xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision 4d7257dfa111d14cc6e6091898f6564a4f01f23c)
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "local"
52 
53 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
54 
55 //===----------------------------------------------------------------------===//
56 //  Local constant propagation.
57 //
58 
59 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
60 /// constant value, convert it into an unconditional branch to the constant
61 /// destination.  This is a nontrivial operation because the successors of this
62 /// basic block must have their PHI nodes updated.
63 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
64 /// conditions and indirectbr addresses this might make dead if
65 /// DeleteDeadConditions is true.
66 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
67                                   const TargetLibraryInfo *TLI) {
68   TerminatorInst *T = BB->getTerminator();
69   IRBuilder<> Builder(T);
70 
71   // Branch - See if we are conditional jumping on constant
72   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
73     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
74     BasicBlock *Dest1 = BI->getSuccessor(0);
75     BasicBlock *Dest2 = BI->getSuccessor(1);
76 
77     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
78       // Are we branching on constant?
79       // YES.  Change to unconditional branch...
80       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
81       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
82 
83       //cerr << "Function: " << T->getParent()->getParent()
84       //     << "\nRemoving branch from " << T->getParent()
85       //     << "\n\nTo: " << OldDest << endl;
86 
87       // Let the basic block know that we are letting go of it.  Based on this,
88       // it will adjust it's PHI nodes.
89       OldDest->removePredecessor(BB);
90 
91       // Replace the conditional branch with an unconditional one.
92       Builder.CreateBr(Destination);
93       BI->eraseFromParent();
94       return true;
95     }
96 
97     if (Dest2 == Dest1) {       // Conditional branch to same location?
98       // This branch matches something like this:
99       //     br bool %cond, label %Dest, label %Dest
100       // and changes it into:  br label %Dest
101 
102       // Let the basic block know that we are letting go of one copy of it.
103       assert(BI->getParent() && "Terminator not inserted in block!");
104       Dest1->removePredecessor(BI->getParent());
105 
106       // Replace the conditional branch with an unconditional one.
107       Builder.CreateBr(Dest1);
108       Value *Cond = BI->getCondition();
109       BI->eraseFromParent();
110       if (DeleteDeadConditions)
111         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
112       return true;
113     }
114     return false;
115   }
116 
117   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
118     // If we are switching on a constant, we can convert the switch to an
119     // unconditional branch.
120     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
121     BasicBlock *DefaultDest = SI->getDefaultDest();
122     BasicBlock *TheOnlyDest = DefaultDest;
123 
124     // If the default is unreachable, ignore it when searching for TheOnlyDest.
125     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
126         SI->getNumCases() > 0) {
127       TheOnlyDest = SI->case_begin().getCaseSuccessor();
128     }
129 
130     // Figure out which case it goes to.
131     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
132          i != e; ++i) {
133       // Found case matching a constant operand?
134       if (i.getCaseValue() == CI) {
135         TheOnlyDest = i.getCaseSuccessor();
136         break;
137       }
138 
139       // Check to see if this branch is going to the same place as the default
140       // dest.  If so, eliminate it as an explicit compare.
141       if (i.getCaseSuccessor() == DefaultDest) {
142         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
143         unsigned NCases = SI->getNumCases();
144         // Fold the case metadata into the default if there will be any branches
145         // left, unless the metadata doesn't match the switch.
146         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
147           // Collect branch weights into a vector.
148           SmallVector<uint32_t, 8> Weights;
149           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
150                ++MD_i) {
151             ConstantInt *CI =
152                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
153             assert(CI);
154             Weights.push_back(CI->getValue().getZExtValue());
155           }
156           // Merge weight of this case to the default weight.
157           unsigned idx = i.getCaseIndex();
158           Weights[0] += Weights[idx+1];
159           // Remove weight for this case.
160           std::swap(Weights[idx+1], Weights.back());
161           Weights.pop_back();
162           SI->setMetadata(LLVMContext::MD_prof,
163                           MDBuilder(BB->getContext()).
164                           createBranchWeights(Weights));
165         }
166         // Remove this entry.
167         DefaultDest->removePredecessor(SI->getParent());
168         SI->removeCase(i);
169         --i; --e;
170         continue;
171       }
172 
173       // Otherwise, check to see if the switch only branches to one destination.
174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
175       // destinations.
176       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
177     }
178 
179     if (CI && !TheOnlyDest) {
180       // Branching on a constant, but not any of the cases, go to the default
181       // successor.
182       TheOnlyDest = SI->getDefaultDest();
183     }
184 
185     // If we found a single destination that we can fold the switch into, do so
186     // now.
187     if (TheOnlyDest) {
188       // Insert the new branch.
189       Builder.CreateBr(TheOnlyDest);
190       BasicBlock *BB = SI->getParent();
191 
192       // Remove entries from PHI nodes which we no longer branch to...
193       for (BasicBlock *Succ : SI->successors()) {
194         // Found case matching a constant operand?
195         if (Succ == TheOnlyDest)
196           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
197         else
198           Succ->removePredecessor(BB);
199       }
200 
201       // Delete the old switch.
202       Value *Cond = SI->getCondition();
203       SI->eraseFromParent();
204       if (DeleteDeadConditions)
205         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
206       return true;
207     }
208 
209     if (SI->getNumCases() == 1) {
210       // Otherwise, we can fold this switch into a conditional branch
211       // instruction if it has only one non-default destination.
212       SwitchInst::CaseIt FirstCase = SI->case_begin();
213       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
214           FirstCase.getCaseValue(), "cond");
215 
216       // Insert the new branch.
217       BranchInst *NewBr = Builder.CreateCondBr(Cond,
218                                                FirstCase.getCaseSuccessor(),
219                                                SI->getDefaultDest());
220       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
221       if (MD && MD->getNumOperands() == 3) {
222         ConstantInt *SICase =
223             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
224         ConstantInt *SIDef =
225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
226         assert(SICase && SIDef);
227         // The TrueWeight should be the weight for the single case of SI.
228         NewBr->setMetadata(LLVMContext::MD_prof,
229                         MDBuilder(BB->getContext()).
230                         createBranchWeights(SICase->getValue().getZExtValue(),
231                                             SIDef->getValue().getZExtValue()));
232       }
233 
234       // Update make.implicit metadata to the newly-created conditional branch.
235       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
236       if (MakeImplicitMD)
237         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
238 
239       // Delete the old switch.
240       SI->eraseFromParent();
241       return true;
242     }
243     return false;
244   }
245 
246   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
247     // indirectbr blockaddress(@F, @BB) -> br label @BB
248     if (BlockAddress *BA =
249           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
250       BasicBlock *TheOnlyDest = BA->getBasicBlock();
251       // Insert the new branch.
252       Builder.CreateBr(TheOnlyDest);
253 
254       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
255         if (IBI->getDestination(i) == TheOnlyDest)
256           TheOnlyDest = nullptr;
257         else
258           IBI->getDestination(i)->removePredecessor(IBI->getParent());
259       }
260       Value *Address = IBI->getAddress();
261       IBI->eraseFromParent();
262       if (DeleteDeadConditions)
263         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
264 
265       // If we didn't find our destination in the IBI successor list, then we
266       // have undefined behavior.  Replace the unconditional branch with an
267       // 'unreachable' instruction.
