xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision 84ca706be1dba3b9a7eb10a3620dfd13f089907e)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/DomTreeUpdater.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   Instruction *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->deleteEdgeRelaxed(BB, OldDest);
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208         continue;
209       }
210 
211       // Otherwise, check to see if the switch only branches to one destination.
212       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213       // destinations.
214       if (i->getCaseSuccessor() != TheOnlyDest)
215         TheOnlyDest = nullptr;
216 
217       // Increment this iterator as we haven't removed the case.
218       ++i;
219     }
220 
221     if (CI && !TheOnlyDest) {
222       // Branching on a constant, but not any of the cases, go to the default
223       // successor.
224       TheOnlyDest = SI->getDefaultDest();
225     }
226 
227     // If we found a single destination that we can fold the switch into, do so
228     // now.
229     if (TheOnlyDest) {
230       // Insert the new branch.
231       Builder.CreateBr(TheOnlyDest);
232       BasicBlock *BB = SI->getParent();
233       std::vector <DominatorTree::UpdateType> Updates;
234       if (DTU)
235         Updates.reserve(SI->getNumSuccessors() - 1);
236 
237       // Remove entries from PHI nodes which we no longer branch to...
238       for (BasicBlock *Succ : successors(SI)) {
239         // Found case matching a constant operand?
240         if (Succ == TheOnlyDest) {
241           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242         } else {
243           Succ->removePredecessor(BB);
244           if (DTU)
245             Updates.push_back({DominatorTree::Delete, BB, Succ});
246         }
247       }
248 
249       // Delete the old switch.
250       Value *Cond = SI->getCondition();
251       SI->eraseFromParent();
252       if (DeleteDeadConditions)
253         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254       if (DTU)
255         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256       return true;
257     }
258 
259     if (SI->getNumCases() == 1) {
260       // Otherwise, we can fold this switch into a conditional branch
261       // instruction if it has only one non-default destination.
262       auto FirstCase = *SI->case_begin();
263       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264           FirstCase.getCaseValue(), "cond");
265 
266       // Insert the new branch.
267       BranchInst *NewBr = Builder.CreateCondBr(Cond,
268                                                FirstCase.getCaseSuccessor(),
269                                                SI->getDefaultDest());
270       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271       if (MD && MD->getNumOperands() == 3) {
272         ConstantInt *SICase =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274         ConstantInt *SIDef =
275             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276         assert(SICase && SIDef);
277         // The TrueWeight should be the weight for the single case of SI.
278         NewBr->setMetadata(LLVMContext::MD_prof,
279                         MDBuilder(BB->getContext()).
280                         createBranchWeights(SICase->getValue().getZExtValue(),
281                                             SIDef->getValue().getZExtValue()));
282       }
283 
284       // Update make.implicit metadata to the newly-created conditional branch.
285       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286       if (MakeImplicitMD)
287         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
288 
289       // Delete the old switch.
290       SI->eraseFromParent();
291       return true;
292     }
293     return false;
294   }
295 
296   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297     // indirectbr blockaddress(@F, @BB) -> br label @BB
298     if (auto *BA =
299           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300       BasicBlock *TheOnlyDest = BA->getBasicBlock();
301       std::vector <DominatorTree::UpdateType> Updates;
302       if (DTU)
303         Updates.reserve(IBI->getNumDestinations() - 1);
304 
305       // Insert the new branch.
306       Builder.CreateBr(TheOnlyDest);
307 
308       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309         if (IBI->getDestination(i) == TheOnlyDest) {
310           TheOnlyDest = nullptr;
311         } else {
312           BasicBlock *ParentBB = IBI->getParent();
313           BasicBlock *DestBB = IBI->getDestination(i);
314           DestBB->removePredecessor(ParentBB);
315           if (DTU)
316             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317         }
318       }
319       Value *Address = IBI->getAddress();
320       IBI->eraseFromParent();
321       if (DeleteDeadConditions)
322         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
323 
324       // If we didn't find our destination in the IBI successor list, then we
325       // have undefined behavior.  Replace the unconditional branch with an
326       // 'unreachable' instruction.
327       if (TheOnlyDest) {
328         BB->getTerminator()->eraseFromParent();
329         new UnreachableInst(BB->getContext(), BB);
330       }
331 
332       if (DTU)
333         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334       return true;
335     }
336   }
337 
338   return false;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Local dead code elimination.
343 //
344 
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
347 ///
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349                                       const TargetLibraryInfo *TLI) {
350   if (!I->use_empty())
351     return false;
352   return wouldInstructionBeTriviallyDead(I, TLI);
353 }
354 
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356                                            const TargetLibraryInfo *TLI) {
357   if (I->isTerminator())
358     return false;
359 
360   // We don't want the landingpad-like instructions removed by anything this
361   // general.
362   if (I->isEHPad())
363     return false;
364 
365   // We don't want debug info removed by anything this general, unless
366   // debug info is empty.
367   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368     if (DDI->getAddress())
369       return false;
370     return true;
371   }
372   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373     if (DVI->getValue())
374       return false;
375     return true;
376   }
377   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378     if (DLI->getLabel())
379       return false;
380     return true;
381   }
382 
383   if (!I->mayHaveSideEffects())
384     return true;
385 
386   // Special case intrinsics that "may have side effects" but can be deleted
387   // when dead.
388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390     if (II->getIntrinsicID() == Intrinsic::stacksave ||
391         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392       return true;
393 
394     // Lifetime intrinsics are dead when their right-hand is undef.
395     if (II->isLifetimeStartOrEnd())
396       return isa<UndefValue>(II->getArgOperand(1));
397 
398     // Assumptions are dead if their condition is trivially true.  Guards on
399     // true are operationally no-ops.  In the future we can consider more
400     // sophisticated tradeoffs for guards considering potential for check
401     // widening, but for now we keep things simple.
402     if (II->getIntrinsicID() == Intrinsic::assume ||
403         II->getIntrinsicID() == Intrinsic::experimental_guard) {
404       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
405         return !Cond->isZero();
406 
407       return false;
408     }
409   }
410 
411   if (isAllocLikeFn(I, TLI))
412     return true;
413 
414   if (CallInst *CI = isFreeCall(I, TLI))
415     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
416       return C->isNullValue() || isa<UndefValue>(C);
417 
418   if (CallSite CS = CallSite(I))
419     if (isMathLibCallNoop(CS, TLI))
420       return true;
421 
422   return false;
423 }
424 
425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
426 /// trivially dead instruction, delete it.  If that makes any of its operands
427 /// trivially dead, delete them too, recursively.  Return true if any
428 /// instructions were deleted.
429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
430     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
431   Instruction *I = dyn_cast<Instruction>(V);
432   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
433     return false;
434 
435   SmallVector<Instruction*, 16> DeadInsts;
436   DeadInsts.push_back(I);
437   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
438 
439   return true;
440 }
441 
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
444     MemorySSAUpdater *MSSAU) {
445   // Process the dead instruction list until empty.
446   while (!DeadInsts.empty()) {
447     Instruction &I = *DeadInsts.pop_back_val();
448     assert(I.use_empty() && "Instructions with uses are not dead.");
449     assert(isInstructionTriviallyDead(&I, TLI) &&
450            "Live instruction found in dead worklist!");
451 
452     // Don't lose the debug info while deleting the instructions.
453     salvageDebugInfo(I);
454 
455     // Null out all of the instruction's operands to see if any operand becomes
456     // dead as we go.
457     for (Use &OpU : I.operands()) {
458       Value *OpV = OpU.get();
459       OpU.set(nullptr);
460 
461       if (!OpV->use_empty())
462         continue;
463 
464       // If the operand is an instruction that became dead as we nulled out the
465       // operand, and if it is 'trivially' dead, delete it in a future loop
466       // iteration.
467       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
468         if (isInstructionTriviallyDead(OpI, TLI))
469           DeadInsts.push_back(OpI);
470     }
471     if (MSSAU)
472       MSSAU->removeMemoryAccess(&I);
473 
474     I.eraseFromParent();
475   }
476 }
477 
478 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
479   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
480   findDbgUsers(DbgUsers, I);
481   for (auto *DII : DbgUsers) {
482     Value *Undef = UndefValue::get(I->getType());
483     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
484                                             ValueAsMetadata::get(Undef)));
485   }
486   return !DbgUsers.empty();
487 }
488 
489 /// areAllUsesEqual - Check whether the uses of a value are all the same.
490 /// This is similar to Instruction::hasOneUse() except this will also return
491 /// true when there are no uses or multiple uses that all refer to the same
492 /// value.
493 static bool areAllUsesEqual(Instruction *I) {
494   Value::user_iterator UI = I->user_begin();
495   Value::user_iterator UE = I->user_end();
496   if (UI == UE)
497     return true;
498 
499   User *TheUse = *UI;
500   for (++UI; UI != UE; ++UI) {
501     if (*UI != TheUse)
502       return false;
503   }
504   return true;
505 }
506 
507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
508 /// dead PHI node, due to being a def-use chain of single-use nodes that
509 /// either forms a cycle or is terminated by a trivially dead instruction,
510 /// delete it.  If that makes any of its operands trivially dead, delete them
511 /// too, recursively.  Return true if a change was made.
512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
513                                         const TargetLibraryInfo *TLI) {
514   SmallPtrSet<Instruction*, 4> Visited;
515   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
516        I = cast<Instruction>(*I->user_begin())) {
517     if (I->use_empty())
518       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
519 
520     // If we find an instruction more than once, we're on a cycle that
521     // won't prove fruitful.
522     if (!Visited.insert(I).second) {
523       // Break the cycle and delete the instruction and its operands.
524       I->replaceAllUsesWith(UndefValue::get(I->getType()));
525       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
526       return true;
527     }
528   }
529   return false;
530 }
531 
532 static bool
533 simplifyAndDCEInstruction(Instruction *I,
534                           SmallSetVector<Instruction *, 16> &WorkList,
535                           const DataLayout &DL,
536                           const TargetLibraryInfo *TLI) {
537   if (isInstructionTriviallyDead(I, TLI)) {
538     salvageDebugInfo(*I);
539 
540     // Null out all of the instruction's operands to see if any operand becomes
541     // dead as we go.
542     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
543       Value *OpV = I->getOperand(i);
544       I->setOperand(i, nullptr);
545 
546       if (!OpV->use_empty() || I == OpV)
547         continue;
548 
549       // If the operand is an instruction that became dead as we nulled out the
550       // operand, and if it is 'trivially' dead, delete it in a future loop
551       // iteration.
552       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553         if (isInstructionTriviallyDead(OpI, TLI))
554           WorkList.insert(OpI);
555     }
556 
557     I->eraseFromParent();
558 
559     return true;
560   }
561 
562   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
563     // Add the users to the worklist. CAREFUL: an instruction can use itself,
564     // in the case of a phi node.
