1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/CallSite.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/DomTreeUpdater.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 //===----------------------------------------------------------------------===// 95 // Local constant propagation. 96 // 97 98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 99 /// constant value, convert it into an unconditional branch to the constant 100 /// destination. This is a nontrivial operation because the successors of this 101 /// basic block must have their PHI nodes updated. 102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 103 /// conditions and indirectbr addresses this might make dead if 104 /// DeleteDeadConditions is true. 105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 106 const TargetLibraryInfo *TLI, 107 DomTreeUpdater *DTU) { 108 Instruction *T = BB->getTerminator(); 109 IRBuilder<> Builder(T); 110 111 // Branch - See if we are conditional jumping on constant 112 if (auto *BI = dyn_cast<BranchInst>(T)) { 113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 114 BasicBlock *Dest1 = BI->getSuccessor(0); 115 BasicBlock *Dest2 = BI->getSuccessor(1); 116 117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 118 // Are we branching on constant? 119 // YES. Change to unconditional branch... 120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 if (DTU) 131 DTU->deleteEdgeRelaxed(BB, OldDest); 132 return true; 133 } 134 135 if (Dest2 == Dest1) { // Conditional branch to same location? 136 // This branch matches something like this: 137 // br bool %cond, label %Dest, label %Dest 138 // and changes it into: br label %Dest 139 140 // Let the basic block know that we are letting go of one copy of it. 141 assert(BI->getParent() && "Terminator not inserted in block!"); 142 Dest1->removePredecessor(BI->getParent()); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Dest1); 146 Value *Cond = BI->getCondition(); 147 BI->eraseFromParent(); 148 if (DeleteDeadConditions) 149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 150 return true; 151 } 152 return false; 153 } 154 155 if (auto *SI = dyn_cast<SwitchInst>(T)) { 156 // If we are switching on a constant, we can convert the switch to an 157 // unconditional branch. 158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 159 BasicBlock *DefaultDest = SI->getDefaultDest(); 160 BasicBlock *TheOnlyDest = DefaultDest; 161 162 // If the default is unreachable, ignore it when searching for TheOnlyDest. 163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 164 SI->getNumCases() > 0) { 165 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 166 } 167 168 // Figure out which case it goes to. 169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 170 // Found case matching a constant operand? 171 if (i->getCaseValue() == CI) { 172 TheOnlyDest = i->getCaseSuccessor(); 173 break; 174 } 175 176 // Check to see if this branch is going to the same place as the default 177 // dest. If so, eliminate it as an explicit compare. 178 if (i->getCaseSuccessor() == DefaultDest) { 179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 180 unsigned NCases = SI->getNumCases(); 181 // Fold the case metadata into the default if there will be any branches 182 // left, unless the metadata doesn't match the switch. 183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 184 // Collect branch weights into a vector. 185 SmallVector<uint32_t, 8> Weights; 186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 187 ++MD_i) { 188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 189 Weights.push_back(CI->getValue().getZExtValue()); 190 } 191 // Merge weight of this case to the default weight. 192 unsigned idx = i->getCaseIndex(); 193 Weights[0] += Weights[idx+1]; 194 // Remove weight for this case. 195 std::swap(Weights[idx+1], Weights.back()); 196 Weights.pop_back(); 197 SI->setMetadata(LLVMContext::MD_prof, 198 MDBuilder(BB->getContext()). 199 createBranchWeights(Weights)); 200 } 201 // Remove this entry. 202 BasicBlock *ParentBB = SI->getParent(); 203 DefaultDest->removePredecessor(ParentBB); 204 i = SI->removeCase(i); 205 e = SI->case_end(); 206 if (DTU) 207 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 208 continue; 209 } 210 211 // Otherwise, check to see if the switch only branches to one destination. 212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 213 // destinations. 214 if (i->getCaseSuccessor() != TheOnlyDest) 215 TheOnlyDest = nullptr; 216 217 // Increment this iterator as we haven't removed the case. 218 ++i; 219 } 220 221 if (CI && !TheOnlyDest) { 222 // Branching on a constant, but not any of the cases, go to the default 223 // successor. 224 TheOnlyDest = SI->getDefaultDest(); 225 } 226 227 // If we found a single destination that we can fold the switch into, do so 228 // now. 229 if (TheOnlyDest) { 230 // Insert the new branch. 231 Builder.CreateBr(TheOnlyDest); 232 BasicBlock *BB = SI->getParent(); 233 std::vector <DominatorTree::UpdateType> Updates; 234 if (DTU) 235 Updates.reserve(SI->getNumSuccessors() - 1); 236 237 // Remove entries from PHI nodes which we no longer branch to... 238 for (BasicBlock *Succ : successors(SI)) { 239 // Found case matching a constant operand? 240 if (Succ == TheOnlyDest) { 241 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 242 } else { 243 Succ->removePredecessor(BB); 244 if (DTU) 245 Updates.push_back({DominatorTree::Delete, BB, Succ}); 246 } 247 } 248 249 // Delete the old switch. 250 Value *Cond = SI->getCondition(); 251 SI->eraseFromParent(); 252 if (DeleteDeadConditions) 253 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 254 if (DTU) 255 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 256 return true; 257 } 258 259 if (SI->getNumCases() == 1) { 260 // Otherwise, we can fold this switch into a conditional branch 261 // instruction if it has only one non-default destination. 262 auto FirstCase = *SI->case_begin(); 263 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 264 FirstCase.getCaseValue(), "cond"); 265 266 // Insert the new branch. 267 BranchInst *NewBr = Builder.CreateCondBr(Cond, 268 FirstCase.getCaseSuccessor(), 269 SI->getDefaultDest()); 270 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 271 if (MD && MD->getNumOperands() == 3) { 272 ConstantInt *SICase = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 274 ConstantInt *SIDef = 275 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 276 assert(SICase && SIDef); 277 // The TrueWeight should be the weight for the single case of SI. 278 NewBr->setMetadata(LLVMContext::MD_prof, 279 MDBuilder(BB->getContext()). 280 createBranchWeights(SICase->getValue().getZExtValue(), 281 SIDef->getValue().getZExtValue())); 282 } 283 284 // Update make.implicit metadata to the newly-created conditional branch. 285 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 286 if (MakeImplicitMD) 287 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 288 289 // Delete the old switch. 290 SI->eraseFromParent(); 291 return true; 292 } 293 return false; 294 } 295 296 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 297 // indirectbr blockaddress(@F, @BB) -> br label @BB 298 if (auto *BA = 299 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 300 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 301 std::vector <DominatorTree::UpdateType> Updates; 302 if (DTU) 303 Updates.reserve(IBI->getNumDestinations() - 1); 304 305 // Insert the new branch. 306 Builder.CreateBr(TheOnlyDest); 307 308 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 309 if (IBI->getDestination(i) == TheOnlyDest) { 310 TheOnlyDest = nullptr; 311 } else { 312 BasicBlock *ParentBB = IBI->getParent(); 313 BasicBlock *DestBB = IBI->getDestination(i); 314 DestBB->removePredecessor(ParentBB); 315 if (DTU) 316 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 317 } 318 } 319 Value *Address = IBI->getAddress(); 320 IBI->eraseFromParent(); 321 if (DeleteDeadConditions) 322 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 323 324 // If we didn't find our destination in the IBI successor list, then we 325 // have undefined behavior. Replace the unconditional branch with an 326 // 'unreachable' instruction. 327 if (TheOnlyDest) { 328 BB->getTerminator()->eraseFromParent(); 329 new UnreachableInst(BB->getContext(), BB); 330 } 331 332 if (DTU) 333 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 334 return true; 335 } 336 } 337 338 return false; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Local dead code elimination. 343 // 344 345 /// isInstructionTriviallyDead - Return true if the result produced by the 346 /// instruction is not used, and the instruction has no side effects. 347 /// 348 bool llvm::isInstructionTriviallyDead(Instruction *I, 349 const TargetLibraryInfo *TLI) { 350 if (!I->use_empty()) 351 return false; 352 return wouldInstructionBeTriviallyDead(I, TLI); 353 } 354 355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 356 const TargetLibraryInfo *TLI) { 357 if (I->isTerminator()) 358 return false; 359 360 // We don't want the landingpad-like instructions removed by anything this 361 // general. 362 if (I->isEHPad()) 363 return false; 364 365 // We don't want debug info removed by anything this general, unless 366 // debug info is empty. 367 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 368 if (DDI->getAddress()) 369 return false; 370 return true; 371 } 372 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 373 if (DVI->getValue()) 374 return false; 375 return true; 376 } 377 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 378 if (DLI->getLabel()) 379 return false; 380 return true; 381 } 382 383 if (!I->mayHaveSideEffects()) 384 return true; 385 386 // Special case intrinsics that "may have side effects" but can be deleted 387 // when dead. 388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 389 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 390 if (II->getIntrinsicID() == Intrinsic::stacksave || 391 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 392 return true; 393 394 // Lifetime intrinsics are dead when their right-hand is undef. 395 if (II->isLifetimeStartOrEnd()) 396 return isa<UndefValue>(II->getArgOperand(1)); 397 398 // Assumptions are dead if their condition is trivially true. Guards on 399 // true are operationally no-ops. In the future we can consider more 400 // sophisticated tradeoffs for guards considering potential for check 401 // widening, but for now we keep things simple. 402 if (II->getIntrinsicID() == Intrinsic::assume || 403 II->getIntrinsicID() == Intrinsic::experimental_guard) { 404 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 405 return !Cond->isZero(); 406 407 return false; 408 } 409 } 410 411 if (isAllocLikeFn(I, TLI)) 412 return true; 413 414 if (CallInst *CI = isFreeCall(I, TLI)) 415 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 416 return C->isNullValue() || isa<UndefValue>(C); 417 418 if (CallSite CS = CallSite(I)) 419 if (isMathLibCallNoop(CS, TLI)) 420 return true; 421 422 return false; 423 } 424 425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 426 /// trivially dead instruction, delete it. If that makes any of its operands 427 /// trivially dead, delete them too, recursively. Return true if any 428 /// instructions were deleted. 429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 430 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 431 Instruction *I = dyn_cast<Instruction>(V); 432 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 433 return false; 434 435 SmallVector<Instruction*, 16> DeadInsts; 436 DeadInsts.push_back(I); 437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 438 439 return true; 440 } 441 442 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 443 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 444 MemorySSAUpdater *MSSAU) { 445 // Process the dead instruction list until empty. 446 while (!DeadInsts.empty()) { 447 Instruction &I = *DeadInsts.pop_back_val(); 448 assert(I.use_empty() && "Instructions with uses are not dead."); 449 assert(isInstructionTriviallyDead(&I, TLI) && 450 "Live instruction found in dead worklist!"); 451 452 // Don't lose the debug info while deleting the instructions. 453 salvageDebugInfo(I); 454 455 // Null out all of the instruction's operands to see if any operand becomes 456 // dead as we go. 457 for (Use &OpU : I.operands()) { 458 Value *OpV = OpU.get(); 459 OpU.set(nullptr); 460 461 if (!OpV->use_empty()) 462 continue; 463 464 // If the operand is an instruction that became dead as we nulled out the 465 // operand, and if it is 'trivially' dead, delete it in a future loop 466 // iteration. 