursively. Return true if a change was made. 394 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 395 const TargetLibraryInfo *TLI) { 396 SmallPtrSet<Instruction*, 4> Visited; 397 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 398 I = cast<Instruction>(*I->user_begin())) { 399 if (I->use_empty()) 400 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 401 402 // If we find an instruction more than once, we're on a cycle that 403 // won't prove fruitful. 404 if (!Visited.insert(I).second) { 405 // Break the cycle and delete the instruction and its operands. 406 I->replaceAllUsesWith(UndefValue::get(I->getType())); 407 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 408 return true; 409 } 410 } 411 return false; 412 } 413 414 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 415 /// simplify any instructions in it and recursively delete dead instructions. 416 /// 417 /// This returns true if it changed the code, note that it can delete 418 /// instructions in other blocks as well in this block. 419 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 420 const TargetLibraryInfo *TLI) { 421 bool MadeChange = false; 422 423 #ifndef NDEBUG 424 // In debug builds, ensure that the terminator of the block is never replaced 425 // or deleted by these simplifications. The idea of simplification is that it 426 // cannot introduce new instructions, and there is no way to replace the 427 // terminator of a block without introducing a new instruction. 428 AssertingVH<Instruction> TerminatorVH(--BB->end()); 429 #endif 430 431 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 432 assert(!BI->isTerminator()); 433 Instruction *Inst = BI++; 434 435 WeakVH BIHandle(BI); 436 if (recursivelySimplifyInstruction(Inst, TD, TLI)) { 437 MadeChange = true; 438 if (BIHandle != BI) 439 BI = BB->begin(); 440 continue; 441 } 442 443 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 444 if (BIHandle != BI) 445 BI = BB->begin(); 446 } 447 return MadeChange; 448 } 449 450 //===----------------------------------------------------------------------===// 451 // Control Flow Graph Restructuring. 452 // 453 454 455 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 456 /// method is called when we're about to delete Pred as a predecessor of BB. If 457 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 458 /// 459 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 460 /// nodes that collapse into identity values. For example, if we have: 461 /// x = phi(1, 0, 0, 0) 462 /// y = and x, z 463 /// 464 /// .. and delete the predecessor corresponding to the '1', this will attempt to 465 /// recursively fold the and to 0. 466 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 467 DataLayout *TD) { 468 // This only adjusts blocks with PHI nodes. 469 if (!isa<PHINode>(BB->begin())) 470 return; 471 472 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 473 // them down. This will leave us with single entry phi nodes and other phis 474 // that can be removed. 475 BB->removePredecessor(Pred, true); 476 477 WeakVH PhiIt = &BB->front(); 478 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 479 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 480 Value *OldPhiIt = PhiIt; 481 482 if (!recursivelySimplifyInstruction(PN, TD)) 483 continue; 484 485 // If recursive simplification ended up deleting the next PHI node we would 486 // iterate to, then our iterator is invalid, restart scanning from the top 487 // of the block. 488 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 489 } 490 } 491 492 493 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 494 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 495 /// between them, moving the instructions in the predecessor into DestBB and 496 /// deleting the predecessor block. 497 /// 498 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 499 // If BB has single-entry PHI nodes, fold them. 500 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 501 Value *NewVal = PN->getIncomingValue(0); 502 // Replace self referencing PHI with undef, it must be dead. 503 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 504 PN->replaceAllUsesWith(NewVal); 505 PN->eraseFromParent(); 506 } 507 508 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 509 assert(PredBB && "Block doesn't have a single predecessor!"); 510 511 // Zap anything that took the address of DestBB. Not doing this will give the 512 // address an invalid value. 