1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/KnowledgeRetention.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 96 // Max recursion depth for collectBitParts used when detecting bswap and 97 // bitreverse idioms 98 static const unsigned BitPartRecursionMaxDepth = 64; 99 100 //===----------------------------------------------------------------------===// 101 // Local constant propagation. 102 // 103 104 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 105 /// constant value, convert it into an unconditional branch to the constant 106 /// destination. This is a nontrivial operation because the successors of this 107 /// basic block must have their PHI nodes updated. 108 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 109 /// conditions and indirectbr addresses this might make dead if 110 /// DeleteDeadConditions is true. 111 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 112 const TargetLibraryInfo *TLI, 113 DomTreeUpdater *DTU) { 114 Instruction *T = BB->getTerminator(); 115 IRBuilder<> Builder(T); 116 117 // Branch - See if we are conditional jumping on constant 118 if (auto *BI = dyn_cast<BranchInst>(T)) { 119 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 120 BasicBlock *Dest1 = BI->getSuccessor(0); 121 BasicBlock *Dest2 = BI->getSuccessor(1); 122 123 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 124 // Are we branching on constant? 125 // YES. Change to unconditional branch... 126 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 127 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 128 129 // Let the basic block know that we are letting go of it. Based on this, 130 // it will adjust it's PHI nodes. 131 OldDest->removePredecessor(BB); 132 133 // Replace the conditional branch with an unconditional one. 134 Builder.CreateBr(Destination); 135 BI->eraseFromParent(); 136 if (DTU) 137 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 138 return true; 139 } 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 return false; 159 } 160 161 if (auto *SI = dyn_cast<SwitchInst>(T)) { 162 // If we are switching on a constant, we can convert the switch to an 163 // unconditional branch. 164 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 165 BasicBlock *DefaultDest = SI->getDefaultDest(); 166 BasicBlock *TheOnlyDest = DefaultDest; 167 168 // If the default is unreachable, ignore it when searching for TheOnlyDest. 169 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 170 SI->getNumCases() > 0) { 171 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 172 } 173 174 // Figure out which case it goes to. 175 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 176 // Found case matching a constant operand? 177 if (i->getCaseValue() == CI) { 178 TheOnlyDest = i->getCaseSuccessor(); 179 break; 180 } 181 182 // Check to see if this branch is going to the same place as the default 183 // dest. If so, eliminate it as an explicit compare. 184 if (i->getCaseSuccessor() == DefaultDest) { 185 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 186 unsigned NCases = SI->getNumCases(); 187 // Fold the case metadata into the default if there will be any branches 188 // left, unless the metadata doesn't match the switch. 189 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 190 // Collect branch weights into a vector. 191 SmallVector<uint32_t, 8> Weights; 192 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 193 ++MD_i) { 194 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 195 Weights.push_back(CI->getValue().getZExtValue()); 196 } 197 // Merge weight of this case to the default weight. 198 unsigned idx = i->getCaseIndex(); 199 Weights[0] += Weights[idx+1]; 200 // Remove weight for this case. 201 std::swap(Weights[idx+1], Weights.back()); 202 Weights.pop_back(); 203 SI->setMetadata(LLVMContext::MD_prof, 204 MDBuilder(BB->getContext()). 205 createBranchWeights(Weights)); 206 } 207 // Remove this entry. 208 BasicBlock *ParentBB = SI->getParent(); 209 DefaultDest->removePredecessor(ParentBB); 210 i = SI->removeCase(i); 211 e = SI->case_end(); 212 if (DTU) 213 DTU->applyUpdatesPermissive( 214 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 215 continue; 216 } 217 218 // Otherwise, check to see if the switch only branches to one destination. 219 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 220 // destinations. 221 if (i->getCaseSuccessor() != TheOnlyDest) 222 TheOnlyDest = nullptr; 223 224 // Increment this iterator as we haven't removed the case. 225 ++i; 226 } 227 228 if (CI && !TheOnlyDest) { 229 // Branching on a constant, but not any of the cases, go to the default 230 // successor. 231 TheOnlyDest = SI->getDefaultDest(); 232 } 233 234 // If we found a single destination that we can fold the switch into, do so 235 // now. 236 if (TheOnlyDest) { 237 // Insert the new branch. 238 Builder.CreateBr(TheOnlyDest); 239 BasicBlock *BB = SI->getParent(); 240 std::vector <DominatorTree::UpdateType> Updates; 241 if (DTU) 242 Updates.reserve(SI->getNumSuccessors() - 1); 243 244 // Remove entries from PHI nodes which we no longer branch to... 245 for (BasicBlock *Succ : successors(SI)) { 246 // Found case matching a constant operand? 247 if (Succ == TheOnlyDest) { 248 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 249 } else { 250 Succ->removePredecessor(BB); 251 if (DTU) 252 Updates.push_back({DominatorTree::Delete, BB, Succ}); 253 } 254 } 255 256 // Delete the old switch. 257 Value *Cond = SI->getCondition(); 258 SI->eraseFromParent(); 259 if (DeleteDeadConditions) 260 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 261 if (DTU) 262 DTU->applyUpdatesPermissive(Updates); 263 return true; 264 } 265 266 if (SI->getNumCases() == 1) { 267 // Otherwise, we can fold this switch into a conditional branch 268 // instruction if it has only one non-default destination. 269 auto FirstCase = *SI->case_begin(); 270 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 271 FirstCase.getCaseValue(), "cond"); 272 273 // Insert the new branch. 274 BranchInst *NewBr = Builder.CreateCondBr(Cond, 275 FirstCase.getCaseSuccessor(), 276 SI->getDefaultDest()); 277 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 278 if (MD && MD->getNumOperands() == 3) { 279 ConstantInt *SICase = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 281 ConstantInt *SIDef = 282 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 283 assert(SICase && SIDef); 284 // The TrueWeight should be the weight for the single case of SI. 285 NewBr->setMetadata(LLVMContext::MD_prof, 286 MDBuilder(BB->getContext()). 