467 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 468 if (isInstructionTriviallyDead(OpI, TLI)) 469 DeadInsts.push_back(OpI); 470 } 471 if (MSSAU) 472 MSSAU->removeMemoryAccess(&I); 473 474 I.eraseFromParent(); 475 } 476 } 477 478 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 479 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 480 findDbgUsers(DbgUsers, I); 481 for (auto *DII : DbgUsers) { 482 Value *Undef = UndefValue::get(I->getType()); 483 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 484 ValueAsMetadata::get(Undef))); 485 } 486 return !DbgUsers.empty(); 487 } 488 489 /// areAllUsesEqual - Check whether the uses of a value are all the same. 490 /// This is similar to Instruction::hasOneUse() except this will also return 491 /// true when there are no uses or multiple uses that all refer to the same 492 /// value. 493 static bool areAllUsesEqual(Instruction *I) { 494 Value::user_iterator UI = I->user_begin(); 495 Value::user_iterator UE = I->user_end(); 496 if (UI == UE) 497 return true; 498 499 User *TheUse = *UI; 500 for (++UI; UI != UE; ++UI) { 501 if (*UI != TheUse) 502 return false; 503 } 504 return true; 505 } 506 507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 508 /// dead PHI node, due to being a def-use chain of single-use nodes that 509 /// either forms a cycle or is terminated by a trivially dead instruction, 510 /// delete it. If that makes any of its operands trivially dead, delete them 511 /// too, recursively. Return true if a change was made. 512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 513 const TargetLibraryInfo *TLI) { 514 SmallPtrSet<Instruction*, 4> Visited; 515 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 516 I = cast<Instruction>(*I->user_begin())) { 517 if (I->use_empty()) 518 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 519 520 // If we find an instruction more than once, we're on a cycle that 521 // won't prove fruitful. 522 if (!Visited.insert(I).second) { 523 // Break the cycle and delete the instruction and its operands. 524 I->replaceAllUsesWith(UndefValue::get(I->getType())); 525 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 526 return true; 527 } 528 } 529 return false; 530 } 531 532 static bool 533 simplifyAndDCEInstruction(Instruction *I, 534 SmallSetVector<Instruction *, 16> &WorkList, 535 const DataLayout &DL, 536 const TargetLibraryInfo *TLI) { 537 if (isInstructionTriviallyDead(I, TLI)) { 538 salvageDebugInfo(*I); 539 540 // Null out all of the instruction's operands to see if any operand becomes 541 // dead as we go. 542 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 543 Value *OpV = I->getOperand(i); 544 I->setOperand(i, nullptr); 545 546 if (!OpV->use_empty() || I == OpV) 547 continue; 548 549 // If the operand is an instruction that became dead as we nulled out the 550 // operand, and if it is 'trivially' dead, delete it in a future loop 551 // iteration. 552 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 553 if (isInstructionTriviallyDead(OpI, TLI)) 554 WorkList.insert(OpI); 555 } 556 557 I->eraseFromParent(); 558 559 return true; 560 } 561 562 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 563 // Add the users to the worklist. CAREFUL: an instruction can use itself, 564 // in the case of a phi node. 565 for (User *U : I->users()) { 566 if (U != I) { 567 WorkList.insert(cast<Instruction>(U)); 568 } 569 } 570 571 // Replace the instruction with its simplified value. 572 bool Changed = false; 573 if (!I->use_empty()) { 574 I->replaceAllUsesWith(SimpleV); 575 Changed = true; 576 } 577 if (isInstructionTriviallyDead(I, TLI)) { 578 I->eraseFromParent(); 579 Changed = true; 580 } 581 return Changed; 582 } 583 return false; 584 } 585 586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 587 /// simplify any instructions in it and recursively delete dead instructions. 588 /// 589 /// This returns true if it changed the code, note that it can delete 590 /// instructions in other blocks as well in this block. 591 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 592 const TargetLibraryInfo *TLI) { 593 bool MadeChange = false; 594 const DataLayout &DL = BB->getModule()->getDataLayout(); 595 596 #ifndef NDEBUG 597 // In debug builds, ensure that the terminator of the block is never replaced 598 // or deleted by these simplifications. The idea of simplification is that it 599 // cannot introduce new instructions, and there is no way to replace the 600 // terminator of a block without introducing a new instruction. 601 AssertingVH<Instruction> TerminatorVH(&BB->back()); 602 #endif 603 604 SmallSetVector<Instruction *, 16> WorkList; 605 // Iterate over the original function, only adding insts to the worklist 606 // if they actually need to be revisited. This avoids having to pre-init 607 // the worklist with the entire function's worth of instructions. 608 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 609 BI != E;) { 610 assert(!BI->isTerminator()); 611 Instruction *I = &*BI; 612 ++BI; 613 614 // We're visiting this instruction now, so make sure it's not in the 615 // worklist from an earlier visit. 616 if (!WorkList.count(I)) 617 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 618 } 619 620 while (!WorkList.empty()) { 621 Instruction *I = WorkList.pop_back_val(); 622 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 623 } 624 return MadeChange; 625 } 626 627 //===----------------------------------------------------------------------===// 628 // Control Flow Graph Restructuring. 629 // 630 631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 632 /// method is called when we're about to delete Pred as a predecessor of BB. If 633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 634 /// 635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 636 /// nodes that collapse into identity values. For example, if we have: 637 /// x = phi(1, 0, 0, 0) 638 /// y = and x, z 639 /// 640 /// .. and delete the predecessor corresponding to the '1', this will attempt to 641 /// recursively fold the and to 0. 642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 643 DomTreeUpdater *DTU) { 644 // This only adjusts blocks with PHI nodes. 645 if (!isa<PHINode>(BB->begin())) 646 return; 647 648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 649 // them down. This will leave us with single entry phi nodes and other phis 650 // that can be removed. 651 BB->removePredecessor(Pred, true); 652 653 WeakTrackingVH PhiIt = &BB->front(); 654 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 655 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 656 Value *OldPhiIt = PhiIt; 657 658 if (!recursivelySimplifyInstruction(PN)) 659 continue; 660 661 // If recursive simplification ended up deleting the next PHI node we would 662 // iterate to, then our iterator is invalid, restart scanning from the top 663 // of the block. 664 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 665 } 666 if (DTU) 667 DTU->deleteEdgeRelaxed(Pred, BB); 668 } 669 670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 672 /// between them, moving the instructions in the predecessor into DestBB and 673 /// deleting the predecessor block. 674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 675 DomTreeUpdater *DTU) { 676 677 // If BB has single-entry PHI nodes, fold them. 678 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 679 Value *NewVal = PN->getIncomingValue(0); 680 // Replace self referencing PHI with undef, it must be dead. 681 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 682 PN->replaceAllUsesWith(NewVal); 683 PN->eraseFromParent(); 684 } 685 686 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 687 assert(PredBB && "Block doesn't have a single predecessor!"); 688 689 bool ReplaceEntryBB = false; 690 if (PredBB == &DestBB->getParent()->getEntryBlock()) 691 ReplaceEntryBB = true; 692 693 // DTU updates: Collect all the edges that enter 694 // PredBB. These dominator edges will be redirected to DestBB. 695 SmallVector<DominatorTree::UpdateType, 32> Updates; 696 697 if (DTU) { 698 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 699 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 700 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 701 // This predecessor of PredBB may already have DestBB as a successor. 702 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 703 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 704 } 705 } 706 707 // Zap anything that took the address of DestBB. Not doing this will give the 708 // address an invalid value. 709 if (DestBB->hasAddressTaken()) { 710 BlockAddress *BA = BlockAddress::get(DestBB); 711 Constant *Replacement = 712 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 713 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 714 BA->getType())); 715 BA->destroyConstant(); 716 } 717 718 // Anything that branched to PredBB now branches to DestBB. 719 PredBB->replaceAllUsesWith(DestBB); 720 721 // Splice all the instructions from PredBB to DestBB. 722 PredBB->getTerminator()->eraseFromParent(); 723 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 724 new UnreachableInst(PredBB->getContext(), PredBB); 725 726 // If the PredBB is the entry block of the function, move DestBB up to 727 // become the entry block after we erase PredBB. 728 if (ReplaceEntryBB) 729 DestBB->moveAfter(PredBB); 730 731 if (DTU) { 732 assert(PredBB->getInstList().size() == 1 && 733 isa<UnreachableInst>(PredBB->getTerminator()) && 734 "The successor list of PredBB isn't empty before " 735 "applying corresponding DTU updates."); 736 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 737 DTU->deleteBB(PredBB); 738 // Recalculation of DomTree is needed when updating a forward DomTree and 739 // the Entry BB is replaced. 740 if (ReplaceEntryBB && DTU->hasDomTree()) { 741 // The entry block was removed and there is no external interface for 742 // the dominator tree to be notified of this change. In this corner-case 743 // we recalculate the entire tree. 744 DTU->recalculate(*(DestBB->getParent())); 745 } 746 } 747 748 else { 749 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 750 } 751 } 752 753 /// CanMergeValues - Return true if we can choose one of these values to use 754 /// in place of the other. Note that we will always choose the non-undef 755 /// value to keep. 756 static bool CanMergeValues(Value *First, Value *Second) { 757 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 758 } 759 760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 762 /// 763 /// Assumption: Succ is the single successor for BB. 764 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 765 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 766 767 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 768 << Succ->getName() << "\n"); 769 // Shortcut, if there is only a single predecessor it must be BB and merging 770 // is always safe 771 if (Succ->getSinglePredecessor()) return true; 772 773 // Make a list of the predecessors of BB 774 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 775 776 // Look at all the phi nodes in Succ, to see if they present a conflict when 777 // merging these blocks 778 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 779 PHINode *PN = cast<PHINode>(I); 780 781 // If the incoming value from BB is again a PHINode in 782 // BB which has the same incoming value for *PI as PN does, we can 783 // merge the phi nodes and then the blocks can still be merged 784 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 785 if (BBPN && BBPN->getParent() == BB) { 786 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 787 BasicBlock *IBB = PN->getIncomingBlock(PI); 788 if (BBPreds.count(IBB) && 789 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 790 PN->getIncomingValue(PI))) { 791 LLVM_DEBUG(dbgs() 792 << "Can't fold, phi node " << PN->getName() << " in " 793 << Succ->getName() << " is conflicting with " 794 << BBPN->getName() << " with regard to common predecessor " 795 << IBB->getName() << "\n"); 796 return false; 797 } 798 } 799 } else { 800 Value* Val = PN->getIncomingValueForBlock(BB); 801 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 802 // See if the incoming value for the common predecessor is equal to the 803 // one for BB, in which case this phi node will not prevent the merging 804 // of the block. 805 BasicBlock *IBB = PN->getIncomingBlock(PI); 806 if (BBPreds.count(IBB) && 807 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 808 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 809 << " in " << Succ->getName() 810 << " is conflicting with regard to common " 811 << "predecessor " << IBB->getName() << "\n"); 812 return false; 813 } 814 } 815 } 816 } 817 818 return true; 819 } 820 821 using PredBlockVector = SmallVector<BasicBlock *, 16>; 822 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 823 824 /// Determines the value to use as the phi node input for a block. 