565     for (User *U : I->users()) {
566       if (U != I) {
567         WorkList.insert(cast<Instruction>(U));
568       }
569     }
570 
571     // Replace the instruction with its simplified value.
572     bool Changed = false;
573     if (!I->use_empty()) {
574       I->replaceAllUsesWith(SimpleV);
575       Changed = true;
576     }
577     if (isInstructionTriviallyDead(I, TLI)) {
578       I->eraseFromParent();
579       Changed = true;
580     }
581     return Changed;
582   }
583   return false;
584 }
585 
586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
587 /// simplify any instructions in it and recursively delete dead instructions.
588 ///
589 /// This returns true if it changed the code, note that it can delete
590 /// instructions in other blocks as well in this block.
591 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
592                                        const TargetLibraryInfo *TLI) {
593   bool MadeChange = false;
594   const DataLayout &DL = BB->getModule()->getDataLayout();
595 
596 #ifndef NDEBUG
597   // In debug builds, ensure that the terminator of the block is never replaced
598   // or deleted by these simplifications. The idea of simplification is that it
599   // cannot introduce new instructions, and there is no way to replace the
600   // terminator of a block without introducing a new instruction.
601   AssertingVH<Instruction> TerminatorVH(&BB->back());
602 #endif
603 
604   SmallSetVector<Instruction *, 16> WorkList;
605   // Iterate over the original function, only adding insts to the worklist
606   // if they actually need to be revisited. This avoids having to pre-init
607   // the worklist with the entire function's worth of instructions.
608   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
609        BI != E;) {
610     assert(!BI->isTerminator());
611     Instruction *I = &*BI;
612     ++BI;
613 
614     // We're visiting this instruction now, so make sure it's not in the
615     // worklist from an earlier visit.
616     if (!WorkList.count(I))
617       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
618   }
619 
620   while (!WorkList.empty()) {
621     Instruction *I = WorkList.pop_back_val();
622     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
623   }
624   return MadeChange;
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //  Control Flow Graph Restructuring.
629 //
630 
631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
632 /// method is called when we're about to delete Pred as a predecessor of BB.  If
633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
634 ///
635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
636 /// nodes that collapse into identity values.  For example, if we have:
637 ///   x = phi(1, 0, 0, 0)
638 ///   y = and x, z
639 ///
640 /// .. and delete the predecessor corresponding to the '1', this will attempt to
641 /// recursively fold the and to 0.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
643                                         DomTreeUpdater *DTU) {
644   // This only adjusts blocks with PHI nodes.
645   if (!isa<PHINode>(BB->begin()))
646     return;
647 
648   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649   // them down.  This will leave us with single entry phi nodes and other phis
650   // that can be removed.
651   BB->removePredecessor(Pred, true);
652 
653   WeakTrackingVH PhiIt = &BB->front();
654   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
655     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
656     Value *OldPhiIt = PhiIt;
657 
658     if (!recursivelySimplifyInstruction(PN))
659       continue;
660 
661     // If recursive simplification ended up deleting the next PHI node we would
662     // iterate to, then our iterator is invalid, restart scanning from the top
663     // of the block.
664     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
665   }
666   if (DTU)
667     DTU->deleteEdgeRelaxed(Pred, BB);
668 }
669 
670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
672 /// between them, moving the instructions in the predecessor into DestBB and
673 /// deleting the predecessor block.
674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
675                                        DomTreeUpdater *DTU) {
676 
677   // If BB has single-entry PHI nodes, fold them.
678   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
679     Value *NewVal = PN->getIncomingValue(0);
680     // Replace self referencing PHI with undef, it must be dead.
681     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
682     PN->replaceAllUsesWith(NewVal);
683     PN->eraseFromParent();
684   }
685 
686   BasicBlock *PredBB = DestBB->getSinglePredecessor();
687   assert(PredBB && "Block doesn't have a single predecessor!");
688 
689   bool ReplaceEntryBB = false;
690   if (PredBB == &DestBB->getParent()->getEntryBlock())
691     ReplaceEntryBB = true;
692 
693   // DTU updates: Collect all the edges that enter
694   // PredBB. These dominator edges will be redirected to DestBB.
695   SmallVector<DominatorTree::UpdateType, 32> Updates;
696 
697   if (DTU) {
698     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
699     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
700       Updates.push_back({DominatorTree::Delete, *I, PredBB});
701       // This predecessor of PredBB may already have DestBB as a successor.
702       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
703         Updates.push_back({DominatorTree::Insert, *I, DestBB});
704     }
705   }
706 
707   // Zap anything that took the address of DestBB.  Not doing this will give the
708   // address an invalid value.
709   if (DestBB->hasAddressTaken()) {
710     BlockAddress *BA = BlockAddress::get(DestBB);
711     Constant *Replacement =
712       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
713     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
714                                                      BA->getType()));
715     BA->destroyConstant();
716   }
717 
718   // Anything that branched to PredBB now branches to DestBB.
719   PredBB->replaceAllUsesWith(DestBB);
720 
721   // Splice all the instructions from PredBB to DestBB.
722   PredBB->getTerminator()->eraseFromParent();
723   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
724   new UnreachableInst(PredBB->getContext(), PredBB);
725 
726   // If the PredBB is the entry block of the function, move DestBB up to
727   // become the entry block after we erase PredBB.
728   if (ReplaceEntryBB)
729     DestBB->moveAfter(PredBB);
730 
731   if (DTU) {
732     assert(PredBB->getInstList().size() == 1 &&
733            isa<UnreachableInst>(PredBB->getTerminator()) &&
734            "The successor list of PredBB isn't empty before "
735            "applying corresponding DTU updates.");
736     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
737     DTU->deleteBB(PredBB);
738     // Recalculation of DomTree is needed when updating a forward DomTree and
739     // the Entry BB is replaced.
740     if (ReplaceEntryBB && DTU->hasDomTree()) {
741       // The entry block was removed and there is no external interface for
742       // the dominator tree to be notified of this change. In this corner-case
743       // we recalculate the entire tree.
744       DTU->recalculate(*(DestBB->getParent()));
745     }
746   }
747 
748   else {
749     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
750   }
751 }
752 
753 /// CanMergeValues - Return true if we can choose one of these values to use
754 /// in place of the other. Note that we will always choose the non-undef
755 /// value to keep.
756 static bool CanMergeValues(Value *First, Value *Second) {
757   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
758 }
759 
760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
762 ///
763 /// Assumption: Succ is the single successor for BB.
764 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
765   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
766 
767   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
768                     << Succ->getName() << "\n");
769   // Shortcut, if there is only a single predecessor it must be BB and merging
770   // is always safe
771   if (Succ->getSinglePredecessor()) return true;
772 
773   // Make a list of the predecessors of BB
774   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
775 
776   // Look at all the phi nodes in Succ, to see if they present a conflict when
777   // merging these blocks
778   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
779     PHINode *PN = cast<PHINode>(I);
780 
781     // If the incoming value from BB is again a PHINode in
782     // BB which has the same incoming value for *PI as PN does, we can
783     // merge the phi nodes and then the blocks can still be merged
784     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
785     if (BBPN && BBPN->getParent() == BB) {
786       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
787         BasicBlock *IBB = PN->getIncomingBlock(PI);
788         if (BBPreds.count(IBB) &&
789             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
790                             PN->getIncomingValue(PI))) {
791           LLVM_DEBUG(dbgs()
792                      << "Can't fold, phi node " << PN->getName() << " in "
793                      << Succ->getName() << " is conflicting with "
794                      << BBPN->getName() << " with regard to common predecessor "
795                      << IBB->getName() << "\n");
796           return false;
797         }
798       }
799     } else {
800       Value* Val = PN->getIncomingValueForBlock(BB);
801       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
802         // See if the incoming value for the common predecessor is equal to the
803         // one for BB, in which case this phi node will not prevent the merging
804         // of the block.
805         BasicBlock *IBB = PN->getIncomingBlock(PI);
806         if (BBPreds.count(IBB) &&
807             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
808           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
809                             << " in " << Succ->getName()
810                             << " is conflicting with regard to common "
811                             << "predecessor " << IBB->getName() << "\n");
812           return false;
813         }
814       }
815     }
816   }
817 
818   return true;
819 }
820 
821 using PredBlockVector = SmallVector<BasicBlock *, 16>;
822 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
823 
824 /// Determines the value to use as the phi node input for a block.
825 ///
826 /// Select between \p OldVal any value that we know flows from \p BB
827 /// to a particular phi on the basis of which one (if either) is not
828 /// undef. Update IncomingValues based on the selected value.
829 ///
830 /// \param OldVal The value we are considering selecting.
831 /// \param BB The block that the value flows in from.
832 /// \param IncomingValues A map from block-to-value for other phi inputs
833 /// that we have examined.
834 ///
835 /// \returns the selected value.
836 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
837                                           IncomingValueMap &IncomingValues) {
838   if (!isa<UndefValue>(OldVal)) {
839     assert((!IncomingValues.count(BB) ||
840             IncomingValues.find(BB)->second == OldVal) &&
841            "Expected OldVal to match incoming value from BB!");
842 
843     IncomingValues.insert(std::make_pair(BB, OldVal));
844     return OldVal;
845   }
846 
847   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
848   if (It != IncomingValues.end()) return It->second;
849 
850   return OldVal;
851 }
852 
853 /// Create a map from block to value for the operands of a
854 /// given phi.
855 ///
856 /// Create a map from block to value for each non-undef value flowing
857 /// into \p PN.
858 ///
859 /// \param PN The phi we are collecting the map for.
860 /// \param IncomingValues [out] The map from block to value for this phi.
861 static void gatherIncomingValuesToPhi(PHINode *PN,
862                                       IncomingValueMap &IncomingValues) {
863   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
864     BasicBlock *BB = PN->getIncomingBlock(i);
865     Value *V = PN->getIncomingValue(i);
866 
867     if (!isa<UndefValue>(V))
868       IncomingValues.insert(std::make_pair(BB, V));
869   }
870 }
871 
872 /// Replace the incoming undef values to a phi with the values
873 /// from a block-to-value map.
874 ///
875 /// \param PN The phi we are replacing the undefs in.
876 /// \param IncomingValues A map from block to value.
877 static void replaceUndefValuesInPhi(PHINode *PN,
878                                     const IncomingValueMap &IncomingValues) {
879   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
880     Value *V = PN->getIncomingValue(i);
881 
882     if (!isa<UndefValue>(V)) continue;
883 
884     BasicBlock *BB = PN->getIncomingBlock(i);
885     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
886     if (It == IncomingValues.end()) continue;
887 
888     PN->setIncomingValue(i, It->second);
889   }
890 }
891 
892 /// Replace a value flowing from a block to a phi with
893 /// potentially multiple instances of that value flowing from the
894 /// block's predecessors to the phi.
895 ///
896 /// \param BB The block with the value flowing into the phi.
