1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "local" 52 53 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 54 55 //===----------------------------------------------------------------------===// 56 // Local constant propagation. 57 // 58 59 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 60 /// constant value, convert it into an unconditional branch to the constant 61 /// destination. This is a nontrivial operation because the successors of this 62 /// basic block must have their PHI nodes updated. 63 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 64 /// conditions and indirectbr addresses this might make dead if 65 /// DeleteDeadConditions is true. 66 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 67 const TargetLibraryInfo *TLI) { 68 TerminatorInst *T = BB->getTerminator(); 69 IRBuilder<> Builder(T); 70 71 // Branch - See if we are conditional jumping on constant 72 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 73 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 74 BasicBlock *Dest1 = BI->getSuccessor(0); 75 BasicBlock *Dest2 = BI->getSuccessor(1); 76 77 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 78 // Are we branching on constant? 79 // YES. Change to unconditional branch... 80 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 81 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 82 83 //cerr << "Function: " << T->getParent()->getParent() 84 // << "\nRemoving branch from " << T->getParent() 85 // << "\n\nTo: " << OldDest << endl; 86 87 // Let the basic block know that we are letting go of it. Based on this, 88 // it will adjust it's PHI nodes. 89 OldDest->removePredecessor(BB); 90 91 // Replace the conditional branch with an unconditional one. 92 Builder.CreateBr(Destination); 93 BI->eraseFromParent(); 94 return true; 95 } 96 97 if (Dest2 == Dest1) { // Conditional branch to same location? 98 // This branch matches something like this: 99 // br bool %cond, label %Dest, label %Dest 100 // and changes it into: br label %Dest 101 102 // Let the basic block know that we are letting go of one copy of it. 103 assert(BI->getParent() && "Terminator not inserted in block!"); 104 Dest1->removePredecessor(BI->getParent()); 105 106 // Replace the conditional branch with an unconditional one. 107 Builder.CreateBr(Dest1); 108 Value *Cond = BI->getCondition(); 109 BI->eraseFromParent(); 110 if (DeleteDeadConditions) 111 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 112 return true; 113 } 114 return false; 115 } 116 117 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 118 // If we are switching on a constant, we can convert the switch to an 119 // unconditional branch. 120 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 121 BasicBlock *DefaultDest = SI->getDefaultDest(); 122 BasicBlock *TheOnlyDest = DefaultDest; 123 124 // If the default is unreachable, ignore it when searching for TheOnlyDest. 125 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 126 SI->getNumCases() > 0) { 127 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 128 } 129 130 // Figure out which case it goes to. 131 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 132 i != e; ++i) { 133 // Found case matching a constant operand? 134 if (i.getCaseValue() == CI) { 135 TheOnlyDest = i.getCaseSuccessor(); 136 break; 137 } 138 139 // Check to see if this branch is going to the same place as the default 140 // dest. If so, eliminate it as an explicit compare. 141 if (i.getCaseSuccessor() == DefaultDest) { 142 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 143 unsigned NCases = SI->getNumCases(); 144 // Fold the case metadata into the default if there will be any branches 145 // left, unless the metadata doesn't match the switch. 146 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 147 // Collect branch weights into a vector. 148 SmallVector<uint32_t, 8> Weights; 149 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 150 ++MD_i) { 151 ConstantInt *CI = 152 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 153 assert(CI); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 291 292 // We don't want the landingpad-like instructions removed by anything this 293 // general. 294 if (I->isEHPad()) 295 return false; 296 297 // We don't want debug info removed by anything this general, unless 298 // debug info is empty. 299 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 300 if (DDI->getAddress()) 301 return false; 302 return true; 303 } 304 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 305 if (DVI->getValue()) 306 return false; 307 return true; 308 } 309 310 if (!I->mayHaveSideEffects()) return true; 311 312 // Special case intrinsics that "may have side effects" but can be deleted 313 // when dead. 314 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 315 // Safe to delete llvm.stacksave if dead. 316 if (II->getIntrinsicID() == Intrinsic::stacksave) 317 return true; 318 319 // Lifetime intrinsics are dead when their right-hand is undef. 320 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 321 II->getIntrinsicID() == Intrinsic::lifetime_end) 322 return isa<UndefValue>(II->getArgOperand(1)); 323 324 // Assumptions are dead if their condition is trivially true. 325 if (II->getIntrinsicID() == Intrinsic::assume) { 326 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 327 return !Cond->isZero(); 328 329 return false; 330 } 331 } 332 333 if (isAllocLikeFn(I, TLI)) return true; 334 335 if (CallInst *CI = isFreeCall(I, TLI)) 336 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 337 return C->isNullValue() || isa<UndefValue>(C); 338 339 return false; 340 } 341 342 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 343 /// trivially dead instruction, delete it. If that makes any of its operands 344 /// trivially dead, delete them too, recursively. Return true if any 345 /// instructions were deleted. 346 bool 347 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 348 const TargetLibraryInfo *TLI) { 349 Instruction *I = dyn_cast<Instruction>(V); 350 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 351 return false; 352 353 SmallVector<Instruction*, 16> DeadInsts; 354 DeadInsts.push_back(I); 355 356 do { 357 I = DeadInsts.pop_back_val(); 358 359 // Null out all of the instruction's operands to see if any operand becomes 360 // dead as we go. 361 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 362 Value *OpV = I->getOperand(i); 363 I->setOperand(i, nullptr); 364 365 if (!OpV->use_empty()) continue; 366 367 // If the operand is an instruction that became dead as we nulled out the 368 // operand, and if it is 'trivially' dead, delete it in a future loop 369 // iteration. 370 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 371 if (isInstructionTriviallyDead(OpI, TLI)) 372 DeadInsts.push_back(OpI); 373 } 374 375 I->eraseFromParent(); 376 } while (!DeadInsts.empty()); 377 378 return true; 379 } 380 381 /// areAllUsesEqual - Check whether the uses of a value are all the same. 382 /// This is similar to Instruction::hasOneUse() except this will also return 383 /// true when there are no uses or multiple uses that all refer to the same 384 /// value. 