513 if (DestBB->hasAddressTaken()) { 514 BlockAddress *BA = BlockAddress::get(DestBB); 515 Constant *Replacement = 516 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 517 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 518 BA->getType())); 519 BA->destroyConstant(); 520 } 521 522 // Anything that branched to PredBB now branches to DestBB. 523 PredBB->replaceAllUsesWith(DestBB); 524 525 // Splice all the instructions from PredBB to DestBB. 526 PredBB->getTerminator()->eraseFromParent(); 527 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 528 529 // If the PredBB is the entry block of the function, move DestBB up to 530 // become the entry block after we erase PredBB. 531 if (PredBB == &DestBB->getParent()->getEntryBlock()) 532 DestBB->moveAfter(PredBB); 533 534 if (DT) { 535 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 536 DT->changeImmediateDominator(DestBB, PredBBIDom); 537 DT->eraseNode(PredBB); 538 } 539 // Nuke BB. 540 PredBB->eraseFromParent(); 541 } 542 543 /// CanMergeValues - Return true if we can choose one of these values to use 544 /// in place of the other. Note that we will always choose the non-undef 545 /// value to keep. 546 static bool CanMergeValues(Value *First, Value *Second) { 547 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 548 } 549 550 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 551 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 552 /// 553 /// Assumption: Succ is the single successor for BB. 554 /// 555 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 556 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 557 558 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 559 << Succ->getName() << "\n"); 560 // Shortcut, if there is only a single predecessor it must be BB and merging 561 // is always safe 562 if (Succ->getSinglePredecessor()) return true; 563 564 // Make a list of the predecessors of BB 565 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 566 567 // Look at all the phi nodes in Succ, to see if they present a conflict when 568 // merging these blocks 569 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 570 PHINode *PN = cast<PHINode>(I); 571 572 // If the incoming value from BB is again a PHINode in 573 // BB which has the same incoming value for *PI as PN does, we can 574 // merge the phi nodes and then the blocks can still be merged 575 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 576 if (BBPN && BBPN->getParent() == BB) { 577 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 578 BasicBlock *IBB = PN->getIncomingBlock(PI); 579 if (BBPreds.count(IBB) && 580 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 581 PN->getIncomingValue(PI))) { 582 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 583 << Succ->getName() << " is conflicting with " 584 << BBPN->getName() << " with regard to common predecessor " 585 << IBB->getName() << "\n"); 586 return false; 587 } 588 } 589 } else { 590 Value* Val = PN->getIncomingValueForBlock(BB); 591 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 592 // See if the incoming value for the common predecessor is equal to the 593 // one for BB, in which case this phi node will not prevent the merging 594 // of the block. 595 BasicBlock *IBB = PN->getIncomingBlock(PI); 596 if (BBPreds.count(IBB) && 597 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 598 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 599 << Succ->getName() << " is conflicting with regard to common " 600 << "predecessor " << IBB->getName() << "\n"); 601 return false; 602 } 603 } 604 } 605 } 606 607 return true; 608 } 609 610 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 611 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 612 613 /// \brief Determines the value to use as the phi node input for a block. 614 /// 615 /// Select between \p OldVal any value that we know flows from \p BB 616 /// to a particular phi on the basis of which one (if either) is not 617 /// undef. Update IncomingValues based on the selected value. 618 /// 619 /// \param OldVal The value we are considering selecting. 620 /// \param BB The block that the value flows in from. 621 /// \param IncomingValues A map from block-to-value for other phi inputs 622 /// that we have examined. 623 /// 624 /// \returns the selected value. 