1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/DIBuilder.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GetElementPtrTypeIterator.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/ValueHandle.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 47 48 //===----------------------------------------------------------------------===// 49 // Local constant propagation. 50 // 51 52 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 53 /// constant value, convert it into an unconditional branch to the constant 54 /// destination. This is a nontrivial operation because the successors of this 55 /// basic block must have their PHI nodes updated. 56 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 57 /// conditions and indirectbr addresses this might make dead if 58 /// DeleteDeadConditions is true. 59 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 60 const TargetLibraryInfo *TLI) { 61 TerminatorInst *T = BB->getTerminator(); 62 IRBuilder<> Builder(T); 63 64 // Branch - See if we are conditional jumping on constant 65 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 66 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 67 BasicBlock *Dest1 = BI->getSuccessor(0); 68 BasicBlock *Dest2 = BI->getSuccessor(1); 69 70 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 71 // Are we branching on constant? 72 // YES. Change to unconditional branch... 73 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 74 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 75 76 //cerr << "Function: " << T->getParent()->getParent() 77 // << "\nRemoving branch from " << T->getParent() 78 // << "\n\nTo: " << OldDest << endl; 79 80 // Let the basic block know that we are letting go of it. Based on this, 81 // it will adjust it's PHI nodes. 82 OldDest->removePredecessor(BB); 83 84 // Replace the conditional branch with an unconditional one. 85 Builder.CreateBr(Destination); 86 BI->eraseFromParent(); 87 return true; 88 } 89 90 if (Dest2 == Dest1) { // Conditional branch to same location? 91 // This branch matches something like this: 92 // br bool %cond, label %Dest, label %Dest 93 // and changes it into: br label %Dest 94 95 // Let the basic block know that we are letting go of one copy of it. 96 assert(BI->getParent() && "Terminator not inserted in block!"); 97 Dest1->removePredecessor(BI->getParent()); 98 99 // Replace the conditional branch with an unconditional one. 100 Builder.CreateBr(Dest1); 101 Value *Cond = BI->getCondition(); 102 BI->eraseFromParent(); 103 if (DeleteDeadConditions) 104 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 105 return true; 106 } 107 return false; 108 } 109 110 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 111 // If we are switching on a constant, we can convert the switch into a 112 // single branch instruction! 113 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 114 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 115 BasicBlock *DefaultDest = TheOnlyDest; 116 117 // Figure out which case it goes to. 118 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 119 i != e; ++i) { 120 // Found case matching a constant operand? 121 if (i.getCaseValue() == CI) { 122 TheOnlyDest = i.getCaseSuccessor(); 123 break; 124 } 125 126 // Check to see if this branch is going to the same place as the default 127 // dest. If so, eliminate it as an explicit compare. 128 if (i.getCaseSuccessor() == DefaultDest) { 129 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 130 // MD should have 2 + NumCases operands. 131 if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) { 132 // Collect branch weights into a vector. 133 SmallVector<uint32_t, 8> Weights; 134 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 135 ++MD_i) { 136 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 137 assert(CI); 138 Weights.push_back(CI->getValue().getZExtValue()); 139 } 140 // Merge weight of this case to the default weight. 141 unsigned idx = i.getCaseIndex(); 142 Weights[0] += Weights[idx+1]; 143 // Remove weight for this case. 144 std::swap(Weights[idx+1], Weights.back()); 145 Weights.pop_back(); 146 SI->setMetadata(LLVMContext::MD_prof, 147 MDBuilder(BB->getContext()). 148 createBranchWeights(Weights)); 149 } 150 // Remove this entry. 151 DefaultDest->removePredecessor(SI->getParent()); 152 SI->removeCase(i); 153 --i; --e; 154 continue; 155 } 156 157 // Otherwise, check to see if the switch only branches to one destination. 158 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 159 // destinations. 160 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0; 161 } 162 163 if (CI && !TheOnlyDest) { 164 // Branching on a constant, but not any of the cases, go to the default 165 // successor. 166 TheOnlyDest = SI->getDefaultDest(); 167 } 168 169 // If we found a single destination that we can fold the switch into, do so 170 // now. 171 if (TheOnlyDest) { 172 // Insert the new branch. 173 Builder.CreateBr(TheOnlyDest); 174 BasicBlock *BB = SI->getParent(); 175 176 // Remove entries from PHI nodes which we no longer branch to... 177 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 178 // Found case matching a constant operand? 179 BasicBlock *Succ = SI->getSuccessor(i); 180 if (Succ == TheOnlyDest) 181 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 182 else 183 Succ->removePredecessor(BB); 184 } 185 186 // Delete the old switch. 187 Value *Cond = SI->getCondition(); 188 SI->eraseFromParent(); 189 if (DeleteDeadConditions) 190 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 191 return true; 192 } 193 194 if (SI->getNumCases() == 1) { 195 // Otherwise, we can fold this switch into a conditional branch 196 // instruction if it has only one non-default destination. 