385 static bool areAllUsesEqual(Instruction *I) { 386 Value::user_iterator UI = I->user_begin(); 387 Value::user_iterator UE = I->user_end(); 388 if (UI == UE) 389 return true; 390 391 User *TheUse = *UI; 392 for (++UI; UI != UE; ++UI) { 393 if (*UI != TheUse) 394 return false; 395 } 396 return true; 397 } 398 399 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 400 /// dead PHI node, due to being a def-use chain of single-use nodes that 401 /// either forms a cycle or is terminated by a trivially dead instruction, 402 /// delete it. If that makes any of its operands trivially dead, delete them 403 /// too, recursively. Return true if a change was made. 404 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 405 const TargetLibraryInfo *TLI) { 406 SmallPtrSet<Instruction*, 4> Visited; 407 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 408 I = cast<Instruction>(*I->user_begin())) { 409 if (I->use_empty()) 410 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 411 412 // If we find an instruction more than once, we're on a cycle that 413 // won't prove fruitful. 414 if (!Visited.insert(I).second) { 415 // Break the cycle and delete the instruction and its operands. 416 I->replaceAllUsesWith(UndefValue::get(I->getType())); 417 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 418 return true; 419 } 420 } 421 return false; 422 } 423 424 static bool 425 simplifyAndDCEInstruction(Instruction *I, 426 SmallSetVector<Instruction *, 16> &WorkList, 427 const DataLayout &DL, 428 const TargetLibraryInfo *TLI) { 429 if (isInstructionTriviallyDead(I, TLI)) { 430 // Null out all of the instruction's operands to see if any operand becomes 431 // dead as we go. 432 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 433 Value *OpV = I->getOperand(i); 434 I->setOperand(i, nullptr); 435 436 if (!OpV->use_empty() || I == OpV) 437 continue; 438 439 // If the operand is an instruction that became dead as we nulled out the 440 // operand, and if it is 'trivially' dead, delete it in a future loop 441 // iteration. 442 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 443 if (isInstructionTriviallyDead(OpI, TLI)) 444 WorkList.insert(OpI); 445 } 446 447 I->eraseFromParent(); 448 449 return true; 450 } 451 452 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 453 // Add the users to the worklist. CAREFUL: an instruction can use itself, 454 // in the case of a phi node. 455 for (User *U : I->users()) 456 if (U != I) 457 WorkList.insert(cast<Instruction>(U)); 458 459 // Replace the instruction with its simplified value. 460 I->replaceAllUsesWith(SimpleV); 461 I->eraseFromParent(); 462 return true; 463 } 464 return false; 465 } 466 467 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 468 /// simplify any instructions in it and recursively delete dead instructions. 469 /// 470 /// This returns true if it changed the code, note that it can delete 471 /// instructions in other blocks as well in this block. 472 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 473 const TargetLibraryInfo *TLI) { 474 bool MadeChange = false; 475 const DataLayout &DL = BB->getModule()->getDataLayout(); 476 477 #ifndef NDEBUG 478 // In debug builds, ensure that the terminator of the block is never replaced 479 // or deleted by these simplifications. The idea of simplification is that it 480 // cannot introduce new instructions, and there is no way to replace the 481 // terminator of a block without introducing a new instruction. 482 AssertingVH<Instruction> TerminatorVH(&BB->back()); 483 #endif 484 485 SmallSetVector<Instruction *, 16> WorkList; 486 // Iterate over the original function, only adding insts to the worklist 487 // if they actually need to be revisited. This avoids having to pre-init 488 // the worklist with the entire function's worth of instructions. 489 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) { 490 assert(!BI->isTerminator()); 491 Instruction *I = &*BI; 492 ++BI; 493 494 // We're visiting this instruction now, so make sure it's not in the 495 // worklist from an earlier visit. 496 if (!WorkList.count(I)) 497 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 498 } 499 500 while (!WorkList.empty()) { 501 Instruction *I = WorkList.pop_back_val(); 502 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 503 } 504 return MadeChange; 505 } 506 507 //===----------------------------------------------------------------------===// 508 // Control Flow Graph Restructuring. 509 // 510 511 512 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 513 /// method is called when we're about to delete Pred as a predecessor of BB. If 514 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 515 /// 516 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 517 /// nodes that collapse into identity values. For example, if we have: 518 /// x = phi(1, 0, 0, 0) 519 /// y = and x, z 520 /// 521 /// .. and delete the predecessor corresponding to the '1', this will attempt to 522 /// recursively fold the and to 0. 523 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 524 // This only adjusts blocks with PHI nodes. 525 if (!isa<PHINode>(BB->begin())) 526 return; 527 528 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 529 // them down. This will leave us with single entry phi nodes and other phis 530 // that can be removed. 531 BB->removePredecessor(Pred, true); 532 533 WeakVH PhiIt = &BB->front(); 534 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 535 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 536 Value *OldPhiIt = PhiIt; 537 538 if (!recursivelySimplifyInstruction(PN)) 539 continue; 540 541 // If recursive simplification ended up deleting the next PHI node we would 542 // iterate to, then our iterator is invalid, restart scanning from the top 543 // of the block. 544 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 545 } 546 } 547 548 549 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 550 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 551 /// between them, moving the instructions in the predecessor into DestBB and 552 /// deleting the predecessor block. 553 /// 554 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 555 // If BB has single-entry PHI nodes, fold them. 556 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 557 Value *NewVal = PN->getIncomingValue(0); 558 // Replace self referencing PHI with undef, it must be dead. 559 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 560 PN->replaceAllUsesWith(NewVal); 561 PN->eraseFromParent(); 562 } 563 564 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 565 assert(PredBB && "Block doesn't have a single predecessor!"); 566 567 // Zap anything that took the address of DestBB. Not doing this will give the 568 // address an invalid value. 569 if (DestBB->hasAddressTaken()) { 570 BlockAddress *BA = BlockAddress::get(DestBB); 571 Constant *Replacement = 572 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 573 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 574 BA->getType())); 575 BA->destroyConstant(); 576 } 577 578 // Anything that branched to PredBB now branches to DestBB. 579 PredBB->replaceAllUsesWith(DestBB); 580 581 // Splice all the instructions from PredBB to DestBB. 582 PredBB->getTerminator()->eraseFromParent(); 583 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 584 585 // If the PredBB is the entry block of the function, move DestBB up to 586 // become the entry block after we erase PredBB. 