1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DIBuilder.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 #define DEBUG_TYPE "local" 47 48 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 49 50 //===----------------------------------------------------------------------===// 51 // Local constant propagation. 52 // 53 54 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 55 /// constant value, convert it into an unconditional branch to the constant 56 /// destination. This is a nontrivial operation because the successors of this 57 /// basic block must have their PHI nodes updated. 58 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 59 /// conditions and indirectbr addresses this might make dead if 60 /// DeleteDeadConditions is true. 61 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 62 const TargetLibraryInfo *TLI) { 63 TerminatorInst *T = BB->getTerminator(); 64 IRBuilder<> Builder(T); 65 66 // Branch - See if we are conditional jumping on constant 67 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 68 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 69 BasicBlock *Dest1 = BI->getSuccessor(0); 70 BasicBlock *Dest2 = BI->getSuccessor(1); 71 72 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 73 // Are we branching on constant? 74 // YES. Change to unconditional branch... 75 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 76 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 77 78 //cerr << "Function: " << T->getParent()->getParent() 79 // << "\nRemoving branch from " << T->getParent() 80 // << "\n\nTo: " << OldDest << endl; 81 82 // Let the basic block know that we are letting go of it. Based on this, 83 // it will adjust it's PHI nodes. 84 OldDest->removePredecessor(BB); 85 86 // Replace the conditional branch with an unconditional one. 87 Builder.CreateBr(Destination); 88 BI->eraseFromParent(); 89 return true; 90 } 91 92 if (Dest2 == Dest1) { // Conditional branch to same location? 93 // This branch matches something like this: 94 // br bool %cond, label %Dest, label %Dest 95 // and changes it into: br label %Dest 96 97 // Let the basic block know that we are letting go of one copy of it. 98 assert(BI->getParent() && "Terminator not inserted in block!"); 99 Dest1->removePredecessor(BI->getParent()); 100 101 // Replace the conditional branch with an unconditional one. 102 Builder.CreateBr(Dest1); 103 Value *Cond = BI->getCondition(); 104 BI->eraseFromParent(); 105 if (DeleteDeadConditions) 106 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 107 return true; 108 } 109 return false; 110 } 111 112 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 113 // If we are switching on a constant, we can convert the switch into a 114 // single branch instruction! 115 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 116 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 117 BasicBlock *DefaultDest = TheOnlyDest; 118 119 // Figure out which case it goes to. 120 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 121 i != e; ++i) { 122 // Found case matching a constant operand? 123 if (i.getCaseValue() == CI) { 124 TheOnlyDest = i.getCaseSuccessor(); 125 break; 126 } 127 128 // Check to see if this branch is going to the same place as the default 129 // dest. If so, eliminate it as an explicit compare. 130 if (i.getCaseSuccessor() == DefaultDest) { 131 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 132 unsigned NCases = SI->getNumCases(); 133 // Fold the case metadata into the default if there will be any branches 134 // left, unless the metadata doesn't match the switch. 135 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 136 // Collect branch weights into a vector. 137 SmallVector<uint32_t, 8> Weights; 138 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 139 ++MD_i) { 140 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 141 assert(CI); 142 Weights.push_back(CI->getValue().getZExtValue()); 143 } 144 // Merge weight of this case to the default weight. 145 unsigned idx = i.getCaseIndex(); 146 Weights[0] += Weights[idx+1]; 147 // Remove weight for this case. 148 std::swap(Weights[idx+1], Weights.back()); 149 Weights.pop_back(); 150 SI->setMetadata(LLVMContext::MD_prof, 151 MDBuilder(BB->getContext()). 152 createBranchWeights(Weights)); 153 } 154 // Remove this entry. 155 DefaultDest->removePredecessor(SI->getParent()); 156 SI->removeCase(i); 157 --i; --e; 158 continue; 159 } 160 161 // Otherwise, check to see if the switch only branches to one destination. 162 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 163 // destinations. 164 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 165 } 166 167 if (CI && !TheOnlyDest) { 168 // Branching on a constant, but not any of the cases, go to the default 169 // successor. 170 TheOnlyDest = SI->getDefaultDest(); 171 } 172 173 // If we found a single destination that we can fold the switch into, do so 174 // now. 175 if (TheOnlyDest) { 176 // Insert the new branch. 177 Builder.CreateBr(TheOnlyDest); 178 BasicBlock *BB = SI->getParent(); 179 180 // Remove entries from PHI nodes which we no longer branch to... 181 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 182 // Found case matching a constant operand? 183 BasicBlock *Succ = SI->getSuccessor(i); 184 if (Succ == TheOnlyDest) 185 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 186 else 187 Succ->removePredecessor(BB); 188 } 189 190 // Delete the old switch. 191 Value *Cond = SI->getCondition(); 192 SI->eraseFromParent(); 193 if (DeleteDeadConditions) 194 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 195 return true; 196 } 197 198 if (SI->getNumCases() == 1) { 199 // Otherwise, we can fold this switch into a conditional branch 200 // instruction if it has only one non-default destination. 201 SwitchInst::CaseIt FirstCase = SI->case_begin(); 202 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 203 FirstCase.getCaseValue(), "cond"); 204 205 // Insert the new branch. 