897 /// \param BBPreds The predecessors of BB.
898 /// \param PN The phi that we are updating.
899 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
900                                                 const PredBlockVector &BBPreds,
901                                                 PHINode *PN) {
902   Value *OldVal = PN->removeIncomingValue(BB, false);
903   assert(OldVal && "No entry in PHI for Pred BB!");
904 
905   IncomingValueMap IncomingValues;
906 
907   // We are merging two blocks - BB, and the block containing PN - and
908   // as a result we need to redirect edges from the predecessors of BB
909   // to go to the block containing PN, and update PN
910   // accordingly. Since we allow merging blocks in the case where the
911   // predecessor and successor blocks both share some predecessors,
912   // and where some of those common predecessors might have undef
913   // values flowing into PN, we want to rewrite those values to be
914   // consistent with the non-undef values.
915 
916   gatherIncomingValuesToPhi(PN, IncomingValues);
917 
918   // If this incoming value is one of the PHI nodes in BB, the new entries
919   // in the PHI node are the entries from the old PHI.
920   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
921     PHINode *OldValPN = cast<PHINode>(OldVal);
922     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
923       // Note that, since we are merging phi nodes and BB and Succ might
924       // have common predecessors, we could end up with a phi node with
925       // identical incoming branches. This will be cleaned up later (and
926       // will trigger asserts if we try to clean it up now, without also
927       // simplifying the corresponding conditional branch).
928       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
929       Value *PredVal = OldValPN->getIncomingValue(i);
930       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
931                                                     IncomingValues);
932 
933       // And add a new incoming value for this predecessor for the
934       // newly retargeted branch.
935       PN->addIncoming(Selected, PredBB);
936     }
937   } else {
938     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
939       // Update existing incoming values in PN for this
940       // predecessor of BB.
941       BasicBlock *PredBB = BBPreds[i];
942       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
943                                                     IncomingValues);
944 
945       // And add a new incoming value for this predecessor for the
946       // newly retargeted branch.
947       PN->addIncoming(Selected, PredBB);
948     }
949   }
950 
951   replaceUndefValuesInPhi(PN, IncomingValues);
952 }
953 
954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
955 /// unconditional branch, and contains no instructions other than PHI nodes,
956 /// potential side-effect free intrinsics and the branch.  If possible,
957 /// eliminate BB by rewriting all the predecessors to branch to the successor
958 /// block and return true.  If we can't transform, return false.
959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
960                                                    DomTreeUpdater *DTU) {
961   assert(BB != &BB->getParent()->getEntryBlock() &&
962          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
963 
964   // We can't eliminate infinite loops.
965   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
966   if (BB == Succ) return false;
967 
968   // Check to see if merging these blocks would cause conflicts for any of the
969   // phi nodes in BB or Succ. If not, we can safely merge.
970   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
971 
972   // Check for cases where Succ has multiple predecessors and a PHI node in BB
973   // has uses which will not disappear when the PHI nodes are merged.  It is
974   // possible to handle such cases, but difficult: it requires checking whether
975   // BB dominates Succ, which is non-trivial to calculate in the case where
976   // Succ has multiple predecessors.  Also, it requires checking whether
977   // constructing the necessary self-referential PHI node doesn't introduce any
978   // conflicts; this isn't too difficult, but the previous code for doing this
979   // was incorrect.
980   //
981   // Note that if this check finds a live use, BB dominates Succ, so BB is
982   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
983   // folding the branch isn't profitable in that case anyway.
984   if (!Succ->getSinglePredecessor()) {
985     BasicBlock::iterator BBI = BB->begin();
986     while (isa<PHINode>(*BBI)) {
987       for (Use &U : BBI->uses()) {
988         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
989           if (PN->getIncomingBlock(U) != BB)
990             return false;
991         } else {
992           return false;
993         }
994       }
995       ++BBI;
996     }
997   }
998 
999   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1000 
1001   SmallVector<DominatorTree::UpdateType, 32> Updates;
1002   if (DTU) {
1003     Updates.push_back({DominatorTree::Delete, BB, Succ});
1004     // All predecessors of BB will be moved to Succ.
1005     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1006       Updates.push_back({DominatorTree::Delete, *I, BB});
1007       // This predecessor of BB may already have Succ as a successor.
1008       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1009         Updates.push_back({DominatorTree::Insert, *I, Succ});
1010     }
1011   }
1012 
1013   if (isa<PHINode>(Succ->begin())) {
1014     // If there is more than one pred of succ, and there are PHI nodes in
1015     // the successor, then we need to add incoming edges for the PHI nodes
1016     //
1017     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1018 
1019     // Loop over all of the PHI nodes in the successor of BB.
1020     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1021       PHINode *PN = cast<PHINode>(I);
1022 
1023       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1024     }
1025   }
1026 
1027   if (Succ->getSinglePredecessor()) {
1028     // BB is the only predecessor of Succ, so Succ will end up with exactly
1029     // the same predecessors BB had.
1030 
1031     // Copy over any phi, debug or lifetime instruction.
1032     BB->getTerminator()->eraseFromParent();
1033     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1034                                BB->getInstList());
1035   } else {
1036     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1037       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1038       assert(PN->use_empty() && "There shouldn't be any uses here!");
1039       PN->eraseFromParent();
1040     }
1041   }
1042 
1043   // If the unconditional branch we replaced contains llvm.loop metadata, we
1044   // add the metadata to the branch instructions in the predecessors.
1045   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1046   Instruction *TI = BB->getTerminator();
1047   if (TI)
1048     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1049       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1050         BasicBlock *Pred = *PI;
1051         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1052       }
1053 
1054   // Everything that jumped to BB now goes to Succ.
1055   BB->replaceAllUsesWith(Succ);
1056   if (!Succ->hasName()) Succ->takeName(BB);
1057 
1058   // Clear the successor list of BB to match updates applying to DTU later.
1059   if (BB->getTerminator())
1060     BB->getInstList().pop_back();
1061   new UnreachableInst(BB->getContext(), BB);
1062   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1063                            "applying corresponding DTU updates.");
1064 
1065   if (DTU) {
1066     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1067     DTU->deleteBB(BB);
1068   } else {
1069     BB->eraseFromParent(); // Delete the old basic block.
1070   }
1071   return true;
1072 }
1073 
1074 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1075 /// nodes in this block. This doesn't try to be clever about PHI nodes
1076 /// which differ only in the order of the incoming values, but instcombine
1077 /// orders them so it usually won't matter.
1078 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1079   // This implementation doesn't currently consider undef operands
1080   // specially. Theoretically, two phis which are identical except for
1081   // one having an undef where the other doesn't could be collapsed.
1082 
1083   struct PHIDenseMapInfo {
1084     static PHINode *getEmptyKey() {
1085       return DenseMapInfo<PHINode *>::getEmptyKey();
1086     }
1087 
1088     static PHINode *getTombstoneKey() {
1089       return DenseMapInfo<PHINode *>::getTombstoneKey();
1090     }
1091 
1092     static unsigned getHashValue(PHINode *PN) {
1093       // Compute a hash value on the operands. Instcombine will likely have
1094       // sorted them, which helps expose duplicates, but we have to check all
1095       // the operands to be safe in case instcombine hasn't run.
1096       return static_cast<unsigned>(hash_combine(
1097           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1098           hash_combine_range(PN->block_begin(), PN->block_end())));
1099     }
1100 
1101     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1102       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1103           RHS == getEmptyKey() || RHS == getTombstoneKey())
1104         return LHS == RHS;
1105       return LHS->isIdenticalTo(RHS);
1106     }
1107   };
1108 
1109   // Set of unique PHINodes.
1110   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1111 
1112   // Examine each PHI.
1113   bool Changed = false;
1114   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1115     auto Inserted = PHISet.insert(PN);
1116     if (!Inserted.second) {
1117       // A duplicate. Replace this PHI with its duplicate.
1118       PN->replaceAllUsesWith(*Inserted.first);
1119       PN->eraseFromParent();
1120       Changed = true;
1121 
1122       // The RAUW can change PHIs that we already visited. Start over from the
1123       // beginning.
1124       PHISet.clear();
1125       I = BB->begin();
1126     }
1127   }
1128 
1129   return Changed;
1130 }
1131 
1132 /// enforceKnownAlignment - If the specified pointer points to an object that
1133 /// we control, modify the object's alignment to PrefAlign. This isn't
1134 /// often possible though. If alignment is important, a more reliable approach
1135 /// is to simply align all global variables and allocation instructions to
1136 /// their preferred alignment from the beginning.
1137 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1138                                       unsigned PrefAlign,
1139                                       const DataLayout &DL) {
1140   assert(PrefAlign > Align);
1141 
1142   V = V->stripPointerCasts();
1143 
1144   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1145     // TODO: ideally, computeKnownBits ought to have used
1146     // AllocaInst::getAlignment() in its computation already, making
1147     // the below max redundant. But, as it turns out,
1148     // stripPointerCasts recurses through infinite layers of bitcasts,
1149     // while computeKnownBits is not allowed to traverse more than 6
1150     // levels.
1151     Align = std::max(AI->getAlignment(), Align);
1152     if (PrefAlign <= Align)
1153       return Align;
1154 
1155     // If the preferred alignment is greater than the natural stack alignment
1156     // then don't round up. This avoids dynamic stack realignment.
1157     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1158       return Align;
1159     AI->setAlignment(PrefAlign);
1160     return PrefAlign;
1161   }
1162 
1163   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1164     // TODO: as above, this shouldn't be necessary.
1165     Align = std::max(GO->getAlignment(), Align);
1166     if (PrefAlign <= Align)
1167       return Align;
1168 
1169     // If there is a large requested alignment and we can, bump up the alignment
1170     // of the global.  If the memory we set aside for the global may not be the
1171     // memory used by the final program then it is impossible for us to reliably
1172     // enforce the preferred alignment.
1173     if (!GO->canIncreaseAlignment())
1174       return Align;
1175 
1176     GO->setAlignment(PrefAlign);
1177     return PrefAlign;
1178   }
1179 
1180   return Align;
1181 }
1182 
1183 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1184                                           const DataLayout &DL,
1185                                           const Instruction *CxtI,
1186                                           AssumptionCache *AC,
1187                                           const DominatorTree *DT) {
1188   assert(V->getType()->isPointerTy() &&
1189          "getOrEnforceKnownAlignment expects a pointer!");
1190 
1191   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1192   unsigned TrailZ = Known.countMinTrailingZeros();
1193 
1194   // Avoid trouble with ridiculously large TrailZ values, such as
1195   // those computed from a null pointer.
1196   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1197 
1198   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1199 
1200   // LLVM doesn't support alignments larger than this currently.
1201   Align = std::min(Align, +Value::MaximumAlignment);
1202 
1203   if (PrefAlign > Align)
1204     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1205 
1206   // We don't need to make any adjustment.