197 SwitchInst::CaseIt FirstCase = SI->case_begin(); 198 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 199 FirstCase.getCaseValue(), "cond"); 200 201 // Insert the new branch. 202 BranchInst *NewBr = Builder.CreateCondBr(Cond, 203 FirstCase.getCaseSuccessor(), 204 SI->getDefaultDest()); 205 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 206 if (MD && MD->getNumOperands() == 3) { 207 ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); 208 ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); 209 assert(SICase && SIDef); 210 // The TrueWeight should be the weight for the single case of SI. 211 NewBr->setMetadata(LLVMContext::MD_prof, 212 MDBuilder(BB->getContext()). 213 createBranchWeights(SICase->getValue().getZExtValue(), 214 SIDef->getValue().getZExtValue())); 215 } 216 217 // Delete the old switch. 218 SI->eraseFromParent(); 219 return true; 220 } 221 return false; 222 } 223 224 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 225 // indirectbr blockaddress(@F, @BB) -> br label @BB 226 if (BlockAddress *BA = 227 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 228 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 229 // Insert the new branch. 230 Builder.CreateBr(TheOnlyDest); 231 232 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 233 if (IBI->getDestination(i) == TheOnlyDest) 234 TheOnlyDest = 0; 235 else 236 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 237 } 238 Value *Address = IBI->getAddress(); 239 IBI->eraseFromParent(); 240 if (DeleteDeadConditions) 241 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 242 243 // If we didn't find our destination in the IBI successor list, then we 244 // have undefined behavior. Replace the unconditional branch with an 245 // 'unreachable' instruction. 246 if (TheOnlyDest) { 247 BB->getTerminator()->eraseFromParent(); 248 new UnreachableInst(BB->getContext(), BB); 249 } 250 251 return true; 252 } 253 } 254 255 return false; 256 } 257 258 259 //===----------------------------------------------------------------------===// 260 // Local dead code elimination. 261 // 262 263 /// isInstructionTriviallyDead - Return true if the result produced by the 264 /// instruction is not used, and the instruction has no side effects. 265 /// 266 bool llvm::isInstructionTriviallyDead(Instruction *I, 267 const TargetLibraryInfo *TLI) { 268 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 269 270 // We don't want the landingpad instruction removed by anything this general. 271 if (isa<LandingPadInst>(I)) 272 return false; 273 274 // We don't want debug info removed by anything this general, unless 275 // debug info is empty. 276 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 277 if (DDI->getAddress()) 278 return false; 279 return true; 280 } 281 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 282 if (DVI->getValue()) 283 return false; 284 return true; 285 } 286 287 if (!I->mayHaveSideEffects()) return true; 288 289 // Special case intrinsics that "may have side effects" but can be deleted 290 // when dead. 291 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 292 // Safe to delete llvm.stacksave if dead. 293 if (II->getIntrinsicID() == Intrinsic::stacksave) 294 return true; 295 296 // Lifetime intrinsics are dead when their right-hand is undef. 297 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 298 II->getIntrinsicID() == Intrinsic::lifetime_end) 299 return isa<UndefValue>(II->getArgOperand(1)); 300 } 301 302 if (isAllocLikeFn(I, TLI)) return true; 303 304 if (CallInst *CI = isFreeCall(I, TLI)) 305 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 306 return C->isNullValue() || isa<UndefValue>(C); 307 308 return false; 309 } 310 311 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 312 /// trivially dead instruction, delete it. If that makes any of its operands 313 /// trivially dead, delete them too, recursively. Return true if any 314 /// instructions were deleted. 315 bool 316 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 317 const TargetLibraryInfo *TLI) { 318 Instruction *I = dyn_cast<Instruction>(V); 319 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 320 return false; 321 322 SmallVector<Instruction*, 16> DeadInsts; 323 DeadInsts.push_back(I); 324 325 do { 326 I = DeadInsts.pop_back_val(); 327 328 // Null out all of the instruction's operands to see if any operand becomes 329 // dead as we go. 330 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 331 Value *OpV = I->getOperand(i); 332 I->setOperand(i, 0); 333 334 if (!OpV->use_empty()) continue; 335 336 // If the operand is an instruction that became dead as we nulled out the 337 // operand, and if it is 'trivially' dead, delete it in a future loop 338 // iteration. 339 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 340 if (isInstructionTriviallyDead(OpI, TLI)) 341 DeadInsts.push_back(OpI); 342 } 343 344 I->eraseFromParent(); 345 } while (!DeadInsts.empty()); 346 347 return true; 348 } 349 350 /// areAllUsesEqual - Check whether the uses of a value are all the same. 351 /// This is similar to Instruction::hasOneUse() except this will also return 352 /// true when there are no uses or multiple uses that all refer to the same 353 /// value. 354 static bool areAllUsesEqual(Instruction *I) { 355 Value::use_iterator UI = I->use_begin(); 356 Value::use_iterator UE = I->use_end(); 357 if (UI == UE) 358 return true; 359 360 User *TheUse = *UI; 361 for (++UI; UI != UE; ++UI) { 362 if (*UI != TheUse) 363 return false; 364 } 365 return true; 366 } 367 368 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 369 /// dead PHI node, due to being a def-use chain of single-use nodes that 370 /// either forms a cycle or is terminated by a trivially dead instruction, 371 /// delete it. If that makes any of its operands trivially dead, delete them 372 /// too, recursively. Return true if a change was made. 373 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 374 const TargetLibraryInfo *TLI) { 375 SmallPtrSet<Instruction*, 4> Visited; 376 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 377 I = cast<Instruction>(*I->use_begin())) { 378 if (I->use_empty()) 379 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 380 381 // If we find an instruction more than once, we're on a cycle that 382 // won't prove fruitful. 