268       if (TheOnlyDest) {
269         BB->getTerminator()->eraseFromParent();
270         new UnreachableInst(BB->getContext(), BB);
271       }
272 
273       return true;
274     }
275   }
276 
277   return false;
278 }
279 
280 
281 //===----------------------------------------------------------------------===//
282 //  Local dead code elimination.
283 //
284 
285 /// isInstructionTriviallyDead - Return true if the result produced by the
286 /// instruction is not used, and the instruction has no side effects.
287 ///
288 bool llvm::isInstructionTriviallyDead(Instruction *I,
289                                       const TargetLibraryInfo *TLI) {
290   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
291 
292   // We don't want the landingpad-like instructions removed by anything this
293   // general.
294   if (I->isEHPad())
295     return false;
296 
297   // We don't want debug info removed by anything this general, unless
298   // debug info is empty.
299   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
300     if (DDI->getAddress())
301       return false;
302     return true;
303   }
304   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
305     if (DVI->getValue())
306       return false;
307     return true;
308   }
309 
310   if (!I->mayHaveSideEffects()) return true;
311 
312   // Special case intrinsics that "may have side effects" but can be deleted
313   // when dead.
314   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
315     // Safe to delete llvm.stacksave if dead.
316     if (II->getIntrinsicID() == Intrinsic::stacksave)
317       return true;
318 
319     // Lifetime intrinsics are dead when their right-hand is undef.
320     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
321         II->getIntrinsicID() == Intrinsic::lifetime_end)
322       return isa<UndefValue>(II->getArgOperand(1));
323 
324     // Assumptions are dead if their condition is trivially true.
325     if (II->getIntrinsicID() == Intrinsic::assume) {
326       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
327         return !Cond->isZero();
328 
329       return false;
330     }
331   }
332 
333   if (isAllocLikeFn(I, TLI)) return true;
334 
335   if (CallInst *CI = isFreeCall(I, TLI))
336     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
337       return C->isNullValue() || isa<UndefValue>(C);
338 
339   return false;
340 }
341 
342 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
343 /// trivially dead instruction, delete it.  If that makes any of its operands
344 /// trivially dead, delete them too, recursively.  Return true if any
345 /// instructions were deleted.
346 bool
347 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
348                                                  const TargetLibraryInfo *TLI) {
349   Instruction *I = dyn_cast<Instruction>(V);
350   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
351     return false;
352 
353   SmallVector<Instruction*, 16> DeadInsts;
354   DeadInsts.push_back(I);
355 
356   do {
357     I = DeadInsts.pop_back_val();
358 
359     // Null out all of the instruction's operands to see if any operand becomes
360     // dead as we go.
361     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
362       Value *OpV = I->getOperand(i);
363       I->setOperand(i, nullptr);
364 
365       if (!OpV->use_empty()) continue;
366 
367       // If the operand is an instruction that became dead as we nulled out the
368       // operand, and if it is 'trivially' dead, delete it in a future loop
369       // iteration.
370       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
371         if (isInstructionTriviallyDead(OpI, TLI))
372           DeadInsts.push_back(OpI);
373     }
374 
375     I->eraseFromParent();
376   } while (!DeadInsts.empty());
377 
378   return true;
379 }
380 
381 /// areAllUsesEqual - Check whether the uses of a value are all the same.
382 /// This is similar to Instruction::hasOneUse() except this will also return
383 /// true when there are no uses or multiple uses that all refer to the same
384 /// value.
385 static bool areAllUsesEqual(Instruction *I) {
386   Value::user_iterator UI = I->user_begin();
387   Value::user_iterator UE = I->user_end();
388   if (UI == UE)
389     return true;
390 
391   User *TheUse = *UI;
392   for (++UI; UI != UE; ++UI) {
393     if (*UI != TheUse)
394       return false;
395   }
396   return true;
397 }
398 
399 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
400 /// dead PHI node, due to being a def-use chain of single-use nodes that
401 /// either forms a cycle or is terminated by a trivially dead instruction,
402 /// delete it.  If that makes any of its operands trivially dead, delete them
403 /// too, recursively.  Return true if a change was made.
404 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
405                                         const TargetLibraryInfo *TLI) {
406   SmallPtrSet<Instruction*, 4> Visited;
407   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
408        I = cast<Instruction>(*I->user_begin())) {
409     if (I->use_empty())
410       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
411 
412     // If we find an instruction more than once, we're on a cycle that
413     // won't prove fruitful.
414     if (!Visited.insert(I).second) {
415       // Break the cycle and delete the instruction and its operands.
416       I->replaceAllUsesWith(UndefValue::get(I->getType()));
417       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
418       return true;
419     }
420   }
421   return false;
422 }
423 
424 static bool
425 simplifyAndDCEInstruction(Instruction *I,
426                           SmallSetVector<Instruction *, 16> &WorkList,
427                           const DataLayout &DL,
428                           const TargetLibraryInfo *TLI) {
429   if (isInstructionTriviallyDead(I, TLI)) {
430     // Null out all of the instruction's operands to see if any operand becomes
431     // dead as we go.
432     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
433       Value *OpV = I->getOperand(i);
434       I->setOperand(i, nullptr);
435 
436       if (!OpV->use_empty() || I == OpV)
437         continue;
438 
439       // If the operand is an instruction that became dead as we nulled out the
440       // operand, and if it is 'trivially' dead, delete it in a future loop
441       // iteration.
442       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
443         if (isInstructionTriviallyDead(OpI, TLI))
444           WorkList.insert(OpI);
445     }
446 
447     I->eraseFromParent();
448 
449     return true;
450   }
451 
452   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
453     // Add the users to the worklist. CAREFUL: an instruction can use itself,
454     // in the case of a phi node.
455     for (User *U : I->users())
456       if (U != I)
457         WorkList.insert(cast<Instruction>(U));
458 
459     // Replace the instruction with its simplified value.
460     I->replaceAllUsesWith(SimpleV);
461     I->eraseFromParent();
462     return true;
463   }
464   return false;
465 }
466 
467 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
468 /// simplify any instructions in it and recursively delete dead instructions.
469 ///
470 /// This returns true if it changed the code, note that it can delete
471 /// instructions in other blocks as well in this block.
472 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
473                                        const TargetLibraryInfo *TLI) {
474   bool MadeChange = false;
475   const DataLayout &DL = BB->getModule()->getDataLayout();
476 
477 #ifndef NDEBUG
478   // In debug builds, ensure that the terminator of the block is never replaced
479   // or deleted by these simplifications. The idea of simplification is that it
480   // cannot introduce new instructions, and there is no way to replace the
481   // terminator of a block without introducing a new instruction.
482   AssertingVH<Instruction> TerminatorVH(&BB->back());
483 #endif
484 
485   SmallSetVector<Instruction *, 16> WorkList;
486   // Iterate over the original function, only adding insts to the worklist
487   // if they actually need to be revisited. This avoids having to pre-init
488   // the worklist with the entire function's worth of instructions.
489   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) {
490     assert(!BI->isTerminator());
491     Instruction *I = &*BI;
492     ++BI;
493 
494     // We're visiting this instruction now, so make sure it's not in the
495     // worklist from an earlier visit.
496     if (!WorkList.count(I))
497       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
498   }
499 
500   while (!WorkList.empty()) {
501     Instruction *I = WorkList.pop_back_val();
502     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
503   }
504   return MadeChange;
505 }
506 
507 //===----------------------------------------------------------------------===//
508 //  Control Flow Graph Restructuring.