206 BranchInst *NewBr = Builder.CreateCondBr(Cond, 207 FirstCase.getCaseSuccessor(), 208 SI->getDefaultDest()); 209 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 210 if (MD && MD->getNumOperands() == 3) { 211 ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); 212 ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); 213 assert(SICase && SIDef); 214 // The TrueWeight should be the weight for the single case of SI. 215 NewBr->setMetadata(LLVMContext::MD_prof, 216 MDBuilder(BB->getContext()). 217 createBranchWeights(SICase->getValue().getZExtValue(), 218 SIDef->getValue().getZExtValue())); 219 } 220 221 // Delete the old switch. 222 SI->eraseFromParent(); 223 return true; 224 } 225 return false; 226 } 227 228 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 229 // indirectbr blockaddress(@F, @BB) -> br label @BB 230 if (BlockAddress *BA = 231 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 232 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 233 // Insert the new branch. 234 Builder.CreateBr(TheOnlyDest); 235 236 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 237 if (IBI->getDestination(i) == TheOnlyDest) 238 TheOnlyDest = nullptr; 239 else 240 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 241 } 242 Value *Address = IBI->getAddress(); 243 IBI->eraseFromParent(); 244 if (DeleteDeadConditions) 245 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 246 247 // If we didn't find our destination in the IBI successor list, then we 248 // have undefined behavior. Replace the unconditional branch with an 249 // 'unreachable' instruction. 250 if (TheOnlyDest) { 251 BB->getTerminator()->eraseFromParent(); 252 new UnreachableInst(BB->getContext(), BB); 253 } 254 255 return true; 256 } 257 } 258 259 return false; 260 } 261 262 263 //===----------------------------------------------------------------------===// 264 // Local dead code elimination. 265 // 266 267 /// isInstructionTriviallyDead - Return true if the result produced by the 268 /// instruction is not used, and the instruction has no side effects. 269 /// 270 bool llvm::isInstructionTriviallyDead(Instruction *I, 271 const TargetLibraryInfo *TLI) { 272 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 273 274 // We don't want the landingpad instruction removed by anything this general. 275 if (isa<LandingPadInst>(I)) 276 return false; 277 278 // We don't want debug info removed by anything this general, unless 279 // debug info is empty. 280 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 281 if (DDI->getAddress()) 282 return false; 283 return true; 284 } 285 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 286 if (DVI->getValue()) 287 return false; 288 return true; 289 } 290 291 if (!I->mayHaveSideEffects()) return true; 292 293 // Special case intrinsics that "may have side effects" but can be deleted 294 // when dead. 295 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 296 // Safe to delete llvm.stacksave if dead. 297 if (II->getIntrinsicID() == Intrinsic::stacksave) 298 return true; 299 300 // Lifetime intrinsics are dead when their right-hand is undef. 301 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 302 II->getIntrinsicID() == Intrinsic::lifetime_end) 303 return isa<UndefValue>(II->getArgOperand(1)); 304 305 // Assumptions are dead if their condition is trivially true. 306 if (II->getIntrinsicID() == Intrinsic::assume) { 307 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 308 return !Cond->isZero(); 309 310 return false; 311 } 312 } 313 314 if (isAllocLikeFn(I, TLI)) return true; 315 316 if (CallInst *CI = isFreeCall(I, TLI)) 317 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 318 return C->isNullValue() || isa<UndefValue>(C); 319 320 return false; 321 } 322 323 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 324 /// trivially dead instruction, delete it. If that makes any of its operands 325 /// trivially dead, delete them too, recursively. Return true if any 326 /// instructions were deleted. 327 bool 328 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 329 const TargetLibraryInfo *TLI) { 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 332 return false; 333 334 SmallVector<Instruction*, 16> DeadInsts; 335 DeadInsts.push_back(I); 336 337 do { 338 I = DeadInsts.pop_back_val(); 339 340 // Null out all of the instruction's operands to see if any operand becomes 341 // dead as we go. 342 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 343 Value *OpV = I->getOperand(i); 344 I->setOperand(i, nullptr); 345 346 if (!OpV->use_empty()) continue; 347 348 // If the operand is an instruction that became dead as we nulled out the 349 // operand, and if it is 'trivially' dead, delete it in a future loop 350 // iteration. 351 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 352 if (isInstructionTriviallyDead(OpI, TLI)) 353 DeadInsts.push_back(OpI); 354 } 355 356 I->eraseFromParent(); 357 } while (!DeadInsts.empty()); 358 359 return true; 360 } 361 362 /// areAllUsesEqual - Check whether the uses of a value are all the same. 363 /// This is similar to Instruction::hasOneUse() except this will also return 364 /// true when there are no uses or multiple uses that all refer to the same 365 /// value. 366 static bool areAllUsesEqual(Instruction *I) { 367 Value::user_iterator UI = I->user_begin(); 368 Value::user_iterator UE = I->user_end(); 369 if (UI == UE) 370 return true; 371 372 User *TheUse = *UI; 373 for (++UI; UI != UE; ++UI) { 374 if (*UI != TheUse) 375 return false; 376 } 377 return true; 378 } 379 380 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 381 /// dead PHI node, due to being a def-use chain of single-use nodes that 382 /// either forms a cycle or is terminated by a trivially dead instruction, 383 /// delete it. If that makes any of its operands trivially dead, delete them 384 /// too, recursively. Return true if a change was made. 385 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 386 const TargetLibraryInfo *TLI) { 387 SmallPtrSet<Instruction*, 4> Visited; 388 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 389 I = cast<Instruction>(*I->user_begin())) { 390 if (I->use_empty()) 391 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 392 393 // If we find an instruction more than once, we're on a cycle that 394 // won't prove fruitful. 