383 if (!Visited.insert(I)) { 384 // Break the cycle and delete the instruction and its operands. 385 I->replaceAllUsesWith(UndefValue::get(I->getType())); 386 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 387 return true; 388 } 389 } 390 return false; 391 } 392 393 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 394 /// simplify any instructions in it and recursively delete dead instructions. 395 /// 396 /// This returns true if it changed the code, note that it can delete 397 /// instructions in other blocks as well in this block. 398 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 399 const TargetLibraryInfo *TLI) { 400 bool MadeChange = false; 401 402 #ifndef NDEBUG 403 // In debug builds, ensure that the terminator of the block is never replaced 404 // or deleted by these simplifications. The idea of simplification is that it 405 // cannot introduce new instructions, and there is no way to replace the 406 // terminator of a block without introducing a new instruction. 407 AssertingVH<Instruction> TerminatorVH(--BB->end()); 408 #endif 409 410 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 411 assert(!BI->isTerminator()); 412 Instruction *Inst = BI++; 413 414 WeakVH BIHandle(BI); 415 if (recursivelySimplifyInstruction(Inst, TD, TLI)) { 416 MadeChange = true; 417 if (BIHandle != BI) 418 BI = BB->begin(); 419 continue; 420 } 421 422 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 423 if (BIHandle != BI) 424 BI = BB->begin(); 425 } 426 return MadeChange; 427 } 428 429 //===----------------------------------------------------------------------===// 430 // Control Flow Graph Restructuring. 431 // 432 433 434 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 435 /// method is called when we're about to delete Pred as a predecessor of BB. If 436 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 437 /// 438 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 439 /// nodes that collapse into identity values. For example, if we have: 440 /// x = phi(1, 0, 0, 0) 441 /// y = and x, z 442 /// 443 /// .. and delete the predecessor corresponding to the '1', this will attempt to 444 /// recursively fold the and to 0. 445 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 446 DataLayout *TD) { 447 // This only adjusts blocks with PHI nodes. 448 if (!isa<PHINode>(BB->begin())) 449 return; 450 451 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 452 // them down. This will leave us with single entry phi nodes and other phis 453 // that can be removed. 454 BB->removePredecessor(Pred, true); 455 456 WeakVH PhiIt = &BB->front(); 457 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 458 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 459 Value *OldPhiIt = PhiIt; 460 461 if (!recursivelySimplifyInstruction(PN, TD)) 462 continue; 463 464 // If recursive simplification ended up deleting the next PHI node we would 465 // iterate to, then our iterator is invalid, restart scanning from the top 466 // of the block. 467 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 468 } 469 } 470 471 472 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 473 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 474 /// between them, moving the instructions in the predecessor into DestBB and 475 /// deleting the predecessor block. 476 /// 477 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 478 // If BB has single-entry PHI nodes, fold them. 479 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 480 Value *NewVal = PN->getIncomingValue(0); 481 // Replace self referencing PHI with undef, it must be dead. 482 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 483 PN->replaceAllUsesWith(NewVal); 484 PN->eraseFromParent(); 485 } 486 487 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 488 assert(PredBB && "Block doesn't have a single predecessor!"); 489 490 // Zap anything that took the address of DestBB. Not doing this will give the 491 // address an invalid value. 492 if (DestBB->hasAddressTaken()) { 493 BlockAddress *BA = BlockAddress::get(DestBB); 494 Constant *Replacement = 495 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 496 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 497 BA->getType())); 498 BA->destroyConstant(); 499 } 500 501 // Anything that branched to PredBB now branches to DestBB. 502 PredBB->replaceAllUsesWith(DestBB); 503 504 // Splice all the instructions from PredBB to DestBB. 505 PredBB->getTerminator()->eraseFromParent(); 506 507 // First splice over the PHI nodes. 508 BasicBlock::iterator PI = PredBB->begin(); 509 while (isa<PHINode>(PI)) 510 ++PI; 511 512 if (PI != PredBB->begin()) 513 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList(), 514 PredBB->begin(), PI); 515 516 // Now splice over the rest of the instructions. 