587 if (PredBB == &DestBB->getParent()->getEntryBlock()) 588 DestBB->moveAfter(PredBB); 589 590 if (DT) { 591 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 592 DT->changeImmediateDominator(DestBB, PredBBIDom); 593 DT->eraseNode(PredBB); 594 } 595 // Nuke BB. 596 PredBB->eraseFromParent(); 597 } 598 599 /// CanMergeValues - Return true if we can choose one of these values to use 600 /// in place of the other. Note that we will always choose the non-undef 601 /// value to keep. 602 static bool CanMergeValues(Value *First, Value *Second) { 603 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 604 } 605 606 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 607 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 608 /// 609 /// Assumption: Succ is the single successor for BB. 610 /// 611 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 612 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 613 614 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 615 << Succ->getName() << "\n"); 616 // Shortcut, if there is only a single predecessor it must be BB and merging 617 // is always safe 618 if (Succ->getSinglePredecessor()) return true; 619 620 // Make a list of the predecessors of BB 621 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 622 623 // Look at all the phi nodes in Succ, to see if they present a conflict when 624 // merging these blocks 625 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 626 PHINode *PN = cast<PHINode>(I); 627 628 // If the incoming value from BB is again a PHINode in 629 // BB which has the same incoming value for *PI as PN does, we can 630 // merge the phi nodes and then the blocks can still be merged 631 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 632 if (BBPN && BBPN->getParent() == BB) { 633 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 634 BasicBlock *IBB = PN->getIncomingBlock(PI); 635 if (BBPreds.count(IBB) && 636 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 637 PN->getIncomingValue(PI))) { 638 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 639 << Succ->getName() << " is conflicting with " 640 << BBPN->getName() << " with regard to common predecessor " 641 << IBB->getName() << "\n"); 642 return false; 643 } 644 } 645 } else { 646 Value* Val = PN->getIncomingValueForBlock(BB); 647 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 648 // See if the incoming value for the common predecessor is equal to the 649 // one for BB, in which case this phi node will not prevent the merging 650 // of the block. 651 BasicBlock *IBB = PN->getIncomingBlock(PI); 652 if (BBPreds.count(IBB) && 653 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 654 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 655 << Succ->getName() << " is conflicting with regard to common " 656 << "predecessor " << IBB->getName() << "\n"); 657 return false; 658 } 659 } 660 } 661 } 662 663 return true; 664 } 665 666 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 667 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 668 669 /// \brief Determines the value to use as the phi node input for a block. 670 /// 671 /// Select between \p OldVal any value that we know flows from \p BB 672 /// to a particular phi on the basis of which one (if either) is not 673 /// undef. Update IncomingValues based on the selected value. 674 /// 675 /// \param OldVal The value we are considering selecting. 676 /// \param BB The block that the value flows in from. 677 /// \param IncomingValues A map from block-to-value for other phi inputs 678 /// that we have examined. 679 /// 680 /// \returns the selected value. 681 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 682 IncomingValueMap &IncomingValues) { 683 if (!isa<UndefValue>(OldVal)) { 684 assert((!IncomingValues.count(BB) || 685 IncomingValues.find(BB)->second == OldVal) && 686 "Expected OldVal to match incoming value from BB!"); 687 688 IncomingValues.insert(std::make_pair(BB, OldVal)); 689 return OldVal; 690 } 691 692 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 693 if (It != IncomingValues.end()) return It->second; 694 695 return OldVal; 696 } 697 698 /// \brief Create a map from block to value for the operands of a 699 /// given phi. 700 /// 701 /// Create a map from block to value for each non-undef value flowing 702 /// into \p PN. 703 /// 704 /// \param PN The phi we are collecting the map for. 705 /// \param IncomingValues [out] The map from block to value for this phi. 706 static void gatherIncomingValuesToPhi(PHINode *PN, 707 IncomingValueMap &IncomingValues) { 708 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 709 BasicBlock *BB = PN->getIncomingBlock(i); 710 Value *V = PN->getIncomingValue(i); 711 712 if (!isa<UndefValue>(V)) 713 IncomingValues.insert(std::make_pair(BB, V)); 714 } 715 } 716 717 /// \brief Replace the incoming undef values to a phi with the values 718 /// from a block-to-value map. 719 /// 720 /// \param PN The phi we are replacing the undefs in. 721 /// \param IncomingValues A map from block to value. 722 static void replaceUndefValuesInPhi(PHINode *PN, 723 const IncomingValueMap &IncomingValues) { 724 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 725 Value *V = PN->getIncomingValue(i); 726 727 if (!isa<UndefValue>(V)) continue; 728 729 BasicBlock *BB = PN->getIncomingBlock(i); 730 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 731 if (It == IncomingValues.end()) continue; 732 733 PN->setIncomingValue(i, It->second); 734 } 735 } 736 737 /// \brief Replace a value flowing from a block to a phi with 738 /// potentially multiple instances of that value flowing from the 739 /// block's predecessors to the phi. 740 /// 741 /// \param BB The block with the value flowing into the phi. 742 /// \param BBPreds The predecessors of BB. 743 /// \param PN The phi that we are updating. 744 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 745 const PredBlockVector &BBPreds, 746 PHINode *PN) { 747 Value *OldVal = PN->removeIncomingValue(BB, false); 748 assert(OldVal && "No entry in PHI for Pred BB!"); 749 750 IncomingValueMap IncomingValues; 751 752 // We are merging two blocks - BB, and the block containing PN - and 753 // as a result we need to redirect edges from the predecessors of BB 754 // to go to the block containing PN, and update PN 755 // accordingly. Since we allow merging blocks in the case where the 756 // predecessor and successor blocks both share some predecessors, 757 // and where some of those common predecessors might have undef 758 // values flowing into PN, we want to rewrite those values to be 759 // consistent with the non-undef values. 760 761 gatherIncomingValuesToPhi(PN, IncomingValues); 762 763 // If this incoming value is one of the PHI nodes in BB, the new entries 764 // in the PHI node are the entries from the old PHI. 765 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 766 PHINode *OldValPN = cast<PHINode>(OldVal); 767 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 768 // Note that, since we are merging phi nodes and BB and Succ might 769 // have common predecessors, we could end up with a phi node with 770 // identical incoming branches. This will be cleaned up later (and 771 // will trigger asserts if we try to clean it up now, without also 772 // simplifying the corresponding conditional branch). 773 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 774 Value *PredVal = OldValPN->getIncomingValue(i); 775 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 776 IncomingValues); 777 778 // And add a new incoming value for this predecessor for the 779 // newly retargeted branch. 