395 if (!Visited.insert(I)) { 396 // Break the cycle and delete the instruction and its operands. 397 I->replaceAllUsesWith(UndefValue::get(I->getType())); 398 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 399 return true; 400 } 401 } 402 return false; 403 } 404 405 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 406 /// simplify any instructions in it and recursively delete dead instructions. 407 /// 408 /// This returns true if it changed the code, note that it can delete 409 /// instructions in other blocks as well in this block. 410 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 411 const TargetLibraryInfo *TLI) { 412 bool MadeChange = false; 413 414 #ifndef NDEBUG 415 // In debug builds, ensure that the terminator of the block is never replaced 416 // or deleted by these simplifications. The idea of simplification is that it 417 // cannot introduce new instructions, and there is no way to replace the 418 // terminator of a block without introducing a new instruction. 419 AssertingVH<Instruction> TerminatorVH(--BB->end()); 420 #endif 421 422 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 423 assert(!BI->isTerminator()); 424 Instruction *Inst = BI++; 425 426 WeakVH BIHandle(BI); 427 if (recursivelySimplifyInstruction(Inst, TD, TLI)) { 428 MadeChange = true; 429 if (BIHandle != BI) 430 BI = BB->begin(); 431 continue; 432 } 433 434 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 435 if (BIHandle != BI) 436 BI = BB->begin(); 437 } 438 return MadeChange; 439 } 440 441 //===----------------------------------------------------------------------===// 442 // Control Flow Graph Restructuring. 443 // 444 445 446 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 447 /// method is called when we're about to delete Pred as a predecessor of BB. If 448 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 449 /// 450 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 451 /// nodes that collapse into identity values. For example, if we have: 452 /// x = phi(1, 0, 0, 0) 453 /// y = and x, z 454 /// 455 /// .. and delete the predecessor corresponding to the '1', this will attempt to 456 /// recursively fold the and to 0. 457 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 458 DataLayout *TD) { 459 // This only adjusts blocks with PHI nodes. 460 if (!isa<PHINode>(BB->begin())) 461 return; 462 463 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 464 // them down. This will leave us with single entry phi nodes and other phis 465 // that can be removed. 466 BB->removePredecessor(Pred, true); 467 468 WeakVH PhiIt = &BB->front(); 469 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 470 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 471 Value *OldPhiIt = PhiIt; 472 473 if (!recursivelySimplifyInstruction(PN, TD)) 474 continue; 475 476 // If recursive simplification ended up deleting the next PHI node we would 477 // iterate to, then our iterator is invalid, restart scanning from the top 478 // of the block. 479 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 480 } 481 } 482 483 484 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 485 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 486 /// between them, moving the instructions in the predecessor into DestBB and 487 /// deleting the predecessor block. 488 /// 489 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 490 // If BB has single-entry PHI nodes, fold them. 491 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 492 Value *NewVal = PN->getIncomingValue(0); 493 // Replace self referencing PHI with undef, it must be dead. 494 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 495 PN->replaceAllUsesWith(NewVal); 496 PN->eraseFromParent(); 497 } 498 499 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 500 assert(PredBB && "Block doesn't have a single predecessor!"); 501 502 // Zap anything that took the address of DestBB. Not doing this will give the 503 // address an invalid value. 504 if (DestBB->hasAddressTaken()) { 505 BlockAddress *BA = BlockAddress::get(DestBB); 506 Constant *Replacement = 507 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 508 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 509 BA->getType())); 510 BA->destroyConstant(); 511 } 512 513 // Anything that branched to PredBB now branches to DestBB. 514 PredBB->replaceAllUsesWith(DestBB); 515 516 // Splice all the instructions from PredBB to DestBB. 517 PredBB->getTerminator()->eraseFromParent(); 518 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 519 520 // If the PredBB is the entry block of the function, move DestBB up to 521 // become the entry block after we erase PredBB. 522 if (PredBB == &DestBB->getParent()->getEntryBlock()) 523 DestBB->moveAfter(PredBB); 524 525 if (P) { 526 if (DominatorTreeWrapperPass *DTWP = 527 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 528 DominatorTree &DT = DTWP->getDomTree(); 529 BasicBlock *PredBBIDom = DT.getNode(PredBB)->getIDom()->getBlock(); 530 DT.changeImmediateDominator(DestBB, PredBBIDom); 531 DT.eraseNode(PredBB); 532 } 533 } 534 // Nuke BB. 535 PredBB->eraseFromParent(); 536 } 537 538 /// CanMergeValues - Return true if we can choose one of these values to use 539 /// in place of the other. Note that we will always choose the non-undef 540 /// value to keep. 541 static bool CanMergeValues(Value *First, Value *Second) { 542 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 543 } 544 545 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 546 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 547 /// 548 /// Assumption: Succ is the single successor for BB. 549 /// 550 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 551 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 552 553 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 554 << Succ->getName() << "\n"); 555 // Shortcut, if there is only a single predecessor it must be BB and merging 556 // is always safe 557 if (Succ->getSinglePredecessor()) return true; 558 559 // Make a list of the predecessors of BB 560 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 561 562 // Look at all the phi nodes in Succ, to see if they present a conflict when 563 // merging these blocks 564 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 565 PHINode *PN = cast<PHINode>(I); 566 567 // If the incoming value from BB is again a PHINode in 568 // BB which has the same incoming value for *PI as PN does, we can 569 // merge the phi nodes and then the blocks can still be merged 570 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 571 if (BBPN && BBPN->getParent() == BB) { 572 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 573 BasicBlock *IBB = PN->getIncomingBlock(PI); 574 if (BBPreds.count(IBB) && 575 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 576 PN->getIncomingValue(PI))) { 577 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 578 << Succ->getName() << " is conflicting with " 579 << BBPN->getName() << " with regard to common predecessor " 580 << IBB->getName() << "\n"); 581 return false; 582 } 583 } 584 } else { 585 Value* Val = PN->getIncomingValueForBlock(BB); 586 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 587 // See if the incoming value for the common predecessor is equal to the 588 // one for BB, in which case this phi node will not prevent the merging 589 // of the block. 590 BasicBlock *IBB = PN->getIncomingBlock(PI); 591 if (BBPreds.count(IBB) && 592 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 593 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 594 << Succ->getName() << " is conflicting with regard to common " 595 << "predecessor " << IBB->getName() << "\n"); 596 return false; 597 } 598 } 599 } 600 } 601 602 return true; 603 } 604 605 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 606 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 607 608 /// \brief Determines the value to use as the phi node input for a block. 609 /// 610 /// Select between \p OldVal any value that we know flows from \p BB 611 /// to a particular phi on the basis of which one (if either) is not 612 /// undef. Update IncomingValues based on the selected value. 613 /// 614 /// \param OldVal The value we are considering selecting. 615 /// \param BB The block that the value flows in from. 616 /// \param IncomingValues A map from block-to-value for other phi inputs 617 /// that we have examined. 618 /// 619 /// \returns the selected value. 620 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 621 IncomingValueMap &IncomingValues) { 622 if (!isa<UndefValue>(OldVal)) { 623 assert((!IncomingValues.count(BB) || 624 IncomingValues.find(BB)->second == OldVal) && 625 "Expected OldVal to match incoming value from BB!"); 626 627 IncomingValues.insert(std::make_pair(BB, OldVal)); 628 return OldVal; 629 } 630 631 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 632 if (It != IncomingValues.end()) return It->second; 633 634 return OldVal; 635 } 636 637 /// \brief Create a map from block to value for the operands of a 638 /// given phi. 639 /// 640 /// Create a map from block to value for each non-undef value flowing 641 /// into \p PN. 642 /// 643 /// \param PN The phi we are collecting the map for. 644 /// \param IncomingValues [out] The map from block to value for this phi. 645 static void gatherIncomingValuesToPhi(PHINode *PN, 646 IncomingValueMap &IncomingValues) { 647 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 648 BasicBlock *BB = PN->getIncomingBlock(i); 649 Value *V = PN->getIncomingValue(i); 650 651 if (!isa<UndefValue>(V)) 652 IncomingValues.insert(std::make_pair(BB, V)); 653 } 654 } 655 656 /// \brief Replace the incoming undef values to a phi with the values 657 /// from a block-to-value map. 658 /// 659 /// \param PN The phi we are replacing the undefs in. 660 /// \param IncomingValues A map from block to value. 661 static void replaceUndefValuesInPhi(PHINode *PN, 662 const IncomingValueMap &IncomingValues) { 663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 664 Value *V = PN->getIncomingValue(i); 665 666 if (!isa<UndefValue>(V)) continue; 667 668 BasicBlock *BB = PN->getIncomingBlock(i); 669 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 670 if (It == IncomingValues.end()) continue; 671 672 PN->setIncomingValue(i, It->second); 673 } 674 } 675 676 /// \brief Replace a value flowing from a block to a phi with 677 /// potentially multiple instances of that value flowing from the 678 /// block's predecessors to the phi. 679 /// 680 /// \param BB The block with the value flowing into the phi. 681 /// \param BBPreds The predecessors of BB. 682 /// \param PN The phi that we are updating. 683 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 684 const PredBlockVector &BBPreds, 685 PHINode *PN) { 686 Value *OldVal = PN->removeIncomingValue(BB, false); 687 assert(OldVal && "No entry in PHI for Pred BB!"); 688 689 IncomingValueMap IncomingValues; 690 691 // We are merging two blocks - BB, and the block containing PN - and 692 // as a result we need to redirect edges from the predecessors of BB 693 // to go to the block containing PN, and update PN 694 // accordingly. Since we allow merging blocks in the case where the 695 // predecessor and successor blocks both share some predecessors, 696 // and where some of those common predecessors might have undef 697 // values flowing into PN, we want to rewrite those values to be 698 // consistent with the non-undef values. 699 700 gatherIncomingValuesToPhi(PN, IncomingValues); 701 702 // If this incoming value is one of the PHI nodes in BB, the new entries 703 // in the PHI node are the entries from the old PHI. 704 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 705 PHINode *OldValPN = cast<PHINode>(OldVal); 706 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 707 // Note that, since we are merging phi nodes and BB and Succ might 708 // have common predecessors, we could end up with a phi node with 709 // identical incoming branches. This will be cleaned up later (and 710 // will trigger asserts if we try to clean it up now, without also 711 // simplifying the corresponding conditional branch). 