517 DestBB->getInstList().splice(DestBB->getFirstInsertionPt(), 518 PredBB->getInstList(), PI, PredBB->end()); 519 520 if (P) { 521 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 522 if (DT) { 523 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 524 DT->changeImmediateDominator(DestBB, PredBBIDom); 525 DT->eraseNode(PredBB); 526 } 527 } 528 529 // Nuke BB. 530 PredBB->eraseFromParent(); 531 } 532 533 /// CanMergeValues - Return true if we can choose one of these values to use 534 /// in place of the other. Note that we will always choose the non-undef 535 /// value to keep. 536 static bool CanMergeValues(Value *First, Value *Second) { 537 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 538 } 539 540 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 541 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 542 /// 543 /// Assumption: Succ is the single successor for BB. 544 /// 545 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 546 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 547 548 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 549 << Succ->getName() << "\n"); 550 // Shortcut, if there is only a single predecessor it must be BB and merging 551 // is always safe 552 if (Succ->getSinglePredecessor()) return true; 553 554 // Make a list of the predecessors of BB 555 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 556 557 // Look at all the phi nodes in Succ, to see if they present a conflict when 558 // merging these blocks 559 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 560 PHINode *PN = cast<PHINode>(I); 561 562 // If the incoming value from BB is again a PHINode in 563 // BB which has the same incoming value for *PI as PN does, we can 564 // merge the phi nodes and then the blocks can still be merged 565 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 566 if (BBPN && BBPN->getParent() == BB) { 567 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 568 BasicBlock *IBB = PN->getIncomingBlock(PI); 569 if (BBPreds.count(IBB) && 570 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 571 PN->getIncomingValue(PI))) { 572 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 573 << Succ->getName() << " is conflicting with " 574 << BBPN->getName() << " with regard to common predecessor " 575 << IBB->getName() << "\n"); 576 return false; 577 } 578 } 579 } else { 580 Value* Val = PN->getIncomingValueForBlock(BB); 581 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 582 // See if the incoming value for the common predecessor is equal to the 583 // one for BB, in which case this phi node will not prevent the merging 584 // of the block. 585 BasicBlock *IBB = PN->getIncomingBlock(PI); 586 if (BBPreds.count(IBB) && 587 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 588 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 589 << Succ->getName() << " is conflicting with regard to common " 590 << "predecessor " << IBB->getName() << "\n"); 591 return false; 592 } 593 } 594 } 595 } 596 597 return true; 598 } 599 600 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 601 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 602 603 /// \brief Determines the value to use as the phi node input for a block. 604 /// 605 /// Select between \p OldVal any value that we know flows from \p BB 606 /// to a particular phi on the basis of which one (if either) is not 607 /// undef. Update IncomingValues based on the selected value. 608 /// 609 /// \param OldVal The value we are considering selecting. 610 /// \param BB The block that the value flows in from. 611 /// \param IncomingValues A map from block-to-value for other phi inputs 612 /// that we have examined. 613 /// 614 /// \returns the selected value. 615 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 616 IncomingValueMap &IncomingValues) { 617 if (!isa<UndefValue>(OldVal)) { 618 assert((!IncomingValues.count(BB) || 619 IncomingValues.find(BB)->second == OldVal) && 620 "Expected OldVal to match incoming value from BB!"); 621 622 IncomingValues.insert(std::make_pair(BB, OldVal)); 623 return OldVal; 624 } 625 626 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 627 if (It != IncomingValues.end()) return It->second; 628 629 return OldVal; 630 } 631 632 /// \brief Create a map from block to value for the operands of a 633 /// given phi. 634 /// 635 /// Create a map from block to value for each non-undef value flowing 636 /// into \p PN. 637 /// 638 /// \param PN The phi we are collecting the map for. 639 /// \param IncomingValues [out] The map from block to value for this phi. 640 static void gatherIncomingValuesToPhi(PHINode *PN, 641 IncomingValueMap &IncomingValues) { 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 643 BasicBlock *BB = PN->getIncomingBlock(i); 644 Value *V = PN->getIncomingValue(i); 645 646 if (!isa<UndefValue>(V)) 647 IncomingValues.insert(std::make_pair(BB, V)); 648 } 649 } 650 651 /// \brief Replace the incoming undef values to a phi with the values 652 /// from a block-to-value map. 653 /// 654 /// \param PN The phi we are replacing the undefs in. 655 /// \param IncomingValues A map from block to value. 656 static void replaceUndefValuesInPhi(PHINode *PN, 657 const IncomingValueMap &IncomingValues) { 658 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 659 Value *V = PN->getIncomingValue(i); 660 661 if (!isa<UndefValue>(V)) continue; 662 663 BasicBlock *BB = PN->getIncomingBlock(i); 664 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 665 if (It == IncomingValues.end()) continue; 666 667 PN->setIncomingValue(i, It->second); 668 } 669 } 670 671 /// \brief Replace a value flowing from a block to a phi with 672 /// potentially multiple instances of that value flowing from the 673 /// block's predecessors to the phi. 674 /// 675 /// \param BB The block with the value flowing into the phi. 676 /// \param BBPreds The predecessors of BB. 677 /// \param PN The phi that we are updating. 