1207   return Align;
1208 }
1209 
1210 ///===---------------------------------------------------------------------===//
1211 ///  Dbg Intrinsic utilities
1212 ///
1213 
1214 /// See if there is a dbg.value intrinsic for DIVar before I.
1215 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1216                               Instruction *I) {
1217   // Since we can't guarantee that the original dbg.declare instrinsic
1218   // is removed by LowerDbgDeclare(), we need to make sure that we are
1219   // not inserting the same dbg.value intrinsic over and over.
1220   BasicBlock::InstListType::iterator PrevI(I);
1221   if (PrevI != I->getParent()->getInstList().begin()) {
1222     --PrevI;
1223     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1224       if (DVI->getValue() == I->getOperand(0) &&
1225           DVI->getVariable() == DIVar &&
1226           DVI->getExpression() == DIExpr)
1227         return true;
1228   }
1229   return false;
1230 }
1231 
1232 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1233 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1234                              DIExpression *DIExpr,
1235                              PHINode *APN) {
1236   // Since we can't guarantee that the original dbg.declare instrinsic
1237   // is removed by LowerDbgDeclare(), we need to make sure that we are
1238   // not inserting the same dbg.value intrinsic over and over.
1239   SmallVector<DbgValueInst *, 1> DbgValues;
1240   findDbgValues(DbgValues, APN);
1241   for (auto *DVI : DbgValues) {
1242     assert(DVI->getValue() == APN);
1243     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1244       return true;
1245   }
1246   return false;
1247 }
1248 
1249 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1250 /// (or fragment of the variable) described by \p DII.
1251 ///
1252 /// This is primarily intended as a helper for the different
1253 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1254 /// converted describes an alloca'd variable, so we need to use the
1255 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1256 /// identified as covering an n-bit fragment, if the store size of i1 is at
1257 /// least n bits.
1258 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1259   const DataLayout &DL = DII->getModule()->getDataLayout();
1260   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1261   if (auto FragmentSize = DII->getFragmentSizeInBits())
1262     return ValueSize >= *FragmentSize;
1263   // We can't always calculate the size of the DI variable (e.g. if it is a
1264   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1265   // intead.
1266   if (DII->isAddressOfVariable())
1267     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1268       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1269         return ValueSize >= *FragmentSize;
1270   // Could not determine size of variable. Conservatively return false.
1271   return false;
1272 }
1273 
1274 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1275 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1276 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1277                                            StoreInst *SI, DIBuilder &Builder) {
1278   assert(DII->isAddressOfVariable());
1279   auto *DIVar = DII->getVariable();
1280   assert(DIVar && "Missing variable");
1281   auto *DIExpr = DII->getExpression();
1282   Value *DV = SI->getOperand(0);
1283 
1284   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1285     // FIXME: If storing to a part of the variable described by the dbg.declare,
1286     // then we want to insert a dbg.value for the corresponding fragment.
1287     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1288                       << *DII << '\n');
1289     // For now, when there is a store to parts of the variable (but we do not
1290     // know which part) we insert an dbg.value instrinsic to indicate that we
1291     // know nothing about the variable's content.
1292     DV = UndefValue::get(DV->getType());
1293     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1294       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1295                                       SI);
1296     return;
1297   }
1298 
1299   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1300     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1301                                     SI);
1302 }
1303 
1304 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1305 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1306 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1307                                            LoadInst *LI, DIBuilder &Builder) {
1308   auto *DIVar = DII->getVariable();
1309   auto *DIExpr = DII->getExpression();
1310   assert(DIVar && "Missing variable");
1311 
1312   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1313     return;
1314 
1315   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1316     // FIXME: If only referring to a part of the variable described by the
1317     // dbg.declare, then we want to insert a dbg.value for the corresponding
1318     // fragment.
1319     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1320                       << *DII << '\n');
1321     return;
1322   }
1323 
1324   // We are now tracking the loaded value instead of the address. In the
1325   // future if multi-location support is added to the IR, it might be
1326   // preferable to keep tracking both the loaded value and the original
1327   // address in case the alloca can not be elided.
1328   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1329       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1330   DbgValue->insertAfter(LI);
1331 }
1332 
1333 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1334 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1335 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1336                                            PHINode *APN, DIBuilder &Builder) {
1337   auto *DIVar = DII->getVariable();
1338   auto *DIExpr = DII->getExpression();
1339   assert(DIVar && "Missing variable");
1340 
1341   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1342     return;
1343 
1344   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1345     // FIXME: If only referring to a part of the variable described by the
1346     // dbg.declare, then we want to insert a dbg.value for the corresponding
1347     // fragment.
1348     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1349                       << *DII << '\n');
1350     return;
1351   }
1352 
1353   BasicBlock *BB = APN->getParent();
1354   auto InsertionPt = BB->getFirstInsertionPt();
1355 
1356   // The block may be a catchswitch block, which does not have a valid
1357   // insertion point.
1358   // FIXME: Insert dbg.value markers in the successors when appropriate.
1359   if (InsertionPt != BB->end())
1360     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1361                                     &*InsertionPt);
1362 }
1363 
1364 /// Determine whether this alloca is either a VLA or an array.
1365 static bool isArray(AllocaInst *AI) {
1366   return AI->isArrayAllocation() ||
1367     AI->getType()->getElementType()->isArrayTy();
1368 }
1369 
1370 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1371 /// of llvm.dbg.value intrinsics.
1372 bool llvm::LowerDbgDeclare(Function &F) {
1373   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1374   SmallVector<DbgDeclareInst *, 4> Dbgs;
1375   for (auto &FI : F)
1376     for (Instruction &BI : FI)
1377       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1378         Dbgs.push_back(DDI);
1379 
1380   if (Dbgs.empty())
1381     return false;
1382 
1383   for (auto &I : Dbgs) {
1384     DbgDeclareInst *DDI = I;
1385     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1386     // If this is an alloca for a scalar variable, insert a dbg.value
1387     // at each load and store to the alloca and erase the dbg.declare.
1388     // The dbg.values allow tracking a variable even if it is not
1389     // stored on the stack, while the dbg.declare can only describe
1390     // the stack slot (and at a lexical-scope granularity). Later
1391     // passes will attempt to elide the stack slot.
1392     if (!AI || isArray(AI))
1393       continue;
1394 
1395     // A volatile load/store means that the alloca can't be elided anyway.
1396     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1397           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1398             return LI->isVolatile();
1399           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1400             return SI->isVolatile();
1401           return false;
1402         }))
1403       continue;
1404 
1405     for (auto &AIUse : AI->uses()) {
1406       User *U = AIUse.getUser();
1407       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1408         if (AIUse.getOperandNo() == 1)
1409           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1410       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1411         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1412       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1413         // This is a call by-value or some other instruction that takes a
1414         // pointer to the variable. Insert a *value* intrinsic that describes
1415         // the variable by dereferencing the alloca.
1416         auto *DerefExpr =
1417             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1418         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1419                                     DDI->getDebugLoc(), CI);
1420       }
1421     }
1422     DDI->eraseFromParent();
1423   }
1424   return true;
1425 }
1426 
1427 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1428 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1429                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1430   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1431   if (InsertedPHIs.size() == 0)
1432     return;
1433 
1434   // Map existing PHI nodes to their dbg.values.
1435   ValueToValueMapTy DbgValueMap;
1436   for (auto &I : *BB) {
1437     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1438       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1439         DbgValueMap.insert({Loc, DbgII});
1440     }
1441   }
1442   if (DbgValueMap.size() == 0)
1443     return;
1444 
1445   // Then iterate through the new PHIs and look to see if they use one of the
1446   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1447   // propagate the info through the new PHI.
1448   LLVMContext &C = BB->getContext();
1449   for (auto PHI : InsertedPHIs) {
1450     BasicBlock *Parent = PHI->getParent();
1451     // Avoid inserting an intrinsic into an EH block.
1452     if (Parent->getFirstNonPHI()->isEHPad())
1453       continue;
1454     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1455     for (auto VI : PHI->operand_values()) {
1456       auto V = DbgValueMap.find(VI);
1457       if (V != DbgValueMap.end()) {
1458         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1459         Instruction *NewDbgII = DbgII->clone();
1460         NewDbgII->setOperand(0, PhiMAV);
1461         auto InsertionPt = Parent->getFirstInsertionPt();
1462         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1463         NewDbgII->insertBefore(&*InsertionPt);
1464       }
1465     }
1466   }
1467 }
1468 
1469 /// Finds all intrinsics declaring local variables as living in the memory that
1470 /// 'V' points to. This may include a mix of dbg.declare and
1471 /// dbg.addr intrinsics.
1472 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1473   // This function is hot. Check whether the value has any metadata to avoid a
1474   // DenseMap lookup.
1475   if (!V->isUsedByMetadata())
1476     return {};
1477   auto *L = LocalAsMetadata::getIfExists(V);
1478   if (!L)
1479     return {};
1480   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1481   if (!MDV)
1482     return {};
1483 
1484   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1485   for (User *U : MDV->users()) {
1486     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1487       if (DII->isAddressOfVariable())
1488         Declares.push_back(DII);
1489   }
1490 
1491   return Declares;
1492 }
1493 
1494 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1495   // This function is hot. Check whether the value has any metadata to avoid a
1496   // DenseMap lookup.
1497   if (!V->isUsedByMetadata())
1498     return;
1499   if (auto *L = LocalAsMetadata::getIfExists(V))
1500     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1501       for (User *U : MDV->users())
1502         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1503           DbgValues.push_back(DVI);
1504 }
1505 
1506 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1507                         Value *V) {
1508   // This function is hot. Check whether the value has any metadata to avoid a
1509   // DenseMap lookup.
1510   if (!V->isUsedByMetadata())
1511     return;
1512   if (auto *L = LocalAsMetadata::getIfExists(V))
1513     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1514       for (User *U : MDV->users())
1515         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1516           DbgUsers.push_back(DII);
1517 }
1518 
1519 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1520                              Instruction *InsertBefore, DIBuilder &Builder,
1521                              bool DerefBefore, int Offset, bool DerefAfter) {
1522   auto DbgAddrs = FindDbgAddrUses(Address);
1523   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1524     DebugLoc Loc = DII->getDebugLoc();
1525     auto *DIVar = DII->getVariable();
1526     auto *DIExpr = DII->getExpression();
1527     assert(DIVar && "Missing variable");
1528     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1529     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1530     // llvm.dbg.declare.
1531     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1532     if (DII == InsertBefore)
1533       InsertBefore = InsertBefore->getNextNode();
1534     DII->eraseFromParent();
1535   }
1536   return !DbgAddrs.empty();
1537 }
1538 
1539 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1540                                       DIBuilder &Builder, bool DerefBefore,
1541                                       int Offset, bool DerefAfter) {
1542   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1543                            DerefBefore, Offset, DerefAfter);
1544 }
1545 
1546 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1547                                         DIBuilder &Builder, int Offset) {
1548   DebugLoc Loc = DVI->getDebugLoc();
1549   auto *DIVar = DVI->getVariable();
1550   auto *DIExpr = DVI->getExpression();
1551   assert(DIVar && "Missing variable");
1552 
1553   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1554   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1555   // it and give up.