287 createBranchWeights(SICase->getValue().getZExtValue(), 288 SIDef->getValue().getZExtValue())); 289 } 290 291 // Update make.implicit metadata to the newly-created conditional branch. 292 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 293 if (MakeImplicitMD) 294 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 295 296 // Delete the old switch. 297 SI->eraseFromParent(); 298 return true; 299 } 300 return false; 301 } 302 303 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 304 // indirectbr blockaddress(@F, @BB) -> br label @BB 305 if (auto *BA = 306 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 307 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 308 std::vector <DominatorTree::UpdateType> Updates; 309 if (DTU) 310 Updates.reserve(IBI->getNumDestinations() - 1); 311 312 // Insert the new branch. 313 Builder.CreateBr(TheOnlyDest); 314 315 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 316 if (IBI->getDestination(i) == TheOnlyDest) { 317 TheOnlyDest = nullptr; 318 } else { 319 BasicBlock *ParentBB = IBI->getParent(); 320 BasicBlock *DestBB = IBI->getDestination(i); 321 DestBB->removePredecessor(ParentBB); 322 if (DTU) 323 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 324 } 325 } 326 Value *Address = IBI->getAddress(); 327 IBI->eraseFromParent(); 328 if (DeleteDeadConditions) 329 // Delete pointer cast instructions. 330 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 331 332 // Also zap the blockaddress constant if there are no users remaining, 333 // otherwise the destination is still marked as having its address taken. 334 if (BA->use_empty()) 335 BA->destroyConstant(); 336 337 // If we didn't find our destination in the IBI successor list, then we 338 // have undefined behavior. Replace the unconditional branch with an 339 // 'unreachable' instruction. 340 if (TheOnlyDest) { 341 BB->getTerminator()->eraseFromParent(); 342 new UnreachableInst(BB->getContext(), BB); 343 } 344 345 if (DTU) 346 DTU->applyUpdatesPermissive(Updates); 347 return true; 348 } 349 } 350 351 return false; 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Local dead code elimination. 356 // 357 358 /// isInstructionTriviallyDead - Return true if the result produced by the 359 /// instruction is not used, and the instruction has no side effects. 360 /// 361 bool llvm::isInstructionTriviallyDead(Instruction *I, 362 const TargetLibraryInfo *TLI) { 363 if (!I->use_empty()) 364 return false; 365 return wouldInstructionBeTriviallyDead(I, TLI); 366 } 367 368 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 369 const TargetLibraryInfo *TLI) { 370 if (I->isTerminator()) 371 return false; 372 373 // We don't want the landingpad-like instructions removed by anything this 374 // general. 375 if (I->isEHPad()) 376 return false; 377 378 // We don't want debug info removed by anything this general, unless 379 // debug info is empty. 380 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 381 if (DDI->getAddress()) 382 return false; 383 return true; 384 } 385 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 386 if (DVI->getValue()) 387 return false; 388 return true; 389 } 390 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 391 if (DLI->getLabel()) 392 return false; 393 return true; 394 } 395 396 if (!I->mayHaveSideEffects()) 397 return true; 398 399 // Special case intrinsics that "may have side effects" but can be deleted 400 // when dead. 401 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 402 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 403 if (II->getIntrinsicID() == Intrinsic::stacksave || 404 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 405 return true; 406 407 // Lifetime intrinsics are dead when their right-hand is undef. 408 if (II->isLifetimeStartOrEnd()) 409 return isa<UndefValue>(II->getArgOperand(1)); 410 411 // Assumptions are dead if their condition is trivially true. Guards on 412 // true are operationally no-ops. In the future we can consider more 413 // sophisticated tradeoffs for guards considering potential for check 414 // widening, but for now we keep things simple. 415 if ((II->getIntrinsicID() == Intrinsic::assume && 416 isAssumeWithEmptyBundle(*II)) || 417 II->getIntrinsicID() == Intrinsic::experimental_guard) { 418 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 419 return !Cond->isZero(); 420 421 return false; 422 } 423 } 424 425 if (isAllocLikeFn(I, TLI)) 426 return true; 427 428 if (CallInst *CI = isFreeCall(I, TLI)) 429 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 430 return C->isNullValue() || isa<UndefValue>(C); 431 432 if (auto *Call = dyn_cast<CallBase>(I)) 433 if (isMathLibCallNoop(Call, TLI)) 434 return true; 435 436 return false; 437 } 438 439 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 440 /// trivially dead instruction, delete it. If that makes any of its operands 441 /// trivially dead, delete them too, recursively. Return true if any 442 /// instructions were deleted. 443 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 445 Instruction *I = dyn_cast<Instruction>(V); 446 if (!I || !isInstructionTriviallyDead(I, TLI)) 447 return false; 448 449 SmallVector<WeakTrackingVH, 16> DeadInsts; 450 DeadInsts.push_back(I); 451 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 452 453 return true; 454 } 455 456 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 457 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 458 MemorySSAUpdater *MSSAU) { 459 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 460 for (; S != E; ++S) { 461 auto *I = cast<Instruction>(DeadInsts[S]); 462 if (!isInstructionTriviallyDead(I)) { 463 DeadInsts[S] = nullptr; 464 ++Alive; 465 } 466 } 467 if (Alive == E) 468 return false; 469 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 470 return true; 471 } 472 473 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 474 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 475 MemorySSAUpdater *MSSAU) { 476 // Process the dead instruction list until empty. 477 while (!DeadInsts.empty()) { 478 Value *V = DeadInsts.pop_back_val(); 479 Instruction *I = cast_or_null<Instruction>(V); 480 if (!I) 481 continue; 482 assert(isInstructionTriviallyDead(I, TLI) && 483 "Live instruction found in dead worklist!"); 484 assert(I->use_empty() && "Instructions with uses are not dead."); 485 486 // Don't lose the debug info while deleting the instructions. 487 salvageDebugInfo(*I); 488 489 // Null out all of the instruction's operands to see if any operand becomes 490 // dead as we go. 491 for (Use &OpU : I->operands()) { 492 Value *OpV = OpU.get(); 493 OpU.set(nullptr); 494 495 if (!OpV->use_empty()) 496 continue; 497 498 // If the operand is an instruction that became dead as we nulled out the 499 // operand, and if it is 'trivially' dead, delete it in a future loop 500 // iteration. 