712 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 713 Value *PredVal = OldValPN->getIncomingValue(i); 714 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 715 IncomingValues); 716 717 // And add a new incoming value for this predecessor for the 718 // newly retargeted branch. 719 PN->addIncoming(Selected, PredBB); 720 } 721 } else { 722 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 723 // Update existing incoming values in PN for this 724 // predecessor of BB. 725 BasicBlock *PredBB = BBPreds[i]; 726 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 727 IncomingValues); 728 729 // And add a new incoming value for this predecessor for the 730 // newly retargeted branch. 731 PN->addIncoming(Selected, PredBB); 732 } 733 } 734 735 replaceUndefValuesInPhi(PN, IncomingValues); 736 } 737 738 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 739 /// unconditional branch, and contains no instructions other than PHI nodes, 740 /// potential side-effect free intrinsics and the branch. If possible, 741 /// eliminate BB by rewriting all the predecessors to branch to the successor 742 /// block and return true. If we can't transform, return false. 743 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 744 assert(BB != &BB->getParent()->getEntryBlock() && 745 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 746 747 // We can't eliminate infinite loops. 748 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 749 if (BB == Succ) return false; 750 751 // Check to see if merging these blocks would cause conflicts for any of the 752 // phi nodes in BB or Succ. If not, we can safely merge. 753 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 754 755 // Check for cases where Succ has multiple predecessors and a PHI node in BB 756 // has uses which will not disappear when the PHI nodes are merged. It is 757 // possible to handle such cases, but difficult: it requires checking whether 758 // BB dominates Succ, which is non-trivial to calculate in the case where 759 // Succ has multiple predecessors. Also, it requires checking whether 760 // constructing the necessary self-referential PHI node doesn't introduce any 761 // conflicts; this isn't too difficult, but the previous code for doing this 762 // was incorrect. 763 // 764 // Note that if this check finds a live use, BB dominates Succ, so BB is 765 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 766 // folding the branch isn't profitable in that case anyway. 767 if (!Succ->getSinglePredecessor()) { 768 BasicBlock::iterator BBI = BB->begin(); 769 while (isa<PHINode>(*BBI)) { 770 for (Use &U : BBI->uses()) { 771 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 772 if (PN->getIncomingBlock(U) != BB) 773 return false; 774 } else { 775 return false; 776 } 777 } 778 ++BBI; 779 } 780 } 781 782 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 783 784 if (isa<PHINode>(Succ->begin())) { 785 // If there is more than one pred of succ, and there are PHI nodes in 786 // the successor, then we need to add incoming edges for the PHI nodes 787 // 788 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 789 790 // Loop over all of the PHI nodes in the successor of BB. 791 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 792 PHINode *PN = cast<PHINode>(I); 793 794 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 795 } 796 } 797 798 if (Succ->getSinglePredecessor()) { 799 // BB is the only predecessor of Succ, so Succ will end up with exactly 800 // the same predecessors BB had. 801 802 // Copy over any phi, debug or lifetime instruction. 803 BB->getTerminator()->eraseFromParent(); 804 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 805 } else { 806 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 807 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 808 assert(PN->use_empty() && "There shouldn't be any uses here!"); 809 PN->eraseFromParent(); 810 } 811 } 812 813 // Everything that jumped to BB now goes to Succ. 814 BB->replaceAllUsesWith(Succ); 815 if (!Succ->hasName()) Succ->takeName(BB); 816 BB->eraseFromParent(); // Delete the old basic block. 817 return true; 818 } 819 820 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 821 /// nodes in this block. This doesn't try to be clever about PHI nodes 822 /// which differ only in the order of the incoming values, but instcombine 823 /// orders them so it usually won't matter. 824 /// 825 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 826 bool Changed = false; 827 828 // This implementation doesn't currently consider undef operands 829 // specially. Theoretically, two phis which are identical except for 830 // one having an undef where the other doesn't could be collapsed. 831 832 // Map from PHI hash values to PHI nodes. If multiple PHIs have 833 // the same hash value, the element is the first PHI in the 834 // linked list in CollisionMap. 835 DenseMap<uintptr_t, PHINode *> HashMap; 836 837 // Maintain linked lists of PHI nodes with common hash values. 838 DenseMap<PHINode *, PHINode *> CollisionMap; 839 840 // Examine each PHI. 841 for (BasicBlock::iterator I = BB->begin(); 842 PHINode *PN = dyn_cast<PHINode>(I++); ) { 843 // Compute a hash value on the operands. Instcombine will likely have sorted 844 // them, which helps expose duplicates, but we have to check all the 845 // operands to be safe in case instcombine hasn't run. 846 uintptr_t Hash = 0; 847 // This hash algorithm is quite weak as hash functions go, but it seems 848 // to do a good enough job for this particular purpose, and is very quick. 