1556   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1557       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1558     return;
1559 
1560   // Insert the offset immediately after the first deref.
1561   // We could just change the offset argument of dbg.value, but it's unsigned...
1562   if (Offset) {
1563     SmallVector<uint64_t, 4> Ops;
1564     Ops.push_back(dwarf::DW_OP_deref);
1565     DIExpression::appendOffset(Ops, Offset);
1566     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1567     DIExpr = Builder.createExpression(Ops);
1568   }
1569 
1570   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1571   DVI->eraseFromParent();
1572 }
1573 
1574 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1575                                     DIBuilder &Builder, int Offset) {
1576   if (auto *L = LocalAsMetadata::getIfExists(AI))
1577     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1578       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1579         Use &U = *UI++;
1580         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1581           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1582       }
1583 }
1584 
1585 /// Wrap \p V in a ValueAsMetadata instance.
1586 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1587   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1588 }
1589 
1590 bool llvm::salvageDebugInfo(Instruction &I) {
1591   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1592   findDbgUsers(DbgUsers, &I);
1593   if (DbgUsers.empty())
1594     return false;
1595 
1596   return salvageDebugInfoForDbgValues(I, DbgUsers);
1597 }
1598 
1599 bool llvm::salvageDebugInfoForDbgValues(
1600     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1601   auto &Ctx = I.getContext();
1602   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1603 
1604   for (auto *DII : DbgUsers) {
1605     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1606     // are implicitly pointing out the value as a DWARF memory location
1607     // description.
1608     bool StackValue = isa<DbgValueInst>(DII);
1609 
1610     DIExpression *DIExpr =
1611         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1612 
1613     // salvageDebugInfoImpl should fail on examining the first element of
1614     // DbgUsers, or none of them.
1615     if (!DIExpr)
1616       return false;
1617 
1618     DII->setOperand(0, wrapMD(I.getOperand(0)));
1619     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1620     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1621   }
1622 
1623   return true;
1624 }
1625 
1626 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1627                                          DIExpression *SrcDIExpr,
1628                                          bool WithStackValue) {
1629   auto &M = *I.getModule();
1630   auto &DL = M.getDataLayout();
1631 
1632   // Apply a vector of opcodes to the source DIExpression.
1633   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1634     DIExpression *DIExpr = SrcDIExpr;
1635     if (!Ops.empty()) {
1636       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1637     }
1638     return DIExpr;
1639   };
1640 
1641   // Apply the given offset to the source DIExpression.
1642   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1643     SmallVector<uint64_t, 8> Ops;
1644     DIExpression::appendOffset(Ops, Offset);
1645     return doSalvage(Ops);
1646   };
1647 
1648   // initializer-list helper for applying operators to the source DIExpression.
1649   auto applyOps =
1650       [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
1651     SmallVector<uint64_t, 8> Ops(Opcodes);
1652     return doSalvage(Ops);
1653   };
1654 
1655   if (auto *CI = dyn_cast<CastInst>(&I)) {
1656     if (!CI->isNoopCast(DL))
1657       return nullptr;
1658 
1659     // No-op casts are irrelevant for debug info.
1660     return SrcDIExpr;
1661   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1662     unsigned BitWidth =
1663         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1664     // Rewrite a constant GEP into a DIExpression.
1665     APInt Offset(BitWidth, 0);
1666     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1667       return applyOffset(Offset.getSExtValue());
1668     } else {
1669       return nullptr;
1670     }
1671   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1672     // Rewrite binary operations with constant integer operands.
1673     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1674     if (!ConstInt || ConstInt->getBitWidth() > 64)
1675       return nullptr;
1676 
1677     uint64_t Val = ConstInt->getSExtValue();
1678     switch (BI->getOpcode()) {
1679     case Instruction::Add:
1680       return applyOffset(Val);
1681     case Instruction::Sub:
1682       return applyOffset(-int64_t(Val));
1683     case Instruction::Mul:
1684       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1685     case Instruction::SDiv:
1686       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1687     case Instruction::SRem:
1688       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1689     case Instruction::Or:
1690       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1691     case Instruction::And:
1692       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1693     case Instruction::Xor:
1694       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1695     case Instruction::Shl:
1696       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1697     case Instruction::LShr:
1698       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1699     case Instruction::AShr:
1700       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1701     default:
1702       // TODO: Salvage constants from each kind of binop we know about.
1703       return nullptr;
1704     }
1705   } else if (isa<LoadInst>(&I)) {
1706     // Rewrite the load into DW_OP_deref.
1707     return DIExpression::prepend(SrcDIExpr, DIExpression::WithDeref);
1708   }
1709   return nullptr;
1710 }
1711 
1712 /// A replacement for a dbg.value expression.
1713 using DbgValReplacement = Optional<DIExpression *>;
1714 
1715 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1716 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1717 /// changes are made.
1718 static bool rewriteDebugUsers(
1719     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1720     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1721   // Find debug users of From.
1722   SmallVector<DbgVariableIntrinsic *, 1> Users;
1723   findDbgUsers(Users, &From);
1724   if (Users.empty())
1725     return false;
1726 
1727   // Prevent use-before-def of To.
1728   bool Changed = false;
1729   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1730   if (isa<Instruction>(&To)) {
1731     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1732 
1733     for (auto *DII : Users) {
1734       // It's common to see a debug user between From and DomPoint. Move it
1735       // after DomPoint to preserve the variable update without any reordering.
1736       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1737         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1738         DII->moveAfter(&DomPoint);
1739         Changed = true;
1740 
1741       // Users which otherwise aren't dominated by the replacement value must
1742       // be salvaged or deleted.
1743       } else if (!DT.dominates(&DomPoint, DII)) {
1744         DeleteOrSalvage.insert(DII);
1745       }
1746     }
1747   }
1748 
1749   // Update debug users without use-before-def risk.
1750   for (auto *DII : Users) {
1751     if (DeleteOrSalvage.count(DII))
1752       continue;
1753 
1754     LLVMContext &Ctx = DII->getContext();
1755     DbgValReplacement DVR = RewriteExpr(*DII);
1756     if (!DVR)
1757       continue;
1758 
1759     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1760     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1761     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1762     Changed = true;
1763   }
1764 
1765   if (!DeleteOrSalvage.empty()) {
1766     // Try to salvage the remaining debug users.
1767     Changed |= salvageDebugInfo(From);
1768 
1769     // Delete the debug users which weren't salvaged.
1770     for (auto *DII : DeleteOrSalvage) {
1771       if (DII->getVariableLocation() == &From) {
1772         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1773         DII->eraseFromParent();
1774         Changed = true;
1775       }
1776     }
1777   }
1778 
1779   return Changed;
1780 }
1781 
1782 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1783 /// losslessly preserve the bits and semantics of the value. This predicate is
1784 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1785 ///
1786 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1787 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1788 /// and also does not allow lossless pointer <-> integer conversions.
1789 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1790                                          Type *ToTy) {
1791   // Trivially compatible types.
1792   if (FromTy == ToTy)
1793     return true;
1794 
1795   // Handle compatible pointer <-> integer conversions.
1796   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1797     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1798     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1799                               !DL.isNonIntegralPointerType(ToTy);
1800     return SameSize && LosslessConversion;
1801   }
1802 
1803   // TODO: This is not exhaustive.
1804   return false;
1805 }
1806 
1807 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1808                                  Instruction &DomPoint, DominatorTree &DT) {
1809   // Exit early if From has no debug users.
1810   if (!From.isUsedByMetadata())
1811     return false;
1812 
1813   assert(&From != &To && "Can't replace something with itself");
1814 
1815   Type *FromTy = From.getType();
1816   Type *ToTy = To.getType();
1817 
1818   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1819     return DII.getExpression();
1820   };
1821 
1822   // Handle no-op conversions.
1823   Module &M = *From.getModule();
1824   const DataLayout &DL = M.getDataLayout();
1825   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1826     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1827 
1828   // Handle integer-to-integer widening and narrowing.
1829   // FIXME: Use DW_OP_convert when it's available everywhere.
1830   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1831     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1832     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1833     assert(FromBits != ToBits && "Unexpected no-op conversion");
1834 
1835     // When the width of the result grows, assume that a debugger will only
1836     // access the low `FromBits` bits when inspecting the source variable.
1837     if (FromBits < ToBits)
1838       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1839 
1840     // The width of the result has shrunk. Use sign/zero extension to describe
1841     // the source variable's high bits.
1842     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1843       DILocalVariable *Var = DII.getVariable();
1844 
1845       // Without knowing signedness, sign/zero extension isn't possible.
1846       auto Signedness = Var->getSignedness();
1847       if (!Signedness)
1848         return None;
1849 
1850       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1851 
1852       if (!Signed) {
1853         // In the unsigned case, assume that a debugger will initialize the
1854         // high bits to 0 and do a no-op conversion.
1855         return Identity(DII);
1856       } else {
1857         // In the signed case, the high bits are given by sign extension, i.e:
1858         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1859         // Calculate the high bits and OR them together with the low bits.
1860         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1861                                       (ToBits - 1), dwarf::DW_OP_shr,
1862                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1863                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1864         return DIExpression::appendToStack(DII.getExpression(), Ops);
1865       }
1866     };
1867     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1868   }
1869 
1870   // TODO: Floating-point conversions, vectors.
1871   return false;
1872 }
1873 
1874 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1875   unsigned NumDeadInst = 0;
1876   // Delete the instructions backwards, as it has a reduced likelihood of
1877   // having to update as many def-use and use-def chains.
1878   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1879   while (EndInst != &BB->front()) {
1880     // Delete the next to last instruction.
1881     Instruction *Inst = &*--EndInst->getIterator();
1882     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1883       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1884     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1885       EndInst = Inst;
1886       continue;
1887     }
1888     if (!isa<DbgInfoIntrinsic>(Inst))
1889       ++NumDeadInst;
1890     Inst->eraseFromParent();
1891   }
1892   return NumDeadInst;
1893 }
1894 
1895 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1896                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1897   BasicBlock *BB = I->getParent();
1898   std::vector <DominatorTree::UpdateType> Updates;
1899 
1900   // Loop over all of the successors, removing BB's entry from any PHI
1901   // nodes.
1902   if (DTU)
1903     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1904   for (BasicBlock *Successor : successors(BB)) {
1905     Successor->removePredecessor(BB, PreserveLCSSA);
1906     if (DTU)
1907       Updates.push_back({DominatorTree::Delete, BB, Successor});
1908   }
1909   // Insert a call to llvm.trap right before this.  This turns the undefined
1910   // behavior into a hard fail instead of falling through into random code.