678 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 679 const PredBlockVector &BBPreds, 680 PHINode *PN) { 681 Value *OldVal = PN->removeIncomingValue(BB, false); 682 assert(OldVal && "No entry in PHI for Pred BB!"); 683 684 IncomingValueMap IncomingValues; 685 686 // We are merging two blocks - BB, and the block containing PN - and 687 // as a result we need to redirect edges from the predecessors of BB 688 // to go to the block containing PN, and update PN 689 // accordingly. Since we allow merging blocks in the case where the 690 // predecessor and successor blocks both share some predecessors, 691 // and where some of those common predecessors might have undef 692 // values flowing into PN, we want to rewrite those values to be 693 // consistent with the non-undef values. 694 695 gatherIncomingValuesToPhi(PN, IncomingValues); 696 697 // If this incoming value is one of the PHI nodes in BB, the new entries 698 // in the PHI node are the entries from the old PHI. 699 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 700 PHINode *OldValPN = cast<PHINode>(OldVal); 701 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 702 // Note that, since we are merging phi nodes and BB and Succ might 703 // have common predecessors, we could end up with a phi node with 704 // identical incoming branches. This will be cleaned up later (and 705 // will trigger asserts if we try to clean it up now, without also 706 // simplifying the corresponding conditional branch). 707 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 708 Value *PredVal = OldValPN->getIncomingValue(i); 709 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 710 IncomingValues); 711 712 // And add a new incoming value for this predecessor for the 713 // newly retargeted branch. 714 PN->addIncoming(Selected, PredBB); 715 } 716 } else { 717 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 718 // Update existing incoming values in PN for this 719 // predecessor of BB. 720 BasicBlock *PredBB = BBPreds[i]; 721 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 722 IncomingValues); 723 724 // And add a new incoming value for this predecessor for the 725 // newly retargeted branch. 726 PN->addIncoming(Selected, PredBB); 727 } 728 } 729 730 replaceUndefValuesInPhi(PN, IncomingValues); 731 } 732 733 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 734 /// unconditional branch, and contains no instructions other than PHI nodes, 735 /// potential side-effect free intrinsics and the branch. If possible, 736 /// eliminate BB by rewriting all the predecessors to branch to the successor 737 /// block and return true. If we can't transform, return false. 738 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 739 assert(BB != &BB->getParent()->getEntryBlock() && 740 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 741 742 // We can't eliminate infinite loops. 743 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 744 if (BB == Succ) return false; 745 746 // Check to see if merging these blocks would cause conflicts for any of the 747 // phi nodes in BB or Succ. If not, we can safely merge. 748 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 749 750 // Check for cases where Succ has multiple predecessors and a PHI node in BB 751 // has uses which will not disappear when the PHI nodes are merged. It is 752 // possible to handle such cases, but difficult: it requires checking whether 753 // BB dominates Succ, which is non-trivial to calculate in the case where 754 // Succ has multiple predecessors. Also, it requires checking whether 755 // constructing the necessary self-referential PHI node doesn't introduce any 756 // conflicts; this isn't too difficult, but the previous code for doing this 757 // was incorrect. 758 // 759 // Note that if this check finds a live use, BB dominates Succ, so BB is 760 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 761 // folding the branch isn't profitable in that case anyway. 762 if (!Succ->getSinglePredecessor()) { 763 BasicBlock::iterator BBI = BB->begin(); 764 while (isa<PHINode>(*BBI)) { 765 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 766 UI != E; ++UI) { 767 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 768 if (PN->getIncomingBlock(UI) != BB) 769 return false; 770 } else { 771 return false; 772 } 773 } 774 ++BBI; 775 } 776 } 777 778 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 779 780 if (isa<PHINode>(Succ->begin())) { 781 // If there is more than one pred of succ, and there are PHI nodes in 782 // the successor, then we need to add incoming edges for the PHI nodes 783 // 784 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 785 786 // Loop over all of the PHI nodes in the successor of BB. 787 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 788 PHINode *PN = cast<PHINode>(I); 789 790 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 791 } 792 } 793 794 if (Succ->getSinglePredecessor()) { 795 // BB is the only predecessor of Succ, so Succ will end up with exactly 796 // the same predecessors BB had. 797 798 // Copy over any phi, debug or lifetime instruction. 799 BB->getTerminator()->eraseFromParent(); 800 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 801 } else { 802 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 803 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 804 assert(PN->use_empty() && "There shouldn't be any uses here!"); 805 PN->eraseFromParent(); 806 } 807 } 808 809 // Everything that jumped to BB now goes to Succ. 810 BB->replaceAllUsesWith(Succ); 811 if (!Succ->hasName()) Succ->takeName(BB); 812 BB->eraseFromParent(); // Delete the old basic block. 813 return true; 814 } 815 816 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 817 /// nodes in this block. This doesn't try to be clever about PHI nodes 818 /// which differ only in the order of the incoming values, but instcombine 819 /// orders them so it usually won't matter. 