849 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 850 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 851 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 852 } 853 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 854 I != E; ++I) { 855 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 856 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 857 } 858 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 859 Hash >>= 1; 860 // If we've never seen this hash value before, it's a unique PHI. 861 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 862 HashMap.insert(std::make_pair(Hash, PN)); 863 if (Pair.second) continue; 864 // Otherwise it's either a duplicate or a hash collision. 865 for (PHINode *OtherPN = Pair.first->second; ; ) { 866 if (OtherPN->isIdenticalTo(PN)) { 867 // A duplicate. Replace this PHI with its duplicate. 868 PN->replaceAllUsesWith(OtherPN); 869 PN->eraseFromParent(); 870 Changed = true; 871 break; 872 } 873 // A non-duplicate hash collision. 874 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 875 if (I == CollisionMap.end()) { 876 // Set this PHI to be the head of the linked list of colliding PHIs. 877 PHINode *Old = Pair.first->second; 878 Pair.first->second = PN; 879 CollisionMap[PN] = Old; 880 break; 881 } 882 // Proceed to the next PHI in the list. 883 OtherPN = I->second; 884 } 885 } 886 887 return Changed; 888 } 889 890 /// enforceKnownAlignment - If the specified pointer points to an object that 891 /// we control, modify the object's alignment to PrefAlign. This isn't 892 /// often possible though. If alignment is important, a more reliable approach 893 /// is to simply align all global variables and allocation instructions to 894 /// their preferred alignment from the beginning. 895 /// 896 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 897 unsigned PrefAlign, const DataLayout *TD) { 898 V = V->stripPointerCasts(); 899 900 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 901 // If the preferred alignment is greater than the natural stack alignment 902 // then don't round up. This avoids dynamic stack realignment. 903 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 904 return Align; 905 // If there is a requested alignment and if this is an alloca, round up. 906 if (AI->getAlignment() >= PrefAlign) 907 return AI->getAlignment(); 908 AI->setAlignment(PrefAlign); 909 return PrefAlign; 910 } 911 912 if (auto *GO = dyn_cast<GlobalObject>(V)) { 913 // If there is a large requested alignment and we can, bump up the alignment 914 // of the global. 915 if (GO->isDeclaration()) 916 return Align; 917 // If the memory we set aside for the global may not be the memory used by 918 // the final program then it is impossible for us to reliably enforce the 919 // preferred alignment. 920 if (GO->isWeakForLinker()) 921 return Align; 922 923 if (GO->getAlignment() >= PrefAlign) 924 return GO->getAlignment(); 925 // We can only increase the alignment of the global if it has no alignment 926 // specified or if it is not assigned a section. If it is assigned a 927 // section, the global could be densely packed with other objects in the 928 // section, increasing the alignment could cause padding issues. 929 if (!GO->hasSection() || GO->getAlignment() == 0) 930 GO->setAlignment(PrefAlign); 931 return GO->getAlignment(); 932 } 933 934 return Align; 935 } 936 937 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 938 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 939 /// and it is more than the alignment of the ultimate object, see if we can 940 /// increase the alignment of the ultimate object, making this check succeed. 941 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 942 const DataLayout *DL) { 943 assert(V->getType()->isPointerTy() && 944 "getOrEnforceKnownAlignment expects a pointer!"); 945 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 946 947 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 948 computeKnownBits(V, KnownZero, KnownOne, DL); 949 unsigned TrailZ = KnownZero.countTrailingOnes(); 950 951 // Avoid trouble with ridiculously large TrailZ values, such as 952 // those computed from a null pointer. 953 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 954 955 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 956 957 // LLVM doesn't support alignments larger than this currently. 958 Align = std::min(Align, +Value::MaximumAlignment); 959 960 if (PrefAlign > Align) 961 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 962 963 // We don't need to make any adjustment. 964 return Align; 965 } 966 967 ///===---------------------------------------------------------------------===// 968 /// Dbg Intrinsic utilities 969 /// 970 971 /// See if there is a dbg.value intrinsic for DIVar before I. 972 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 973 // Since we can't guarantee that the original dbg.declare instrinsic 974 // is removed by LowerDbgDeclare(), we need to make sure that we are 975 // not inserting the same dbg.value intrinsic over and over. 976 llvm::BasicBlock::InstListType::iterator PrevI(I); 977 if (PrevI != I->getParent()->getInstList().begin()) { 978 --PrevI; 979 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 980 if (DVI->getValue() == I->getOperand(0) && 981 DVI->getOffset() == 0 && 982 DVI->getVariable() == DIVar) 983 return true; 984 } 985 return false; 986 } 987 988 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 989 /// that has an associated llvm.dbg.decl intrinsic. 990 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 991 StoreInst *SI, DIBuilder &Builder) { 992 DIVariable DIVar(DDI->getVariable()); 993 assert((!DIVar || DIVar.isVariable()) && 994 "Variable in DbgDeclareInst should be either null or a DIVariable."); 995 if (!DIVar) 996 return false; 997 998 if (LdStHasDebugValue(DIVar, SI)) 999 return true; 1000 1001 Instruction *DbgVal = nullptr; 1002 // If an argument is zero extended then use argument directly. The ZExt 1003 // may be zapped by an optimization pass in future. 