1911   if (UseLLVMTrap) {
1912     Function *TrapFn =
1913       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1914     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1915     CallTrap->setDebugLoc(I->getDebugLoc());
1916   }
1917   auto *UI = new UnreachableInst(I->getContext(), I);
1918   UI->setDebugLoc(I->getDebugLoc());
1919 
1920   // All instructions after this are dead.
1921   unsigned NumInstrsRemoved = 0;
1922   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1923   while (BBI != BBE) {
1924     if (!BBI->use_empty())
1925       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1926     BB->getInstList().erase(BBI++);
1927     ++NumInstrsRemoved;
1928   }
1929   if (DTU)
1930     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1931   return NumInstrsRemoved;
1932 }
1933 
1934 /// changeToCall - Convert the specified invoke into a normal call.
1935 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1936   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1937   SmallVector<OperandBundleDef, 1> OpBundles;
1938   II->getOperandBundlesAsDefs(OpBundles);
1939   CallInst *NewCall = CallInst::Create(
1940       II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II);
1941   NewCall->takeName(II);
1942   NewCall->setCallingConv(II->getCallingConv());
1943   NewCall->setAttributes(II->getAttributes());
1944   NewCall->setDebugLoc(II->getDebugLoc());
1945   NewCall->copyMetadata(*II);
1946   II->replaceAllUsesWith(NewCall);
1947 
1948   // Follow the call by a branch to the normal destination.
1949   BasicBlock *NormalDestBB = II->getNormalDest();
1950   BranchInst::Create(NormalDestBB, II);
1951 
1952   // Update PHI nodes in the unwind destination
1953   BasicBlock *BB = II->getParent();
1954   BasicBlock *UnwindDestBB = II->getUnwindDest();
1955   UnwindDestBB->removePredecessor(BB);
1956   II->eraseFromParent();
1957   if (DTU)
1958     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1959 }
1960 
1961 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1962                                                    BasicBlock *UnwindEdge) {
1963   BasicBlock *BB = CI->getParent();
1964 
1965   // Convert this function call into an invoke instruction.  First, split the
1966   // basic block.
1967   BasicBlock *Split =
1968       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1969 
1970   // Delete the unconditional branch inserted by splitBasicBlock
1971   BB->getInstList().pop_back();
1972 
1973   // Create the new invoke instruction.
1974   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1975   SmallVector<OperandBundleDef, 1> OpBundles;
1976 
1977   CI->getOperandBundlesAsDefs(OpBundles);
1978 
1979   // Note: we're round tripping operand bundles through memory here, and that
1980   // can potentially be avoided with a cleverer API design that we do not have
1981   // as of this time.
1982 
1983   InvokeInst *II =
1984       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
1985                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
1986   II->setDebugLoc(CI->getDebugLoc());
1987   II->setCallingConv(CI->getCallingConv());
1988   II->setAttributes(CI->getAttributes());
1989 
1990   // Make sure that anything using the call now uses the invoke!  This also
1991   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1992   CI->replaceAllUsesWith(II);
1993 
1994   // Delete the original call
1995   Split->getInstList().pop_front();
1996   return Split;
1997 }
1998 
1999 static bool markAliveBlocks(Function &F,
2000                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2001                             DomTreeUpdater *DTU = nullptr) {
2002   SmallVector<BasicBlock*, 128> Worklist;
2003   BasicBlock *BB = &F.front();
2004   Worklist.push_back(BB);
2005   Reachable.insert(BB);
2006   bool Changed = false;
2007   do {
2008     BB = Worklist.pop_back_val();
2009 
2010     // Do a quick scan of the basic block, turning any obviously unreachable
2011     // instructions into LLVM unreachable insts.  The instruction combining pass
2012     // canonicalizes unreachable insts into stores to null or undef.
2013     for (Instruction &I : *BB) {
2014       if (auto *CI = dyn_cast<CallInst>(&I)) {
2015         Value *Callee = CI->getCalledValue();
2016         // Handle intrinsic calls.
2017         if (Function *F = dyn_cast<Function>(Callee)) {
2018           auto IntrinsicID = F->getIntrinsicID();
2019           // Assumptions that are known to be false are equivalent to
2020           // unreachable. Also, if the condition is undefined, then we make the
2021           // choice most beneficial to the optimizer, and choose that to also be
2022           // unreachable.
2023           if (IntrinsicID == Intrinsic::assume) {
2024             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2025               // Don't insert a call to llvm.trap right before the unreachable.
2026               changeToUnreachable(CI, false, false, DTU);
2027               Changed = true;
2028               break;
2029             }
2030           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2031             // A call to the guard intrinsic bails out of the current
2032             // compilation unit if the predicate passed to it is false. If the
2033             // predicate is a constant false, then we know the guard will bail
2034             // out of the current compile unconditionally, so all code following
2035             // it is dead.
2036             //
2037             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2038             // guards to treat `undef` as `false` since a guard on `undef` can
2039             // still be useful for widening.
2040             if (match(CI->getArgOperand(0), m_Zero()))
2041               if (!isa<UnreachableInst>(CI->getNextNode())) {
2042                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2043                                     false, DTU);
2044                 Changed = true;
2045                 break;
2046               }
2047           }
2048         } else if ((isa<ConstantPointerNull>(Callee) &&
2049                     !NullPointerIsDefined(CI->getFunction())) ||
2050                    isa<UndefValue>(Callee)) {
2051           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2052           Changed = true;
2053           break;
2054         }
2055         if (CI->doesNotReturn()) {
2056           // If we found a call to a no-return function, insert an unreachable
2057           // instruction after it.  Make sure there isn't *already* one there
2058           // though.
2059           if (!isa<UnreachableInst>(CI->getNextNode())) {
2060             // Don't insert a call to llvm.trap right before the unreachable.
2061             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2062             Changed = true;
2063           }
2064           break;
2065         }
2066       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2067         // Store to undef and store to null are undefined and used to signal
2068         // that they should be changed to unreachable by passes that can't
2069         // modify the CFG.
2070 
2071         // Don't touch volatile stores.
2072         if (SI->isVolatile()) continue;
2073 
2074         Value *Ptr = SI->getOperand(1);
2075 
2076         if (isa<UndefValue>(Ptr) ||
2077             (isa<ConstantPointerNull>(Ptr) &&
2078              !NullPointerIsDefined(SI->getFunction(),
2079                                    SI->getPointerAddressSpace()))) {
2080           changeToUnreachable(SI, true, false, DTU);
2081           Changed = true;
2082           break;
2083         }
2084       }
2085     }
2086 
2087     Instruction *Terminator = BB->getTerminator();
2088     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2089       // Turn invokes that call 'nounwind' functions into ordinary calls.
2090       Value *Callee = II->getCalledValue();
2091       if ((isa<ConstantPointerNull>(Callee) &&
2092            !NullPointerIsDefined(BB->getParent())) ||
2093           isa<UndefValue>(Callee)) {
2094         changeToUnreachable(II, true, false, DTU);
2095         Changed = true;
2096       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2097         if (II->use_empty() && II->onlyReadsMemory()) {
2098           // jump to the normal destination branch.
2099           BasicBlock *NormalDestBB = II->getNormalDest();
2100           BasicBlock *UnwindDestBB = II->getUnwindDest();
2101           BranchInst::Create(NormalDestBB, II);
2102           UnwindDestBB->removePredecessor(II->getParent());
2103           II->eraseFromParent();
2104           if (DTU)
2105             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2106         } else
2107           changeToCall(II, DTU);
2108         Changed = true;
2109       }
2110     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2111       // Remove catchpads which cannot be reached.
2112       struct CatchPadDenseMapInfo {
2113         static CatchPadInst *getEmptyKey() {
2114           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2115         }
2116 
2117         static CatchPadInst *getTombstoneKey() {
2118           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2119         }
2120 
2121         static unsigned getHashValue(CatchPadInst *CatchPad) {
2122           return static_cast<unsigned>(hash_combine_range(
2123               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2124         }
2125 
2126         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2127           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2128               RHS == getEmptyKey() || RHS == getTombstoneKey())
2129             return LHS == RHS;
2130           return LHS->isIdenticalTo(RHS);
2131         }
2132       };
2133 
2134       // Set of unique CatchPads.
2135       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2136                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2137           HandlerSet;
2138       detail::DenseSetEmpty Empty;
2139       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2140                                              E = CatchSwitch->handler_end();
2141            I != E; ++I) {
2142         BasicBlock *HandlerBB = *I;
2143         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2144         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2145           CatchSwitch->removeHandler(I);
2146           --I;
2147           --E;
2148           Changed = true;
2149         }
2150       }
2151     }
2152 
2153     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2154     for (BasicBlock *Successor : successors(BB))
2155       if (Reachable.insert(Successor).second)
2156         Worklist.push_back(Successor);
2157   } while (!Worklist.empty());
2158   return Changed;
2159 }
2160 
2161 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2162   Instruction *TI = BB->getTerminator();
2163 
2164   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2165     changeToCall(II, DTU);
2166     return;
2167   }
2168 
2169   Instruction *NewTI;
2170   BasicBlock *UnwindDest;
2171 
2172   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2173     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2174     UnwindDest = CRI->getUnwindDest();
2175   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2176     auto *NewCatchSwitch = CatchSwitchInst::Create(
2177         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2178         CatchSwitch->getName(), CatchSwitch);
2179     for (BasicBlock *PadBB : CatchSwitch->handlers())
2180       NewCatchSwitch->addHandler(PadBB);
2181 
2182     NewTI = NewCatchSwitch;
2183     UnwindDest = CatchSwitch->getUnwindDest();
2184   } else {
2185     llvm_unreachable("Could not find unwind successor");
2186   }
2187 
2188   NewTI->takeName(TI);
2189   NewTI->setDebugLoc(TI->getDebugLoc());
2190   UnwindDest->removePredecessor(BB);
2191   TI->replaceAllUsesWith(NewTI);
2192   TI->eraseFromParent();
2193   if (DTU)
2194     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2195 }
2196 
2197 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2198 /// if they are in a dead cycle.  Return true if a change was made, false
2199 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2200 /// after modifying the CFG.
2201 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2202                                    DomTreeUpdater *DTU,
2203                                    MemorySSAUpdater *MSSAU) {
2204   SmallPtrSet<BasicBlock*, 16> Reachable;
2205   bool Changed = markAliveBlocks(F, Reachable, DTU);
2206 
2207   // If there are unreachable blocks in the CFG...
2208   if (Reachable.size() == F.size())
2209     return Changed;
2210 
2211   assert(Reachable.size() < F.size());
2212   NumRemoved += F.size()-Reachable.size();
2213 
2214   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2215   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2216     auto *BB = &*I;
2217     if (Reachable.count(BB))
2218       continue;
2219     DeadBlockSet.insert(BB);
2220   }
2221 
2222   if (MSSAU)
2223     MSSAU->removeBlocks(DeadBlockSet);
2224 
2225   // Loop over all of the basic blocks that are not reachable, dropping all of
2226   // their internal references. Update DTU and LVI if available.