780 PN->addIncoming(Selected, PredBB); 781 } 782 } else { 783 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 784 // Update existing incoming values in PN for this 785 // predecessor of BB. 786 BasicBlock *PredBB = BBPreds[i]; 787 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 788 IncomingValues); 789 790 // And add a new incoming value for this predecessor for the 791 // newly retargeted branch. 792 PN->addIncoming(Selected, PredBB); 793 } 794 } 795 796 replaceUndefValuesInPhi(PN, IncomingValues); 797 } 798 799 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 800 /// unconditional branch, and contains no instructions other than PHI nodes, 801 /// potential side-effect free intrinsics and the branch. If possible, 802 /// eliminate BB by rewriting all the predecessors to branch to the successor 803 /// block and return true. If we can't transform, return false. 804 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 805 assert(BB != &BB->getParent()->getEntryBlock() && 806 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 807 808 // We can't eliminate infinite loops. 809 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 810 if (BB == Succ) return false; 811 812 // Check to see if merging these blocks would cause conflicts for any of the 813 // phi nodes in BB or Succ. If not, we can safely merge. 814 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 815 816 // Check for cases where Succ has multiple predecessors and a PHI node in BB 817 // has uses which will not disappear when the PHI nodes are merged. It is 818 // possible to handle such cases, but difficult: it requires checking whether 819 // BB dominates Succ, which is non-trivial to calculate in the case where 820 // Succ has multiple predecessors. Also, it requires checking whether 821 // constructing the necessary self-referential PHI node doesn't introduce any 822 // conflicts; this isn't too difficult, but the previous code for doing this 823 // was incorrect. 824 // 825 // Note that if this check finds a live use, BB dominates Succ, so BB is 826 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 827 // folding the branch isn't profitable in that case anyway. 828 if (!Succ->getSinglePredecessor()) { 829 BasicBlock::iterator BBI = BB->begin(); 830 while (isa<PHINode>(*BBI)) { 831 for (Use &U : BBI->uses()) { 832 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 833 if (PN->getIncomingBlock(U) != BB) 834 return false; 835 } else { 836 return false; 837 } 838 } 839 ++BBI; 840 } 841 } 842 843 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 844 845 if (isa<PHINode>(Succ->begin())) { 846 // If there is more than one pred of succ, and there are PHI nodes in 847 // the successor, then we need to add incoming edges for the PHI nodes 848 // 849 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 850 851 // Loop over all of the PHI nodes in the successor of BB. 852 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 853 PHINode *PN = cast<PHINode>(I); 854 855 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 856 } 857 } 858 859 if (Succ->getSinglePredecessor()) { 860 // BB is the only predecessor of Succ, so Succ will end up with exactly 861 // the same predecessors BB had. 862 863 // Copy over any phi, debug or lifetime instruction. 864 BB->getTerminator()->eraseFromParent(); 865 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 866 BB->getInstList()); 867 } else { 868 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 869 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 870 assert(PN->use_empty() && "There shouldn't be any uses here!"); 871 PN->eraseFromParent(); 872 } 873 } 874 875 // Everything that jumped to BB now goes to Succ. 876 BB->replaceAllUsesWith(Succ); 877 if (!Succ->hasName()) Succ->takeName(BB); 878 BB->eraseFromParent(); // Delete the old basic block. 879 return true; 880 } 881 882 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 883 /// nodes in this block. This doesn't try to be clever about PHI nodes 884 /// which differ only in the order of the incoming values, but instcombine 885 /// orders them so it usually won't matter. 886 /// 887 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 888 // This implementation doesn't currently consider undef operands 889 // specially. Theoretically, two phis which are identical except for 890 // one having an undef where the other doesn't could be collapsed. 891 892 struct PHIDenseMapInfo { 893 static PHINode *getEmptyKey() { 894 return DenseMapInfo<PHINode *>::getEmptyKey(); 895 } 896 static PHINode *getTombstoneKey() { 897 return DenseMapInfo<PHINode *>::getTombstoneKey(); 898 } 899 static unsigned getHashValue(PHINode *PN) { 900 // Compute a hash value on the operands. Instcombine will likely have 901 // sorted them, which helps expose duplicates, but we have to check all 902 // the operands to be safe in case instcombine hasn't run. 903 return static_cast<unsigned>(hash_combine( 904 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 905 hash_combine_range(PN->block_begin(), PN->block_end()))); 906 } 907 static bool isEqual(PHINode *LHS, PHINode *RHS) { 908 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 909 RHS == getEmptyKey() || RHS == getTombstoneKey()) 910 return LHS == RHS; 911 return LHS->isIdenticalTo(RHS); 912 } 913 }; 914 915 // Set of unique PHINodes. 916 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 917 918 // Examine each PHI. 919 bool Changed = false; 920 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 921 auto Inserted = PHISet.insert(PN); 922 if (!Inserted.second) { 923 // A duplicate. Replace this PHI with its duplicate. 924 PN->replaceAllUsesWith(*Inserted.first); 925 PN->eraseFromParent(); 926 Changed = true; 927 928 // The RAUW can change PHIs that we already visited. Start over from the 929 // beginning. 930 PHISet.clear(); 931 I = BB->begin(); 932 } 933 } 934 935 return Changed; 936 } 937 938 /// enforceKnownAlignment - If the specified pointer points to an object that 939 /// we control, modify the object's alignment to PrefAlign. This isn't 940 /// often possible though. If alignment is important, a more reliable approach 941 /// is to simply align all global variables and allocation instructions to 942 /// their preferred alignment from the beginning. 943 /// 944 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 945 unsigned PrefAlign, 946 const DataLayout &DL) { 947 assert(PrefAlign > Align); 948 949 V = V->stripPointerCasts(); 950 951 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 952 // TODO: ideally, computeKnownBits ought to have used 953 // AllocaInst::getAlignment() in its computation already, making 954 // the below max redundant. But, as it turns out, 955 // stripPointerCasts recurses through infinite layers of bitcasts, 956 // while computeKnownBits is not allowed to traverse more than 6 957 // levels. 958 Align = std::max(AI->getAlignment(), Align); 959 if (PrefAlign <= Align) 960 return Align; 961 962 // If the preferred alignment is greater than the natural stack alignment 963 // then don't round up. This avoids dynamic stack realignment. 964 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 965 return Align; 966 AI->setAlignment(PrefAlign); 967 return PrefAlign; 968 } 969 970 if (auto *GO = dyn_cast<GlobalObject>(V)) { 971 // TODO: as above, this shouldn't be necessary. 972 Align = std::max(GO->getAlignment(), Align); 973 if (PrefAlign <= Align) 974 return Align; 975 976 // If there is a large requested alignment and we can, bump up the alignment 977 // of the global. If the memory we set aside for the global may not be the 978 // memory used by the final program then it is impossible for us to reliably 979 // enforce the preferred alignment. 