509 //
510 
511 
512 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
513 /// method is called when we're about to delete Pred as a predecessor of BB.  If
514 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
515 ///
516 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
517 /// nodes that collapse into identity values.  For example, if we have:
518 ///   x = phi(1, 0, 0, 0)
519 ///   y = and x, z
520 ///
521 /// .. and delete the predecessor corresponding to the '1', this will attempt to
522 /// recursively fold the and to 0.
523 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
524   // This only adjusts blocks with PHI nodes.
525   if (!isa<PHINode>(BB->begin()))
526     return;
527 
528   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
529   // them down.  This will leave us with single entry phi nodes and other phis
530   // that can be removed.
531   BB->removePredecessor(Pred, true);
532 
533   WeakVH PhiIt = &BB->front();
534   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
535     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
536     Value *OldPhiIt = PhiIt;
537 
538     if (!recursivelySimplifyInstruction(PN))
539       continue;
540 
541     // If recursive simplification ended up deleting the next PHI node we would
542     // iterate to, then our iterator is invalid, restart scanning from the top
543     // of the block.
544     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
545   }
546 }
547 
548 
549 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
550 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
551 /// between them, moving the instructions in the predecessor into DestBB and
552 /// deleting the predecessor block.
553 ///
554 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
555   // If BB has single-entry PHI nodes, fold them.
556   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
557     Value *NewVal = PN->getIncomingValue(0);
558     // Replace self referencing PHI with undef, it must be dead.
559     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
560     PN->replaceAllUsesWith(NewVal);
561     PN->eraseFromParent();
562   }
563 
564   BasicBlock *PredBB = DestBB->getSinglePredecessor();
565   assert(PredBB && "Block doesn't have a single predecessor!");
566 
567   // Zap anything that took the address of DestBB.  Not doing this will give the
568   // address an invalid value.
569   if (DestBB->hasAddressTaken()) {
570     BlockAddress *BA = BlockAddress::get(DestBB);
571     Constant *Replacement =
572       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
573     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
574                                                      BA->getType()));
575     BA->destroyConstant();
576   }
577 
578   // Anything that branched to PredBB now branches to DestBB.
579   PredBB->replaceAllUsesWith(DestBB);
580 
581   // Splice all the instructions from PredBB to DestBB.
582   PredBB->getTerminator()->eraseFromParent();
583   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
584 
585   // If the PredBB is the entry block of the function, move DestBB up to
586   // become the entry block after we erase PredBB.
587   if (PredBB == &DestBB->getParent()->getEntryBlock())
588     DestBB->moveAfter(PredBB);
589 
590   if (DT) {
591     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
592     DT->changeImmediateDominator(DestBB, PredBBIDom);
593     DT->eraseNode(PredBB);
594   }
595   // Nuke BB.
596   PredBB->eraseFromParent();
597 }
598 
599 /// CanMergeValues - Return true if we can choose one of these values to use
600 /// in place of the other. Note that we will always choose the non-undef
601 /// value to keep.
602 static bool CanMergeValues(Value *First, Value *Second) {
603   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
604 }
605 
606 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
607 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
608 ///
609 /// Assumption: Succ is the single successor for BB.
610 ///
611 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
612   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
613 
614   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
615         << Succ->getName() << "\n");
616   // Shortcut, if there is only a single predecessor it must be BB and merging
617   // is always safe
618   if (Succ->getSinglePredecessor()) return true;
619 
620   // Make a list of the predecessors of BB
621   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
622 
623   // Look at all the phi nodes in Succ, to see if they present a conflict when
624   // merging these blocks
625   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
626     PHINode *PN = cast<PHINode>(I);
627 
628     // If the incoming value from BB is again a PHINode in
629     // BB which has the same incoming value for *PI as PN does, we can
630     // merge the phi nodes and then the blocks can still be merged
631     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
632     if (BBPN && BBPN->getParent() == BB) {
633       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
634         BasicBlock *IBB = PN->getIncomingBlock(PI);
635         if (BBPreds.count(IBB) &&
636             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
637                             PN->getIncomingValue(PI))) {
638           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
639                 << Succ->getName() << " is conflicting with "
640                 << BBPN->getName() << " with regard to common predecessor "
641                 << IBB->getName() << "\n");
642           return false;
643         }
644       }
645     } else {
646       Value* Val = PN->getIncomingValueForBlock(BB);
647       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
648         // See if the incoming value for the common predecessor is equal to the
649         // one for BB, in which case this phi node will not prevent the merging
650         // of the block.
651         BasicBlock *IBB = PN->getIncomingBlock(PI);
652         if (BBPreds.count(IBB) &&
653             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
654           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
655                 << Succ->getName() << " is conflicting with regard to common "
656                 << "predecessor " << IBB->getName() << "\n");
657           return false;
658         }
659       }
660     }
661   }
662 
663   return true;
664 }
665 
666 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
667 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
668 
669 /// \brief Determines the value to use as the phi node input for a block.
670 ///
671 /// Select between \p OldVal any value that we know flows from \p BB
672 /// to a particular phi on the basis of which one (if either) is not
673 /// undef. Update IncomingValues based on the selected value.
674 ///
675 /// \param OldVal The value we are considering selecting.
676 /// \param BB The block that the value flows in from.
677 /// \param IncomingValues A map from block-to-value for other phi inputs
678 /// that we have examined.
679 ///
680 /// \returns the selected value.
681 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
682                                           IncomingValueMap &IncomingValues) {
683   if (!isa<UndefValue>(OldVal)) {
684     assert((!IncomingValues.count(BB) ||
685             IncomingValues.find(BB)->second == OldVal) &&
686            "Expected OldVal to match incoming value from BB!");
687 
688     IncomingValues.insert(std::make_pair(BB, OldVal));
689     return OldVal;
690   }
691 
692   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
693   if (It != IncomingValues.end()) return It->second;
694 
695   return OldVal;
696 }
697 
698 /// \brief Create a map from block to value for the operands of a
699 /// given phi.
700 ///
701 /// Create a map from block to value for each non-undef value flowing
702 /// into \p PN.
703 ///
704 /// \param PN The phi we are collecting the map for.
705 /// \param IncomingValues [out] The map from block to value for this phi.
706 static void gatherIncomingValuesToPhi(PHINode *PN,
707                                       IncomingValueMap &IncomingValues) {
708   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
709     BasicBlock *BB = PN->getIncomingBlock(i);
710     Value *V = PN->getIncomingValue(i);
711 
712     if (!isa<UndefValue>(V))
713       IncomingValues.insert(std::make_pair(BB, V));
714   }
715 }
716 
717 /// \brief Replace the incoming undef values to a phi with the values
718 /// from a block-to-value map.
719 ///
720 /// \param PN The phi we are replacing the undefs in.
721 /// \param IncomingValues A map from block to value.
722 static void replaceUndefValuesInPhi(PHINode *PN,
723                                     const IncomingValueMap &IncomingValues) {
724   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
725     Value *V = PN->getIncomingValue(i);
726 
727     if (!isa<UndefValue>(V)) continue;
728 
729     BasicBlock *BB = PN->getIncomingBlock(i);
730     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
731     if (It == IncomingValues.end()) continue;
732 
733     PN->setIncomingValue(i, It->second);
734   }
735 }
736 
737 /// \brief Replace a value flowing from a block to a phi with
738 /// potentially multiple instances of that value flowing from the
739 /// block's predecessors to the phi.