825 /// 826 /// Select between \p OldVal any value that we know flows from \p BB 827 /// to a particular phi on the basis of which one (if either) is not 828 /// undef. Update IncomingValues based on the selected value. 829 /// 830 /// \param OldVal The value we are considering selecting. 831 /// \param BB The block that the value flows in from. 832 /// \param IncomingValues A map from block-to-value for other phi inputs 833 /// that we have examined. 834 /// 835 /// \returns the selected value. 836 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 837 IncomingValueMap &IncomingValues) { 838 if (!isa<UndefValue>(OldVal)) { 839 assert((!IncomingValues.count(BB) || 840 IncomingValues.find(BB)->second == OldVal) && 841 "Expected OldVal to match incoming value from BB!"); 842 843 IncomingValues.insert(std::make_pair(BB, OldVal)); 844 return OldVal; 845 } 846 847 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 848 if (It != IncomingValues.end()) return It->second; 849 850 return OldVal; 851 } 852 853 /// Create a map from block to value for the operands of a 854 /// given phi. 855 /// 856 /// Create a map from block to value for each non-undef value flowing 857 /// into \p PN. 858 /// 859 /// \param PN The phi we are collecting the map for. 860 /// \param IncomingValues [out] The map from block to value for this phi. 861 static void gatherIncomingValuesToPhi(PHINode *PN, 862 IncomingValueMap &IncomingValues) { 863 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 864 BasicBlock *BB = PN->getIncomingBlock(i); 865 Value *V = PN->getIncomingValue(i); 866 867 if (!isa<UndefValue>(V)) 868 IncomingValues.insert(std::make_pair(BB, V)); 869 } 870 } 871 872 /// Replace the incoming undef values to a phi with the values 873 /// from a block-to-value map. 874 /// 875 /// \param PN The phi we are replacing the undefs in. 876 /// \param IncomingValues A map from block to value. 877 static void replaceUndefValuesInPhi(PHINode *PN, 878 const IncomingValueMap &IncomingValues) { 879 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 880 Value *V = PN->getIncomingValue(i); 881 882 if (!isa<UndefValue>(V)) continue; 883 884 BasicBlock *BB = PN->getIncomingBlock(i); 885 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 886 if (It == IncomingValues.end()) continue; 887 888 PN->setIncomingValue(i, It->second); 889 } 890 } 891 892 /// Replace a value flowing from a block to a phi with 893 /// potentially multiple instances of that value flowing from the 894 /// block's predecessors to the phi. 895 /// 896 /// \param BB The block with the value flowing into the phi. 897 /// \param BBPreds The predecessors of BB. 898 /// \param PN The phi that we are updating. 899 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 900 const PredBlockVector &BBPreds, 901 PHINode *PN) { 902 Value *OldVal = PN->removeIncomingValue(BB, false); 903 assert(OldVal && "No entry in PHI for Pred BB!"); 904 905 IncomingValueMap IncomingValues; 906 907 // We are merging two blocks - BB, and the block containing PN - and 908 // as a result we need to redirect edges from the predecessors of BB 909 // to go to the block containing PN, and update PN 910 // accordingly. Since we allow merging blocks in the case where the 911 // predecessor and successor blocks both share some predecessors, 912 // and where some of those common predecessors might have undef 913 // values flowing into PN, we want to rewrite those values to be 914 // consistent with the non-undef values. 915 916 gatherIncomingValuesToPhi(PN, IncomingValues); 917 918 // If this incoming value is one of the PHI nodes in BB, the new entries 919 // in the PHI node are the entries from the old PHI. 920 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 921 PHINode *OldValPN = cast<PHINode>(OldVal); 922 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 923 // Note that, since we are merging phi nodes and BB and Succ might 924 // have common predecessors, we could end up with a phi node with 925 // identical incoming branches. This will be cleaned up later (and 926 // will trigger asserts if we try to clean it up now, without also 927 // simplifying the corresponding conditional branch). 928 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 929 Value *PredVal = OldValPN->getIncomingValue(i); 930 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 931 IncomingValues); 932 933 // And add a new incoming value for this predecessor for the 934 // newly retargeted branch. 935 PN->addIncoming(Selected, PredBB); 936 } 937 } else { 938 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 939 // Update existing incoming values in PN for this 940 // predecessor of BB. 941 BasicBlock *PredBB = BBPreds[i]; 942 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 943 IncomingValues); 944 945 // And add a new incoming value for this predecessor for the 946 // newly retargeted branch. 947 PN->addIncoming(Selected, PredBB); 948 } 949 } 950 951 replaceUndefValuesInPhi(PN, IncomingValues); 952 } 953 954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 955 /// unconditional branch, and contains no instructions other than PHI nodes, 956 /// potential side-effect free intrinsics and the branch. If possible, 957 /// eliminate BB by rewriting all the predecessors to branch to the successor 958 /// block and return true. If we can't transform, return false. 959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 960 DomTreeUpdater *DTU) { 961 assert(BB != &BB->getParent()->getEntryBlock() && 962 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 963 964 // We can't eliminate infinite loops. 965 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 966 if (BB == Succ) return false; 967 968 // Check to see if merging these blocks would cause conflicts for any of the 969 // phi nodes in BB or Succ. If not, we can safely merge. 970 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 971 972 // Check for cases where Succ has multiple predecessors and a PHI node in BB 973 // has uses which will not disappear when the PHI nodes are merged. It is 974 // possible to handle such cases, but difficult: it requires checking whether 975 // BB dominates Succ, which is non-trivial to calculate in the case where 976 // Succ has multiple predecessors. Also, it requires checking whether 977 // constructing the necessary self-referential PHI node doesn't introduce any 978 // conflicts; this isn't too difficult, but the previous code for doing this 979 // was incorrect. 980 // 981 // Note that if this check finds a live use, BB dominates Succ, so BB is 982 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 983 // folding the branch isn't profitable in that case anyway. 984 if (!Succ->getSinglePredecessor()) { 985 BasicBlock::iterator BBI = BB->begin(); 986 while (isa<PHINode>(*BBI)) { 987 for (Use &U : BBI->uses()) { 988 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 989 if (PN->getIncomingBlock(U) != BB) 990 return false; 991 } else { 992 return false; 993 } 994 } 995 ++BBI; 996 } 997 } 998 999 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1000 1001 SmallVector<DominatorTree::UpdateType, 32> Updates; 1002 if (DTU) { 1003 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1004 // All predecessors of BB will be moved to Succ. 1005 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1006 Updates.push_back({DominatorTree::Delete, *I, BB}); 1007 // This predecessor of BB may already have Succ as a successor. 1008 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1009 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1010 } 1011 } 1012 1013 if (isa<PHINode>(Succ->begin())) { 1014 // If there is more than one pred of succ, and there are PHI nodes in 1015 // the successor, then we need to add incoming edges for the PHI nodes 1016 // 1017 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1018 1019 // Loop over all of the PHI nodes in the successor of BB. 1020 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1021 PHINode *PN = cast<PHINode>(I); 1022 1023 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1024 } 1025 } 1026 1027 if (Succ->getSinglePredecessor()) { 1028 // BB is the only predecessor of Succ, so Succ will end up with exactly 1029 // the same predecessors BB had. 1030 1031 // Copy over any phi, debug or lifetime instruction. 1032 BB->getTerminator()->eraseFromParent(); 1033 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1034 BB->getInstList()); 1035 } else { 1036 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1037 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1038 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1039 PN->eraseFromParent(); 1040 } 1041 } 1042 1043 // If the unconditional branch we replaced contains llvm.loop metadata, we 1044 // add the metadata to the branch instructions in the predecessors. 1045 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1046 Instruction *TI = BB->getTerminator(); 1047 if (TI) 1048 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1049 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1050 BasicBlock *Pred = *PI; 1051 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1052 } 1053 1054 // Everything that jumped to BB now goes to Succ. 1055 BB->replaceAllUsesWith(Succ); 1056 if (!Succ->hasName()) Succ->takeName(BB); 1057 1058 // Clear the successor list of BB to match updates applying to DTU later. 1059 if (BB->getTerminator()) 1060 BB->getInstList().pop_back(); 1061 new UnreachableInst(BB->getContext(), BB); 1062 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1063 "applying corresponding DTU updates."); 1064 1065 if (DTU) { 1066 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1067 DTU->deleteBB(BB); 1068 } else { 1069 BB->eraseFromParent(); // Delete the old basic block. 1070 } 1071 return true; 1072 } 1073 1074 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1075 /// nodes in this block. This doesn't try to be clever about PHI nodes 1076 /// which differ only in the order of the incoming values, but instcombine 1077 /// orders them so it usually won't matter. 1078 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1079 // This implementation doesn't currently consider undef operands 1080 // specially. Theoretically, two phis which are identical except for 1081 // one having an undef where the other doesn't could be collapsed. 1082 1083 struct PHIDenseMapInfo { 1084 static PHINode *getEmptyKey() { 1085 return DenseMapInfo<PHINode *>::getEmptyKey(); 1086 } 1087 1088 static PHINode *getTombstoneKey() { 1089 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1090 } 1091 1092 static unsigned getHashValue(PHINode *PN) { 1093 // Compute a hash value on the operands. Instcombine will likely have 1094 // sorted them, which helps expose duplicates, but we have to check all 1095 // the operands to be safe in case instcombine hasn't run. 1096 return static_cast<unsigned>(hash_combine( 1097 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1098 hash_combine_range(PN->block_begin(), PN->block_end()))); 1099 } 1100 1101 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1102 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1103 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1104 return LHS == RHS; 1105 return LHS->isIdenticalTo(RHS); 1106 } 1107 }; 1108 1109 // Set of unique PHINodes. 1110 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1111 1112 // Examine each PHI. 1113 bool Changed = false; 1114 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1115 auto Inserted = PHISet.insert(PN); 1116 if (!Inserted.second) { 1117 // A duplicate. Replace this PHI with its duplicate. 1118 PN->replaceAllUsesWith(*Inserted.first); 1119 PN->eraseFromParent(); 1120 Changed = true; 1121 1122 // The RAUW can change PHIs that we already visited. Start over from the 1123 // beginning. 1124 PHISet.clear(); 1125 I = BB->begin(); 1126 } 1127 } 1128 1129 return Changed; 1130 } 1131 1132 /// enforceKnownAlignment - If the specified pointer points to an object that 1133 /// we control, modify the object's alignment to PrefAlign. This isn't 1134 /// often possible though. If alignment is important, a more reliable approach 1135 /// is to simply align all global variables and allocation instructions to 1136 /// their preferred alignment from the beginning. 