1004 Argument *ExtendedArg = nullptr; 1005 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1006 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1007 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1008 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1009 if (ExtendedArg) 1010 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 1011 else 1012 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 1013 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1014 return true; 1015 } 1016 1017 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1018 /// that has an associated llvm.dbg.decl intrinsic. 1019 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1020 LoadInst *LI, DIBuilder &Builder) { 1021 DIVariable DIVar(DDI->getVariable()); 1022 assert((!DIVar || DIVar.isVariable()) && 1023 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1024 if (!DIVar) 1025 return false; 1026 1027 if (LdStHasDebugValue(DIVar, LI)) 1028 return true; 1029 1030 Instruction *DbgVal = 1031 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 1032 DIVar, LI); 1033 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1034 return true; 1035 } 1036 1037 /// Determine whether this alloca is either a VLA or an array. 1038 static bool isArray(AllocaInst *AI) { 1039 return AI->isArrayAllocation() || 1040 AI->getType()->getElementType()->isArrayTy(); 1041 } 1042 1043 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1044 /// of llvm.dbg.value intrinsics. 1045 bool llvm::LowerDbgDeclare(Function &F) { 1046 DIBuilder DIB(*F.getParent()); 1047 SmallVector<DbgDeclareInst *, 4> Dbgs; 1048 for (auto &FI : F) 1049 for (BasicBlock::iterator BI : FI) 1050 if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) 1051 Dbgs.push_back(DDI); 1052 1053 if (Dbgs.empty()) 1054 return false; 1055 1056 for (auto &I : Dbgs) { 1057 DbgDeclareInst *DDI = I; 1058 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1059 // If this is an alloca for a scalar variable, insert a dbg.value 1060 // at each load and store to the alloca and erase the dbg.declare. 1061 // The dbg.values allow tracking a variable even if it is not 1062 // stored on the stack, while the dbg.declare can only describe 1063 // the stack slot (and at a lexical-scope granularity). Later 1064 // passes will attempt to elide the stack slot. 1065 if (AI && !isArray(AI)) { 1066 for (User *U : AI->users()) 1067 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1068 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1069 else if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1070 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1071 else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1072 // This is a call by-value or some other instruction that 1073 // takes a pointer to the variable. Insert a *value* 1074 // intrinsic that describes the alloca. 1075 auto DbgVal = 1076 DIB.insertDbgValueIntrinsic(AI, 0, 1077 DIVariable(DDI->getVariable()), CI); 1078 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1079 } 1080 DDI->eraseFromParent(); 1081 } 1082 } 1083 return true; 1084 } 1085 1086 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1087 /// alloca 'V', if any. 1088 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1089 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 1090 for (User *U : DebugNode->users()) 1091 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1092 return DDI; 1093 1094 return nullptr; 1095 } 1096 1097 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1098 DIBuilder &Builder) { 1099 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1100 if (!DDI) 1101 return false; 1102 DIVariable DIVar(DDI->getVariable()); 1103 assert((!DIVar || DIVar.isVariable()) && 1104 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1105 if (!DIVar) 1106 return false; 1107 1108 // Create a copy of the original DIDescriptor for user variable, appending 1109 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1110 // will take a value storing address of the memory for variable, not 1111 // alloca itself. 1112 Type *Int64Ty = Type::getInt64Ty(AI->getContext()); 1113 SmallVector<Value*, 4> NewDIVarAddress; 1114 if (DIVar.hasComplexAddress()) { 1115 for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) { 1116 NewDIVarAddress.push_back( 1117 ConstantInt::get(Int64Ty, DIVar.getAddrElement(i))); 1118 } 1119 } 1120 NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref)); 1121 DIVariable NewDIVar = Builder.createComplexVariable( 1122 DIVar.getTag(), DIVar.getContext(), DIVar.getName(), 1123 DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(), 1124 NewDIVarAddress, DIVar.getArgNumber()); 1125 1126 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1127 // and remove old llvm.dbg.declare. 1128 BasicBlock *BB = AI->getParent(); 1129 Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB); 1130 DDI->eraseFromParent(); 1131 return true; 1132 } 1133 1134 /// changeToUnreachable - Insert an unreachable instruction before the specified 1135 /// instruction, making it and the rest of the code in the block dead. 1136 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1137 BasicBlock *BB = I->getParent(); 1138 // Loop over all of the successors, removing BB's entry from any PHI 1139 // nodes. 1140 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1141 (*SI)->removePredecessor(BB); 1142 1143 // Insert a call to llvm.trap right before this. This turns the undefined 1144 // behavior into a hard fail instead of falling through into random code. 1145 if (UseLLVMTrap) { 1146 Function *TrapFn = 1147 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1148 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1149 CallTrap->setDebugLoc(I->getDebugLoc()); 1150 } 1151 new UnreachableInst(I->getContext(), I); 1152 1153 // All instructions after this are dead. 1154 BasicBlock::iterator BBI = I, BBE = BB->end(); 1155 while (BBI != BBE) { 1156 if (!BBI->use_empty()) 1157 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1158 BB->getInstList().erase(BBI++); 1159 } 1160 } 1161 1162 /// changeToCall - Convert the specified invoke into a normal call. 1163 static void changeToCall(InvokeInst *II) { 1164 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1165 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1166 NewCall->takeName(II); 1167 NewCall->setCallingConv(II->getCallingConv()); 1168 NewCall->setAttributes(II->getAttributes()); 1169 NewCall->setDebugLoc(II->getDebugLoc()); 1170 II->replaceAllUsesWith(NewCall); 1171 1172 // Follow the call by a branch to the normal destination. 