501 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 502 if (isInstructionTriviallyDead(OpI, TLI)) 503 DeadInsts.push_back(OpI); 504 } 505 if (MSSAU) 506 MSSAU->removeMemoryAccess(I); 507 508 I->eraseFromParent(); 509 } 510 } 511 512 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 513 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 514 findDbgUsers(DbgUsers, I); 515 for (auto *DII : DbgUsers) { 516 Value *Undef = UndefValue::get(I->getType()); 517 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 518 ValueAsMetadata::get(Undef))); 519 } 520 return !DbgUsers.empty(); 521 } 522 523 /// areAllUsesEqual - Check whether the uses of a value are all the same. 524 /// This is similar to Instruction::hasOneUse() except this will also return 525 /// true when there are no uses or multiple uses that all refer to the same 526 /// value. 527 static bool areAllUsesEqual(Instruction *I) { 528 Value::user_iterator UI = I->user_begin(); 529 Value::user_iterator UE = I->user_end(); 530 if (UI == UE) 531 return true; 532 533 User *TheUse = *UI; 534 for (++UI; UI != UE; ++UI) { 535 if (*UI != TheUse) 536 return false; 537 } 538 return true; 539 } 540 541 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 542 /// dead PHI node, due to being a def-use chain of single-use nodes that 543 /// either forms a cycle or is terminated by a trivially dead instruction, 544 /// delete it. If that makes any of its operands trivially dead, delete them 545 /// too, recursively. Return true if a change was made. 546 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 547 const TargetLibraryInfo *TLI, 548 llvm::MemorySSAUpdater *MSSAU) { 549 SmallPtrSet<Instruction*, 4> Visited; 550 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 551 I = cast<Instruction>(*I->user_begin())) { 552 if (I->use_empty()) 553 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 554 555 // If we find an instruction more than once, we're on a cycle that 556 // won't prove fruitful. 557 if (!Visited.insert(I).second) { 558 // Break the cycle and delete the instruction and its operands. 559 I->replaceAllUsesWith(UndefValue::get(I->getType())); 560 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 561 return true; 562 } 563 } 564 return false; 565 } 566 567 static bool 568 simplifyAndDCEInstruction(Instruction *I, 569 SmallSetVector<Instruction *, 16> &WorkList, 570 const DataLayout &DL, 571 const TargetLibraryInfo *TLI) { 572 if (isInstructionTriviallyDead(I, TLI)) { 573 salvageDebugInfo(*I); 574 575 // Null out all of the instruction's operands to see if any operand becomes 576 // dead as we go. 577 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 578 Value *OpV = I->getOperand(i); 579 I->setOperand(i, nullptr); 580 581 if (!OpV->use_empty() || I == OpV) 582 continue; 583 584 // If the operand is an instruction that became dead as we nulled out the 585 // operand, and if it is 'trivially' dead, delete it in a future loop 586 // iteration. 587 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 588 if (isInstructionTriviallyDead(OpI, TLI)) 589 WorkList.insert(OpI); 590 } 591 592 I->eraseFromParent(); 593 594 return true; 595 } 596 597 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 598 // Add the users to the worklist. CAREFUL: an instruction can use itself, 599 // in the case of a phi node. 600 for (User *U : I->users()) { 601 if (U != I) { 602 WorkList.insert(cast<Instruction>(U)); 603 } 604 } 605 606 // Replace the instruction with its simplified value. 607 bool Changed = false; 608 if (!I->use_empty()) { 609 I->replaceAllUsesWith(SimpleV); 610 Changed = true; 611 } 612 if (isInstructionTriviallyDead(I, TLI)) { 613 I->eraseFromParent(); 614 Changed = true; 615 } 616 return Changed; 617 } 618 return false; 619 } 620 621 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 622 /// simplify any instructions in it and recursively delete dead instructions. 623 /// 624 /// This returns true if it changed the code, note that it can delete 625 /// instructions in other blocks as well in this block. 626 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 627 const TargetLibraryInfo *TLI) { 628 bool MadeChange = false; 629 const DataLayout &DL = BB->getModule()->getDataLayout(); 630 631 #ifndef NDEBUG 632 // In debug builds, ensure that the terminator of the block is never replaced 633 // or deleted by these simplifications. The idea of simplification is that it 634 // cannot introduce new instructions, and there is no way to replace the 635 // terminator of a block without introducing a new instruction. 636 AssertingVH<Instruction> TerminatorVH(&BB->back()); 637 #endif 638 639 SmallSetVector<Instruction *, 16> WorkList; 640 // Iterate over the original function, only adding insts to the worklist 641 // if they actually need to be revisited. This avoids having to pre-init 642 // the worklist with the entire function's worth of instructions. 643 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 644 BI != E;) { 645 assert(!BI->isTerminator()); 646 Instruction *I = &*BI; 647 ++BI; 648 649 // We're visiting this instruction now, so make sure it's not in the 650 // worklist from an earlier visit. 651 if (!WorkList.count(I)) 652 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 653 } 654 655 while (!WorkList.empty()) { 656 Instruction *I = WorkList.pop_back_val(); 657 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 658 } 659 return MadeChange; 660 } 661 662 //===----------------------------------------------------------------------===// 663 // Control Flow Graph Restructuring. 664 // 665 666 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 667 DomTreeUpdater *DTU) { 668 // This only adjusts blocks with PHI nodes. 669 if (!isa<PHINode>(BB->begin())) 670 return; 671 672 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 673 // them down. This will leave us with single entry phi nodes and other phis 674 // that can be removed. 675 BB->removePredecessor(Pred, true); 676 677 WeakTrackingVH PhiIt = &BB->front(); 678 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 679 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 680 Value *OldPhiIt = PhiIt; 681 682 if (!recursivelySimplifyInstruction(PN)) 683 continue; 684 685 // If recursive simplification ended up deleting the next PHI node we would 686 // iterate to, then our iterator is invalid, restart scanning from the top 687 // of the block. 