1137 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1138 unsigned PrefAlign, 1139 const DataLayout &DL) { 1140 assert(PrefAlign > Align); 1141 1142 V = V->stripPointerCasts(); 1143 1144 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1145 // TODO: ideally, computeKnownBits ought to have used 1146 // AllocaInst::getAlignment() in its computation already, making 1147 // the below max redundant. But, as it turns out, 1148 // stripPointerCasts recurses through infinite layers of bitcasts, 1149 // while computeKnownBits is not allowed to traverse more than 6 1150 // levels. 1151 Align = std::max(AI->getAlignment(), Align); 1152 if (PrefAlign <= Align) 1153 return Align; 1154 1155 // If the preferred alignment is greater than the natural stack alignment 1156 // then don't round up. This avoids dynamic stack realignment. 1157 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1158 return Align; 1159 AI->setAlignment(PrefAlign); 1160 return PrefAlign; 1161 } 1162 1163 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1164 // TODO: as above, this shouldn't be necessary. 1165 Align = std::max(GO->getAlignment(), Align); 1166 if (PrefAlign <= Align) 1167 return Align; 1168 1169 // If there is a large requested alignment and we can, bump up the alignment 1170 // of the global. If the memory we set aside for the global may not be the 1171 // memory used by the final program then it is impossible for us to reliably 1172 // enforce the preferred alignment. 1173 if (!GO->canIncreaseAlignment()) 1174 return Align; 1175 1176 GO->setAlignment(PrefAlign); 1177 return PrefAlign; 1178 } 1179 1180 return Align; 1181 } 1182 1183 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1184 const DataLayout &DL, 1185 const Instruction *CxtI, 1186 AssumptionCache *AC, 1187 const DominatorTree *DT) { 1188 assert(V->getType()->isPointerTy() && 1189 "getOrEnforceKnownAlignment expects a pointer!"); 1190 1191 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1192 unsigned TrailZ = Known.countMinTrailingZeros(); 1193 1194 // Avoid trouble with ridiculously large TrailZ values, such as 1195 // those computed from a null pointer. 1196 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1197 1198 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1199 1200 // LLVM doesn't support alignments larger than this currently. 1201 Align = std::min(Align, +Value::MaximumAlignment); 1202 1203 if (PrefAlign > Align) 1204 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1205 1206 // We don't need to make any adjustment. 1207 return Align; 1208 } 1209 1210 ///===---------------------------------------------------------------------===// 1211 /// Dbg Intrinsic utilities 1212 /// 1213 1214 /// See if there is a dbg.value intrinsic for DIVar before I. 1215 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1216 Instruction *I) { 1217 // Since we can't guarantee that the original dbg.declare instrinsic 1218 // is removed by LowerDbgDeclare(), we need to make sure that we are 1219 // not inserting the same dbg.value intrinsic over and over. 1220 BasicBlock::InstListType::iterator PrevI(I); 1221 if (PrevI != I->getParent()->getInstList().begin()) { 1222 --PrevI; 1223 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1224 if (DVI->getValue() == I->getOperand(0) && 1225 DVI->getVariable() == DIVar && 1226 DVI->getExpression() == DIExpr) 1227 return true; 1228 } 1229 return false; 1230 } 1231 1232 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1233 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1234 DIExpression *DIExpr, 1235 PHINode *APN) { 1236 // Since we can't guarantee that the original dbg.declare instrinsic 1237 // is removed by LowerDbgDeclare(), we need to make sure that we are 1238 // not inserting the same dbg.value intrinsic over and over. 1239 SmallVector<DbgValueInst *, 1> DbgValues; 1240 findDbgValues(DbgValues, APN); 1241 for (auto *DVI : DbgValues) { 1242 assert(DVI->getValue() == APN); 1243 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1244 return true; 1245 } 1246 return false; 1247 } 1248 1249 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1250 /// (or fragment of the variable) described by \p DII. 1251 /// 1252 /// This is primarily intended as a helper for the different 1253 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1254 /// converted describes an alloca'd variable, so we need to use the 1255 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1256 /// identified as covering an n-bit fragment, if the store size of i1 is at 1257 /// least n bits. 1258 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1259 const DataLayout &DL = DII->getModule()->getDataLayout(); 1260 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1261 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1262 return ValueSize >= *FragmentSize; 1263 // We can't always calculate the size of the DI variable (e.g. if it is a 1264 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1265 // intead. 1266 if (DII->isAddressOfVariable()) 1267 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1268 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1269 return ValueSize >= *FragmentSize; 1270 // Could not determine size of variable. Conservatively return false. 1271 return false; 1272 } 1273 1274 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1275 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1276 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1277 StoreInst *SI, DIBuilder &Builder) { 1278 assert(DII->isAddressOfVariable()); 1279 auto *DIVar = DII->getVariable(); 1280 assert(DIVar && "Missing variable"); 1281 auto *DIExpr = DII->getExpression(); 1282 Value *DV = SI->getOperand(0); 1283 1284 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1285 // FIXME: If storing to a part of the variable described by the dbg.declare, 1286 // then we want to insert a dbg.value for the corresponding fragment. 1287 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1288 << *DII << '\n'); 1289 // For now, when there is a store to parts of the variable (but we do not 1290 // know which part) we insert an dbg.value instrinsic to indicate that we 1291 // know nothing about the variable's content. 1292 DV = UndefValue::get(DV->getType()); 1293 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1294 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1295 SI); 1296 return; 1297 } 1298 1299 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1300 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1301 SI); 1302 } 1303 1304 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1305 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1306 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1307 LoadInst *LI, DIBuilder &Builder) { 1308 auto *DIVar = DII->getVariable(); 1309 auto *DIExpr = DII->getExpression(); 1310 assert(DIVar && "Missing variable"); 1311 1312 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1313 return; 1314 1315 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1316 // FIXME: If only referring to a part of the variable described by the 1317 // dbg.declare, then we want to insert a dbg.value for the corresponding 1318 // fragment. 1319 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1320 << *DII << '\n'); 1321 return; 1322 } 1323 1324 // We are now tracking the loaded value instead of the address. In the 1325 // future if multi-location support is added to the IR, it might be 1326 // preferable to keep tracking both the loaded value and the original 1327 // address in case the alloca can not be elided. 1328 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1329 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1330 DbgValue->insertAfter(LI); 1331 } 1332 1333 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1334 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1335 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1336 PHINode *APN, DIBuilder &Builder) { 1337 auto *DIVar = DII->getVariable(); 1338 auto *DIExpr = DII->getExpression(); 1339 assert(DIVar && "Missing variable"); 1340 1341 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1342 return; 1343 1344 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1345 // FIXME: If only referring to a part of the variable described by the 1346 // dbg.declare, then we want to insert a dbg.value for the corresponding 1347 // fragment. 1348 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1349 << *DII << '\n'); 1350 return; 1351 } 1352 1353 BasicBlock *BB = APN->getParent(); 1354 auto InsertionPt = BB->getFirstInsertionPt(); 1355 1356 // The block may be a catchswitch block, which does not have a valid 1357 // insertion point. 1358 // FIXME: Insert dbg.value markers in the successors when appropriate. 1359 if (InsertionPt != BB->end()) 1360 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1361 &*InsertionPt); 1362 } 1363 1364 /// Determine whether this alloca is either a VLA or an array. 1365 static bool isArray(AllocaInst *AI) { 1366 return AI->isArrayAllocation() || 1367 AI->getType()->getElementType()->isArrayTy(); 1368 } 1369 1370 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1371 /// of llvm.dbg.value intrinsics. 1372 bool llvm::LowerDbgDeclare(Function &F) { 1373 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1374 SmallVector<DbgDeclareInst *, 4> Dbgs; 1375 for (auto &FI : F) 1376 for (Instruction &BI : FI) 1377 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1378 Dbgs.push_back(DDI); 1379 1380 if (Dbgs.empty()) 1381 return false; 1382 1383 for (auto &I : Dbgs) { 1384 DbgDeclareInst *DDI = I; 1385 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1386 // If this is an alloca for a scalar variable, insert a dbg.value 1387 // at each load and store to the alloca and erase the dbg.declare. 1388 // The dbg.values allow tracking a variable even if it is not 1389 // stored on the stack, while the dbg.declare can only describe 1390 // the stack slot (and at a lexical-scope granularity). Later 1391 // passes will attempt to elide the stack slot. 1392 if (!AI || isArray(AI)) 1393 continue; 1394 1395 // A volatile load/store means that the alloca can't be elided anyway. 1396 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1397 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1398 return LI->isVolatile(); 1399 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1400 return SI->isVolatile(); 1401 return false; 1402 })) 1403 continue; 1404 1405 for (auto &AIUse : AI->uses()) { 1406 User *U = AIUse.getUser(); 1407 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1408 if (AIUse.getOperandNo() == 1) 1409 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1410 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1411 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1412 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1413 // This is a call by-value or some other instruction that takes a 1414 // pointer to the variable. Insert a *value* intrinsic that describes 1415 // the variable by dereferencing the alloca. 1416 auto *DerefExpr = 1417 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1418 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1419 DDI->getDebugLoc(), CI); 1420 } 1421 } 1422 DDI->eraseFromParent(); 1423 } 1424 return true; 1425 } 1426 1427 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1428 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1429 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1430 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1431 if (InsertedPHIs.size() == 0) 1432 return; 1433 1434 // Map existing PHI nodes to their dbg.values. 1435 ValueToValueMapTy DbgValueMap; 1436 for (auto &I : *BB) { 1437 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1438 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1439 DbgValueMap.insert({Loc, DbgII}); 1440 } 1441 } 1442 if (DbgValueMap.size() == 0) 1443 return; 1444 1445 // Then iterate through the new PHIs and look to see if they use one of the 1446 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1447 // propagate the info through the new PHI. 1448 LLVMContext &C = BB->getContext(); 1449 for (auto PHI : InsertedPHIs) { 1450 BasicBlock *Parent = PHI->getParent(); 1451 // Avoid inserting an intrinsic into an EH block. 1452 if (Parent->getFirstNonPHI()->isEHPad()) 1453 continue; 1454 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1455 for (auto VI : PHI->operand_values()) { 1456 auto V = DbgValueMap.find(VI); 1457 if (V != DbgValueMap.end()) { 1458 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1459 Instruction *NewDbgII = DbgII->clone(); 1460 NewDbgII->setOperand(0, PhiMAV); 1461 auto InsertionPt = Parent->getFirstInsertionPt(); 1462 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1463 NewDbgII->insertBefore(&*InsertionPt); 1464 } 1465 } 1466 } 1467 } 1468 1469 /// Finds all intrinsics declaring local variables as living in the memory that 1470 /// 'V' points to. This may include a mix of dbg.declare and 1471 /// dbg.addr intrinsics. 