1173 BranchInst::Create(II->getNormalDest(), II); 1174 1175 // Update PHI nodes in the unwind destination 1176 II->getUnwindDest()->removePredecessor(II->getParent()); 1177 II->eraseFromParent(); 1178 } 1179 1180 static bool markAliveBlocks(BasicBlock *BB, 1181 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1182 1183 SmallVector<BasicBlock*, 128> Worklist; 1184 Worklist.push_back(BB); 1185 Reachable.insert(BB); 1186 bool Changed = false; 1187 do { 1188 BB = Worklist.pop_back_val(); 1189 1190 // Do a quick scan of the basic block, turning any obviously unreachable 1191 // instructions into LLVM unreachable insts. The instruction combining pass 1192 // canonicalizes unreachable insts into stores to null or undef. 1193 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1194 // Assumptions that are known to be false are equivalent to unreachable. 1195 // Also, if the condition is undefined, then we make the choice most 1196 // beneficial to the optimizer, and choose that to also be unreachable. 1197 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1198 if (II->getIntrinsicID() == Intrinsic::assume) { 1199 bool MakeUnreachable = false; 1200 if (isa<UndefValue>(II->getArgOperand(0))) 1201 MakeUnreachable = true; 1202 else if (ConstantInt *Cond = 1203 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1204 MakeUnreachable = Cond->isZero(); 1205 1206 if (MakeUnreachable) { 1207 // Don't insert a call to llvm.trap right before the unreachable. 1208 changeToUnreachable(BBI, false); 1209 Changed = true; 1210 break; 1211 } 1212 } 1213 1214 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1215 if (CI->doesNotReturn()) { 1216 // If we found a call to a no-return function, insert an unreachable 1217 // instruction after it. Make sure there isn't *already* one there 1218 // though. 1219 ++BBI; 1220 if (!isa<UnreachableInst>(BBI)) { 1221 // Don't insert a call to llvm.trap right before the unreachable. 1222 changeToUnreachable(BBI, false); 1223 Changed = true; 1224 } 1225 break; 1226 } 1227 } 1228 1229 // Store to undef and store to null are undefined and used to signal that 1230 // they should be changed to unreachable by passes that can't modify the 1231 // CFG. 1232 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1233 // Don't touch volatile stores. 1234 if (SI->isVolatile()) continue; 1235 1236 Value *Ptr = SI->getOperand(1); 1237 1238 if (isa<UndefValue>(Ptr) || 1239 (isa<ConstantPointerNull>(Ptr) && 1240 SI->getPointerAddressSpace() == 0)) { 1241 changeToUnreachable(SI, true); 1242 Changed = true; 1243 break; 1244 } 1245 } 1246 } 1247 1248 // Turn invokes that call 'nounwind' functions into ordinary calls. 1249 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1250 Value *Callee = II->getCalledValue(); 1251 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1252 changeToUnreachable(II, true); 1253 Changed = true; 1254 } else if (II->doesNotThrow()) { 1255 if (II->use_empty() && II->onlyReadsMemory()) { 1256 // jump to the normal destination branch. 1257 BranchInst::Create(II->getNormalDest(), II); 1258 II->getUnwindDest()->removePredecessor(II->getParent()); 1259 II->eraseFromParent(); 1260 } else 1261 changeToCall(II); 1262 Changed = true; 1263 } 1264 } 1265 1266 Changed |= ConstantFoldTerminator(BB, true); 1267 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1268 if (Reachable.insert(*SI)) 1269 Worklist.push_back(*SI); 1270 } while (!Worklist.empty()); 1271 return Changed; 1272 } 1273 1274 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1275 /// if they are in a dead cycle. Return true if a change was made, false 1276 /// otherwise. 1277 bool llvm::removeUnreachableBlocks(Function &F) { 1278 SmallPtrSet<BasicBlock*, 128> Reachable; 1279 bool Changed = markAliveBlocks(F.begin(), Reachable); 1280 1281 // If there are unreachable blocks in the CFG... 1282 if (Reachable.size() == F.size()) 1283 return Changed; 1284 1285 assert(Reachable.size() < F.size()); 1286 NumRemoved += F.size()-Reachable.size(); 1287 1288 // Loop over all of the basic blocks that are not reachable, dropping all of 1289 // their internal references... 1290 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1291 if (Reachable.count(BB)) 1292 continue; 1293 1294 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1295 if (Reachable.count(*SI)) 1296 (*SI)->removePredecessor(BB); 1297 BB->dropAllReferences(); 1298 } 1299 1300 for (Function::iterator I = ++F.begin(); I != F.end();) 1301 if (!Reachable.count(I)) 1302 I = F.getBasicBlockList().erase(I); 1303 else 1304 ++I; 1305 1306 return true; 1307 } 1308 1309 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { 1310 SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata; 1311 K->dropUnknownMetadata(KnownIDs); 1312 K->getAllMetadataOtherThanDebugLoc(Metadata); 1313 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1314 unsigned Kind = Metadata[i].first; 1315 MDNode *JMD = J->getMetadata(Kind); 1316 MDNode *KMD = Metadata[i].second; 1317 1318 switch (Kind) { 1319 default: 1320 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1321 break; 1322 case LLVMContext::MD_dbg: 1323 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1324 case LLVMContext::MD_tbaa: 1325 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1326 break; 1327 case LLVMContext::MD_alias_scope: 1328 case LLVMContext::MD_noalias: 1329 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1330 break; 1331 case LLVMContext::MD_range: 1332 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1333 break; 1334 case LLVMContext::MD_fpmath: 1335 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1336 break; 1337 case LLVMContext::MD_invariant_load: 1338 // Only set the !invariant.load if it is present in both instructions. 1339 K->setMetadata(Kind, JMD); 1340 break; 1341 } 1342 } 1343 } 1344