980 if (!GO->canIncreaseAlignment()) 981 return Align; 982 983 GO->setAlignment(PrefAlign); 984 return PrefAlign; 985 } 986 987 return Align; 988 } 989 990 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 991 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 992 /// and it is more than the alignment of the ultimate object, see if we can 993 /// increase the alignment of the ultimate object, making this check succeed. 994 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 995 const DataLayout &DL, 996 const Instruction *CxtI, 997 AssumptionCache *AC, 998 const DominatorTree *DT) { 999 assert(V->getType()->isPointerTy() && 1000 "getOrEnforceKnownAlignment expects a pointer!"); 1001 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1002 1003 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1004 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1005 unsigned TrailZ = KnownZero.countTrailingOnes(); 1006 1007 // Avoid trouble with ridiculously large TrailZ values, such as 1008 // those computed from a null pointer. 1009 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1010 1011 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1012 1013 // LLVM doesn't support alignments larger than this currently. 1014 Align = std::min(Align, +Value::MaximumAlignment); 1015 1016 if (PrefAlign > Align) 1017 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1018 1019 // We don't need to make any adjustment. 1020 return Align; 1021 } 1022 1023 ///===---------------------------------------------------------------------===// 1024 /// Dbg Intrinsic utilities 1025 /// 1026 1027 /// See if there is a dbg.value intrinsic for DIVar before I. 1028 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) { 1029 // Since we can't guarantee that the original dbg.declare instrinsic 1030 // is removed by LowerDbgDeclare(), we need to make sure that we are 1031 // not inserting the same dbg.value intrinsic over and over. 1032 llvm::BasicBlock::InstListType::iterator PrevI(I); 1033 if (PrevI != I->getParent()->getInstList().begin()) { 1034 --PrevI; 1035 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1036 if (DVI->getValue() == I->getOperand(0) && 1037 DVI->getOffset() == 0 && 1038 DVI->getVariable() == DIVar) 1039 return true; 1040 } 1041 return false; 1042 } 1043 1044 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1045 /// that has an associated llvm.dbg.decl intrinsic. 1046 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1047 StoreInst *SI, DIBuilder &Builder) { 1048 auto *DIVar = DDI->getVariable(); 1049 auto *DIExpr = DDI->getExpression(); 1050 assert(DIVar && "Missing variable"); 1051 1052 if (LdStHasDebugValue(DIVar, SI)) 1053 return true; 1054 1055 // If an argument is zero extended then use argument directly. The ZExt 1056 // may be zapped by an optimization pass in future. 1057 Argument *ExtendedArg = nullptr; 1058 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1059 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1060 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1061 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1062 if (ExtendedArg) { 1063 // We're now only describing a subset of the variable. The piece we're 1064 // describing will always be smaller than the variable size, because 1065 // VariableSize == Size of Alloca described by DDI. Since SI stores 1066 // to the alloca described by DDI, if it's first operand is an extend, 1067 // we're guaranteed that before extension, the value was narrower than 1068 // the size of the alloca, hence the size of the described variable. 1069 SmallVector<uint64_t, 3> NewDIExpr; 1070 unsigned PieceOffset = 0; 1071 // If this already is a bit piece, we drop the bit piece from the expression 1072 // and record the offset. 1073 if (DIExpr->isBitPiece()) { 1074 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1075 PieceOffset = DIExpr->getBitPieceOffset(); 1076 } else { 1077 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1078 } 1079 NewDIExpr.push_back(dwarf::DW_OP_bit_piece); 1080 NewDIExpr.push_back(PieceOffset); //Offset 1081 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1082 NewDIExpr.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size 1083 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, 1084 Builder.createExpression(NewDIExpr), 1085 DDI->getDebugLoc(), SI); 1086 } 1087 else 1088 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1089 DDI->getDebugLoc(), SI); 1090 return true; 1091 } 1092 1093 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1094 /// that has an associated llvm.dbg.decl intrinsic. 1095 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1096 LoadInst *LI, DIBuilder &Builder) { 1097 auto *DIVar = DDI->getVariable(); 1098 auto *DIExpr = DDI->getExpression(); 1099 assert(DIVar && "Missing variable"); 1100 1101 if (LdStHasDebugValue(DIVar, LI)) 1102 return true; 1103 1104 // We are now tracking the loaded value instead of the address. In the 1105 // future if multi-location support is added to the IR, it might be 1106 // preferable to keep tracking both the loaded value and the original 1107 // address in case the alloca can not be elided. 1108 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1109 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1110 DbgValue->insertAfter(LI); 1111 return true; 1112 } 1113 1114 /// Determine whether this alloca is either a VLA or an array. 1115 static bool isArray(AllocaInst *AI) { 1116 return AI->isArrayAllocation() || 1117 AI->getType()->getElementType()->isArrayTy(); 1118 } 1119 1120 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1121 /// of llvm.dbg.value intrinsics. 1122 bool llvm::LowerDbgDeclare(Function &F) { 1123 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1124 SmallVector<DbgDeclareInst *, 4> Dbgs; 1125 for (auto &FI : F) 1126 for (Instruction &BI : FI) 1127 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1128 Dbgs.push_back(DDI); 1129 1130 if (Dbgs.empty()) 1131 return false; 1132 1133 for (auto &I : Dbgs) { 1134 DbgDeclareInst *DDI = I; 1135 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1136 // If this is an alloca for a scalar variable, insert a dbg.value 1137 // at each load and store to the alloca and erase the dbg.declare. 1138 // The dbg.values allow tracking a variable even if it is not 1139 // stored on the stack, while the dbg.declare can only describe 1140 // the stack slot (and at a lexical-scope granularity). Later 1141 // passes will attempt to elide the stack slot. 1142 if (AI && !isArray(AI)) { 1143 for (auto &AIUse : AI->uses()) { 1144 User *U = AIUse.getUser(); 1145 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1146 if (AIUse.getOperandNo() == 1) 1147 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1148 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1149 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1150 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1151 // This is a call by-value or some other instruction that 1152 // takes a pointer to the variable. Insert a *value* 1153 // intrinsic that describes the alloca. 