1472 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1473 // This function is hot. Check whether the value has any metadata to avoid a 1474 // DenseMap lookup. 1475 if (!V->isUsedByMetadata()) 1476 return {}; 1477 auto *L = LocalAsMetadata::getIfExists(V); 1478 if (!L) 1479 return {}; 1480 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1481 if (!MDV) 1482 return {}; 1483 1484 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1485 for (User *U : MDV->users()) { 1486 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1487 if (DII->isAddressOfVariable()) 1488 Declares.push_back(DII); 1489 } 1490 1491 return Declares; 1492 } 1493 1494 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1495 // This function is hot. Check whether the value has any metadata to avoid a 1496 // DenseMap lookup. 1497 if (!V->isUsedByMetadata()) 1498 return; 1499 if (auto *L = LocalAsMetadata::getIfExists(V)) 1500 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1501 for (User *U : MDV->users()) 1502 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1503 DbgValues.push_back(DVI); 1504 } 1505 1506 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1507 Value *V) { 1508 // This function is hot. Check whether the value has any metadata to avoid a 1509 // DenseMap lookup. 1510 if (!V->isUsedByMetadata()) 1511 return; 1512 if (auto *L = LocalAsMetadata::getIfExists(V)) 1513 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1514 for (User *U : MDV->users()) 1515 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1516 DbgUsers.push_back(DII); 1517 } 1518 1519 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1520 Instruction *InsertBefore, DIBuilder &Builder, 1521 bool DerefBefore, int Offset, bool DerefAfter) { 1522 auto DbgAddrs = FindDbgAddrUses(Address); 1523 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1524 DebugLoc Loc = DII->getDebugLoc(); 1525 auto *DIVar = DII->getVariable(); 1526 auto *DIExpr = DII->getExpression(); 1527 assert(DIVar && "Missing variable"); 1528 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1529 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1530 // llvm.dbg.declare. 1531 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1532 if (DII == InsertBefore) 1533 InsertBefore = InsertBefore->getNextNode(); 1534 DII->eraseFromParent(); 1535 } 1536 return !DbgAddrs.empty(); 1537 } 1538 1539 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1540 DIBuilder &Builder, bool DerefBefore, 1541 int Offset, bool DerefAfter) { 1542 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1543 DerefBefore, Offset, DerefAfter); 1544 } 1545 1546 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1547 DIBuilder &Builder, int Offset) { 1548 DebugLoc Loc = DVI->getDebugLoc(); 1549 auto *DIVar = DVI->getVariable(); 1550 auto *DIExpr = DVI->getExpression(); 1551 assert(DIVar && "Missing variable"); 1552 1553 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1554 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1555 // it and give up. 1556 if (!DIExpr || DIExpr->getNumElements() < 1 || 1557 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1558 return; 1559 1560 // Insert the offset immediately after the first deref. 1561 // We could just change the offset argument of dbg.value, but it's unsigned... 1562 if (Offset) { 1563 SmallVector<uint64_t, 4> Ops; 1564 Ops.push_back(dwarf::DW_OP_deref); 1565 DIExpression::appendOffset(Ops, Offset); 1566 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1567 DIExpr = Builder.createExpression(Ops); 1568 } 1569 1570 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1571 DVI->eraseFromParent(); 1572 } 1573 1574 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1575 DIBuilder &Builder, int Offset) { 1576 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1577 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1578 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1579 Use &U = *UI++; 1580 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1581 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1582 } 1583 } 1584 1585 /// Wrap \p V in a ValueAsMetadata instance. 1586 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1587 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1588 } 1589 1590 bool llvm::salvageDebugInfo(Instruction &I) { 1591 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1592 findDbgUsers(DbgUsers, &I); 1593 if (DbgUsers.empty()) 1594 return false; 1595 1596 return salvageDebugInfoForDbgValues(I, DbgUsers); 1597 } 1598 1599 bool llvm::salvageDebugInfoForDbgValues( 1600 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1601 auto &Ctx = I.getContext(); 1602 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1603 1604 for (auto *DII : DbgUsers) { 1605 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1606 // are implicitly pointing out the value as a DWARF memory location 1607 // description. 1608 bool StackValue = isa<DbgValueInst>(DII); 1609 1610 DIExpression *DIExpr = 1611 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1612 1613 // salvageDebugInfoImpl should fail on examining the first element of 1614 // DbgUsers, or none of them. 1615 if (!DIExpr) 1616 return false; 1617 1618 DII->setOperand(0, wrapMD(I.getOperand(0))); 1619 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1620 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1621 } 1622 1623 return true; 1624 } 1625 1626 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1627 DIExpression *SrcDIExpr, 1628 bool WithStackValue) { 1629 auto &M = *I.getModule(); 1630 auto &DL = M.getDataLayout(); 1631 1632 // Apply a vector of opcodes to the source DIExpression. 1633 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1634 DIExpression *DIExpr = SrcDIExpr; 1635 if (!Ops.empty()) { 1636 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1637 } 1638 return DIExpr; 1639 }; 1640 1641 // Apply the given offset to the source DIExpression. 1642 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1643 SmallVector<uint64_t, 8> Ops; 1644 DIExpression::appendOffset(Ops, Offset); 1645 return doSalvage(Ops); 1646 }; 1647 1648 // initializer-list helper for applying operators to the source DIExpression. 1649 auto applyOps = 1650 [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * { 1651 SmallVector<uint64_t, 8> Ops(Opcodes); 1652 return doSalvage(Ops); 1653 }; 1654 1655 if (auto *CI = dyn_cast<CastInst>(&I)) { 1656 if (!CI->isNoopCast(DL)) 1657 return nullptr; 1658 1659 // No-op casts are irrelevant for debug info. 1660 return SrcDIExpr; 1661 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1662 unsigned BitWidth = 1663 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1664 // Rewrite a constant GEP into a DIExpression. 1665 APInt Offset(BitWidth, 0); 1666 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1667 return applyOffset(Offset.getSExtValue()); 1668 } else { 1669 return nullptr; 1670 } 1671 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1672 // Rewrite binary operations with constant integer operands. 1673 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1674 if (!ConstInt || ConstInt->getBitWidth() > 64) 1675 return nullptr; 1676 1677 uint64_t Val = ConstInt->getSExtValue(); 1678 switch (BI->getOpcode()) { 1679 case Instruction::Add: 1680 return applyOffset(Val); 1681 case Instruction::Sub: 1682 return applyOffset(-int64_t(Val)); 1683 case Instruction::Mul: 1684 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1685 case Instruction::SDiv: 1686 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1687 case Instruction::SRem: 1688 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1689 case Instruction::Or: 1690 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1691 case Instruction::And: 1692 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1693 case Instruction::Xor: 1694 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1695 case Instruction::Shl: 1696 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1697 case Instruction::LShr: 1698 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1699 case Instruction::AShr: 1700 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1701 default: 1702 // TODO: Salvage constants from each kind of binop we know about. 1703 return nullptr; 1704 } 1705 } else if (isa<LoadInst>(&I)) { 1706 // Rewrite the load into DW_OP_deref. 1707 return DIExpression::prepend(SrcDIExpr, DIExpression::WithDeref); 1708 } 1709 return nullptr; 1710 } 1711 1712 /// A replacement for a dbg.value expression. 1713 using DbgValReplacement = Optional<DIExpression *>; 1714 1715 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1716 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1717 /// changes are made. 1718 static bool rewriteDebugUsers( 1719 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1720 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1721 // Find debug users of From. 1722 SmallVector<DbgVariableIntrinsic *, 1> Users; 1723 findDbgUsers(Users, &From); 1724 if (Users.empty()) 1725 return false; 1726 1727 // Prevent use-before-def of To. 1728 bool Changed = false; 1729 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1730 if (isa<Instruction>(&To)) { 1731 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1732 1733 for (auto *DII : Users) { 1734 // It's common to see a debug user between From and DomPoint. Move it 1735 // after DomPoint to preserve the variable update without any reordering. 1736 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1737 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1738 DII->moveAfter(&DomPoint); 1739 Changed = true; 1740 1741 // Users which otherwise aren't dominated by the replacement value must 1742 // be salvaged or deleted. 1743 } else if (!DT.dominates(&DomPoint, DII)) { 1744 DeleteOrSalvage.insert(DII); 1745 } 1746 } 1747 } 1748 1749 // Update debug users without use-before-def risk. 1750 for (auto *DII : Users) { 1751 if (DeleteOrSalvage.count(DII)) 1752 continue; 1753 1754 LLVMContext &Ctx = DII->getContext(); 1755 DbgValReplacement DVR = RewriteExpr(*DII); 1756 if (!DVR) 1757 continue; 1758 1759 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1760 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1761 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1762 Changed = true; 1763 } 1764 1765 if (!DeleteOrSalvage.empty()) { 1766 // Try to salvage the remaining debug users. 1767 Changed |= salvageDebugInfo(From); 1768 1769 // Delete the debug users which weren't salvaged. 1770 for (auto *DII : DeleteOrSalvage) { 1771 if (DII->getVariableLocation() == &From) { 1772 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1773 DII->eraseFromParent(); 1774 Changed = true; 1775 } 1776 } 1777 } 1778 1779 return Changed; 1780 } 1781 1782 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1783 /// losslessly preserve the bits and semantics of the value. This predicate is 1784 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1785 /// 1786 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1787 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1788 /// and also does not allow lossless pointer <-> integer conversions. 1789 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1790 Type *ToTy) { 1791 // Trivially compatible types. 1792 if (FromTy == ToTy) 1793 return true; 1794 1795 // Handle compatible pointer <-> integer conversions. 1796 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1797 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1798 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1799 !DL.isNonIntegralPointerType(ToTy); 1800 return SameSize && LosslessConversion; 1801 } 1802 1803 // TODO: This is not exhaustive. 1804 return false; 1805 } 1806 1807 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1808 Instruction &DomPoint, DominatorTree &DT) { 1809 // Exit early if From has no debug users. 1810 if (!From.isUsedByMetadata()) 1811 return false; 1812 1813 assert(&From != &To && "Can't replace something with itself"); 1814 1815 Type *FromTy = From.getType(); 1816 Type *ToTy = To.getType(); 1817 1818 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1819 return DII.getExpression(); 1820 }; 1821 1822 // Handle no-op conversions. 1823 Module &M = *From.getModule(); 1824 const DataLayout &DL = M.getDataLayout(); 1825 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1826 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1827 1828 // Handle integer-to-integer widening and narrowing. 1829 // FIXME: Use DW_OP_convert when it's available everywhere. 