740 ///
741 /// \param BB The block with the value flowing into the phi.
742 /// \param BBPreds The predecessors of BB.
743 /// \param PN The phi that we are updating.
744 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
745                                                 const PredBlockVector &BBPreds,
746                                                 PHINode *PN) {
747   Value *OldVal = PN->removeIncomingValue(BB, false);
748   assert(OldVal && "No entry in PHI for Pred BB!");
749 
750   IncomingValueMap IncomingValues;
751 
752   // We are merging two blocks - BB, and the block containing PN - and
753   // as a result we need to redirect edges from the predecessors of BB
754   // to go to the block containing PN, and update PN
755   // accordingly. Since we allow merging blocks in the case where the
756   // predecessor and successor blocks both share some predecessors,
757   // and where some of those common predecessors might have undef
758   // values flowing into PN, we want to rewrite those values to be
759   // consistent with the non-undef values.
760 
761   gatherIncomingValuesToPhi(PN, IncomingValues);
762 
763   // If this incoming value is one of the PHI nodes in BB, the new entries
764   // in the PHI node are the entries from the old PHI.
765   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
766     PHINode *OldValPN = cast<PHINode>(OldVal);
767     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
768       // Note that, since we are merging phi nodes and BB and Succ might
769       // have common predecessors, we could end up with a phi node with
770       // identical incoming branches. This will be cleaned up later (and
771       // will trigger asserts if we try to clean it up now, without also
772       // simplifying the corresponding conditional branch).
773       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
774       Value *PredVal = OldValPN->getIncomingValue(i);
775       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
776                                                     IncomingValues);
777 
778       // And add a new incoming value for this predecessor for the
779       // newly retargeted branch.
780       PN->addIncoming(Selected, PredBB);
781     }
782   } else {
783     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
784       // Update existing incoming values in PN for this
785       // predecessor of BB.
786       BasicBlock *PredBB = BBPreds[i];
787       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
788                                                     IncomingValues);
789 
790       // And add a new incoming value for this predecessor for the
791       // newly retargeted branch.
792       PN->addIncoming(Selected, PredBB);
793     }
794   }
795 
796   replaceUndefValuesInPhi(PN, IncomingValues);
797 }
798 
799 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
800 /// unconditional branch, and contains no instructions other than PHI nodes,
801 /// potential side-effect free intrinsics and the branch.  If possible,
802 /// eliminate BB by rewriting all the predecessors to branch to the successor
803 /// block and return true.  If we can't transform, return false.
804 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
805   assert(BB != &BB->getParent()->getEntryBlock() &&
806          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
807 
808   // We can't eliminate infinite loops.
809   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
810   if (BB == Succ) return false;
811 
812   // Check to see if merging these blocks would cause conflicts for any of the
813   // phi nodes in BB or Succ. If not, we can safely merge.
814   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
815 
816   // Check for cases where Succ has multiple predecessors and a PHI node in BB
817   // has uses which will not disappear when the PHI nodes are merged.  It is
818   // possible to handle such cases, but difficult: it requires checking whether
819   // BB dominates Succ, which is non-trivial to calculate in the case where
820   // Succ has multiple predecessors.  Also, it requires checking whether
821   // constructing the necessary self-referential PHI node doesn't introduce any
822   // conflicts; this isn't too difficult, but the previous code for doing this
823   // was incorrect.
824   //
825   // Note that if this check finds a live use, BB dominates Succ, so BB is
826   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
827   // folding the branch isn't profitable in that case anyway.
828   if (!Succ->getSinglePredecessor()) {
829     BasicBlock::iterator BBI = BB->begin();
830     while (isa<PHINode>(*BBI)) {
831       for (Use &U : BBI->uses()) {
832         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
833           if (PN->getIncomingBlock(U) != BB)
834             return false;
835         } else {
836           return false;
837         }
838       }
839       ++BBI;
840     }
841   }
842 
843   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
844 
845   if (isa<PHINode>(Succ->begin())) {
846     // If there is more than one pred of succ, and there are PHI nodes in
847     // the successor, then we need to add incoming edges for the PHI nodes
848     //
849     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
850 
851     // Loop over all of the PHI nodes in the successor of BB.
852     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
853       PHINode *PN = cast<PHINode>(I);
854 
855       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
856     }
857   }
858 
859   if (Succ->getSinglePredecessor()) {
860     // BB is the only predecessor of Succ, so Succ will end up with exactly
861     // the same predecessors BB had.
862 
863     // Copy over any phi, debug or lifetime instruction.
864     BB->getTerminator()->eraseFromParent();
865     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
866                                BB->getInstList());
867   } else {
868     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
869       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
870       assert(PN->use_empty() && "There shouldn't be any uses here!");
871       PN->eraseFromParent();
872     }
873   }
874 
875   // Everything that jumped to BB now goes to Succ.
876   BB->replaceAllUsesWith(Succ);
877   if (!Succ->hasName()) Succ->takeName(BB);
878   BB->eraseFromParent();              // Delete the old basic block.
879   return true;
880 }
881 
882 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
883 /// nodes in this block. This doesn't try to be clever about PHI nodes
884 /// which differ only in the order of the incoming values, but instcombine
885 /// orders them so it usually won't matter.
886 ///
887 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
888   // This implementation doesn't currently consider undef operands
889   // specially. Theoretically, two phis which are identical except for
890   // one having an undef where the other doesn't could be collapsed.
891 
892   struct PHIDenseMapInfo {
893     static PHINode *getEmptyKey() {
894       return DenseMapInfo<PHINode *>::getEmptyKey();
895     }
896     static PHINode *getTombstoneKey() {
897       return DenseMapInfo<PHINode *>::getTombstoneKey();
898     }
899     static unsigned getHashValue(PHINode *PN) {
900       // Compute a hash value on the operands. Instcombine will likely have
901       // sorted them, which helps expose duplicates, but we have to check all
902       // the operands to be safe in case instcombine hasn't run.
903       return static_cast<unsigned>(hash_combine(
904           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
905           hash_combine_range(PN->block_begin(), PN->block_end())));
906     }
907     static bool isEqual(PHINode *LHS, PHINode *RHS) {
908       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
909           RHS == getEmptyKey() || RHS == getTombstoneKey())
910         return LHS == RHS;
911       return LHS->isIdenticalTo(RHS);
912     }
913   };
914 
915   // Set of unique PHINodes.
916   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
917 
918   // Examine each PHI.
919   bool Changed = false;
920   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
921     auto Inserted = PHISet.insert(PN);
922     if (!Inserted.second) {
923       // A duplicate. Replace this PHI with its duplicate.
924       PN->replaceAllUsesWith(*Inserted.first);
925       PN->eraseFromParent();
926       Changed = true;
927 
928       // The RAUW can change PHIs that we already visited. Start over from the
929       // beginning.
930       PHISet.clear();
931       I = BB->begin();
932     }
933   }
934 
935   return Changed;
936 }
937 
938 /// enforceKnownAlignment - If the specified pointer points to an object that
939 /// we control, modify the object's alignment to PrefAlign. This isn't
940 /// often possible though. If alignment is important, a more reliable approach
941 /// is to simply align all global variables and allocation instructions to
942 /// their preferred alignment from the beginning.