1154 SmallVector<uint64_t, 1> NewDIExpr; 1155 auto *DIExpr = DDI->getExpression(); 1156 NewDIExpr.push_back(dwarf::DW_OP_deref); 1157 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1158 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1159 DIB.createExpression(NewDIExpr), 1160 DDI->getDebugLoc(), CI); 1161 } 1162 } 1163 DDI->eraseFromParent(); 1164 } 1165 } 1166 return true; 1167 } 1168 1169 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1170 /// alloca 'V', if any. 1171 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1172 if (auto *L = LocalAsMetadata::getIfExists(V)) 1173 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1174 for (User *U : MDV->users()) 1175 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1176 return DDI; 1177 1178 return nullptr; 1179 } 1180 1181 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1182 Instruction *InsertBefore, DIBuilder &Builder, 1183 bool Deref, int Offset) { 1184 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1185 if (!DDI) 1186 return false; 1187 DebugLoc Loc = DDI->getDebugLoc(); 1188 auto *DIVar = DDI->getVariable(); 1189 auto *DIExpr = DDI->getExpression(); 1190 assert(DIVar && "Missing variable"); 1191 1192 if (Deref || Offset) { 1193 // Create a copy of the original DIDescriptor for user variable, prepending 1194 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1195 // will take a value storing address of the memory for variable, not 1196 // alloca itself. 1197 SmallVector<uint64_t, 4> NewDIExpr; 1198 if (Deref) 1199 NewDIExpr.push_back(dwarf::DW_OP_deref); 1200 if (Offset > 0) { 1201 NewDIExpr.push_back(dwarf::DW_OP_plus); 1202 NewDIExpr.push_back(Offset); 1203 } else if (Offset < 0) { 1204 NewDIExpr.push_back(dwarf::DW_OP_minus); 1205 NewDIExpr.push_back(-Offset); 1206 } 1207 if (DIExpr) 1208 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1209 DIExpr = Builder.createExpression(NewDIExpr); 1210 } 1211 1212 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1213 // old llvm.dbg.declare. 1214 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1215 DDI->eraseFromParent(); 1216 return true; 1217 } 1218 1219 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1220 DIBuilder &Builder, bool Deref, int Offset) { 1221 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1222 Deref, Offset); 1223 } 1224 1225 void llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1226 BasicBlock *BB = I->getParent(); 1227 // Loop over all of the successors, removing BB's entry from any PHI 1228 // nodes. 1229 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1230 (*SI)->removePredecessor(BB); 1231 1232 // Insert a call to llvm.trap right before this. This turns the undefined 1233 // behavior into a hard fail instead of falling through into random code. 1234 if (UseLLVMTrap) { 1235 Function *TrapFn = 1236 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1237 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1238 CallTrap->setDebugLoc(I->getDebugLoc()); 1239 } 1240 new UnreachableInst(I->getContext(), I); 1241 1242 // All instructions after this are dead. 1243 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1244 while (BBI != BBE) { 1245 if (!BBI->use_empty()) 1246 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1247 BB->getInstList().erase(BBI++); 1248 } 1249 } 1250 1251 /// changeToCall - Convert the specified invoke into a normal call. 1252 static void changeToCall(InvokeInst *II) { 1253 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1254 SmallVector<OperandBundleDef, 1> OpBundles; 1255 II->getOperandBundlesAsDefs(OpBundles); 1256 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1257 "", II); 1258 NewCall->takeName(II); 1259 NewCall->setCallingConv(II->getCallingConv()); 1260 NewCall->setAttributes(II->getAttributes()); 1261 NewCall->setDebugLoc(II->getDebugLoc()); 1262 II->replaceAllUsesWith(NewCall); 1263 1264 // Follow the call by a branch to the normal destination. 1265 BranchInst::Create(II->getNormalDest(), II); 1266 1267 // Update PHI nodes in the unwind destination 1268 II->getUnwindDest()->removePredecessor(II->getParent()); 1269 II->eraseFromParent(); 1270 } 1271 1272 static bool markAliveBlocks(Function &F, 1273 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1274 1275 SmallVector<BasicBlock*, 128> Worklist; 1276 BasicBlock *BB = &F.front(); 1277 Worklist.push_back(BB); 1278 Reachable.insert(BB); 1279 bool Changed = false; 1280 do { 1281 BB = Worklist.pop_back_val(); 1282 1283 // Do a quick scan of the basic block, turning any obviously unreachable 1284 // instructions into LLVM unreachable insts. The instruction combining pass 1285 // canonicalizes unreachable insts into stores to null or undef. 1286 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1287 // Assumptions that are known to be false are equivalent to unreachable. 1288 // Also, if the condition is undefined, then we make the choice most 1289 // beneficial to the optimizer, and choose that to also be unreachable. 1290 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1291 if (II->getIntrinsicID() == Intrinsic::assume) { 1292 bool MakeUnreachable = false; 1293 if (isa<UndefValue>(II->getArgOperand(0))) 1294 MakeUnreachable = true; 1295 else if (ConstantInt *Cond = 1296 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1297 MakeUnreachable = Cond->isZero(); 1298 1299 if (MakeUnreachable) { 1300 // Don't insert a call to llvm.trap right before the unreachable. 1301 changeToUnreachable(&*BBI, false); 1302 Changed = true; 1303 break; 1304 } 1305 } 1306 1307 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1308 if (CI->doesNotReturn()) { 1309 // If we found a call to a no-return function, insert an unreachable 1310 // instruction after it. Make sure there isn't *already* one there 1311 // though. 1312 ++BBI; 1313 if (!isa<UnreachableInst>(BBI)) { 1314 // Don't insert a call to llvm.trap right before the unreachable. 1315 changeToUnreachable(&*BBI, false); 1316 Changed = true; 1317 } 1318 break; 1319 } 1320 } 1321 1322 // Store to undef and store to null are undefined and used to signal that 1323 // they should be changed to unreachable by passes that can't modify the 1324 // CFG. 1325 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1326 // Don't touch volatile stores. 1327 if (SI->isVolatile()) continue; 1328 1329 Value *Ptr = SI->getOperand(1); 1330 1331 if (isa<UndefValue>(Ptr) || 1332 (isa<ConstantPointerNull>(Ptr) && 1333 SI->getPointerAddressSpace() == 0)) { 1334 changeToUnreachable(SI, true); 1335 Changed = true; 1336 break; 1337 } 1338 } 1339 } 1340 1341 TerminatorInst *Terminator = BB->getTerminator(); 1342 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1343 // Turn invokes that call 'nounwind' functions into ordinary calls. 1344 Value *Callee = II->getCalledValue(); 1345 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1346 changeToUnreachable(II, true); 1347 Changed = true; 1348 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1349 if (II->use_empty() && II->onlyReadsMemory()) { 1350 // jump to the normal destination branch. 1351 BranchInst::Create(II->getNormalDest(), II); 1352 II->getUnwindDest()->removePredecessor(II->getParent()); 1353 II->eraseFromParent(); 1354 } else 1355 changeToCall(II); 1356 Changed = true; 1357 } 1358 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1359 // Remove catchpads which cannot be reached. 1360 struct CatchPadDenseMapInfo { 1361 static CatchPadInst *getEmptyKey() { 1362 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1363 } 1364 static CatchPadInst *getTombstoneKey() { 1365 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1366 } 1367 static unsigned getHashValue(CatchPadInst *CatchPad) { 1368 return static_cast<unsigned>(hash_combine_range( 1369 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1370 } 1371 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1372 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1373 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1374 return LHS == RHS; 1375 return LHS->isIdenticalTo(RHS); 1376 } 1377 }; 1378 1379 // Set of unique CatchPads. 