820 /// 821 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 822 bool Changed = false; 823 824 // This implementation doesn't currently consider undef operands 825 // specially. Theoretically, two phis which are identical except for 826 // one having an undef where the other doesn't could be collapsed. 827 828 // Map from PHI hash values to PHI nodes. If multiple PHIs have 829 // the same hash value, the element is the first PHI in the 830 // linked list in CollisionMap. 831 DenseMap<uintptr_t, PHINode *> HashMap; 832 833 // Maintain linked lists of PHI nodes with common hash values. 834 DenseMap<PHINode *, PHINode *> CollisionMap; 835 836 // Examine each PHI. 837 for (BasicBlock::iterator I = BB->begin(); 838 PHINode *PN = dyn_cast<PHINode>(I++); ) { 839 // Compute a hash value on the operands. Instcombine will likely have sorted 840 // them, which helps expose duplicates, but we have to check all the 841 // operands to be safe in case instcombine hasn't run. 842 uintptr_t Hash = 0; 843 // This hash algorithm is quite weak as hash functions go, but it seems 844 // to do a good enough job for this particular purpose, and is very quick. 845 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 846 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 847 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 848 } 849 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 850 I != E; ++I) { 851 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 852 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 853 } 854 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 855 Hash >>= 1; 856 // If we've never seen this hash value before, it's a unique PHI. 857 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 858 HashMap.insert(std::make_pair(Hash, PN)); 859 if (Pair.second) continue; 860 // Otherwise it's either a duplicate or a hash collision. 861 for (PHINode *OtherPN = Pair.first->second; ; ) { 862 if (OtherPN->isIdenticalTo(PN)) { 863 // A duplicate. Replace this PHI with its duplicate. 864 PN->replaceAllUsesWith(OtherPN); 865 PN->eraseFromParent(); 866 Changed = true; 867 break; 868 } 869 // A non-duplicate hash collision. 870 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 871 if (I == CollisionMap.end()) { 872 // Set this PHI to be the head of the linked list of colliding PHIs. 873 PHINode *Old = Pair.first->second; 874 Pair.first->second = PN; 875 CollisionMap[PN] = Old; 876 break; 877 } 878 // Proceed to the next PHI in the list. 879 OtherPN = I->second; 880 } 881 } 882 883 return Changed; 884 } 885 886 /// enforceKnownAlignment - If the specified pointer points to an object that 887 /// we control, modify the object's alignment to PrefAlign. This isn't 888 /// often possible though. If alignment is important, a more reliable approach 889 /// is to simply align all global variables and allocation instructions to 890 /// their preferred alignment from the beginning. 891 /// 892 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 893 unsigned PrefAlign, const DataLayout *TD) { 894 V = V->stripPointerCasts(); 895 896 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 897 // If the preferred alignment is greater than the natural stack alignment 898 // then don't round up. This avoids dynamic stack realignment. 899 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 900 return Align; 901 // If there is a requested alignment and if this is an alloca, round up. 902 if (AI->getAlignment() >= PrefAlign) 903 return AI->getAlignment(); 904 AI->setAlignment(PrefAlign); 905 return PrefAlign; 906 } 907 908 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 909 // If there is a large requested alignment and we can, bump up the alignment 910 // of the global. 911 if (GV->isDeclaration()) return Align; 912 // If the memory we set aside for the global may not be the memory used by 913 // the final program then it is impossible for us to reliably enforce the 914 // preferred alignment. 915 if (GV->isWeakForLinker()) return Align; 916 917 if (GV->getAlignment() >= PrefAlign) 918 return GV->getAlignment(); 919 // We can only increase the alignment of the global if it has no alignment 920 // specified or if it is not assigned a section. If it is assigned a 921 // section, the global could be densely packed with other objects in the 922 // section, increasing the alignment could cause padding issues. 923 if (!GV->hasSection() || GV->getAlignment() == 0) 924 GV->setAlignment(PrefAlign); 925 return GV->getAlignment(); 926 } 927 928 return Align; 929 } 930 931 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 932 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 933 /// and it is more than the alignment of the ultimate object, see if we can 934 /// increase the alignment of the ultimate object, making this check succeed. 935 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 936 const DataLayout *DL) { 937 assert(V->getType()->isPointerTy() && 938 "getOrEnforceKnownAlignment expects a pointer!"); 939 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 940 941 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 942 ComputeMaskedBits(V, KnownZero, KnownOne, DL); 943 unsigned TrailZ = KnownZero.countTrailingOnes(); 944 945 // Avoid trouble with ridiculously large TrailZ values, such as 946 // those computed from a null pointer. 947 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 948 949 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 950 951 // LLVM doesn't support alignments larger than this currently. 952 Align = std::min(Align, +Value::MaximumAlignment); 953 954 if (PrefAlign > Align) 955 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 956 957 // We don't need to make any adjustment. 