943 ///
944 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
945                                       unsigned PrefAlign,
946                                       const DataLayout &DL) {
947   assert(PrefAlign > Align);
948 
949   V = V->stripPointerCasts();
950 
951   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
952     // TODO: ideally, computeKnownBits ought to have used
953     // AllocaInst::getAlignment() in its computation already, making
954     // the below max redundant. But, as it turns out,
955     // stripPointerCasts recurses through infinite layers of bitcasts,
956     // while computeKnownBits is not allowed to traverse more than 6
957     // levels.
958     Align = std::max(AI->getAlignment(), Align);
959     if (PrefAlign <= Align)
960       return Align;
961 
962     // If the preferred alignment is greater than the natural stack alignment
963     // then don't round up. This avoids dynamic stack realignment.
964     if (DL.exceedsNaturalStackAlignment(PrefAlign))
965       return Align;
966     AI->setAlignment(PrefAlign);
967     return PrefAlign;
968   }
969 
970   if (auto *GO = dyn_cast<GlobalObject>(V)) {
971     // TODO: as above, this shouldn't be necessary.
972     Align = std::max(GO->getAlignment(), Align);
973     if (PrefAlign <= Align)
974       return Align;
975 
976     // If there is a large requested alignment and we can, bump up the alignment
977     // of the global.  If the memory we set aside for the global may not be the
978     // memory used by the final program then it is impossible for us to reliably
979     // enforce the preferred alignment.
980     if (!GO->canIncreaseAlignment())
981       return Align;
982 
983     GO->setAlignment(PrefAlign);
984     return PrefAlign;
985   }
986 
987   return Align;
988 }
989 
990 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
991 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
992 /// and it is more than the alignment of the ultimate object, see if we can
993 /// increase the alignment of the ultimate object, making this check succeed.
994 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
995                                           const DataLayout &DL,
996                                           const Instruction *CxtI,
997                                           AssumptionCache *AC,
998                                           const DominatorTree *DT) {
999   assert(V->getType()->isPointerTy() &&
1000          "getOrEnforceKnownAlignment expects a pointer!");
1001   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1002 
1003   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1004   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
1005   unsigned TrailZ = KnownZero.countTrailingOnes();
1006 
1007   // Avoid trouble with ridiculously large TrailZ values, such as
1008   // those computed from a null pointer.
1009   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1010 
1011   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1012 
1013   // LLVM doesn't support alignments larger than this currently.
1014   Align = std::min(Align, +Value::MaximumAlignment);
1015 
1016   if (PrefAlign > Align)
1017     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1018 
1019   // We don't need to make any adjustment.
1020   return Align;
1021 }
1022 
1023 ///===---------------------------------------------------------------------===//
1024 ///  Dbg Intrinsic utilities
1025 ///
1026 
1027 /// See if there is a dbg.value intrinsic for DIVar before I.
1028 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) {
1029   // Since we can't guarantee that the original dbg.declare instrinsic
1030   // is removed by LowerDbgDeclare(), we need to make sure that we are
1031   // not inserting the same dbg.value intrinsic over and over.
1032   llvm::BasicBlock::InstListType::iterator PrevI(I);
1033   if (PrevI != I->getParent()->getInstList().begin()) {
1034     --PrevI;
1035     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1036       if (DVI->getValue() == I->getOperand(0) &&
1037           DVI->getOffset() == 0 &&
1038           DVI->getVariable() == DIVar)
1039         return true;
1040   }
1041   return false;
1042 }
1043 
1044 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1045 /// that has an associated llvm.dbg.decl intrinsic.
1046 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1047                                            StoreInst *SI, DIBuilder &Builder) {
1048   auto *DIVar = DDI->getVariable();
1049   auto *DIExpr = DDI->getExpression();
1050   assert(DIVar && "Missing variable");
1051 
1052   if (LdStHasDebugValue(DIVar, SI))
1053     return true;
1054 
1055   // If an argument is zero extended then use argument directly. The ZExt
1056   // may be zapped by an optimization pass in future.
1057   Argument *ExtendedArg = nullptr;
1058   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1059     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1060   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1061     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1062   if (ExtendedArg) {
1063     // We're now only describing a subset of the variable. The piece we're
1064     // describing will always be smaller than the variable size, because
1065     // VariableSize == Size of Alloca described by DDI. Since SI stores
1066     // to the alloca described by DDI, if it's first operand is an extend,
1067     // we're guaranteed that before extension, the value was narrower than
1068     // the size of the alloca, hence the size of the described variable.
1069     SmallVector<uint64_t, 3> NewDIExpr;
1070     unsigned PieceOffset = 0;
1071     // If this already is a bit piece, we drop the bit piece from the expression
1072     // and record the offset.
1073     if (DIExpr->isBitPiece()) {
1074       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1075       PieceOffset = DIExpr->getBitPieceOffset();
1076     } else {
1077       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1078     }
1079     NewDIExpr.push_back(dwarf::DW_OP_bit_piece);
1080     NewDIExpr.push_back(PieceOffset); //Offset
1081     const DataLayout &DL = DDI->getModule()->getDataLayout();
1082     NewDIExpr.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
1083     Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar,
1084                                     Builder.createExpression(NewDIExpr),
1085                                     DDI->getDebugLoc(), SI);
1086   }
1087   else
1088     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1089                                     DDI->getDebugLoc(), SI);
1090   return true;
1091 }
1092 
1093 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1094 /// that has an associated llvm.dbg.decl intrinsic.
1095 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1096                                            LoadInst *LI, DIBuilder &Builder) {
1097   auto *DIVar = DDI->getVariable();
1098   auto *DIExpr = DDI->getExpression();
1099   assert(DIVar && "Missing variable");
1100 
1101   if (LdStHasDebugValue(DIVar, LI))
1102     return true;
1103 
1104   // We are now tracking the loaded value instead of the address. In the
1105   // future if multi-location support is added to the IR, it might be
1106   // preferable to keep tracking both the loaded value and the original
1107   // address in case the alloca can not be elided.
1108   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1109       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1110   DbgValue->insertAfter(LI);
1111   return true;
1112 }
1113 
1114 /// Determine whether this alloca is either a VLA or an array.
1115 static bool isArray(AllocaInst *AI) {
1116   return AI->isArrayAllocation() ||
1117     AI->getType()->getElementType()->isArrayTy();
1118 }
1119 
1120 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1121 /// of llvm.dbg.value intrinsics.
1122 bool llvm::LowerDbgDeclare(Function &F) {
1123   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1124   SmallVector<DbgDeclareInst *, 4> Dbgs;
1125   for (auto &FI : F)
1126     for (Instruction &BI : FI)
1127       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1128         Dbgs.push_back(DDI);
1129 
1130   if (Dbgs.empty())
1131     return false;
1132 
1133   for (auto &I : Dbgs) {
1134     DbgDeclareInst *DDI = I;
1135     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1136     // If this is an alloca for a scalar variable, insert a dbg.value
1137     // at each load and store to the alloca and erase the dbg.declare.
1138     // The dbg.values allow tracking a variable even if it is not
1139     // stored on the stack, while the dbg.declare can only describe
1140     // the stack slot (and at a lexical-scope granularity). Later
1141     // passes will attempt to elide the stack slot.