688 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 689 } 690 if (DTU) 691 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 692 } 693 694 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 695 DomTreeUpdater *DTU) { 696 697 // If BB has single-entry PHI nodes, fold them. 698 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 699 Value *NewVal = PN->getIncomingValue(0); 700 // Replace self referencing PHI with undef, it must be dead. 701 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 702 PN->replaceAllUsesWith(NewVal); 703 PN->eraseFromParent(); 704 } 705 706 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 707 assert(PredBB && "Block doesn't have a single predecessor!"); 708 709 bool ReplaceEntryBB = false; 710 if (PredBB == &DestBB->getParent()->getEntryBlock()) 711 ReplaceEntryBB = true; 712 713 // DTU updates: Collect all the edges that enter 714 // PredBB. These dominator edges will be redirected to DestBB. 715 SmallVector<DominatorTree::UpdateType, 32> Updates; 716 717 if (DTU) { 718 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 719 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 720 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 721 // This predecessor of PredBB may already have DestBB as a successor. 722 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 723 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 724 } 725 } 726 727 // Zap anything that took the address of DestBB. Not doing this will give the 728 // address an invalid value. 729 if (DestBB->hasAddressTaken()) { 730 BlockAddress *BA = BlockAddress::get(DestBB); 731 Constant *Replacement = 732 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 733 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 734 BA->getType())); 735 BA->destroyConstant(); 736 } 737 738 // Anything that branched to PredBB now branches to DestBB. 739 PredBB->replaceAllUsesWith(DestBB); 740 741 // Splice all the instructions from PredBB to DestBB. 742 PredBB->getTerminator()->eraseFromParent(); 743 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 744 new UnreachableInst(PredBB->getContext(), PredBB); 745 746 // If the PredBB is the entry block of the function, move DestBB up to 747 // become the entry block after we erase PredBB. 748 if (ReplaceEntryBB) 749 DestBB->moveAfter(PredBB); 750 751 if (DTU) { 752 assert(PredBB->getInstList().size() == 1 && 753 isa<UnreachableInst>(PredBB->getTerminator()) && 754 "The successor list of PredBB isn't empty before " 755 "applying corresponding DTU updates."); 756 DTU->applyUpdatesPermissive(Updates); 757 DTU->deleteBB(PredBB); 758 // Recalculation of DomTree is needed when updating a forward DomTree and 759 // the Entry BB is replaced. 760 if (ReplaceEntryBB && DTU->hasDomTree()) { 761 // The entry block was removed and there is no external interface for 762 // the dominator tree to be notified of this change. In this corner-case 763 // we recalculate the entire tree. 764 DTU->recalculate(*(DestBB->getParent())); 765 } 766 } 767 768 else { 769 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 770 } 771 } 772 773 /// Return true if we can choose one of these values to use in place of the 774 /// other. Note that we will always choose the non-undef value to keep. 775 static bool CanMergeValues(Value *First, Value *Second) { 776 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 777 } 778 779 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 780 /// branch to Succ, into Succ. 781 /// 782 /// Assumption: Succ is the single successor for BB. 783 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 784 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 785 786 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 787 << Succ->getName() << "\n"); 788 // Shortcut, if there is only a single predecessor it must be BB and merging 789 // is always safe 790 if (Succ->getSinglePredecessor()) return true; 791 792 // Make a list of the predecessors of BB 793 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 794 795 // Look at all the phi nodes in Succ, to see if they present a conflict when 796 // merging these blocks 797 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 798 PHINode *PN = cast<PHINode>(I); 799 800 // If the incoming value from BB is again a PHINode in 801 // BB which has the same incoming value for *PI as PN does, we can 802 // merge the phi nodes and then the blocks can still be merged 803 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 804 if (BBPN && BBPN->getParent() == BB) { 805 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 806 BasicBlock *IBB = PN->getIncomingBlock(PI); 807 if (BBPreds.count(IBB) && 808 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 809 PN->getIncomingValue(PI))) { 810 LLVM_DEBUG(dbgs() 811 << "Can't fold, phi node " << PN->getName() << " in " 812 << Succ->getName() << " is conflicting with " 813 << BBPN->getName() << " with regard to common predecessor " 814 << IBB->getName() << "\n"); 815 return false; 816 } 817 } 818 } else { 819 Value* Val = PN->getIncomingValueForBlock(BB); 820 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 821 // See if the incoming value for the common predecessor is equal to the 822 // one for BB, in which case this phi node will not prevent the merging 823 // of the block. 824 BasicBlock *IBB = PN->getIncomingBlock(PI); 825 if (BBPreds.count(IBB) && 826 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 827 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 828 << " in " << Succ->getName() 829 << " is conflicting with regard to common " 830 << "predecessor " << IBB->getName() << "\n"); 831 return false; 832 } 833 } 834 } 835 } 836 837 return true; 838 } 839 840 using PredBlockVector = SmallVector<BasicBlock *, 16>; 841 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 842 843 /// Determines the value to use as the phi node input for a block. 844 /// 845 /// Select between \p OldVal any value that we know flows from \p BB 846 /// to a particular phi on the basis of which one (if either) is not 847 /// undef. Update IncomingValues based on the selected value. 848 /// 849 /// \param OldVal The value we are considering selecting. 850 /// \param BB The block that the value flows in from. 851 /// \param IncomingValues A map from block-to-value for other phi inputs 852 /// that we have examined. 853 /// 854 /// \returns the selected value. 