2227   std::vector<DominatorTree::UpdateType> Updates;
2228   for (auto *BB : DeadBlockSet) {
2229     for (BasicBlock *Successor : successors(BB)) {
2230       if (!DeadBlockSet.count(Successor))
2231         Successor->removePredecessor(BB);
2232       if (DTU)
2233         Updates.push_back({DominatorTree::Delete, BB, Successor});
2234     }
2235     if (LVI)
2236       LVI->eraseBlock(BB);
2237     BB->dropAllReferences();
2238   }
2239   for (Function::iterator I = ++F.begin(); I != F.end();) {
2240     auto *BB = &*I;
2241     if (Reachable.count(BB)) {
2242       ++I;
2243       continue;
2244     }
2245     if (DTU) {
2246       // Remove the terminator of BB to clear the successor list of BB.
2247       if (BB->getTerminator())
2248         BB->getInstList().pop_back();
2249       new UnreachableInst(BB->getContext(), BB);
2250       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2251                                "applying corresponding DTU updates.");
2252       ++I;
2253     } else {
2254       I = F.getBasicBlockList().erase(I);
2255     }
2256   }
2257 
2258   if (DTU) {
2259     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2260     bool Deleted = false;
2261     for (auto *BB : DeadBlockSet) {
2262       if (DTU->isBBPendingDeletion(BB))
2263         --NumRemoved;
2264       else
2265         Deleted = true;
2266       DTU->deleteBB(BB);
2267     }
2268     if (!Deleted)
2269       return false;
2270   }
2271   return true;
2272 }
2273 
2274 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2275                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2276   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2277   K->dropUnknownNonDebugMetadata(KnownIDs);
2278   K->getAllMetadataOtherThanDebugLoc(Metadata);
2279   for (const auto &MD : Metadata) {
2280     unsigned Kind = MD.first;
2281     MDNode *JMD = J->getMetadata(Kind);
2282     MDNode *KMD = MD.second;
2283 
2284     switch (Kind) {
2285       default:
2286         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2287         break;
2288       case LLVMContext::MD_dbg:
2289         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2290       case LLVMContext::MD_tbaa:
2291         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2292         break;
2293       case LLVMContext::MD_alias_scope:
2294         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2295         break;
2296       case LLVMContext::MD_noalias:
2297       case LLVMContext::MD_mem_parallel_loop_access:
2298         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2299         break;
2300       case LLVMContext::MD_access_group:
2301         K->setMetadata(LLVMContext::MD_access_group,
2302                        intersectAccessGroups(K, J));
2303         break;
2304       case LLVMContext::MD_range:
2305 
2306         // If K does move, use most generic range. Otherwise keep the range of
2307         // K.
2308         if (DoesKMove)
2309           // FIXME: If K does move, we should drop the range info and nonnull.
2310           //        Currently this function is used with DoesKMove in passes
2311           //        doing hoisting/sinking and the current behavior of using the
2312           //        most generic range is correct in those cases.
2313           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2314         break;
2315       case LLVMContext::MD_fpmath:
2316         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2317         break;
2318       case LLVMContext::MD_invariant_load:
2319         // Only set the !invariant.load if it is present in both instructions.
2320         K->setMetadata(Kind, JMD);
2321         break;
2322       case LLVMContext::MD_nonnull:
2323         // If K does move, keep nonull if it is present in both instructions.
2324         if (DoesKMove)
2325           K->setMetadata(Kind, JMD);
2326         break;
2327       case LLVMContext::MD_invariant_group:
2328         // Preserve !invariant.group in K.
2329         break;
2330       case LLVMContext::MD_align:
2331         K->setMetadata(Kind,
2332           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2333         break;
2334       case LLVMContext::MD_dereferenceable:
2335       case LLVMContext::MD_dereferenceable_or_null:
2336         K->setMetadata(Kind,
2337           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2338         break;
2339     }
2340   }
2341   // Set !invariant.group from J if J has it. If both instructions have it
2342   // then we will just pick it from J - even when they are different.
2343   // Also make sure that K is load or store - f.e. combining bitcast with load
2344   // could produce bitcast with invariant.group metadata, which is invalid.
2345   // FIXME: we should try to preserve both invariant.group md if they are
2346   // different, but right now instruction can only have one invariant.group.
2347   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2348     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2349       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2350 }
2351 
2352 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2353                                  bool KDominatesJ) {
2354   unsigned KnownIDs[] = {
2355       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2356       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2357       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2358       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2359       LLVMContext::MD_dereferenceable,
2360       LLVMContext::MD_dereferenceable_or_null,
2361       LLVMContext::MD_access_group};
2362   combineMetadata(K, J, KnownIDs, KDominatesJ);
2363 }
2364 
2365 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2366   auto *ReplInst = dyn_cast<Instruction>(Repl);
2367   if (!ReplInst)
2368     return;
2369 
2370   // Patch the replacement so that it is not more restrictive than the value
2371   // being replaced.
2372   // Note that if 'I' is a load being replaced by some operation,
2373   // for example, by an arithmetic operation, then andIRFlags()
2374   // would just erase all math flags from the original arithmetic
2375   // operation, which is clearly not wanted and not needed.
2376   if (!isa<LoadInst>(I))
2377     ReplInst->andIRFlags(I);
2378 
2379   // FIXME: If both the original and replacement value are part of the
2380   // same control-flow region (meaning that the execution of one
2381   // guarantees the execution of the other), then we can combine the
2382   // noalias scopes here and do better than the general conservative
2383   // answer used in combineMetadata().
2384 
2385   // In general, GVN unifies expressions over different control-flow
2386   // regions, and so we need a conservative combination of the noalias
2387   // scopes.
2388   static const unsigned KnownIDs[] = {
2389       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2390       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2391       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2392       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2393       LLVMContext::MD_access_group};
2394   combineMetadata(ReplInst, I, KnownIDs, false);
2395 }
2396 
2397 template <typename RootType, typename DominatesFn>
2398 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2399                                          const RootType &Root,
2400                                          const DominatesFn &Dominates) {
2401   assert(From->getType() == To->getType());
2402 
2403   unsigned Count = 0;
2404   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2405        UI != UE;) {
2406     Use &U = *UI++;
2407     if (!Dominates(Root, U))
2408       continue;
2409     U.set(To);
2410     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2411                       << "' as " << *To << " in " << *U << "\n");
2412     ++Count;
2413   }
2414   return Count;
2415 }
2416 
2417 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2418    assert(From->getType() == To->getType());
2419    auto *BB = From->getParent();
2420    unsigned Count = 0;
2421 
2422   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2423        UI != UE;) {
2424     Use &U = *UI++;
2425     auto *I = cast<Instruction>(U.getUser());
2426     if (I->getParent() == BB)
2427       continue;
2428     U.set(To);
2429     ++Count;
2430   }
2431   return Count;
2432 }
2433 
2434 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2435                                         DominatorTree &DT,
2436                                         const BasicBlockEdge &Root) {
2437   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2438     return DT.dominates(Root, U);
2439   };
2440   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2441 }
2442 
2443 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2444                                         DominatorTree &DT,
2445                                         const BasicBlock *BB) {
2446   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2447     auto *I = cast<Instruction>(U.getUser())->getParent();
2448     return DT.properlyDominates(BB, I);
2449   };
2450   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2451 }
2452 
2453 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2454                                const TargetLibraryInfo &TLI) {
2455   // Check if the function is specifically marked as a gc leaf function.
2456   if (CS.hasFnAttr("gc-leaf-function"))
2457     return true;
2458   if (const Function *F = CS.getCalledFunction()) {
2459     if (F->hasFnAttribute("gc-leaf-function"))
2460       return true;
2461 
2462     if (auto IID = F->getIntrinsicID())
2463       // Most LLVM intrinsics do not take safepoints.
2464       return IID != Intrinsic::experimental_gc_statepoint &&
2465              IID != Intrinsic::experimental_deoptimize;
2466   }
2467 
2468   // Lib calls can be materialized by some passes, and won't be
2469   // marked as 'gc-leaf-function.' All available Libcalls are
2470   // GC-leaf.
2471   LibFunc LF;
2472   if (TLI.getLibFunc(CS, LF)) {
2473     return TLI.has(LF);
2474   }
2475 
2476   return false;
2477 }
2478 
2479 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2480                                LoadInst &NewLI) {
2481   auto *NewTy = NewLI.getType();
2482 
2483   // This only directly applies if the new type is also a pointer.
2484   if (NewTy->isPointerTy()) {
2485     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2486     return;
2487   }
2488 
2489   // The only other translation we can do is to integral loads with !range
2490   // metadata.
2491   if (!NewTy->isIntegerTy())
2492     return;
2493 
2494   MDBuilder MDB(NewLI.getContext());
2495   const Value *Ptr = OldLI.getPointerOperand();
2496   auto *ITy = cast<IntegerType>(NewTy);
2497   auto *NullInt = ConstantExpr::getPtrToInt(
2498       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2499   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2500   NewLI.setMetadata(LLVMContext::MD_range,
2501                     MDB.createRange(NonNullInt, NullInt));
2502 }
2503 
2504 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2505                              MDNode *N, LoadInst &NewLI) {
2506   auto *NewTy = NewLI.getType();
2507 
2508   // Give up unless it is converted to a pointer where there is a single very
2509   // valuable mapping we can do reliably.
2510   // FIXME: It would be nice to propagate this in more ways, but the type
2511   // conversions make it hard.
2512   if (!NewTy->isPointerTy())
2513     return;
2514 
2515   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2516   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2517     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2518     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2519   }
2520 }
2521 
2522 void llvm::dropDebugUsers(Instruction &I) {
2523   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2524   findDbgUsers(DbgUsers, &I);
2525   for (auto *DII : DbgUsers)
2526     DII->eraseFromParent();
2527 }
2528 
2529 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2530                                     BasicBlock *BB) {
2531   // Since we are moving the instructions out of its basic block, we do not
2532   // retain their original debug locations (DILocations) and debug intrinsic
2533   // instructions (dbg.values).
2534   //
2535   // Doing so would degrade the debugging experience and adversely affect the
2536   // accuracy of profiling information.
2537   //
2538   // Currently, when hoisting the instructions, we take the following actions:
2539   // - Remove their dbg.values.
2540   // - Set their debug locations to the values from the insertion point.
2541   //
2542   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2543   // need to be deleted, is because there will not be any instructions with a
2544   // DILocation in either branch left after performing the transformation. We
2545   // can only insert a dbg.value after the two branches are joined again.
2546   //
2547   // See PR38762, PR39243 for more details.