1142     if (AI && !isArray(AI)) {
1143       for (auto &AIUse : AI->uses()) {
1144         User *U = AIUse.getUser();
1145         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1146           if (AIUse.getOperandNo() == 1)
1147             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1148         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1149           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1150         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1151           // This is a call by-value or some other instruction that
1152           // takes a pointer to the variable. Insert a *value*
1153           // intrinsic that describes the alloca.
1154           SmallVector<uint64_t, 1> NewDIExpr;
1155           auto *DIExpr = DDI->getExpression();
1156           NewDIExpr.push_back(dwarf::DW_OP_deref);
1157           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1158           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1159                                       DIB.createExpression(NewDIExpr),
1160                                       DDI->getDebugLoc(), CI);
1161         }
1162       }
1163       DDI->eraseFromParent();
1164     }
1165   }
1166   return true;
1167 }
1168 
1169 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1170 /// alloca 'V', if any.
1171 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1172   if (auto *L = LocalAsMetadata::getIfExists(V))
1173     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1174       for (User *U : MDV->users())
1175         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1176           return DDI;
1177 
1178   return nullptr;
1179 }
1180 
1181 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1182                              Instruction *InsertBefore, DIBuilder &Builder,
1183                              bool Deref, int Offset) {
1184   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1185   if (!DDI)
1186     return false;
1187   DebugLoc Loc = DDI->getDebugLoc();
1188   auto *DIVar = DDI->getVariable();
1189   auto *DIExpr = DDI->getExpression();
1190   assert(DIVar && "Missing variable");
1191 
1192   if (Deref || Offset) {
1193     // Create a copy of the original DIDescriptor for user variable, prepending
1194     // "deref" operation to a list of address elements, as new llvm.dbg.declare
1195     // will take a value storing address of the memory for variable, not
1196     // alloca itself.
1197     SmallVector<uint64_t, 4> NewDIExpr;
1198     if (Deref)
1199       NewDIExpr.push_back(dwarf::DW_OP_deref);
1200     if (Offset > 0) {
1201       NewDIExpr.push_back(dwarf::DW_OP_plus);
1202       NewDIExpr.push_back(Offset);
1203     } else if (Offset < 0) {
1204       NewDIExpr.push_back(dwarf::DW_OP_minus);
1205       NewDIExpr.push_back(-Offset);
1206     }
1207     if (DIExpr)
1208       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1209     DIExpr = Builder.createExpression(NewDIExpr);
1210   }
1211 
1212   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1213   // old llvm.dbg.declare.
1214   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1215   DDI->eraseFromParent();
1216   return true;
1217 }
1218 
1219 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1220                                       DIBuilder &Builder, bool Deref, int Offset) {
1221   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1222                            Deref, Offset);
1223 }
1224 
1225 void llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1226   BasicBlock *BB = I->getParent();
1227   // Loop over all of the successors, removing BB's entry from any PHI
1228   // nodes.
1229   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1230     (*SI)->removePredecessor(BB);
1231 
1232   // Insert a call to llvm.trap right before this.  This turns the undefined
1233   // behavior into a hard fail instead of falling through into random code.
1234   if (UseLLVMTrap) {
1235     Function *TrapFn =
1236       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1237     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1238     CallTrap->setDebugLoc(I->getDebugLoc());
1239   }
1240   new UnreachableInst(I->getContext(), I);
1241 
1242   // All instructions after this are dead.
1243   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1244   while (BBI != BBE) {
1245     if (!BBI->use_empty())
1246       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1247     BB->getInstList().erase(BBI++);
1248   }
1249 }
1250 
1251 /// changeToCall - Convert the specified invoke into a normal call.
1252 static void changeToCall(InvokeInst *II) {
1253   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1254   SmallVector<OperandBundleDef, 1> OpBundles;
1255   II->getOperandBundlesAsDefs(OpBundles);
1256   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1257                                        "", II);
1258   NewCall->takeName(II);
1259   NewCall->setCallingConv(II->getCallingConv());
1260   NewCall->setAttributes(II->getAttributes());
1261   NewCall->setDebugLoc(II->getDebugLoc());
1262   II->replaceAllUsesWith(NewCall);
1263 
1264   // Follow the call by a branch to the normal destination.
1265   BranchInst::Create(II->getNormalDest(), II);
1266 
1267   // Update PHI nodes in the unwind destination
1268   II->getUnwindDest()->removePredecessor(II->getParent());
1269   II->eraseFromParent();
1270 }
1271 
1272 static bool markAliveBlocks(Function &F,
1273                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1274 
1275   SmallVector<BasicBlock*, 128> Worklist;
1276   BasicBlock *BB = &F.front();
1277   Worklist.push_back(BB);
1278   Reachable.insert(BB);
1279   bool Changed = false;
1280   do {
1281     BB = Worklist.pop_back_val();
1282 
1283     // Do a quick scan of the basic block, turning any obviously unreachable
1284     // instructions into LLVM unreachable insts.  The instruction combining pass
1285     // canonicalizes unreachable insts into stores to null or undef.
1286     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1287       // Assumptions that are known to be false are equivalent to unreachable.
1288       // Also, if the condition is undefined, then we make the choice most
1289       // beneficial to the optimizer, and choose that to also be unreachable.
1290       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
1291         if (II->getIntrinsicID() == Intrinsic::assume) {
1292           bool MakeUnreachable = false;
1293           if (isa<UndefValue>(II->getArgOperand(0)))
1294             MakeUnreachable = true;
1295           else if (ConstantInt *Cond =
1296                    dyn_cast<ConstantInt>(II->getArgOperand(0)))
1297             MakeUnreachable = Cond->isZero();
1298 
1299           if (MakeUnreachable) {
1300             // Don't insert a call to llvm.trap right before the unreachable.
1301             changeToUnreachable(&*BBI, false);
1302             Changed = true;
1303             break;
1304           }
1305         }
1306 
1307       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1308         if (CI->doesNotReturn()) {
1309           // If we found a call to a no-return function, insert an unreachable
1310           // instruction after it.  Make sure there isn't *already* one there
1311           // though.
1312           ++BBI;
1313           if (!isa<UnreachableInst>(BBI)) {
1314             // Don't insert a call to llvm.trap right before the unreachable.
1315             changeToUnreachable(&*BBI, false);
1316             Changed = true;
1317           }
1318           break;
1319         }
1320       }
1321 
1322       // Store to undef and store to null are undefined and used to signal that
1323       // they should be changed to unreachable by passes that can't modify the
1324       // CFG.
1325       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1326         // Don't touch volatile stores.
1327         if (SI->isVolatile()) continue;
1328 
1329         Value *Ptr = SI->getOperand(1);
1330 
1331         if (isa<UndefValue>(Ptr) ||
1332             (isa<ConstantPointerNull>(Ptr) &&
1333              SI->getPointerAddressSpace() == 0)) {
1334           changeToUnreachable(SI, true);
1335           Changed = true;
1336           break;
1337         }
1338       }
1339     }
1340 
1341     TerminatorInst *Terminator = BB->getTerminator();
1342     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1343       // Turn invokes that call 'nounwind' functions into ordinary calls.