855 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 856 IncomingValueMap &IncomingValues) { 857 if (!isa<UndefValue>(OldVal)) { 858 assert((!IncomingValues.count(BB) || 859 IncomingValues.find(BB)->second == OldVal) && 860 "Expected OldVal to match incoming value from BB!"); 861 862 IncomingValues.insert(std::make_pair(BB, OldVal)); 863 return OldVal; 864 } 865 866 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 867 if (It != IncomingValues.end()) return It->second; 868 869 return OldVal; 870 } 871 872 /// Create a map from block to value for the operands of a 873 /// given phi. 874 /// 875 /// Create a map from block to value for each non-undef value flowing 876 /// into \p PN. 877 /// 878 /// \param PN The phi we are collecting the map for. 879 /// \param IncomingValues [out] The map from block to value for this phi. 880 static void gatherIncomingValuesToPhi(PHINode *PN, 881 IncomingValueMap &IncomingValues) { 882 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 883 BasicBlock *BB = PN->getIncomingBlock(i); 884 Value *V = PN->getIncomingValue(i); 885 886 if (!isa<UndefValue>(V)) 887 IncomingValues.insert(std::make_pair(BB, V)); 888 } 889 } 890 891 /// Replace the incoming undef values to a phi with the values 892 /// from a block-to-value map. 893 /// 894 /// \param PN The phi we are replacing the undefs in. 895 /// \param IncomingValues A map from block to value. 896 static void replaceUndefValuesInPhi(PHINode *PN, 897 const IncomingValueMap &IncomingValues) { 898 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 899 Value *V = PN->getIncomingValue(i); 900 901 if (!isa<UndefValue>(V)) continue; 902 903 BasicBlock *BB = PN->getIncomingBlock(i); 904 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 905 if (It == IncomingValues.end()) continue; 906 907 PN->setIncomingValue(i, It->second); 908 } 909 } 910 911 /// Replace a value flowing from a block to a phi with 912 /// potentially multiple instances of that value flowing from the 913 /// block's predecessors to the phi. 914 /// 915 /// \param BB The block with the value flowing into the phi. 916 /// \param BBPreds The predecessors of BB. 917 /// \param PN The phi that we are updating. 918 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 919 const PredBlockVector &BBPreds, 920 PHINode *PN) { 921 Value *OldVal = PN->removeIncomingValue(BB, false); 922 assert(OldVal && "No entry in PHI for Pred BB!"); 923 924 IncomingValueMap IncomingValues; 925 926 // We are merging two blocks - BB, and the block containing PN - and 927 // as a result we need to redirect edges from the predecessors of BB 928 // to go to the block containing PN, and update PN 929 // accordingly. Since we allow merging blocks in the case where the 930 // predecessor and successor blocks both share some predecessors, 931 // and where some of those common predecessors might have undef 932 // values flowing into PN, we want to rewrite those values to be 933 // consistent with the non-undef values. 934 935 gatherIncomingValuesToPhi(PN, IncomingValues); 936 937 // If this incoming value is one of the PHI nodes in BB, the new entries 938 // in the PHI node are the entries from the old PHI. 939 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 940 PHINode *OldValPN = cast<PHINode>(OldVal); 941 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 942 // Note that, since we are merging phi nodes and BB and Succ might 943 // have common predecessors, we could end up with a phi node with 944 // identical incoming branches. This will be cleaned up later (and 945 // will trigger asserts if we try to clean it up now, without also 946 // simplifying the corresponding conditional branch). 947 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 948 Value *PredVal = OldValPN->getIncomingValue(i); 949 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 950 IncomingValues); 951 952 // And add a new incoming value for this predecessor for the 953 // newly retargeted branch. 954 PN->addIncoming(Selected, PredBB); 955 } 956 } else { 957 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 958 // Update existing incoming values in PN for this 959 // predecessor of BB. 960 BasicBlock *PredBB = BBPreds[i]; 961 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 962 IncomingValues); 963 964 // And add a new incoming value for this predecessor for the 965 // newly retargeted branch. 966 PN->addIncoming(Selected, PredBB); 967 } 968 } 969 970 replaceUndefValuesInPhi(PN, IncomingValues); 971 } 972 973 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 974 DomTreeUpdater *DTU) { 975 assert(BB != &BB->getParent()->getEntryBlock() && 976 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 977 978 // We can't eliminate infinite loops. 979 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 980 if (BB == Succ) return false; 981 982 // Check to see if merging these blocks would cause conflicts for any of the 983 // phi nodes in BB or Succ. If not, we can safely merge. 984 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 985 986 // Check for cases where Succ has multiple predecessors and a PHI node in BB 987 // has uses which will not disappear when the PHI nodes are merged. It is 988 // possible to handle such cases, but difficult: it requires checking whether 989 // BB dominates Succ, which is non-trivial to calculate in the case where 990 // Succ has multiple predecessors. Also, it requires checking whether 991 // constructing the necessary self-referential PHI node doesn't introduce any 992 // conflicts; this isn't too difficult, but the previous code for doing this 993 // was incorrect. 994 // 995 // Note that if this check finds a live use, BB dominates Succ, so BB is 996 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 997 // folding the branch isn't profitable in that case anyway. 998 if (!Succ->getSinglePredecessor()) { 999 BasicBlock::iterator BBI = BB->begin(); 1000 while (isa<PHINode>(*BBI)) { 1001 for (Use &U : BBI->uses()) { 1002 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1003 if (PN->getIncomingBlock(U) != BB) 1004 return false; 1005 } else { 1006 return false; 1007 } 1008 } 1009 ++BBI; 1010 } 1011 } 1012 1013 // We cannot fold the block if it's a branch to an already present callbr 1014 // successor because that creates duplicate successors. 1015 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1016 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1017 if (Succ == CBI->getDefaultDest()) 1018 return false; 1019 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1020 if (Succ == CBI->getIndirectDest(i)) 1021 return false; 1022 } 1023 } 1024 1025 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1026 1027 SmallVector<DominatorTree::UpdateType, 32> Updates; 1028 if (DTU) { 1029 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1030 // All predecessors of BB will be moved to Succ. 1031 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1032 Updates.push_back({DominatorTree::Delete, *I, BB}); 1033 // This predecessor of BB may already have Succ as a successor. 