2548   //
2549   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2550   // encode predicated DIExpressions that yield different results on different
2551   // code paths.
2552   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2553     Instruction *I = &*II;
2554     I->dropUnknownNonDebugMetadata();
2555     if (I->isUsedByMetadata())
2556       dropDebugUsers(*I);
2557     if (isa<DbgVariableIntrinsic>(I)) {
2558       // Remove DbgInfo Intrinsics.
2559       II = I->eraseFromParent();
2560       continue;
2561     }
2562     I->setDebugLoc(InsertPt->getDebugLoc());
2563     ++II;
2564   }
2565   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2566                                  BB->begin(),
2567                                  BB->getTerminator()->getIterator());
2568 }
2569 
2570 namespace {
2571 
2572 /// A potential constituent of a bitreverse or bswap expression. See
2573 /// collectBitParts for a fuller explanation.
2574 struct BitPart {
2575   BitPart(Value *P, unsigned BW) : Provider(P) {
2576     Provenance.resize(BW);
2577   }
2578 
2579   /// The Value that this is a bitreverse/bswap of.
2580   Value *Provider;
2581 
2582   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2583   /// in Provider becomes bit B in the result of this expression.
2584   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2585 
2586   enum { Unset = -1 };
2587 };
2588 
2589 } // end anonymous namespace
2590 
2591 /// Analyze the specified subexpression and see if it is capable of providing
2592 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2593 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2594 /// the output of the expression came from a corresponding bit in some other
2595 /// value. This function is recursive, and the end result is a mapping of
2596 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2597 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2598 ///
2599 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2600 /// that the expression deposits the low byte of %X into the high byte of the
2601 /// result and that all other bits are zero. This expression is accepted and a
2602 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2603 /// [0-7].
2604 ///
2605 /// To avoid revisiting values, the BitPart results are memoized into the
2606 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2607 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2608 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2609 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2610 /// type instead to provide the same functionality.
2611 ///
2612 /// Because we pass around references into \c BPS, we must use a container that
2613 /// does not invalidate internal references (std::map instead of DenseMap).
2614 static const Optional<BitPart> &
2615 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2616                 std::map<Value *, Optional<BitPart>> &BPS) {
2617   auto I = BPS.find(V);
2618   if (I != BPS.end())
2619     return I->second;
2620 
2621   auto &Result = BPS[V] = None;
2622   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2623 
2624   if (Instruction *I = dyn_cast<Instruction>(V)) {
2625     // If this is an or instruction, it may be an inner node of the bswap.
2626     if (I->getOpcode() == Instruction::Or) {
2627       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2628                                 MatchBitReversals, BPS);
2629       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2630                                 MatchBitReversals, BPS);
2631       if (!A || !B)
2632         return Result;
2633 
2634       // Try and merge the two together.
2635       if (!A->Provider || A->Provider != B->Provider)
2636         return Result;
2637 
2638       Result = BitPart(A->Provider, BitWidth);
2639       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2640         if (A->Provenance[i] != BitPart::Unset &&
2641             B->Provenance[i] != BitPart::Unset &&
2642             A->Provenance[i] != B->Provenance[i])
2643           return Result = None;
2644 
2645         if (A->Provenance[i] == BitPart::Unset)
2646           Result->Provenance[i] = B->Provenance[i];
2647         else
2648           Result->Provenance[i] = A->Provenance[i];
2649       }
2650 
2651       return Result;
2652     }
2653 
2654     // If this is a logical shift by a constant, recurse then shift the result.
2655     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2656       unsigned BitShift =
2657           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2658       // Ensure the shift amount is defined.
2659       if (BitShift > BitWidth)
2660         return Result;
2661 
2662       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2663                                   MatchBitReversals, BPS);
2664       if (!Res)
2665         return Result;
2666       Result = Res;
2667 
2668       // Perform the "shift" on BitProvenance.
2669       auto &P = Result->Provenance;
2670       if (I->getOpcode() == Instruction::Shl) {
2671         P.erase(std::prev(P.end(), BitShift), P.end());
2672         P.insert(P.begin(), BitShift, BitPart::Unset);
2673       } else {
2674         P.erase(P.begin(), std::next(P.begin(), BitShift));
2675         P.insert(P.end(), BitShift, BitPart::Unset);
2676       }
2677 
2678       return Result;
2679     }
2680 
2681     // If this is a logical 'and' with a mask that clears bits, recurse then
2682     // unset the appropriate bits.
2683     if (I->getOpcode() == Instruction::And &&
2684         isa<ConstantInt>(I->getOperand(1))) {
2685       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2686       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2687 
2688       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2689       // early exit.
2690       unsigned NumMaskedBits = AndMask.countPopulation();
2691       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2692         return Result;
2693 
2694       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2695                                   MatchBitReversals, BPS);
2696       if (!Res)
2697         return Result;
2698       Result = Res;
2699 
2700       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2701         // If the AndMask is zero for this bit, clear the bit.
2702         if ((AndMask & Bit) == 0)
2703           Result->Provenance[i] = BitPart::Unset;
2704       return Result;
2705     }
2706 
2707     // If this is a zext instruction zero extend the result.
2708     if (I->getOpcode() == Instruction::ZExt) {
2709       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2710                                   MatchBitReversals, BPS);
2711       if (!Res)
2712         return Result;
2713 
2714       Result = BitPart(Res->Provider, BitWidth);
2715       auto NarrowBitWidth =
2716           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2717       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2718         Result->Provenance[i] = Res->Provenance[i];
2719       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2720         Result->Provenance[i] = BitPart::Unset;
2721       return Result;
2722     }
2723   }
2724 
2725   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2726   // the input value to the bswap/bitreverse.
2727   Result = BitPart(V, BitWidth);
2728   for (unsigned i = 0; i < BitWidth; ++i)
2729     Result->Provenance[i] = i;
2730   return Result;
2731 }
2732 
2733 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2734                                           unsigned BitWidth) {
2735   if (From % 8 != To % 8)
2736     return false;
2737   // Convert from bit indices to byte indices and check for a byte reversal.
2738   From >>= 3;
2739   To >>= 3;
2740   BitWidth >>= 3;
2741   return From == BitWidth - To - 1;
2742 }
2743 
2744 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2745                                                unsigned BitWidth) {
2746   return From == BitWidth - To - 1;
2747 }
2748 
2749 bool llvm::recognizeBSwapOrBitReverseIdiom(
2750     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2751     SmallVectorImpl<Instruction *> &InsertedInsts) {
2752   if (Operator::getOpcode(I) != Instruction::Or)
2753     return false;
2754   if (!MatchBSwaps && !MatchBitReversals)
2755     return false;
2756   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2757   if (!ITy || ITy->getBitWidth() > 128)
2758     return false;   // Can't do vectors or integers > 128 bits.
2759   unsigned BW = ITy->getBitWidth();
2760 
2761   unsigned DemandedBW = BW;
2762   IntegerType *DemandedTy = ITy;
2763   if (I->hasOneUse()) {
2764     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2765       DemandedTy = cast<IntegerType>(Trunc->getType());
2766       DemandedBW = DemandedTy->getBitWidth();
2767     }
2768   }
2769 
2770   // Try to find all the pieces corresponding to the bswap.
2771   std::map<Value *, Optional<BitPart>> BPS;
2772   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2773   if (!Res)
2774     return false;
2775   auto &BitProvenance = Res->Provenance;
2776 
2777   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2778   // only byteswap values with an even number of bytes.
2779   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2780   for (unsigned i = 0; i < DemandedBW; ++i) {
2781     OKForBSwap &=
2782         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2783     OKForBitReverse &=
2784         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2785   }
2786 
2787   Intrinsic::ID Intrin;
2788   if (OKForBSwap && MatchBSwaps)
2789     Intrin = Intrinsic::bswap;
2790   else if (OKForBitReverse && MatchBitReversals)
2791     Intrin = Intrinsic::bitreverse;
2792   else
2793     return false;
2794 
2795   if (ITy != DemandedTy) {
2796     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2797     Value *Provider = Res->Provider;
2798     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2799     // We may need to truncate the provider.
2800     if (DemandedTy != ProviderTy) {
2801       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2802                                      "trunc", I);
2803       InsertedInsts.push_back(Trunc);
2804       Provider = Trunc;
2805     }
2806     auto *CI = CallInst::Create(F, Provider, "rev", I);
2807     InsertedInsts.push_back(CI);
2808     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2809     InsertedInsts.push_back(ExtInst);
2810     return true;
2811   }
2812 
2813   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2814   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2815   return true;
2816 }
2817 
2818 // CodeGen has special handling for some string functions that may replace
2819 // them with target-specific intrinsics.  Since that'd skip our interceptors
2820 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2821 // we mark affected calls as NoBuiltin, which will disable optimization
2822 // in CodeGen.
2823 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2824     CallInst *CI, const TargetLibraryInfo *TLI) {
2825   Function *F = CI->getCalledFunction();
2826   LibFunc Func;
2827   if (F && !F->hasLocalLinkage() && F->hasName() &&
2828       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2829       !F->doesNotAccessMemory())
2830     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2831 }
2832 
2833 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2834   // We can't have a PHI with a metadata type.
2835   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2836     return false;
2837 
2838   // Early exit.
2839   if (!isa<Constant>(I->getOperand(OpIdx)))
2840     return true;
2841 
2842   switch (I->getOpcode()) {
2843   default:
2844     return true;
2845   case Instruction::Call:
2846   case Instruction::Invoke:
2847     // Can't handle inline asm. Skip it.
2848     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2849       return false;
2850     // Many arithmetic intrinsics have no issue taking a
2851     // variable, however it's hard to distingish these from
2852     // specials such as @llvm.frameaddress that require a constant.
2853     if (isa<IntrinsicInst>(I))
2854       return false;
2855 
2856     // Constant bundle operands may need to retain their constant-ness for
2857     // correctness.
2858     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2859       return false;
2860     return true;
2861   case Instruction::ShuffleVector:
2862     // Shufflevector masks are constant.
2863     return OpIdx != 2;
2864   case Instruction::Switch:
2865   case Instruction::ExtractValue:
2866     // All operands apart from the first are constant.
2867     return OpIdx == 0;
2868   case Instruction::InsertValue:
2869     // All operands apart from the first and the second are constant.
2870     return OpIdx < 2;
2871   case Instruction::Alloca:
2872     // Static allocas (constant size in the entry block) are handled by
2873     // prologue/epilogue insertion so they're free anyway. We definitely don't
2874     // want to make them non-constant.
2875     return !cast<AllocaInst>(I)->isStaticAlloca();
2876   case Instruction::GetElementPtr:
2877     if (OpIdx == 0)
2878       return true;
2879     gep_type_iterator It = gep_type_begin(I);
2880     for (auto E = std::next(It, OpIdx); It != E; ++It)
2881       if (It.isStruct())
2882         return false;
2883     return true;
2884   }
2885 }
2886