1344       Value *Callee = II->getCalledValue();
1345       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1346         changeToUnreachable(II, true);
1347         Changed = true;
1348       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1349         if (II->use_empty() && II->onlyReadsMemory()) {
1350           // jump to the normal destination branch.
1351           BranchInst::Create(II->getNormalDest(), II);
1352           II->getUnwindDest()->removePredecessor(II->getParent());
1353           II->eraseFromParent();
1354         } else
1355           changeToCall(II);
1356         Changed = true;
1357       }
1358     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1359       // Remove catchpads which cannot be reached.
1360       struct CatchPadDenseMapInfo {
1361         static CatchPadInst *getEmptyKey() {
1362           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1363         }
1364         static CatchPadInst *getTombstoneKey() {
1365           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1366         }
1367         static unsigned getHashValue(CatchPadInst *CatchPad) {
1368           return static_cast<unsigned>(hash_combine_range(
1369               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1370         }
1371         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1372           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1373               RHS == getEmptyKey() || RHS == getTombstoneKey())
1374             return LHS == RHS;
1375           return LHS->isIdenticalTo(RHS);
1376         }
1377       };
1378 
1379       // Set of unique CatchPads.
1380       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1381                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1382           HandlerSet;
1383       detail::DenseSetEmpty Empty;
1384       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1385                                              E = CatchSwitch->handler_end();
1386            I != E; ++I) {
1387         BasicBlock *HandlerBB = *I;
1388         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1389         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1390           CatchSwitch->removeHandler(I);
1391           --I;
1392           --E;
1393           Changed = true;
1394         }
1395       }
1396     }
1397 
1398     Changed |= ConstantFoldTerminator(BB, true);
1399     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1400       if (Reachable.insert(*SI).second)
1401         Worklist.push_back(*SI);
1402   } while (!Worklist.empty());
1403   return Changed;
1404 }
1405 
1406 void llvm::removeUnwindEdge(BasicBlock *BB) {
1407   TerminatorInst *TI = BB->getTerminator();
1408 
1409   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1410     changeToCall(II);
1411     return;
1412   }
1413 
1414   TerminatorInst *NewTI;
1415   BasicBlock *UnwindDest;
1416 
1417   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1418     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1419     UnwindDest = CRI->getUnwindDest();
1420   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1421     auto *NewCatchSwitch = CatchSwitchInst::Create(
1422         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1423         CatchSwitch->getName(), CatchSwitch);
1424     for (BasicBlock *PadBB : CatchSwitch->handlers())
1425       NewCatchSwitch->addHandler(PadBB);
1426 
1427     NewTI = NewCatchSwitch;
1428     UnwindDest = CatchSwitch->getUnwindDest();
1429   } else {
1430     llvm_unreachable("Could not find unwind successor");
1431   }
1432 
1433   NewTI->takeName(TI);
1434   NewTI->setDebugLoc(TI->getDebugLoc());
1435   UnwindDest->removePredecessor(BB);
1436   TI->replaceAllUsesWith(NewTI);
1437   TI->eraseFromParent();
1438 }
1439 
1440 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1441 /// if they are in a dead cycle.  Return true if a change was made, false
1442 /// otherwise.
1443 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1444   SmallPtrSet<BasicBlock*, 128> Reachable;
1445   bool Changed = markAliveBlocks(F, Reachable);
1446 
1447   // If there are unreachable blocks in the CFG...
1448   if (Reachable.size() == F.size())
1449     return Changed;
1450 
1451   assert(Reachable.size() < F.size());
1452   NumRemoved += F.size()-Reachable.size();
1453 
1454   // Loop over all of the basic blocks that are not reachable, dropping all of
1455   // their internal references...
1456   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1457     if (Reachable.count(&*BB))
1458       continue;
1459 
1460     for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE;
1461          ++SI)
1462       if (Reachable.count(*SI))
1463         (*SI)->removePredecessor(&*BB);
1464     if (LVI)
1465       LVI->eraseBlock(&*BB);
1466     BB->dropAllReferences();
1467   }
1468 
1469   for (Function::iterator I = ++F.begin(); I != F.end();)
1470     if (!Reachable.count(&*I))
1471       I = F.getBasicBlockList().erase(I);
1472     else
1473       ++I;
1474 
1475   return true;
1476 }
1477 
1478 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1479                            ArrayRef<unsigned> KnownIDs) {
1480   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1481   K->dropUnknownNonDebugMetadata(KnownIDs);
1482   K->getAllMetadataOtherThanDebugLoc(Metadata);
1483   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1484     unsigned Kind = Metadata[i].first;
1485     MDNode *JMD = J->getMetadata(Kind);
1486     MDNode *KMD = Metadata[i].second;
1487 
1488     switch (Kind) {
1489       default:
1490         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1491         break;
1492       case LLVMContext::MD_dbg:
1493         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1494       case LLVMContext::MD_tbaa:
1495         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1496         break;
1497       case LLVMContext::MD_alias_scope:
1498         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1499         break;
1500       case LLVMContext::MD_noalias:
1501         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1502         break;
1503       case LLVMContext::MD_range:
1504         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1505         break;
1506       case LLVMContext::MD_fpmath:
1507         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1508         break;
1509       case LLVMContext::MD_invariant_load:
1510         // Only set the !invariant.load if it is present in both instructions.
1511         K->setMetadata(Kind, JMD);
1512         break;
1513       case LLVMContext::MD_nonnull:
1514         // Only set the !nonnull if it is present in both instructions.
1515         K->setMetadata(Kind, JMD);
1516         break;
1517       case LLVMContext::MD_invariant_group:
1518         // Preserve !invariant.group in K.
1519         break;
1520       case LLVMContext::MD_align:
1521         K->setMetadata(Kind,
1522           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1523         break;
1524       case LLVMContext::MD_dereferenceable:
1525       case LLVMContext::MD_dereferenceable_or_null:
1526         K->setMetadata(Kind,
1527           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1528         break;
1529     }
1530   }
1531   // Set !invariant.group from J if J has it. If both instructions have it
1532   // then we will just pick it from J - even when they are different.
1533   // Also make sure that K is load or store - f.e. combining bitcast with load
1534   // could produce bitcast with invariant.group metadata, which is invalid.
1535   // FIXME: we should try to preserve both invariant.group md if they are
1536   // different, but right now instruction can only have one invariant.group.
1537   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1538     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1539       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1540 }
1541 
1542 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1543                                         DominatorTree &DT,
1544                                         const BasicBlockEdge &Root) {
1545   assert(From->getType() == To->getType());
1546 
1547   unsigned Count = 0;
1548   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1549        UI != UE; ) {
1550     Use &U = *UI++;
1551     if (DT.dominates(Root, U)) {
1552       U.set(To);
1553       DEBUG(dbgs() << "Replace dominated use of '"
1554             << From->getName() << "' as "
1555             << *To << " in " << *U << "\n");
1556       ++Count;
1557     }
1558   }
1559   return Count;
1560 }
1561 
1562 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1563                                         DominatorTree &DT,
1564                                         const BasicBlock *BB) {
1565   assert(From->getType() == To->getType());
1566 
1567   unsigned Count = 0;
1568   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1569        UI != UE;) {
1570     Use &U = *UI++;
1571     auto *I = cast<Instruction>(U.getUser());
1572     if (DT.properlyDominates(BB, I->getParent())) {
1573       U.set(To);
1574       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1575                    << *To << " in " << *U << "\n");
1576       ++Count;
1577     }
1578   }
1579   return Count;
1580 }
1581 
1582 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1583   if (isa<IntrinsicInst>(CS.getInstruction()))
1584     // Most LLVM intrinsics are things which can never take a safepoint.