1380 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1381 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1382 HandlerSet; 1383 detail::DenseSetEmpty Empty; 1384 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1385 E = CatchSwitch->handler_end(); 1386 I != E; ++I) { 1387 BasicBlock *HandlerBB = *I; 1388 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1389 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1390 CatchSwitch->removeHandler(I); 1391 --I; 1392 --E; 1393 Changed = true; 1394 } 1395 } 1396 } 1397 1398 Changed |= ConstantFoldTerminator(BB, true); 1399 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1400 if (Reachable.insert(*SI).second) 1401 Worklist.push_back(*SI); 1402 } while (!Worklist.empty()); 1403 return Changed; 1404 } 1405 1406 void llvm::removeUnwindEdge(BasicBlock *BB) { 1407 TerminatorInst *TI = BB->getTerminator(); 1408 1409 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1410 changeToCall(II); 1411 return; 1412 } 1413 1414 TerminatorInst *NewTI; 1415 BasicBlock *UnwindDest; 1416 1417 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1418 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1419 UnwindDest = CRI->getUnwindDest(); 1420 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1421 auto *NewCatchSwitch = CatchSwitchInst::Create( 1422 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1423 CatchSwitch->getName(), CatchSwitch); 1424 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1425 NewCatchSwitch->addHandler(PadBB); 1426 1427 NewTI = NewCatchSwitch; 1428 UnwindDest = CatchSwitch->getUnwindDest(); 1429 } else { 1430 llvm_unreachable("Could not find unwind successor"); 1431 } 1432 1433 NewTI->takeName(TI); 1434 NewTI->setDebugLoc(TI->getDebugLoc()); 1435 UnwindDest->removePredecessor(BB); 1436 TI->replaceAllUsesWith(NewTI); 1437 TI->eraseFromParent(); 1438 } 1439 1440 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1441 /// if they are in a dead cycle. Return true if a change was made, false 1442 /// otherwise. 1443 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1444 SmallPtrSet<BasicBlock*, 128> Reachable; 1445 bool Changed = markAliveBlocks(F, Reachable); 1446 1447 // If there are unreachable blocks in the CFG... 1448 if (Reachable.size() == F.size()) 1449 return Changed; 1450 1451 assert(Reachable.size() < F.size()); 1452 NumRemoved += F.size()-Reachable.size(); 1453 1454 // Loop over all of the basic blocks that are not reachable, dropping all of 1455 // their internal references... 1456 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1457 if (Reachable.count(&*BB)) 1458 continue; 1459 1460 for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE; 1461 ++SI) 1462 if (Reachable.count(*SI)) 1463 (*SI)->removePredecessor(&*BB); 1464 if (LVI) 1465 LVI->eraseBlock(&*BB); 1466 BB->dropAllReferences(); 1467 } 1468 1469 for (Function::iterator I = ++F.begin(); I != F.end();) 1470 if (!Reachable.count(&*I)) 1471 I = F.getBasicBlockList().erase(I); 1472 else 1473 ++I; 1474 1475 return true; 1476 } 1477 1478 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1479 ArrayRef<unsigned> KnownIDs) { 1480 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1481 K->dropUnknownNonDebugMetadata(KnownIDs); 1482 K->getAllMetadataOtherThanDebugLoc(Metadata); 1483 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1484 unsigned Kind = Metadata[i].first; 1485 MDNode *JMD = J->getMetadata(Kind); 1486 MDNode *KMD = Metadata[i].second; 1487 1488 switch (Kind) { 1489 default: 1490 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1491 break; 1492 case LLVMContext::MD_dbg: 1493 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1494 case LLVMContext::MD_tbaa: 1495 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1496 break; 1497 case LLVMContext::MD_alias_scope: 1498 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1499 break; 1500 case LLVMContext::MD_noalias: 1501 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1502 break; 1503 case LLVMContext::MD_range: 1504 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1505 break; 1506 case LLVMContext::MD_fpmath: 1507 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1508 break; 1509 case LLVMContext::MD_invariant_load: 1510 // Only set the !invariant.load if it is present in both instructions. 1511 K->setMetadata(Kind, JMD); 1512 break; 1513 case LLVMContext::MD_nonnull: 1514 // Only set the !nonnull if it is present in both instructions. 1515 K->setMetadata(Kind, JMD); 1516 break; 1517 case LLVMContext::MD_invariant_group: 1518 // Preserve !invariant.group in K. 1519 break; 1520 case LLVMContext::MD_align: 1521 K->setMetadata(Kind, 1522 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1523 break; 1524 case LLVMContext::MD_dereferenceable: 1525 case LLVMContext::MD_dereferenceable_or_null: 1526 K->setMetadata(Kind, 1527 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1528 break; 1529 } 1530 } 1531 // Set !invariant.group from J if J has it. If both instructions have it 1532 // then we will just pick it from J - even when they are different. 1533 // Also make sure that K is load or store - f.e. combining bitcast with load 1534 // could produce bitcast with invariant.group metadata, which is invalid. 1535 // FIXME: we should try to preserve both invariant.group md if they are 1536 // different, but right now instruction can only have one invariant.group. 1537 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1538 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1539 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1540 } 1541 1542 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1543 DominatorTree &DT, 1544 const BasicBlockEdge &Root) { 1545 assert(From->getType() == To->getType()); 1546 1547 unsigned Count = 0; 1548 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1549 UI != UE; ) { 1550 Use &U = *UI++; 1551 if (DT.dominates(Root, U)) { 1552 U.set(To); 1553 DEBUG(dbgs() << "Replace dominated use of '" 1554 << From->getName() << "' as " 1555 << *To << " in " << *U << "\n"); 1556 ++Count; 1557 } 1558 } 1559 return Count; 1560 } 1561 1562 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1563 DominatorTree &DT, 1564 const BasicBlock *BB) { 1565 assert(From->getType() == To->getType()); 1566 1567 unsigned Count = 0; 1568 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1569 UI != UE;) { 1570 Use &U = *UI++; 1571 auto *I = cast<Instruction>(U.getUser()); 1572 if (DT.properlyDominates(BB, I->getParent())) { 1573 U.set(To); 1574 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1575 << *To << " in " << *U << "\n"); 1576 ++Count; 1577 } 1578 } 1579 return Count; 1580 } 1581 1582 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1583 if (isa<IntrinsicInst>(CS.getInstruction())) 1584 // Most LLVM intrinsics are things which can never take a safepoint. 1585 // As a result, we don't need to have the stack parsable at the 1586 // callsite. This is a highly useful optimization since intrinsic 1587 // calls are fairly prevalent, particularly in debug builds. 1588 return true; 1589 1590 // Check if the function is specifically marked as a gc leaf function. 