625 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 626 IncomingValueMap &IncomingValues) { 627 if (!isa<UndefValue>(OldVal)) { 628 assert((!IncomingValues.count(BB) || 629 IncomingValues.find(BB)->second == OldVal) && 630 "Expected OldVal to match incoming value from BB!"); 631 632 IncomingValues.insert(std::make_pair(BB, OldVal)); 633 return OldVal; 634 } 635 636 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 637 if (It != IncomingValues.end()) return It->second; 638 639 return OldVal; 640 } 641 642 /// \brief Create a map from block to value for the operands of a 643 /// given phi. 644 /// 645 /// Create a map from block to value for each non-undef value flowing 646 /// into \p PN. 647 /// 648 /// \param PN The phi we are collecting the map for. 649 /// \param IncomingValues [out] The map from block to value for this phi. 650 static void gatherIncomingValuesToPhi(PHINode *PN, 651 IncomingValueMap &IncomingValues) { 652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 653 BasicBlock *BB = PN->getIncomingBlock(i); 654 Value *V = PN->getIncomingValue(i); 655 656 if (!isa<UndefValue>(V)) 657 IncomingValues.insert(std::make_pair(BB, V)); 658 } 659 } 660 661 /// \brief Replace the incoming undef values to a phi with the values 662 /// from a block-to-value map. 663 /// 664 /// \param PN The phi we are replacing the undefs in. 665 /// \param IncomingValues A map from block to value. 666 static void replaceUndefValuesInPhi(PHINode *PN, 667 const IncomingValueMap &IncomingValues) { 668 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 669 Value *V = PN->getIncomingValue(i); 670 671 if (!isa<UndefValue>(V)) continue; 672 673 BasicBlock *BB = PN->getIncomingBlock(i); 674 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 675 if (It == IncomingValues.end()) continue; 676 677 PN->setIncomingValue(i, It->second); 678 } 679 } 680 681 /// \brief Replace a value flowing from a block to a phi with 682 /// potentially multiple instances of that value flowing from the 683 /// block's predecessors to the phi. 684 /// 685 /// \param BB The block with the value flowing into the phi. 686 /// \param BBPreds The predecessors of BB. 687 /// \param PN The phi that we are updating. 688 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 689 const PredBlockVector &BBPreds, 690 PHINode *PN) { 691 Value *OldVal = PN->removeIncomingValue(BB, false); 692 assert(OldVal && "No entry in PHI for Pred BB!"); 693 694 IncomingValueMap IncomingValues; 695 696 // We are merging two blocks - BB, and the block containing PN - and 697 // as a result we need to redirect edges from the predecessors of BB 698 // to go to the block containing PN, and update PN 699 // accordingly. Since we allow merging blocks in the case where the 700 // predecessor and successor blocks both share some predecessors, 701 // and where some of those common predecessors might have undef 702 // values flowing into PN, we want to rewrite those values to be 703 // consistent with the non-undef values. 704 705 gatherIncomingValuesToPhi(PN, IncomingValues); 706 707 // If this incoming value is one of the PHI nodes in BB, the new entries 708 // in the PHI node are the entries from the old PHI. 709 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 710 PHINode *OldValPN = cast<PHINode>(OldVal); 711 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 712 // Note that, since we are merging phi nodes and BB and Succ might 713 // have common predecessors, we could end up with a phi node with 714 // identical incoming branches. This will be cleaned up later (and 715 // will trigger asserts if we try to clean it up now, without also 716 // simplifying the corresponding conditional branch). 717 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 718 Value *PredVal = OldValPN->getIncomingValue(i); 719 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 720 IncomingValues); 721 722 // And add a new incoming value for this predecessor for the 723 // newly retargeted branch. 724 PN->addIncoming(Selected, PredBB); 725 } 726 } else { 727 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 728 // Update existing incoming values in PN for this 729 // predecessor of BB. 730 BasicBlock *PredBB = BBPreds[i]; 731 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 732 IncomingValues); 733 734 // And add a new incoming value for this predecessor for the 735 // newly retargeted branch. 736 PN->addIncoming(Selected, PredBB); 737 } 738 } 739 740 replaceUndefValuesInPhi(PN, IncomingValues); 741 } 742 743 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 744 /// unconditional branch, and contains no instructions other than PHI nodes, 745 /// potential side-effect free intrinsics and the branch. If possible, 746 /// eliminate BB by rewriting all the predecessors to branch to the successor 747 /// block and return true. If we can't transform, return false. 