1585     // As a result, we don't need to have the stack parsable at the
1586     // callsite.  This is a highly useful optimization since intrinsic
1587     // calls are fairly prevalent, particularly in debug builds.
1588     return true;
1589 
1590   // Check if the function is specifically marked as a gc leaf function.
1591   if (CS.hasFnAttr("gc-leaf-function"))
1592     return true;
1593   if (const Function *F = CS.getCalledFunction())
1594     return F->hasFnAttribute("gc-leaf-function");
1595 
1596   return false;
1597 }
1598 
1599 /// A potential constituent of a bitreverse or bswap expression. See
1600 /// collectBitParts for a fuller explanation.
1601 struct BitPart {
1602   BitPart(Value *P, unsigned BW) : Provider(P) {
1603     Provenance.resize(BW);
1604   }
1605 
1606   /// The Value that this is a bitreverse/bswap of.
1607   Value *Provider;
1608   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1609   /// in Provider becomes bit B in the result of this expression.
1610   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1611 
1612   enum { Unset = -1 };
1613 };
1614 
1615 /// Analyze the specified subexpression and see if it is capable of providing
1616 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1617 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1618 /// the output of the expression came from a corresponding bit in some other
1619 /// value. This function is recursive, and the end result is a mapping of
1620 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1621 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1622 ///
1623 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1624 /// that the expression deposits the low byte of %X into the high byte of the
1625 /// result and that all other bits are zero. This expression is accepted and a
1626 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1627 /// [0-7].
1628 ///
1629 /// To avoid revisiting values, the BitPart results are memoized into the
1630 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1631 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1632 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1633 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1634 /// type instead to provide the same functionality.
1635 ///
1636 /// Because we pass around references into \c BPS, we must use a container that
1637 /// does not invalidate internal references (std::map instead of DenseMap).
1638 ///
1639 static const Optional<BitPart> &
1640 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1641                 std::map<Value *, Optional<BitPart>> &BPS) {
1642   auto I = BPS.find(V);
1643   if (I != BPS.end())
1644     return I->second;
1645 
1646   auto &Result = BPS[V] = None;
1647   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1648 
1649   if (Instruction *I = dyn_cast<Instruction>(V)) {
1650     // If this is an or instruction, it may be an inner node of the bswap.
1651     if (I->getOpcode() == Instruction::Or) {
1652       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1653                                 MatchBitReversals, BPS);
1654       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1655                                 MatchBitReversals, BPS);
1656       if (!A || !B)
1657         return Result;
1658 
1659       // Try and merge the two together.
1660       if (!A->Provider || A->Provider != B->Provider)
1661         return Result;
1662 
1663       Result = BitPart(A->Provider, BitWidth);
1664       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1665         if (A->Provenance[i] != BitPart::Unset &&
1666             B->Provenance[i] != BitPart::Unset &&
1667             A->Provenance[i] != B->Provenance[i])
1668           return Result = None;
1669 
1670         if (A->Provenance[i] == BitPart::Unset)
1671           Result->Provenance[i] = B->Provenance[i];
1672         else
1673           Result->Provenance[i] = A->Provenance[i];
1674       }
1675 
1676       return Result;
1677     }
1678 
1679     // If this is a logical shift by a constant, recurse then shift the result.
1680     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1681       unsigned BitShift =
1682           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1683       // Ensure the shift amount is defined.
1684       if (BitShift > BitWidth)
1685         return Result;
1686 
1687       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1688                                   MatchBitReversals, BPS);
1689       if (!Res)
1690         return Result;
1691       Result = Res;
1692 
1693       // Perform the "shift" on BitProvenance.
1694       auto &P = Result->Provenance;
1695       if (I->getOpcode() == Instruction::Shl) {
1696         P.erase(std::prev(P.end(), BitShift), P.end());
1697         P.insert(P.begin(), BitShift, BitPart::Unset);
1698       } else {
1699         P.erase(P.begin(), std::next(P.begin(), BitShift));
1700         P.insert(P.end(), BitShift, BitPart::Unset);
1701       }
1702 
1703       return Result;
1704     }
1705 
1706     // If this is a logical 'and' with a mask that clears bits, recurse then
1707     // unset the appropriate bits.
1708     if (I->getOpcode() == Instruction::And &&
1709         isa<ConstantInt>(I->getOperand(1))) {
1710       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1711       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1712 
1713       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1714       // early exit.
1715       unsigned NumMaskedBits = AndMask.countPopulation();
1716       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1717         return Result;
1718 
1719       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1720                                   MatchBitReversals, BPS);
1721       if (!Res)
1722         return Result;
1723       Result = Res;
1724 
1725       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1726         // If the AndMask is zero for this bit, clear the bit.
1727         if ((AndMask & Bit) == 0)
1728           Result->Provenance[i] = BitPart::Unset;
1729 
1730       return Result;
1731     }
1732   }
1733 
1734   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1735   // the input value to the bswap/bitreverse.
1736   Result = BitPart(V, BitWidth);
1737   for (unsigned i = 0; i < BitWidth; ++i)
1738     Result->Provenance[i] = i;
1739   return Result;
1740 }
1741 
1742 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1743                                           unsigned BitWidth) {
1744   if (From % 8 != To % 8)
1745     return false;
1746   // Convert from bit indices to byte indices and check for a byte reversal.
1747   From >>= 3;
1748   To >>= 3;
1749   BitWidth >>= 3;
1750   return From == BitWidth - To - 1;
1751 }
1752 
1753 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1754                                                unsigned BitWidth) {
1755   return From == BitWidth - To - 1;
1756 }
1757 
1758 /// Given an OR instruction, check to see if this is a bitreverse
1759 /// idiom. If so, insert the new intrinsic and return true.
1760 bool llvm::recognizeBitReverseOrBSwapIdiom(
1761     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
1762     SmallVectorImpl<Instruction *> &InsertedInsts) {
1763   if (Operator::getOpcode(I) != Instruction::Or)
1764     return false;
1765   if (!MatchBSwaps && !MatchBitReversals)
1766     return false;
1767   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
1768   if (!ITy || ITy->getBitWidth() > 128)
1769     return false;   // Can't do vectors or integers > 128 bits.
1770   unsigned BW = ITy->getBitWidth();
1771 
1772   // Try to find all the pieces corresponding to the bswap.
1773   std::map<Value *, Optional<BitPart>> BPS;
1774   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
1775   if (!Res)
1776     return false;
1777   auto &BitProvenance = Res->Provenance;
1778 
1779   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
1780   // only byteswap values with an even number of bytes.
1781   bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;
1782   for (unsigned i = 0; i < BW; ++i) {
1783     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
1784     OKForBitReverse &=
1785         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
1786   }
1787 
1788   Intrinsic::ID Intrin;
1789   if (OKForBSwap && MatchBSwaps)
1790     Intrin = Intrinsic::bswap;
1791   else if (OKForBitReverse && MatchBitReversals)
1792     Intrin = Intrinsic::bitreverse;
1793   else
1794     return false;
1795 
1796   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
1797   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
1798   return true;
1799 }
1800