1830 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1831 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1832 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1833 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1834 1835 // When the width of the result grows, assume that a debugger will only 1836 // access the low `FromBits` bits when inspecting the source variable. 1837 if (FromBits < ToBits) 1838 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1839 1840 // The width of the result has shrunk. Use sign/zero extension to describe 1841 // the source variable's high bits. 1842 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1843 DILocalVariable *Var = DII.getVariable(); 1844 1845 // Without knowing signedness, sign/zero extension isn't possible. 1846 auto Signedness = Var->getSignedness(); 1847 if (!Signedness) 1848 return None; 1849 1850 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1851 1852 if (!Signed) { 1853 // In the unsigned case, assume that a debugger will initialize the 1854 // high bits to 0 and do a no-op conversion. 1855 return Identity(DII); 1856 } else { 1857 // In the signed case, the high bits are given by sign extension, i.e: 1858 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1859 // Calculate the high bits and OR them together with the low bits. 1860 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1861 (ToBits - 1), dwarf::DW_OP_shr, 1862 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1863 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1864 return DIExpression::appendToStack(DII.getExpression(), Ops); 1865 } 1866 }; 1867 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1868 } 1869 1870 // TODO: Floating-point conversions, vectors. 1871 return false; 1872 } 1873 1874 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1875 unsigned NumDeadInst = 0; 1876 // Delete the instructions backwards, as it has a reduced likelihood of 1877 // having to update as many def-use and use-def chains. 1878 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1879 while (EndInst != &BB->front()) { 1880 // Delete the next to last instruction. 1881 Instruction *Inst = &*--EndInst->getIterator(); 1882 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1883 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1884 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1885 EndInst = Inst; 1886 continue; 1887 } 1888 if (!isa<DbgInfoIntrinsic>(Inst)) 1889 ++NumDeadInst; 1890 Inst->eraseFromParent(); 1891 } 1892 return NumDeadInst; 1893 } 1894 1895 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1896 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1897 BasicBlock *BB = I->getParent(); 1898 std::vector <DominatorTree::UpdateType> Updates; 1899 1900 // Loop over all of the successors, removing BB's entry from any PHI 1901 // nodes. 1902 if (DTU) 1903 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1904 for (BasicBlock *Successor : successors(BB)) { 1905 Successor->removePredecessor(BB, PreserveLCSSA); 1906 if (DTU) 1907 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1908 } 1909 // Insert a call to llvm.trap right before this. This turns the undefined 1910 // behavior into a hard fail instead of falling through into random code. 1911 if (UseLLVMTrap) { 1912 Function *TrapFn = 1913 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1914 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1915 CallTrap->setDebugLoc(I->getDebugLoc()); 1916 } 1917 auto *UI = new UnreachableInst(I->getContext(), I); 1918 UI->setDebugLoc(I->getDebugLoc()); 1919 1920 // All instructions after this are dead. 1921 unsigned NumInstrsRemoved = 0; 1922 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1923 while (BBI != BBE) { 1924 if (!BBI->use_empty()) 1925 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1926 BB->getInstList().erase(BBI++); 1927 ++NumInstrsRemoved; 1928 } 1929 if (DTU) 1930 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1931 return NumInstrsRemoved; 1932 } 1933 1934 /// changeToCall - Convert the specified invoke into a normal call. 1935 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1936 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1937 SmallVector<OperandBundleDef, 1> OpBundles; 1938 II->getOperandBundlesAsDefs(OpBundles); 1939 CallInst *NewCall = CallInst::Create( 1940 II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II); 1941 NewCall->takeName(II); 1942 NewCall->setCallingConv(II->getCallingConv()); 1943 NewCall->setAttributes(II->getAttributes()); 1944 NewCall->setDebugLoc(II->getDebugLoc()); 1945 NewCall->copyMetadata(*II); 1946 II->replaceAllUsesWith(NewCall); 1947 1948 // Follow the call by a branch to the normal destination. 1949 BasicBlock *NormalDestBB = II->getNormalDest(); 1950 BranchInst::Create(NormalDestBB, II); 1951 1952 // Update PHI nodes in the unwind destination 1953 BasicBlock *BB = II->getParent(); 1954 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1955 UnwindDestBB->removePredecessor(BB); 1956 II->eraseFromParent(); 1957 if (DTU) 1958 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1959 } 1960 1961 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1962 BasicBlock *UnwindEdge) { 1963 BasicBlock *BB = CI->getParent(); 1964 1965 // Convert this function call into an invoke instruction. First, split the 1966 // basic block. 1967 BasicBlock *Split = 1968 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1969 1970 // Delete the unconditional branch inserted by splitBasicBlock 1971 BB->getInstList().pop_back(); 1972 1973 // Create the new invoke instruction. 1974 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1975 SmallVector<OperandBundleDef, 1> OpBundles; 1976 1977 CI->getOperandBundlesAsDefs(OpBundles); 1978 1979 // Note: we're round tripping operand bundles through memory here, and that 1980 // can potentially be avoided with a cleverer API design that we do not have 1981 // as of this time. 1982 1983 InvokeInst *II = 1984 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 1985 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 1986 II->setDebugLoc(CI->getDebugLoc()); 1987 II->setCallingConv(CI->getCallingConv()); 1988 II->setAttributes(CI->getAttributes()); 1989 1990 // Make sure that anything using the call now uses the invoke! This also 1991 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1992 CI->replaceAllUsesWith(II); 1993 1994 // Delete the original call 1995 Split->getInstList().pop_front(); 1996 return Split; 1997 } 1998 1999 static bool markAliveBlocks(Function &F, 2000 SmallPtrSetImpl<BasicBlock *> &Reachable, 2001 DomTreeUpdater *DTU = nullptr) { 2002 SmallVector<BasicBlock*, 128> Worklist; 2003 BasicBlock *BB = &F.front(); 2004 Worklist.push_back(BB); 2005 Reachable.insert(BB); 2006 bool Changed = false; 2007 do { 2008 BB = Worklist.pop_back_val(); 2009 2010 // Do a quick scan of the basic block, turning any obviously unreachable 2011 // instructions into LLVM unreachable insts. The instruction combining pass 2012 // canonicalizes unreachable insts into stores to null or undef. 2013 for (Instruction &I : *BB) { 2014 if (auto *CI = dyn_cast<CallInst>(&I)) { 2015 Value *Callee = CI->getCalledValue(); 2016 // Handle intrinsic calls. 2017 if (Function *F = dyn_cast<Function>(Callee)) { 2018 auto IntrinsicID = F->getIntrinsicID(); 2019 // Assumptions that are known to be false are equivalent to 2020 // unreachable. Also, if the condition is undefined, then we make the 2021 // choice most beneficial to the optimizer, and choose that to also be 2022 // unreachable. 2023 if (IntrinsicID == Intrinsic::assume) { 2024 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2025 // Don't insert a call to llvm.trap right before the unreachable. 2026 changeToUnreachable(CI, false, false, DTU); 2027 Changed = true; 2028 break; 2029 } 2030 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2031 // A call to the guard intrinsic bails out of the current 2032 // compilation unit if the predicate passed to it is false. If the 2033 // predicate is a constant false, then we know the guard will bail 2034 // out of the current compile unconditionally, so all code following 2035 // it is dead. 2036 // 2037 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2038 // guards to treat `undef` as `false` since a guard on `undef` can 2039 // still be useful for widening. 2040 if (match(CI->getArgOperand(0), m_Zero())) 2041 if (!isa<UnreachableInst>(CI->getNextNode())) { 2042 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2043 false, DTU); 2044 Changed = true; 2045 break; 2046 } 2047 } 2048 } else if ((isa<ConstantPointerNull>(Callee) && 2049 !NullPointerIsDefined(CI->getFunction())) || 2050 isa<UndefValue>(Callee)) { 2051 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2052 Changed = true; 2053 break; 2054 } 2055 if (CI->doesNotReturn()) { 2056 // If we found a call to a no-return function, insert an unreachable 2057 // instruction after it. Make sure there isn't *already* one there 2058 // though. 2059 if (!isa<UnreachableInst>(CI->getNextNode())) { 2060 // Don't insert a call to llvm.trap right before the unreachable. 2061 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2062 Changed = true; 2063 } 2064 break; 2065 } 2066 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2067 // Store to undef and store to null are undefined and used to signal 2068 // that they should be changed to unreachable by passes that can't 2069 // modify the CFG. 2070 2071 // Don't touch volatile stores. 2072 if (SI->isVolatile()) continue; 2073 2074 Value *Ptr = SI->getOperand(1); 2075 2076 if (isa<UndefValue>(Ptr) || 2077 (isa<ConstantPointerNull>(Ptr) && 2078 !NullPointerIsDefined(SI->getFunction(), 2079 SI->getPointerAddressSpace()))) { 2080 changeToUnreachable(SI, true, false, DTU); 2081 Changed = true; 2082 break; 2083 } 2084 } 2085 } 2086 2087 Instruction *Terminator = BB->getTerminator(); 2088 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2089 // Turn invokes that call 'nounwind' functions into ordinary calls. 2090 Value *Callee = II->getCalledValue(); 2091 if ((isa<ConstantPointerNull>(Callee) && 2092 !NullPointerIsDefined(BB->getParent())) || 2093 isa<UndefValue>(Callee)) { 2094 changeToUnreachable(II, true, false, DTU); 2095 Changed = true; 2096 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2097 if (II->use_empty() && II->onlyReadsMemory()) { 2098 // jump to the normal destination branch. 2099 BasicBlock *NormalDestBB = II->getNormalDest(); 2100 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2101 BranchInst::Create(NormalDestBB, II); 2102 UnwindDestBB->removePredecessor(II->getParent()); 2103 II->eraseFromParent(); 2104 if (DTU) 2105 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2106 } else 2107 changeToCall(II, DTU); 2108 Changed = true; 2109 } 2110 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2111 // Remove catchpads which cannot be reached. 2112 struct CatchPadDenseMapInfo { 2113 static CatchPadInst *getEmptyKey() { 2114 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2115 } 2116 2117 static CatchPadInst *getTombstoneKey() { 2118 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2119 } 2120 2121 static unsigned getHashValue(CatchPadInst *CatchPad) { 2122 return static_cast<unsigned>(hash_combine_range( 2123 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2124 } 2125 2126 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2127 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2128 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2129 return LHS == RHS; 2130 return LHS->isIdenticalTo(RHS); 2131 } 2132 }; 2133 2134 // Set of unique CatchPads. 