1591 if (CS.hasFnAttr("gc-leaf-function")) 1592 return true; 1593 if (const Function *F = CS.getCalledFunction()) 1594 return F->hasFnAttribute("gc-leaf-function"); 1595 1596 return false; 1597 } 1598 1599 /// A potential constituent of a bitreverse or bswap expression. See 1600 /// collectBitParts for a fuller explanation. 1601 struct BitPart { 1602 BitPart(Value *P, unsigned BW) : Provider(P) { 1603 Provenance.resize(BW); 1604 } 1605 1606 /// The Value that this is a bitreverse/bswap of. 1607 Value *Provider; 1608 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1609 /// in Provider becomes bit B in the result of this expression. 1610 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1611 1612 enum { Unset = -1 }; 1613 }; 1614 1615 /// Analyze the specified subexpression and see if it is capable of providing 1616 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1617 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1618 /// the output of the expression came from a corresponding bit in some other 1619 /// value. This function is recursive, and the end result is a mapping of 1620 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1621 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1622 /// 1623 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1624 /// that the expression deposits the low byte of %X into the high byte of the 1625 /// result and that all other bits are zero. This expression is accepted and a 1626 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1627 /// [0-7]. 1628 /// 1629 /// To avoid revisiting values, the BitPart results are memoized into the 1630 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1631 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1632 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1633 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1634 /// type instead to provide the same functionality. 1635 /// 1636 /// Because we pass around references into \c BPS, we must use a container that 1637 /// does not invalidate internal references (std::map instead of DenseMap). 1638 /// 1639 static const Optional<BitPart> & 1640 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1641 std::map<Value *, Optional<BitPart>> &BPS) { 1642 auto I = BPS.find(V); 1643 if (I != BPS.end()) 1644 return I->second; 1645 1646 auto &Result = BPS[V] = None; 1647 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1648 1649 if (Instruction *I = dyn_cast<Instruction>(V)) { 1650 // If this is an or instruction, it may be an inner node of the bswap. 1651 if (I->getOpcode() == Instruction::Or) { 1652 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1653 MatchBitReversals, BPS); 1654 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1655 MatchBitReversals, BPS); 1656 if (!A || !B) 1657 return Result; 1658 1659 // Try and merge the two together. 1660 if (!A->Provider || A->Provider != B->Provider) 1661 return Result; 1662 1663 Result = BitPart(A->Provider, BitWidth); 1664 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1665 if (A->Provenance[i] != BitPart::Unset && 1666 B->Provenance[i] != BitPart::Unset && 1667 A->Provenance[i] != B->Provenance[i]) 1668 return Result = None; 1669 1670 if (A->Provenance[i] == BitPart::Unset) 1671 Result->Provenance[i] = B->Provenance[i]; 1672 else 1673 Result->Provenance[i] = A->Provenance[i]; 1674 } 1675 1676 return Result; 1677 } 1678 1679 // If this is a logical shift by a constant, recurse then shift the result. 1680 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1681 unsigned BitShift = 1682 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1683 // Ensure the shift amount is defined. 1684 if (BitShift > BitWidth) 1685 return Result; 1686 1687 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1688 MatchBitReversals, BPS); 1689 if (!Res) 1690 return Result; 1691 Result = Res; 1692 1693 // Perform the "shift" on BitProvenance. 1694 auto &P = Result->Provenance; 1695 if (I->getOpcode() == Instruction::Shl) { 1696 P.erase(std::prev(P.end(), BitShift), P.end()); 1697 P.insert(P.begin(), BitShift, BitPart::Unset); 1698 } else { 1699 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1700 P.insert(P.end(), BitShift, BitPart::Unset); 1701 } 1702 1703 return Result; 1704 } 1705 1706 // If this is a logical 'and' with a mask that clears bits, recurse then 1707 // unset the appropriate bits. 1708 if (I->getOpcode() == Instruction::And && 1709 isa<ConstantInt>(I->getOperand(1))) { 1710 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1711 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1712 1713 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1714 // early exit. 1715 unsigned NumMaskedBits = AndMask.countPopulation(); 1716 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1717 return Result; 1718 1719 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1720 MatchBitReversals, BPS); 1721 if (!Res) 1722 return Result; 1723 Result = Res; 1724 1725 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1726 // If the AndMask is zero for this bit, clear the bit. 1727 if ((AndMask & Bit) == 0) 1728 Result->Provenance[i] = BitPart::Unset; 1729 1730 return Result; 1731 } 1732 } 1733 1734 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1735 // the input value to the bswap/bitreverse. 1736 Result = BitPart(V, BitWidth); 1737 for (unsigned i = 0; i < BitWidth; ++i) 1738 Result->Provenance[i] = i; 1739 return Result; 1740 } 1741 1742 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1743 unsigned BitWidth) { 1744 if (From % 8 != To % 8) 1745 return false; 1746 // Convert from bit indices to byte indices and check for a byte reversal. 1747 From >>= 3; 1748 To >>= 3; 1749 BitWidth >>= 3; 1750 return From == BitWidth - To - 1; 1751 } 1752 1753 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1754 unsigned BitWidth) { 1755 return From == BitWidth - To - 1; 1756 } 1757 1758 /// Given an OR instruction, check to see if this is a bitreverse 1759 /// idiom. If so, insert the new intrinsic and return true. 1760 bool llvm::recognizeBitReverseOrBSwapIdiom( 1761 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 1762 SmallVectorImpl<Instruction *> &InsertedInsts) { 1763 if (Operator::getOpcode(I) != Instruction::Or) 1764 return false; 1765 if (!MatchBSwaps && !MatchBitReversals) 1766 return false; 1767 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 1768 if (!ITy || ITy->getBitWidth() > 128) 1769 return false; // Can't do vectors or integers > 128 bits. 1770 unsigned BW = ITy->getBitWidth(); 1771 1772 // Try to find all the pieces corresponding to the bswap. 1773 std::map<Value *, Optional<BitPart>> BPS; 1774 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 1775 if (!Res) 1776 return false; 1777 auto &BitProvenance = Res->Provenance; 1778 1779 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 1780 // only byteswap values with an even number of bytes. 1781 bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true; 1782 for (unsigned i = 0; i < BW; ++i) { 1783 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW); 1784 OKForBitReverse &= 1785 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW); 1786 } 1787 1788 Intrinsic::ID Intrin; 1789 if (OKForBSwap && MatchBSwaps) 1790 Intrin = Intrinsic::bswap; 1791 else if (OKForBitReverse && MatchBitReversals) 1792 Intrin = Intrinsic::bitreverse; 1793 else 1794 return false; 1795 1796 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 1797 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 1798 return true; 1799 } 1800