748 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 749 assert(BB != &BB->getParent()->getEntryBlock() && 750 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 751 752 // We can't eliminate infinite loops. 753 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 754 if (BB == Succ) return false; 755 756 // Check to see if merging these blocks would cause conflicts for any of the 757 // phi nodes in BB or Succ. If not, we can safely merge. 758 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 759 760 // Check for cases where Succ has multiple predecessors and a PHI node in BB 761 // has uses which will not disappear when the PHI nodes are merged. It is 762 // possible to handle such cases, but difficult: it requires checking whether 763 // BB dominates Succ, which is non-trivial to calculate in the case where 764 // Succ has multiple predecessors. Also, it requires checking whether 765 // constructing the necessary self-referential PHI node doesn't introduce any 766 // conflicts; this isn't too difficult, but the previous code for doing this 767 // was incorrect. 768 // 769 // Note that if this check finds a live use, BB dominates Succ, so BB is 770 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 771 // folding the branch isn't profitable in that case anyway. 772 if (!Succ->getSinglePredecessor()) { 773 BasicBlock::iterator BBI = BB->begin(); 774 while (isa<PHINode>(*BBI)) { 775 for (Use &U : BBI->uses()) { 776 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 777 if (PN->getIncomingBlock(U) != BB) 778 return false; 779 } else { 780 return false; 781 } 782 } 783 ++BBI; 784 } 785 } 786 787 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 788 789 if (isa<PHINode>(Succ->begin())) { 790 // If there is more than one pred of succ, and there are PHI nodes in 791 // the successor, then we need to add incoming edges for the PHI nodes 792 // 793 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 794 795 // Loop over all of the PHI nodes in the successor of BB. 796 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 797 PHINode *PN = cast<PHINode>(I); 798 799 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 800 } 801 } 802 803 if (Succ->getSinglePredecessor()) { 804 // BB is the only predecessor of Succ, so Succ will end up with exactly 805 // the same predecessors BB had. 806 807 // Copy over any phi, debug or lifetime instruction. 808 BB->getTerminator()->eraseFromParent(); 809 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 810 } else { 811 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 812 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 813 assert(PN->use_empty() && "There shouldn't be any uses here!"); 814 PN->eraseFromParent(); 815 } 816 } 817 818 // Everything that jumped to BB now goes to Succ. 819 BB->replaceAllUsesWith(Succ); 820 if (!Succ->hasName()) Succ->takeName(BB); 821 BB->eraseFromParent(); // Delete the old basic block. 822 return true; 823 } 824 825 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 826 /// nodes in this block. This doesn't try to be clever about PHI nodes 827 /// which differ only in the order of the incoming values, but instcombine 828 /// orders them so it usually won't matter. 829 /// 830 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 831 bool Changed = false; 832 833 // This implementation doesn't currently consider undef operands 834 // specially. Theoretically, two phis which are identical except for 835 // one having an undef where the other doesn't could be collapsed. 836 837 // Map from PHI hash values to PHI nodes. If multiple PHIs have 838 // the same hash value, the element is the first PHI in the 839 // linked list in CollisionMap. 840 DenseMap<uintptr_t, PHINode *> HashMap; 841 842 // Maintain linked lists of PHI nodes with common hash values. 843 DenseMap<PHINode *, PHINode *> CollisionMap; 844 845 // Examine each PHI. 846 for (BasicBlock::iterator I = BB->begin(); 847 PHINode *PN = dyn_cast<PHINode>(I++); ) { 848 // Compute a hash value on the operands. Instcombine will likely have sorted 849 // them, which helps expose duplicates, but we have to check all the 850 // operands to be safe in case instcombine hasn't run. 851 uintptr_t Hash = 0; 852 // This hash algorithm is quite weak as hash functions go, but it seems 853 // to do a good enough job for this particular purpose, and is very quick. 