2135 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2136 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2137 HandlerSet; 2138 detail::DenseSetEmpty Empty; 2139 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2140 E = CatchSwitch->handler_end(); 2141 I != E; ++I) { 2142 BasicBlock *HandlerBB = *I; 2143 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2144 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2145 CatchSwitch->removeHandler(I); 2146 --I; 2147 --E; 2148 Changed = true; 2149 } 2150 } 2151 } 2152 2153 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2154 for (BasicBlock *Successor : successors(BB)) 2155 if (Reachable.insert(Successor).second) 2156 Worklist.push_back(Successor); 2157 } while (!Worklist.empty()); 2158 return Changed; 2159 } 2160 2161 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2162 Instruction *TI = BB->getTerminator(); 2163 2164 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2165 changeToCall(II, DTU); 2166 return; 2167 } 2168 2169 Instruction *NewTI; 2170 BasicBlock *UnwindDest; 2171 2172 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2173 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2174 UnwindDest = CRI->getUnwindDest(); 2175 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2176 auto *NewCatchSwitch = CatchSwitchInst::Create( 2177 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2178 CatchSwitch->getName(), CatchSwitch); 2179 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2180 NewCatchSwitch->addHandler(PadBB); 2181 2182 NewTI = NewCatchSwitch; 2183 UnwindDest = CatchSwitch->getUnwindDest(); 2184 } else { 2185 llvm_unreachable("Could not find unwind successor"); 2186 } 2187 2188 NewTI->takeName(TI); 2189 NewTI->setDebugLoc(TI->getDebugLoc()); 2190 UnwindDest->removePredecessor(BB); 2191 TI->replaceAllUsesWith(NewTI); 2192 TI->eraseFromParent(); 2193 if (DTU) 2194 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2195 } 2196 2197 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2198 /// if they are in a dead cycle. Return true if a change was made, false 2199 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2200 /// after modifying the CFG. 2201 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2202 DomTreeUpdater *DTU, 2203 MemorySSAUpdater *MSSAU) { 2204 SmallPtrSet<BasicBlock*, 16> Reachable; 2205 bool Changed = markAliveBlocks(F, Reachable, DTU); 2206 2207 // If there are unreachable blocks in the CFG... 2208 if (Reachable.size() == F.size()) 2209 return Changed; 2210 2211 assert(Reachable.size() < F.size()); 2212 NumRemoved += F.size()-Reachable.size(); 2213 2214 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2215 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2216 auto *BB = &*I; 2217 if (Reachable.count(BB)) 2218 continue; 2219 DeadBlockSet.insert(BB); 2220 } 2221 2222 if (MSSAU) 2223 MSSAU->removeBlocks(DeadBlockSet); 2224 2225 // Loop over all of the basic blocks that are not reachable, dropping all of 2226 // their internal references. Update DTU and LVI if available. 2227 std::vector<DominatorTree::UpdateType> Updates; 2228 for (auto *BB : DeadBlockSet) { 2229 for (BasicBlock *Successor : successors(BB)) { 2230 if (!DeadBlockSet.count(Successor)) 2231 Successor->removePredecessor(BB); 2232 if (DTU) 2233 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2234 } 2235 if (LVI) 2236 LVI->eraseBlock(BB); 2237 BB->dropAllReferences(); 2238 } 2239 for (Function::iterator I = ++F.begin(); I != F.end();) { 2240 auto *BB = &*I; 2241 if (Reachable.count(BB)) { 2242 ++I; 2243 continue; 2244 } 2245 if (DTU) { 2246 // Remove the terminator of BB to clear the successor list of BB. 2247 if (BB->getTerminator()) 2248 BB->getInstList().pop_back(); 2249 new UnreachableInst(BB->getContext(), BB); 2250 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2251 "applying corresponding DTU updates."); 2252 ++I; 2253 } else { 2254 I = F.getBasicBlockList().erase(I); 2255 } 2256 } 2257 2258 if (DTU) { 2259 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2260 bool Deleted = false; 2261 for (auto *BB : DeadBlockSet) { 2262 if (DTU->isBBPendingDeletion(BB)) 2263 --NumRemoved; 2264 else 2265 Deleted = true; 2266 DTU->deleteBB(BB); 2267 } 2268 if (!Deleted) 2269 return false; 2270 } 2271 return true; 2272 } 2273 2274 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2275 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2276 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2277 K->dropUnknownNonDebugMetadata(KnownIDs); 2278 K->getAllMetadataOtherThanDebugLoc(Metadata); 2279 for (const auto &MD : Metadata) { 2280 unsigned Kind = MD.first; 2281 MDNode *JMD = J->getMetadata(Kind); 2282 MDNode *KMD = MD.second; 2283 2284 switch (Kind) { 2285 default: 2286 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2287 break; 2288 case LLVMContext::MD_dbg: 2289 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2290 case LLVMContext::MD_tbaa: 2291 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2292 break; 2293 case LLVMContext::MD_alias_scope: 2294 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2295 break; 2296 case LLVMContext::MD_noalias: 2297 case LLVMContext::MD_mem_parallel_loop_access: 2298 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2299 break; 2300 case LLVMContext::MD_access_group: 2301 K->setMetadata(LLVMContext::MD_access_group, 2302 intersectAccessGroups(K, J)); 2303 break; 2304 case LLVMContext::MD_range: 2305 2306 // If K does move, use most generic range. Otherwise keep the range of 2307 // K. 2308 if (DoesKMove) 2309 // FIXME: If K does move, we should drop the range info and nonnull. 2310 // Currently this function is used with DoesKMove in passes 2311 // doing hoisting/sinking and the current behavior of using the 2312 // most generic range is correct in those cases. 2313 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2314 break; 2315 case LLVMContext::MD_fpmath: 2316 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2317 break; 2318 case LLVMContext::MD_invariant_load: 2319 // Only set the !invariant.load if it is present in both instructions. 2320 K->setMetadata(Kind, JMD); 2321 break; 2322 case LLVMContext::MD_nonnull: 2323 // If K does move, keep nonull if it is present in both instructions. 2324 if (DoesKMove) 2325 K->setMetadata(Kind, JMD); 2326 break; 2327 case LLVMContext::MD_invariant_group: 2328 // Preserve !invariant.group in K. 2329 break; 2330 case LLVMContext::MD_align: 2331 K->setMetadata(Kind, 2332 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2333 break; 2334 case LLVMContext::MD_dereferenceable: 2335 case LLVMContext::MD_dereferenceable_or_null: 2336 K->setMetadata(Kind, 2337 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2338 break; 2339 } 2340 } 2341 // Set !invariant.group from J if J has it. If both instructions have it 2342 // then we will just pick it from J - even when they are different. 2343 // Also make sure that K is load or store - f.e. combining bitcast with load 2344 // could produce bitcast with invariant.group metadata, which is invalid. 2345 // FIXME: we should try to preserve both invariant.group md if they are 2346 // different, but right now instruction can only have one invariant.group. 2347 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2348 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2349 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2350 } 2351 2352 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2353 bool KDominatesJ) { 2354 unsigned KnownIDs[] = { 2355 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2356 LLVMContext::MD_noalias, LLVMContext::MD_range, 2357 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2358 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2359 LLVMContext::MD_dereferenceable, 2360 LLVMContext::MD_dereferenceable_or_null, 2361 LLVMContext::MD_access_group}; 2362 combineMetadata(K, J, KnownIDs, KDominatesJ); 2363 } 2364 2365 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2366 auto *ReplInst = dyn_cast<Instruction>(Repl); 2367 if (!ReplInst) 2368 return; 2369 2370 // Patch the replacement so that it is not more restrictive than the value 2371 // being replaced. 2372 // Note that if 'I' is a load being replaced by some operation, 2373 // for example, by an arithmetic operation, then andIRFlags() 2374 // would just erase all math flags from the original arithmetic 2375 // operation, which is clearly not wanted and not needed. 2376 if (!isa<LoadInst>(I)) 2377 ReplInst->andIRFlags(I); 2378 2379 // FIXME: If both the original and replacement value are part of the 2380 // same control-flow region (meaning that the execution of one 2381 // guarantees the execution of the other), then we can combine the 2382 // noalias scopes here and do better than the general conservative 2383 // answer used in combineMetadata(). 2384 2385 // In general, GVN unifies expressions over different control-flow 2386 // regions, and so we need a conservative combination of the noalias 2387 // scopes. 2388 static const unsigned KnownIDs[] = { 2389 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2390 LLVMContext::MD_noalias, LLVMContext::MD_range, 2391 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2392 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2393 LLVMContext::MD_access_group}; 2394 combineMetadata(ReplInst, I, KnownIDs, false); 2395 } 2396 2397 template <typename RootType, typename DominatesFn> 2398 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2399 const RootType &Root, 2400 const DominatesFn &Dominates) { 2401 assert(From->getType() == To->getType()); 2402 2403 unsigned Count = 0; 2404 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2405 UI != UE;) { 2406 Use &U = *UI++; 2407 if (!Dominates(Root, U)) 2408 continue; 2409 U.set(To); 2410 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2411 << "' as " << *To << " in " << *U << "\n"); 2412 ++Count; 2413 } 2414 return Count; 2415 } 2416 2417 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2418 assert(From->getType() == To->getType()); 2419 auto *BB = From->getParent(); 2420 unsigned Count = 0; 2421 2422 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2423 UI != UE;) { 2424 Use &U = *UI++; 2425 auto *I = cast<Instruction>(U.getUser()); 2426 if (I->getParent() == BB) 2427 continue; 2428 U.set(To); 2429 ++Count; 2430 } 2431 return Count; 2432 } 2433 2434 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2435 DominatorTree &DT, 2436 const BasicBlockEdge &Root) { 2437 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2438 return DT.dominates(Root, U); 2439 }; 2440 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2441 } 2442 2443 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2444 DominatorTree &DT, 2445 const BasicBlock *BB) { 2446 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2447 auto *I = cast<Instruction>(U.getUser())->getParent(); 2448 return DT.properlyDominates(BB, I); 2449 }; 2450 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2451 } 2452 2453 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2454 const TargetLibraryInfo &TLI) { 2455 // Check if the function is specifically marked as a gc leaf function. 2456 if (CS.hasFnAttr("gc-leaf-function")) 2457 return true; 2458 if (const Function *F = CS.getCalledFunction()) { 2459 if (F->hasFnAttribute("gc-leaf-function")) 2460 return true; 2461 2462 if (auto IID = F->getIntrinsicID()) 2463 // Most LLVM intrinsics do not take safepoints. 2464 return IID != Intrinsic::experimental_gc_statepoint && 2465 IID != Intrinsic::experimental_deoptimize; 2466 } 2467 2468 // Lib calls can be materialized by some passes, and won't be 2469 // marked as 'gc-leaf-function.' All available Libcalls are 2470 // GC-leaf. 2471 LibFunc LF; 2472 if (TLI.getLibFunc(CS, LF)) { 2473 return TLI.has(LF); 2474 } 2475 2476 return false; 2477 } 2478 2479 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2480 LoadInst &NewLI) { 2481 auto *NewTy = NewLI.getType(); 2482 2483 // This only directly applies if the new type is also a pointer. 2484 if (NewTy->isPointerTy()) { 2485 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2486 return; 2487 } 2488 2489 // The only other translation we can do is to integral loads with !range 2490 // metadata. 2491 if (!NewTy->isIntegerTy()) 2492 return; 2493 2494 MDBuilder MDB(NewLI.getContext()); 2495 const Value *Ptr = OldLI.getPointerOperand(); 2496 auto *ITy = cast<IntegerType>(NewTy); 2497 auto *NullInt = ConstantExpr::getPtrToInt( 2498 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2499 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2500 NewLI.setMetadata(LLVMContext::MD_range, 2501 MDB.createRange(NonNullInt, NullInt)); 2502 } 2503 2504 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2505 MDNode *N, LoadInst &NewLI) { 2506 auto *NewTy = NewLI.getType(); 2507 2508 // Give up unless it is converted to a pointer where there is a single very 2509 // valuable mapping we can do reliably. 2510 // FIXME: It would be nice to propagate this in more ways, but the type 2511 // conversions make it hard. 2512 if (!NewTy->isPointerTy()) 2513 return; 2514 2515 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2516 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2517 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2518 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2519 } 2520 } 2521 2522 void llvm::dropDebugUsers(Instruction &I) { 2523 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2524 findDbgUsers(DbgUsers, &I); 2525 for (auto *DII : DbgUsers) 2526 DII->eraseFromParent(); 2527 } 2528 2529 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2530 BasicBlock *BB) { 2531 // Since we are moving the instructions out of its basic block, we do not 2532 // retain their original debug locations (DILocations) and debug intrinsic 2533 // instructions (dbg.values). 