1034 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1035 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1036 } 1037 } 1038 1039 if (isa<PHINode>(Succ->begin())) { 1040 // If there is more than one pred of succ, and there are PHI nodes in 1041 // the successor, then we need to add incoming edges for the PHI nodes 1042 // 1043 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1044 1045 // Loop over all of the PHI nodes in the successor of BB. 1046 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1047 PHINode *PN = cast<PHINode>(I); 1048 1049 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1050 } 1051 } 1052 1053 if (Succ->getSinglePredecessor()) { 1054 // BB is the only predecessor of Succ, so Succ will end up with exactly 1055 // the same predecessors BB had. 1056 1057 // Copy over any phi, debug or lifetime instruction. 1058 BB->getTerminator()->eraseFromParent(); 1059 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1060 BB->getInstList()); 1061 } else { 1062 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1063 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1064 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1065 PN->eraseFromParent(); 1066 } 1067 } 1068 1069 // If the unconditional branch we replaced contains llvm.loop metadata, we 1070 // add the metadata to the branch instructions in the predecessors. 1071 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1072 Instruction *TI = BB->getTerminator(); 1073 if (TI) 1074 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1075 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1076 BasicBlock *Pred = *PI; 1077 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1078 } 1079 1080 // Everything that jumped to BB now goes to Succ. 1081 BB->replaceAllUsesWith(Succ); 1082 if (!Succ->hasName()) Succ->takeName(BB); 1083 1084 // Clear the successor list of BB to match updates applying to DTU later. 1085 if (BB->getTerminator()) 1086 BB->getInstList().pop_back(); 1087 new UnreachableInst(BB->getContext(), BB); 1088 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1089 "applying corresponding DTU updates."); 1090 1091 if (DTU) { 1092 DTU->applyUpdatesPermissive(Updates); 1093 DTU->deleteBB(BB); 1094 } else { 1095 BB->eraseFromParent(); // Delete the old basic block. 1096 } 1097 return true; 1098 } 1099 1100 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1101 // This implementation doesn't currently consider undef operands 1102 // specially. Theoretically, two phis which are identical except for 1103 // one having an undef where the other doesn't could be collapsed. 1104 1105 struct PHIDenseMapInfo { 1106 static PHINode *getEmptyKey() { 1107 return DenseMapInfo<PHINode *>::getEmptyKey(); 1108 } 1109 1110 static PHINode *getTombstoneKey() { 1111 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1112 } 1113 1114 static unsigned getHashValue(PHINode *PN) { 1115 // Compute a hash value on the operands. Instcombine will likely have 1116 // sorted them, which helps expose duplicates, but we have to check all 1117 // the operands to be safe in case instcombine hasn't run. 1118 return static_cast<unsigned>(hash_combine( 1119 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1120 hash_combine_range(PN->block_begin(), PN->block_end()))); 1121 } 1122 1123 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1124 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1125 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1126 return LHS == RHS; 1127 return LHS->isIdenticalTo(RHS); 1128 } 1129 }; 1130 1131 // Set of unique PHINodes. 1132 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1133 1134 // Examine each PHI. 1135 bool Changed = false; 1136 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1137 auto Inserted = PHISet.insert(PN); 1138 if (!Inserted.second) { 1139 // A duplicate. Replace this PHI with its duplicate. 1140 PN->replaceAllUsesWith(*Inserted.first); 1141 PN->eraseFromParent(); 1142 Changed = true; 1143 1144 // The RAUW can change PHIs that we already visited. Start over from the 1145 // beginning. 1146 PHISet.clear(); 1147 I = BB->begin(); 1148 } 1149 } 1150 1151 return Changed; 1152 } 1153 1154 /// enforceKnownAlignment - If the specified pointer points to an object that 1155 /// we control, modify the object's alignment to PrefAlign. This isn't 1156 /// often possible though. If alignment is important, a more reliable approach 1157 /// is to simply align all global variables and allocation instructions to 1158 /// their preferred alignment from the beginning. 1159 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment, 1160 unsigned PrefAlign, 1161 const DataLayout &DL) { 1162 assert(PrefAlign > Alignment); 1163 1164 V = V->stripPointerCasts(); 1165 1166 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1167 // TODO: ideally, computeKnownBits ought to have used 1168 // AllocaInst::getAlignment() in its computation already, making 1169 // the below max redundant. But, as it turns out, 1170 // stripPointerCasts recurses through infinite layers of bitcasts, 1171 // while computeKnownBits is not allowed to traverse more than 6 1172 // levels. 1173 Alignment = std::max(AI->getAlignment(), Alignment); 1174 if (PrefAlign <= Alignment) 1175 return Alignment; 1176 1177 // If the preferred alignment is greater than the natural stack alignment 1178 // then don't round up. This avoids dynamic stack realignment. 1179 if (DL.exceedsNaturalStackAlignment(Align(PrefAlign))) 1180 return Alignment; 1181 AI->setAlignment(MaybeAlign(PrefAlign)); 1182 return PrefAlign; 1183 } 1184 1185 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1186 // TODO: as above, this shouldn't be necessary. 1187 Alignment = std::max(GO->getAlignment(), Alignment); 1188 if (PrefAlign <= Alignment) 1189 return Alignment; 1190 1191 // If there is a large requested alignment and we can, bump up the alignment 1192 // of the global. If the memory we set aside for the global may not be the 1193 // memory used by the final program then it is impossible for us to reliably 1194 // enforce the preferred alignment. 1195 if (!GO->canIncreaseAlignment()) 1196 return Alignment; 1197 1198 GO->setAlignment(MaybeAlign(PrefAlign)); 1199 return PrefAlign; 1200 } 1201 1202 return Alignment; 1203 } 1204 1205 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1206 const DataLayout &DL, 1207 const Instruction *CxtI, 1208 AssumptionCache *AC, 1209 const DominatorTree *DT) { 1210 assert(V->getType()->isPointerTy() && 1211 "getOrEnforceKnownAlignment expects a pointer!"); 1212 1213 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1214 unsigned TrailZ = Known.countMinTrailingZeros(); 1215 1216 // Avoid trouble with ridiculously large TrailZ values, such as 1217 // those computed from a null pointer. 