854 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 855 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 856 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 857 } 858 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 859 I != E; ++I) { 860 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 861 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 862 } 863 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 864 Hash >>= 1; 865 // If we've never seen this hash value before, it's a unique PHI. 866 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 867 HashMap.insert(std::make_pair(Hash, PN)); 868 if (Pair.second) continue; 869 // Otherwise it's either a duplicate or a hash collision. 870 for (PHINode *OtherPN = Pair.first->second; ; ) { 871 if (OtherPN->isIdenticalTo(PN)) { 872 // A duplicate. Replace this PHI with its duplicate. 873 PN->replaceAllUsesWith(OtherPN); 874 PN->eraseFromParent(); 875 Changed = true; 876 break; 877 } 878 // A non-duplicate hash collision. 879 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 880 if (I == CollisionMap.end()) { 881 // Set this PHI to be the head of the linked list of colliding PHIs. 882 PHINode *Old = Pair.first->second; 883 Pair.first->second = PN; 884 CollisionMap[PN] = Old; 885 break; 886 } 887 // Proceed to the next PHI in the list. 888 OtherPN = I->second; 889 } 890 } 891 892 return Changed; 893 } 894 895 /// enforceKnownAlignment - If the specified pointer points to an object that 896 /// we control, modify the object's alignment to PrefAlign. This isn't 897 /// often possible though. If alignment is important, a more reliable approach 898 /// is to simply align all global variables and allocation instructions to 899 /// their preferred alignment from the beginning. 900 /// 901 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 902 unsigned PrefAlign, const DataLayout *TD) { 903 V = V->stripPointerCasts(); 904 905 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 906 // If the preferred alignment is greater than the natural stack alignment 907 // then don't round up. This avoids dynamic stack realignment. 908 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 909 return Align; 910 // If there is a requested alignment and if this is an alloca, round up. 911 if (AI->getAlignment() >= PrefAlign) 912 return AI->getAlignment(); 913 AI->setAlignment(PrefAlign); 914 return PrefAlign; 915 } 916 917 if (auto *GO = dyn_cast<GlobalObject>(V)) { 918 // If there is a large requested alignment and we can, bump up the alignment 919 // of the global. 920 if (GO->isDeclaration()) 921 return Align; 922 // If the memory we set aside for the global may not be the memory used by 923 // the final program then it is impossible for us to reliably enforce the 924 // preferred alignment. 925 if (GO->isWeakForLinker()) 926 return Align; 927 928 if (GO->getAlignment() >= PrefAlign) 929 return GO->getAlignment(); 930 // We can only increase the alignment of the global if it has no alignment 931 // specified or if it is not assigned a section. If it is assigned a 932 // section, the global could be densely packed with other objects in the 933 // section, increasing the alignment could cause padding issues. 934 if (!GO->hasSection() || GO->getAlignment() == 0) 935 GO->setAlignment(PrefAlign); 936 return GO->getAlignment(); 937 } 938 939 return Align; 940 } 941 942 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 943 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 944 /// and it is more than the alignment of the ultimate object, see if we can 945 /// increase the alignment of the ultimate object, making this check succeed. 946 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 947 const DataLayout *DL, 948 AssumptionCache *AC, 949 const Instruction *CxtI, 950 const DominatorTree *DT) { 951 assert(V->getType()->isPointerTy() && 952 "getOrEnforceKnownAlignment expects a pointer!"); 953 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 954 955 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 956 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 957 unsigned TrailZ = KnownZero.countTrailingOnes(); 958 959 // Avoid trouble with ridiculously large TrailZ values, such as 960 // those computed from a null pointer. 961 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 962 963 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 964 965 // LLVM doesn't support alignments larger than this currently. 966 Align = std::min(Align, +Value::MaximumAlignment); 967 968 if (PrefAlign > Align) 969 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 970 971 // We don't need to make any adjustment. 