2534 // 2535 // Doing so would degrade the debugging experience and adversely affect the 2536 // accuracy of profiling information. 2537 // 2538 // Currently, when hoisting the instructions, we take the following actions: 2539 // - Remove their dbg.values. 2540 // - Set their debug locations to the values from the insertion point. 2541 // 2542 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2543 // need to be deleted, is because there will not be any instructions with a 2544 // DILocation in either branch left after performing the transformation. We 2545 // can only insert a dbg.value after the two branches are joined again. 2546 // 2547 // See PR38762, PR39243 for more details. 2548 // 2549 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2550 // encode predicated DIExpressions that yield different results on different 2551 // code paths. 2552 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2553 Instruction *I = &*II; 2554 I->dropUnknownNonDebugMetadata(); 2555 if (I->isUsedByMetadata()) 2556 dropDebugUsers(*I); 2557 if (isa<DbgVariableIntrinsic>(I)) { 2558 // Remove DbgInfo Intrinsics. 2559 II = I->eraseFromParent(); 2560 continue; 2561 } 2562 I->setDebugLoc(InsertPt->getDebugLoc()); 2563 ++II; 2564 } 2565 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2566 BB->begin(), 2567 BB->getTerminator()->getIterator()); 2568 } 2569 2570 namespace { 2571 2572 /// A potential constituent of a bitreverse or bswap expression. See 2573 /// collectBitParts for a fuller explanation. 2574 struct BitPart { 2575 BitPart(Value *P, unsigned BW) : Provider(P) { 2576 Provenance.resize(BW); 2577 } 2578 2579 /// The Value that this is a bitreverse/bswap of. 2580 Value *Provider; 2581 2582 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2583 /// in Provider becomes bit B in the result of this expression. 2584 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2585 2586 enum { Unset = -1 }; 2587 }; 2588 2589 } // end anonymous namespace 2590 2591 /// Analyze the specified subexpression and see if it is capable of providing 2592 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2593 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2594 /// the output of the expression came from a corresponding bit in some other 2595 /// value. This function is recursive, and the end result is a mapping of 2596 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2597 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2598 /// 2599 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2600 /// that the expression deposits the low byte of %X into the high byte of the 2601 /// result and that all other bits are zero. This expression is accepted and a 2602 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2603 /// [0-7]. 2604 /// 2605 /// To avoid revisiting values, the BitPart results are memoized into the 2606 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2607 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2608 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2609 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2610 /// type instead to provide the same functionality. 2611 /// 2612 /// Because we pass around references into \c BPS, we must use a container that 2613 /// does not invalidate internal references (std::map instead of DenseMap). 2614 static const Optional<BitPart> & 2615 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2616 std::map<Value *, Optional<BitPart>> &BPS) { 2617 auto I = BPS.find(V); 2618 if (I != BPS.end()) 2619 return I->second; 2620 2621 auto &Result = BPS[V] = None; 2622 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2623 2624 if (Instruction *I = dyn_cast<Instruction>(V)) { 2625 // If this is an or instruction, it may be an inner node of the bswap. 2626 if (I->getOpcode() == Instruction::Or) { 2627 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2628 MatchBitReversals, BPS); 2629 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2630 MatchBitReversals, BPS); 2631 if (!A || !B) 2632 return Result; 2633 2634 // Try and merge the two together. 2635 if (!A->Provider || A->Provider != B->Provider) 2636 return Result; 2637 2638 Result = BitPart(A->Provider, BitWidth); 2639 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2640 if (A->Provenance[i] != BitPart::Unset && 2641 B->Provenance[i] != BitPart::Unset && 2642 A->Provenance[i] != B->Provenance[i]) 2643 return Result = None; 2644 2645 if (A->Provenance[i] == BitPart::Unset) 2646 Result->Provenance[i] = B->Provenance[i]; 2647 else 2648 Result->Provenance[i] = A->Provenance[i]; 2649 } 2650 2651 return Result; 2652 } 2653 2654 // If this is a logical shift by a constant, recurse then shift the result. 2655 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2656 unsigned BitShift = 2657 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2658 // Ensure the shift amount is defined. 2659 if (BitShift > BitWidth) 2660 return Result; 2661 2662 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2663 MatchBitReversals, BPS); 2664 if (!Res) 2665 return Result; 2666 Result = Res; 2667 2668 // Perform the "shift" on BitProvenance. 2669 auto &P = Result->Provenance; 2670 if (I->getOpcode() == Instruction::Shl) { 2671 P.erase(std::prev(P.end(), BitShift), P.end()); 2672 P.insert(P.begin(), BitShift, BitPart::Unset); 2673 } else { 2674 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2675 P.insert(P.end(), BitShift, BitPart::Unset); 2676 } 2677 2678 return Result; 2679 } 2680 2681 // If this is a logical 'and' with a mask that clears bits, recurse then 2682 // unset the appropriate bits. 2683 if (I->getOpcode() == Instruction::And && 2684 isa<ConstantInt>(I->getOperand(1))) { 2685 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2686 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2687 2688 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2689 // early exit. 2690 unsigned NumMaskedBits = AndMask.countPopulation(); 2691 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2692 return Result; 2693 2694 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2695 MatchBitReversals, BPS); 2696 if (!Res) 2697 return Result; 2698 Result = Res; 2699 2700 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2701 // If the AndMask is zero for this bit, clear the bit. 2702 if ((AndMask & Bit) == 0) 2703 Result->Provenance[i] = BitPart::Unset; 2704 return Result; 2705 } 2706 2707 // If this is a zext instruction zero extend the result. 2708 if (I->getOpcode() == Instruction::ZExt) { 2709 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2710 MatchBitReversals, BPS); 2711 if (!Res) 2712 return Result; 2713 2714 Result = BitPart(Res->Provider, BitWidth); 2715 auto NarrowBitWidth = 2716 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2717 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2718 Result->Provenance[i] = Res->Provenance[i]; 2719 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2720 Result->Provenance[i] = BitPart::Unset; 2721 return Result; 2722 } 2723 } 2724 2725 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2726 // the input value to the bswap/bitreverse. 2727 Result = BitPart(V, BitWidth); 2728 for (unsigned i = 0; i < BitWidth; ++i) 2729 Result->Provenance[i] = i; 2730 return Result; 2731 } 2732 2733 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2734 unsigned BitWidth) { 2735 if (From % 8 != To % 8) 2736 return false; 2737 // Convert from bit indices to byte indices and check for a byte reversal. 2738 From >>= 3; 2739 To >>= 3; 2740 BitWidth >>= 3; 2741 return From == BitWidth - To - 1; 2742 } 2743 2744 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2745 unsigned BitWidth) { 2746 return From == BitWidth - To - 1; 2747 } 2748 2749 bool llvm::recognizeBSwapOrBitReverseIdiom( 2750 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2751 SmallVectorImpl<Instruction *> &InsertedInsts) { 2752 if (Operator::getOpcode(I) != Instruction::Or) 2753 return false; 2754 if (!MatchBSwaps && !MatchBitReversals) 2755 return false; 2756 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2757 if (!ITy || ITy->getBitWidth() > 128) 2758 return false; // Can't do vectors or integers > 128 bits. 2759 unsigned BW = ITy->getBitWidth(); 2760 2761 unsigned DemandedBW = BW; 2762 IntegerType *DemandedTy = ITy; 2763 if (I->hasOneUse()) { 2764 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2765 DemandedTy = cast<IntegerType>(Trunc->getType()); 2766 DemandedBW = DemandedTy->getBitWidth(); 2767 } 2768 } 2769 2770 // Try to find all the pieces corresponding to the bswap. 2771 std::map<Value *, Optional<BitPart>> BPS; 2772 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2773 if (!Res) 2774 return false; 2775 auto &BitProvenance = Res->Provenance; 2776 2777 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2778 // only byteswap values with an even number of bytes. 2779 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2780 for (unsigned i = 0; i < DemandedBW; ++i) { 2781 OKForBSwap &= 2782 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2783 OKForBitReverse &= 2784 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2785 } 2786 2787 Intrinsic::ID Intrin; 2788 if (OKForBSwap && MatchBSwaps) 2789 Intrin = Intrinsic::bswap; 2790 else if (OKForBitReverse && MatchBitReversals) 2791 Intrin = Intrinsic::bitreverse; 2792 else 2793 return false; 2794 2795 if (ITy != DemandedTy) { 2796 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2797 Value *Provider = Res->Provider; 2798 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2799 // We may need to truncate the provider. 2800 if (DemandedTy != ProviderTy) { 2801 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2802 "trunc", I); 2803 InsertedInsts.push_back(Trunc); 2804 Provider = Trunc; 2805 } 2806 auto *CI = CallInst::Create(F, Provider, "rev", I); 2807 InsertedInsts.push_back(CI); 2808 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2809 InsertedInsts.push_back(ExtInst); 2810 return true; 2811 } 2812 2813 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2814 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2815 return true; 2816 } 2817 2818 // CodeGen has special handling for some string functions that may replace 2819 // them with target-specific intrinsics. Since that'd skip our interceptors 2820 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2821 // we mark affected calls as NoBuiltin, which will disable optimization 2822 // in CodeGen. 2823 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2824 CallInst *CI, const TargetLibraryInfo *TLI) { 2825 Function *F = CI->getCalledFunction(); 2826 LibFunc Func; 2827 if (F && !F->hasLocalLinkage() && F->hasName() && 2828 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2829 !F->doesNotAccessMemory()) 2830 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2831 } 2832 2833 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2834 // We can't have a PHI with a metadata type. 2835 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2836 return false; 2837 2838 // Early exit. 2839 if (!isa<Constant>(I->getOperand(OpIdx))) 2840 return true; 2841 2842 switch (I->getOpcode()) { 2843 default: 2844 return true; 2845 case Instruction::Call: 2846 case Instruction::Invoke: 2847 // Can't handle inline asm. Skip it. 2848 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2849 return false; 2850 // Many arithmetic intrinsics have no issue taking a 2851 // variable, however it's hard to distingish these from 2852 // specials such as @llvm.frameaddress that require a constant. 2853 if (isa<IntrinsicInst>(I)) 2854 return false; 2855 2856 // Constant bundle operands may need to retain their constant-ness for 2857 // correctness. 2858 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2859 return false; 2860 return true; 2861 case Instruction::ShuffleVector: 2862 // Shufflevector masks are constant. 2863 return OpIdx != 2; 2864 case Instruction::Switch: 2865 case Instruction::ExtractValue: 2866 // All operands apart from the first are constant. 2867 return OpIdx == 0; 2868 case Instruction::InsertValue: 2869 // All operands apart from the first and the second are constant. 2870 return OpIdx < 2; 2871 case Instruction::Alloca: 2872 // Static allocas (constant size in the entry block) are handled by 2873 // prologue/epilogue insertion so they're free anyway. We definitely don't 2874 // want to make them non-constant. 2875 return !cast<AllocaInst>(I)->isStaticAlloca(); 2876 case Instruction::GetElementPtr: 2877 if (OpIdx == 0) 2878 return true; 2879 gep_type_iterator It = gep_type_begin(I); 2880 for (auto E = std::next(It, OpIdx); It != E; ++It) 2881 if (It.isStruct()) 2882 return false; 2883 return true; 2884 } 2885 } 2886