1218 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1219 1220 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1221 1222 // LLVM doesn't support alignments larger than this currently. 1223 Align = std::min(Align, +Value::MaximumAlignment); 1224 1225 if (PrefAlign > Align) 1226 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1227 1228 // We don't need to make any adjustment. 1229 return Align; 1230 } 1231 1232 ///===---------------------------------------------------------------------===// 1233 /// Dbg Intrinsic utilities 1234 /// 1235 1236 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1237 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1238 DIExpression *DIExpr, 1239 PHINode *APN) { 1240 // Since we can't guarantee that the original dbg.declare instrinsic 1241 // is removed by LowerDbgDeclare(), we need to make sure that we are 1242 // not inserting the same dbg.value intrinsic over and over. 1243 SmallVector<DbgValueInst *, 1> DbgValues; 1244 findDbgValues(DbgValues, APN); 1245 for (auto *DVI : DbgValues) { 1246 assert(DVI->getValue() == APN); 1247 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1248 return true; 1249 } 1250 return false; 1251 } 1252 1253 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1254 /// (or fragment of the variable) described by \p DII. 1255 /// 1256 /// This is primarily intended as a helper for the different 1257 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1258 /// converted describes an alloca'd variable, so we need to use the 1259 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1260 /// identified as covering an n-bit fragment, if the store size of i1 is at 1261 /// least n bits. 1262 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1263 const DataLayout &DL = DII->getModule()->getDataLayout(); 1264 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1265 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1266 return ValueSize >= *FragmentSize; 1267 // We can't always calculate the size of the DI variable (e.g. if it is a 1268 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1269 // intead. 1270 if (DII->isAddressOfVariable()) 1271 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1272 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1273 return ValueSize >= *FragmentSize; 1274 // Could not determine size of variable. Conservatively return false. 1275 return false; 1276 } 1277 1278 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1279 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1280 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1281 /// case this DebugLoc leaks into any adjacent instructions. 1282 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1283 // Original dbg.declare must have a location. 1284 DebugLoc DeclareLoc = DII->getDebugLoc(); 1285 MDNode *Scope = DeclareLoc.getScope(); 1286 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1287 // Produce an unknown location with the correct scope / inlinedAt fields. 1288 return DebugLoc::get(0, 0, Scope, InlinedAt); 1289 } 1290 1291 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1292 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1293 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1294 StoreInst *SI, DIBuilder &Builder) { 1295 assert(DII->isAddressOfVariable()); 1296 auto *DIVar = DII->getVariable(); 1297 assert(DIVar && "Missing variable"); 1298 auto *DIExpr = DII->getExpression(); 1299 Value *DV = SI->getValueOperand(); 1300 1301 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1302 1303 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1304 // FIXME: If storing to a part of the variable described by the dbg.declare, 1305 // then we want to insert a dbg.value for the corresponding fragment. 1306 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1307 << *DII << '\n'); 1308 // For now, when there is a store to parts of the variable (but we do not 1309 // know which part) we insert an dbg.value instrinsic to indicate that we 1310 // know nothing about the variable's content. 1311 DV = UndefValue::get(DV->getType()); 1312 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1313 return; 1314 } 1315 1316 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1317 } 1318 1319 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1320 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1321 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1322 LoadInst *LI, DIBuilder &Builder) { 1323 auto *DIVar = DII->getVariable(); 1324 auto *DIExpr = DII->getExpression(); 1325 assert(DIVar && "Missing variable"); 1326 1327 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1328 // FIXME: If only referring to a part of the variable described by the 1329 // dbg.declare, then we want to insert a dbg.value for the corresponding 1330 // fragment. 1331 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1332 << *DII << '\n'); 1333 return; 1334 } 1335 1336 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1337 1338 // We are now tracking the loaded value instead of the address. In the 1339 // future if multi-location support is added to the IR, it might be 1340 // preferable to keep tracking both the loaded value and the original 1341 // address in case the alloca can not be elided. 1342 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1343 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1344 DbgValue->insertAfter(LI); 1345 } 1346 1347 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1348 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1349 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1350 PHINode *APN, DIBuilder &Builder) { 1351 auto *DIVar = DII->getVariable(); 1352 auto *DIExpr = DII->getExpression(); 1353 assert(DIVar && "Missing variable"); 1354 1355 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1356 return; 1357 1358 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1359 // FIXME: If only referring to a part of the variable described by the 1360 // dbg.declare, then we want to insert a dbg.value for the corresponding 1361 // fragment. 1362 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1363 << *DII << '\n'); 1364 return; 1365 } 1366 1367 BasicBlock *BB = APN->getParent(); 1368 auto InsertionPt = BB->getFirstInsertionPt(); 1369 1370 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1371 1372 // The block may be a catchswitch block, which does not have a valid 1373 // insertion point. 