972 return Align; 973 } 974 975 ///===---------------------------------------------------------------------===// 976 /// Dbg Intrinsic utilities 977 /// 978 979 /// See if there is a dbg.value intrinsic for DIVar before I. 980 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 981 // Since we can't guarantee that the original dbg.declare instrinsic 982 // is removed by LowerDbgDeclare(), we need to make sure that we are 983 // not inserting the same dbg.value intrinsic over and over. 984 llvm::BasicBlock::InstListType::iterator PrevI(I); 985 if (PrevI != I->getParent()->getInstList().begin()) { 986 --PrevI; 987 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 988 if (DVI->getValue() == I->getOperand(0) && 989 DVI->getOffset() == 0 && 990 DVI->getVariable() == DIVar) 991 return true; 992 } 993 return false; 994 } 995 996 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 997 /// that has an associated llvm.dbg.decl intrinsic. 998 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 999 StoreInst *SI, DIBuilder &Builder) { 1000 DIVariable DIVar(DDI->getVariable()); 1001 DIExpression DIExpr(DDI->getExpression()); 1002 assert((!DIVar || DIVar.isVariable()) && 1003 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1004 if (!DIVar) 1005 return false; 1006 1007 if (LdStHasDebugValue(DIVar, SI)) 1008 return true; 1009 1010 Instruction *DbgVal = nullptr; 1011 // If an argument is zero extended then use argument directly. The ZExt 1012 // may be zapped by an optimization pass in future. 1013 Argument *ExtendedArg = nullptr; 1014 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1015 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1016 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1017 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1018 if (ExtendedArg) 1019 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI); 1020 else 1021 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, 1022 DIExpr, SI); 1023 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1024 return true; 1025 } 1026 1027 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1028 /// that has an associated llvm.dbg.decl intrinsic. 1029 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1030 LoadInst *LI, DIBuilder &Builder) { 1031 DIVariable DIVar(DDI->getVariable()); 1032 DIExpression DIExpr(DDI->getExpression()); 1033 assert((!DIVar || DIVar.isVariable()) && 1034 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1035 if (!DIVar) 1036 return false; 1037 1038 if (LdStHasDebugValue(DIVar, LI)) 1039 return true; 1040 1041 Instruction *DbgVal = 1042 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI); 1043 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1044 return true; 1045 } 1046 1047 /// Determine whether this alloca is either a VLA or an array. 1048 static bool isArray(AllocaInst *AI) { 1049 return AI->isArrayAllocation() || 1050 AI->getType()->getElementType()->isArrayTy(); 1051 } 1052 1053 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1054 /// of llvm.dbg.value intrinsics. 1055 bool llvm::LowerDbgDeclare(Function &F) { 1056 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1057 SmallVector<DbgDeclareInst *, 4> Dbgs; 1058 for (auto &FI : F) 1059 for (BasicBlock::iterator BI : FI) 1060 if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) 1061 Dbgs.push_back(DDI); 1062 1063 if (Dbgs.empty()) 1064 return false; 1065 1066 for (auto &I : Dbgs) { 1067 DbgDeclareInst *DDI = I; 1068 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1069 // If this is an alloca for a scalar variable, insert a dbg.value 1070 // at each load and store to the alloca and erase the dbg.declare. 1071 // The dbg.values allow tracking a variable even if it is not 1072 // stored on the stack, while the dbg.declare can only describe 1073 // the stack slot (and at a lexical-scope granularity). Later 1074 // passes will attempt to elide the stack slot. 1075 if (AI && !isArray(AI)) { 1076 for (User *U : AI->users()) 1077 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1078 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1079 else if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1080 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1081 else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1082 // This is a call by-value or some other instruction that 1083 // takes a pointer to the variable. Insert a *value* 1084 // intrinsic that describes the alloca. 