958 return Align; 959 } 960 961 ///===---------------------------------------------------------------------===// 962 /// Dbg Intrinsic utilities 963 /// 964 965 /// See if there is a dbg.value intrinsic for DIVar before I. 966 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 967 // Since we can't guarantee that the original dbg.declare instrinsic 968 // is removed by LowerDbgDeclare(), we need to make sure that we are 969 // not inserting the same dbg.value intrinsic over and over. 970 llvm::BasicBlock::InstListType::iterator PrevI(I); 971 if (PrevI != I->getParent()->getInstList().begin()) { 972 --PrevI; 973 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 974 if (DVI->getValue() == I->getOperand(0) && 975 DVI->getOffset() == 0 && 976 DVI->getVariable() == DIVar) 977 return true; 978 } 979 return false; 980 } 981 982 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 983 /// that has an associated llvm.dbg.decl intrinsic. 984 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 985 StoreInst *SI, DIBuilder &Builder) { 986 DIVariable DIVar(DDI->getVariable()); 987 assert((!DIVar || DIVar.isVariable()) && 988 "Variable in DbgDeclareInst should be either null or a DIVariable."); 989 if (!DIVar) 990 return false; 991 992 if (LdStHasDebugValue(DIVar, SI)) 993 return true; 994 995 Instruction *DbgVal = NULL; 996 // If an argument is zero extended then use argument directly. The ZExt 997 // may be zapped by an optimization pass in future. 998 Argument *ExtendedArg = NULL; 999 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1000 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1001 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1002 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1003 if (ExtendedArg) 1004 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 1005 else 1006 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 1007 1008 // Propagate any debug metadata from the store onto the dbg.value. 1009 DebugLoc SIDL = SI->getDebugLoc(); 1010 if (!SIDL.isUnknown()) 1011 DbgVal->setDebugLoc(SIDL); 1012 // Otherwise propagate debug metadata from dbg.declare. 1013 else 1014 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1015 return true; 1016 } 1017 1018 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1019 /// that has an associated llvm.dbg.decl intrinsic. 1020 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1021 LoadInst *LI, DIBuilder &Builder) { 1022 DIVariable DIVar(DDI->getVariable()); 1023 assert((!DIVar || DIVar.isVariable()) && 1024 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1025 if (!DIVar) 1026 return false; 1027 1028 if (LdStHasDebugValue(DIVar, LI)) 1029 return true; 1030 1031 Instruction *DbgVal = 1032 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 1033 DIVar, LI); 1034 1035 // Propagate any debug metadata from the store onto the dbg.value. 1036 DebugLoc LIDL = LI->getDebugLoc(); 1037 if (!LIDL.isUnknown()) 1038 DbgVal->setDebugLoc(LIDL); 1039 // Otherwise propagate debug metadata from dbg.declare. 1040 else 1041 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1042 return true; 1043 } 1044 1045 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1046 /// of llvm.dbg.value intrinsics. 1047 bool llvm::LowerDbgDeclare(Function &F) { 1048 DIBuilder DIB(*F.getParent()); 1049 SmallVector<DbgDeclareInst *, 4> Dbgs; 1050 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 1051 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 1052 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 1053 Dbgs.push_back(DDI); 1054 } 1055 if (Dbgs.empty()) 1056 return false; 1057 1058 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(), 1059 E = Dbgs.end(); I != E; ++I) { 1060 DbgDeclareInst *DDI = *I; 1061 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { 1062 // We only remove the dbg.declare intrinsic if all uses are 1063 // converted to dbg.value intrinsics. 1064 bool RemoveDDI = true; 1065 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 1066 UI != E; ++UI) 1067 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 1068 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1069 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 1070 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1071 else 1072 RemoveDDI = false; 1073 if (RemoveDDI) 1074 DDI->eraseFromParent(); 1075 } 1076 } 1077 return true; 1078 } 1079 1080 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1081 /// alloca 'V', if any. 1082 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1083 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 1084 for (Value::use_iterator UI = DebugNode->use_begin(), 1085 E = DebugNode->use_end(); UI != E; ++UI) 1086 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 1087 return DDI; 1088 1089 return 0; 1090 } 1091 1092 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1093 DIBuilder &Builder) { 1094 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1095 if (!DDI) 1096 return false; 1097 DIVariable DIVar(DDI->getVariable()); 1098 assert((!DIVar || DIVar.isVariable()) && 1099 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1100 if (!DIVar) 1101 return false; 1102 1103 // Create a copy of the original DIDescriptor for user variable, appending 1104 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1105 // will take a value storing address of the memory for variable, not 1106 // alloca itself. 1107 Type *Int64Ty = Type::getInt64Ty(AI->getContext()); 1108 SmallVector<Value*, 4> NewDIVarAddress; 1109 if (DIVar.hasComplexAddress()) { 1110 for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) { 1111 NewDIVarAddress.push_back( 1112 ConstantInt::get(Int64Ty, DIVar.getAddrElement(i))); 1113 } 1114 } 1115 NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref)); 1116 DIVariable NewDIVar = Builder.createComplexVariable( 1117 DIVar.getTag(), DIVar.getContext(), DIVar.getName(), 1118 DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(), 1119 NewDIVarAddress, DIVar.getArgNumber()); 1120 1121 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1122 // and remove old llvm.dbg.declare. 1123 BasicBlock *BB = AI->getParent(); 1124 Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB); 1125 DDI->eraseFromParent(); 1126 return true; 1127 } 1128 1129 /// changeToUnreachable - Insert an unreachable instruction before the specified 1130 /// instruction, making it and the rest of the code in the block dead. 1131 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1132 BasicBlock *BB = I->getParent(); 1133 // Loop over all of the successors, removing BB's entry from any PHI 1134 // nodes. 1135 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1136 (*SI)->removePredecessor(BB); 1137 1138 // Insert a call to llvm.trap right before this. This turns the undefined 1139 // behavior into a hard fail instead of falling through into random code. 1140 if (UseLLVMTrap) { 1141 Function *TrapFn = 1142 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1143 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1144 CallTrap->setDebugLoc(I->getDebugLoc()); 1145 } 1146 new UnreachableInst(I->getContext(), I); 1147 1148 // All instructions after this are dead. 1149 BasicBlock::iterator BBI = I, BBE = BB->end(); 1150 while (BBI != BBE) { 1151 if (!BBI->use_empty()) 1152 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1153 BB->getInstList().erase(BBI++); 1154 } 1155 } 1156 1157 /// changeToCall - Convert the specified invoke into a normal call. 1158 static void changeToCall(InvokeInst *II) { 1159 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1160 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1161 NewCall->takeName(II); 1162 NewCall->setCallingConv(II->getCallingConv()); 1163 NewCall->setAttributes(II->getAttributes()); 1164 NewCall->setDebugLoc(II->getDebugLoc()); 1165 II->replaceAllUsesWith(NewCall); 1166 1167 // Follow the call by a branch to the normal destination. 1168 BranchInst::Create(II->getNormalDest(), II); 1169 1170 // Update PHI nodes in the unwind destination 1171 II->getUnwindDest()->removePredecessor(II->getParent()); 1172 II->eraseFromParent(); 1173 } 1174 1175 static bool markAliveBlocks(BasicBlock *BB, 1176 SmallPtrSet<BasicBlock*, 128> &Reachable) { 1177 1178 SmallVector<BasicBlock*, 128> Worklist; 1179 Worklist.push_back(BB); 1180 Reachable.insert(BB); 1181 bool Changed = false; 1182 do { 1183 BB = Worklist.pop_back_val(); 1184 1185 // Do a quick scan of the basic block, turning any obviously unreachable 1186 // instructions into LLVM unreachable insts. The instruction combining pass 1187 // canonicalizes unreachable insts into stores to null or undef. 1188 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1189 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1190 if (CI->doesNotReturn()) { 1191 // If we found a call to a no-return function, insert an unreachable 1192 // instruction after it. Make sure there isn't *already* one there 1193 // though. 1194 ++BBI; 1195 if (!isa<UnreachableInst>(BBI)) { 1196 // Don't insert a call to llvm.trap right before the unreachable. 1197 changeToUnreachable(BBI, false); 1198 Changed = true; 1199 } 1200 break; 1201 } 1202 } 1203 1204 // Store to undef and store to null are undefined and used to signal that 1205 // they should be changed to unreachable by passes that can't modify the 1206 // CFG. 1207 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1208 // Don't touch volatile stores. 1209 if (SI->isVolatile()) continue; 1210 1211 Value *Ptr = SI->getOperand(1); 1212 1213 if (isa<UndefValue>(Ptr) || 1214 (isa<ConstantPointerNull>(Ptr) && 1215 SI->getPointerAddressSpace() == 0)) { 1216 changeToUnreachable(SI, true); 1217 Changed = true; 1218 break; 1219 } 1220 } 1221 } 1222 1223 // Turn invokes that call 'nounwind' functions into ordinary calls. 1224 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1225 Value *Callee = II->getCalledValue(); 1226 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1227 changeToUnreachable(II, true); 1228 Changed = true; 1229 } else if (II->doesNotThrow()) { 1230 if (II->use_empty() && II->onlyReadsMemory()) { 1231 // jump to the normal destination branch. 1232 BranchInst::Create(II->getNormalDest(), II); 1233 II->getUnwindDest()->removePredecessor(II->getParent()); 1234 II->eraseFromParent(); 1235 } else 1236 changeToCall(II); 1237 Changed = true; 1238 } 1239 } 1240 1241 Changed |= ConstantFoldTerminator(BB, true); 1242 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1243 if (Reachable.insert(*SI)) 1244 Worklist.push_back(*SI); 1245 } while (!Worklist.empty()); 1246 return Changed; 1247 } 1248 1249 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1250 /// if they are in a dead cycle. Return true if a change was made, false 1251 /// otherwise. 1252 bool llvm::removeUnreachableBlocks(Function &F) { 1253 SmallPtrSet<BasicBlock*, 128> Reachable; 1254 bool Changed = markAliveBlocks(F.begin(), Reachable); 1255 1256 // If there are unreachable blocks in the CFG... 1257 if (Reachable.size() == F.size()) 1258 return Changed; 1259 1260 assert(Reachable.size() < F.size()); 1261 NumRemoved += F.size()-Reachable.size(); 1262 1263 // Loop over all of the basic blocks that are not reachable, dropping all of 1264 // their internal references... 1265 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1266 if (Reachable.count(BB)) 1267 continue; 1268 1269 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1270 if (Reachable.count(*SI)) 1271 (*SI)->removePredecessor(BB); 1272 BB->dropAllReferences(); 1273 } 1274 1275 for (Function::iterator I = ++F.begin(); I != F.end();) 1276 if (!Reachable.count(I)) 1277 I = F.getBasicBlockList().erase(I); 1278 else 1279 ++I; 1280 1281 return true; 1282 } 1283