1085 auto DbgVal = DIB.insertDbgValueIntrinsic( 1086 AI, 0, DIVariable(DDI->getVariable()), 1087 DIExpression(DDI->getExpression()), CI); 1088 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1089 } 1090 DDI->eraseFromParent(); 1091 } 1092 } 1093 return true; 1094 } 1095 1096 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1097 /// alloca 'V', if any. 1098 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1099 if (auto *L = LocalAsMetadata::getIfExists(V)) 1100 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1101 for (User *U : MDV->users()) 1102 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1103 return DDI; 1104 1105 return nullptr; 1106 } 1107 1108 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1109 DIBuilder &Builder) { 1110 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1111 if (!DDI) 1112 return false; 1113 DIVariable DIVar(DDI->getVariable()); 1114 DIExpression DIExpr(DDI->getExpression()); 1115 assert((!DIVar || DIVar.isVariable()) && 1116 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1117 if (!DIVar) 1118 return false; 1119 1120 // Create a copy of the original DIDescriptor for user variable, prepending 1121 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1122 // will take a value storing address of the memory for variable, not 1123 // alloca itself. 1124 SmallVector<int64_t, 4> NewDIExpr; 1125 NewDIExpr.push_back(dwarf::DW_OP_deref); 1126 if (DIExpr) 1127 for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i) 1128 NewDIExpr.push_back(DIExpr.getElement(i)); 1129 1130 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1131 // and remove old llvm.dbg.declare. 1132 BasicBlock *BB = AI->getParent(); 1133 Builder.insertDeclare(NewAllocaAddress, DIVar, 1134 Builder.createExpression(NewDIExpr), BB); 1135 DDI->eraseFromParent(); 1136 return true; 1137 } 1138 1139 /// changeToUnreachable - Insert an unreachable instruction before the specified 1140 /// instruction, making it and the rest of the code in the block dead. 1141 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1142 BasicBlock *BB = I->getParent(); 1143 // Loop over all of the successors, removing BB's entry from any PHI 1144 // nodes. 1145 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1146 (*SI)->removePredecessor(BB); 1147 1148 // Insert a call to llvm.trap right before this. This turns the undefined 1149 // behavior into a hard fail instead of falling through into random code. 1150 if (UseLLVMTrap) { 1151 Function *TrapFn = 1152 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1153 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1154 CallTrap->setDebugLoc(I->getDebugLoc()); 1155 } 1156 new UnreachableInst(I->getContext(), I); 1157 1158 // All instructions after this are dead. 1159 BasicBlock::iterator BBI = I, BBE = BB->end(); 1160 while (BBI != BBE) { 1161 if (!BBI->use_empty()) 1162 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1163 BB->getInstList().erase(BBI++); 1164 } 1165 } 1166 1167 /// changeToCall - Convert the specified invoke into a normal call. 1168 static void changeToCall(InvokeInst *II) { 1169 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1170 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1171 NewCall->takeName(II); 1172 NewCall->setCallingConv(II->getCallingConv()); 1173 NewCall->setAttributes(II->getAttributes()); 1174 NewCall->setDebugLoc(II->getDebugLoc()); 1175 II->replaceAllUsesWith(NewCall); 1176 1177 // Follow the call by a branch to the normal destination. 1178 BranchInst::Create(II->getNormalDest(), II); 1179 1180 // Update PHI nodes in the unwind destination 1181 II->getUnwindDest()->removePredecessor(II->getParent()); 1182 II->eraseFromParent(); 1183 } 1184 1185 static bool markAliveBlocks(BasicBlock *BB, 1186 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1187 1188 SmallVector<BasicBlock*, 128> Worklist; 1189 Worklist.push_back(BB); 1190 Reachable.insert(BB); 1191 bool Changed = false; 1192 do { 1193 BB = Worklist.pop_back_val(); 1194 1195 // Do a quick scan of the basic block, turning any obviously unreachable 1196 // instructions into LLVM unreachable insts. The instruction combining pass 1197 // canonicalizes unreachable insts into stores to null or undef. 1198 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1199 // Assumptions that are known to be false are equivalent to unreachable. 1200 // Also, if the condition is undefined, then we make the choice most 1201 // beneficial to the optimizer, and choose that to also be unreachable. 1202 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1203 if (II->getIntrinsicID() == Intrinsic::assume) { 1204 bool MakeUnreachable = false; 1205 if (isa<UndefValue>(II->getArgOperand(0))) 1206 MakeUnreachable = true; 1207 else if (ConstantInt *Cond = 1208 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1209 MakeUnreachable = Cond->isZero(); 1210 1211 if (MakeUnreachable) { 1212 // Don't insert a call to llvm.trap right before the unreachable. 1213 changeToUnreachable(BBI, false); 1214 Changed = true; 1215 break; 1216 } 1217 } 1218 1219 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1220 if (CI->doesNotReturn()) { 1221 // If we found a call to a no-return function, insert an unreachable 1222 // instruction after it. Make sure there isn't *already* one there 1223 // though. 1224 ++BBI; 1225 if (!isa<UnreachableInst>(BBI)) { 1226 // Don't insert a call to llvm.trap right before the unreachable. 1227 changeToUnreachable(BBI, false); 1228 Changed = true; 1229 } 1230 break; 1231 } 1232 } 1233 1234 // Store to undef and store to null are undefined and used to signal that 1235 // they should be changed to unreachable by passes that can't modify the 1236 // CFG. 1237 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1238 // Don't touch volatile stores. 1239 if (SI->isVolatile()) continue; 1240 1241 Value *Ptr = SI->getOperand(1); 1242 1243 if (isa<UndefValue>(Ptr) || 1244 (isa<ConstantPointerNull>(Ptr) && 1245 SI->getPointerAddressSpace() == 0)) { 1246 changeToUnreachable(SI, true); 1247 Changed = true; 1248 break; 1249 } 1250 } 1251 } 1252 1253 // Turn invokes that call 'nounwind' functions into ordinary calls. 1254 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1255 Value *Callee = II->getCalledValue(); 1256 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1257 changeToUnreachable(II, true); 1258 Changed = true; 1259 } else if (II->doesNotThrow()) { 1260 if (II->use_empty() && II->onlyReadsMemory()) { 1261 // jump to the normal destination branch. 1262 BranchInst::Create(II->getNormalDest(), II); 1263 II->getUnwindDest()->removePredecessor(II->getParent()); 1264 II->eraseFromParent(); 1265 } else 1266 changeToCall(II); 1267 Changed = true; 1268 } 1269 } 1270 1271 Changed |= ConstantFoldTerminator(BB, true); 1272 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1273 if (Reachable.insert(*SI).second) 1274 Worklist.push_back(*SI); 1275 } while (!Worklist.empty()); 1276 return Changed; 1277 } 1278 1279 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1280 /// if they are in a dead cycle. Return true if a change was made, false 1281 /// otherwise. 1282 bool llvm::removeUnreachableBlocks(Function &F) { 1283 SmallPtrSet<BasicBlock*, 128> Reachable; 1284 bool Changed = markAliveBlocks(F.begin(), Reachable); 1285 1286 // If there are unreachable blocks in the CFG... 1287 if (Reachable.size() == F.size()) 1288 return Changed; 1289 1290 assert(Reachable.size() < F.size()); 1291 NumRemoved += F.size()-Reachable.size(); 1292 1293 // Loop over all of the basic blocks that are not reachable, dropping all of 1294 // their internal references... 1295 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1296 if (Reachable.count(BB)) 1297 continue; 1298 1299 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1300 if (Reachable.count(*SI)) 1301 (*SI)->removePredecessor(BB); 1302 BB->dropAllReferences(); 1303 } 1304 1305 for (Function::iterator I = ++F.begin(); I != F.end();) 1306 if (!Reachable.count(I)) 1307 I = F.getBasicBlockList().erase(I); 1308 else 1309 ++I; 1310 1311 return true; 1312 } 1313 1314 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { 1315 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1316 K->dropUnknownMetadata(KnownIDs); 1317 K->getAllMetadataOtherThanDebugLoc(Metadata); 1318 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1319 unsigned Kind = Metadata[i].first; 1320 MDNode *JMD = J->getMetadata(Kind); 1321 MDNode *KMD = Metadata[i].second; 1322 1323 switch (Kind) { 1324 default: 1325 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1326 break; 1327 case LLVMContext::MD_dbg: 1328 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1329 case LLVMContext::MD_tbaa: 1330 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1331 break; 1332 case LLVMContext::MD_alias_scope: 1333 case LLVMContext::MD_noalias: 1334 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1335 break; 1336 case LLVMContext::MD_range: 1337 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1338 break; 1339 case LLVMContext::MD_fpmath: 1340 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1341 break; 1342 case LLVMContext::MD_invariant_load: 1343 // Only set the !invariant.load if it is present in both instructions. 1344 K->setMetadata(Kind, JMD); 1345 break; 1346 case LLVMContext::MD_nonnull: 1347 // Only set the !nonnull if it is present in both instructions. 1348 K->setMetadata(Kind, JMD); 1349 break; 1350 } 1351 } 1352 } 1353