1374 // FIXME: Insert dbg.value markers in the successors when appropriate. 1375 if (InsertionPt != BB->end()) 1376 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1377 } 1378 1379 /// Determine whether this alloca is either a VLA or an array. 1380 static bool isArray(AllocaInst *AI) { 1381 return AI->isArrayAllocation() || 1382 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1383 } 1384 1385 /// Determine whether this alloca is a structure. 1386 static bool isStructure(AllocaInst *AI) { 1387 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1388 } 1389 1390 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1391 /// of llvm.dbg.value intrinsics. 1392 bool llvm::LowerDbgDeclare(Function &F) { 1393 bool Changed = false; 1394 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1395 SmallVector<DbgDeclareInst *, 4> Dbgs; 1396 for (auto &FI : F) 1397 for (Instruction &BI : FI) 1398 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1399 Dbgs.push_back(DDI); 1400 1401 if (Dbgs.empty()) 1402 return Changed; 1403 1404 for (auto &I : Dbgs) { 1405 DbgDeclareInst *DDI = I; 1406 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1407 // If this is an alloca for a scalar variable, insert a dbg.value 1408 // at each load and store to the alloca and erase the dbg.declare. 1409 // The dbg.values allow tracking a variable even if it is not 1410 // stored on the stack, while the dbg.declare can only describe 1411 // the stack slot (and at a lexical-scope granularity). Later 1412 // passes will attempt to elide the stack slot. 1413 if (!AI || isArray(AI) || isStructure(AI)) 1414 continue; 1415 1416 // A volatile load/store means that the alloca can't be elided anyway. 1417 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1418 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1419 return LI->isVolatile(); 1420 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1421 return SI->isVolatile(); 1422 return false; 1423 })) 1424 continue; 1425 1426 SmallVector<const Value *, 8> WorkList; 1427 WorkList.push_back(AI); 1428 while (!WorkList.empty()) { 1429 const Value *V = WorkList.pop_back_val(); 1430 for (auto &AIUse : V->uses()) { 1431 User *U = AIUse.getUser(); 1432 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1433 if (AIUse.getOperandNo() == 1) 1434 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1435 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1436 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1437 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1438 // This is a call by-value or some other instruction that takes a 1439 // pointer to the variable. Insert a *value* intrinsic that describes 1440 // the variable by dereferencing the alloca. 1441 if (!CI->isLifetimeStartOrEnd()) { 1442 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1443 auto *DerefExpr = 1444 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1445 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1446 NewLoc, CI); 1447 } 1448 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1449 if (BI->getType()->isPointerTy()) 1450 WorkList.push_back(BI); 1451 } 1452 } 1453 } 1454 DDI->eraseFromParent(); 1455 Changed = true; 1456 } 1457 1458 if (Changed) 1459 for (BasicBlock &BB : F) 1460 RemoveRedundantDbgInstrs(&BB); 1461 1462 return Changed; 1463 } 1464 1465 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1466 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1467 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1468 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1469 if (InsertedPHIs.size() == 0) 1470 return; 1471 1472 // Map existing PHI nodes to their dbg.values. 1473 ValueToValueMapTy DbgValueMap; 1474 for (auto &I : *BB) { 1475 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1476 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1477 DbgValueMap.insert({Loc, DbgII}); 1478 } 1479 } 1480 if (DbgValueMap.size() == 0) 1481 return; 1482 1483 // Then iterate through the new PHIs and look to see if they use one of the 1484 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1485 // propagate the info through the new PHI. 1486 LLVMContext &C = BB->getContext(); 1487 for (auto PHI : InsertedPHIs) { 1488 BasicBlock *Parent = PHI->getParent(); 1489 // Avoid inserting an intrinsic into an EH block. 1490 if (Parent->getFirstNonPHI()->isEHPad()) 1491 continue; 1492 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1493 for (auto VI : PHI->operand_values()) { 1494 auto V = DbgValueMap.find(VI); 1495 if (V != DbgValueMap.end()) { 1496 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1497 Instruction *NewDbgII = DbgII->clone(); 1498 NewDbgII->setOperand(0, PhiMAV); 1499 auto InsertionPt = Parent->getFirstInsertionPt(); 1500 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1501 NewDbgII->insertBefore(&*InsertionPt); 1502 } 1503 } 1504 } 1505 } 1506 1507 /// Finds all intrinsics declaring local variables as living in the memory that 1508 /// 'V' points to. This may include a mix of dbg.declare and 1509 /// dbg.addr intrinsics. 1510 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1511 // This function is hot. Check whether the value has any metadata to avoid a 1512 // DenseMap lookup. 1513 if (!V->isUsedByMetadata()) 1514 return {}; 1515 auto *L = LocalAsMetadata::getIfExists(V); 1516 if (!L) 1517 return {}; 1518 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1519 if (!MDV) 1520 return {}; 1521 1522 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1523 for (User *U : MDV->users()) { 1524 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1525 if (DII->isAddressOfVariable()) 1526 Declares.push_back(DII); 1527 } 1528 1529 return Declares; 1530 } 1531 1532 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1533 TinyPtrVector<DbgDeclareInst *> DDIs; 1534 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1535 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1536 DDIs.push_back(DDI); 1537 return DDIs; 1538 } 1539 1540 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1541 // This function is hot. Check whether the value has any metadata to avoid a 1542 // DenseMap lookup. 1543 if (!V->isUsedByMetadata()) 1544 return; 1545 if (auto *L = LocalAsMetadata::getIfExists(V)) 1546 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1547 for (User *U : MDV->users()) 1548 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1549 DbgValues.push_back(DVI); 1550 } 1551 1552 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1553 Value *V) { 1554 // This function is hot. Check whether the value has any metadata to avoid a 1555 // DenseMap lookup. 1556 if (!V->isUsedByMetadata()) 1557 return; 1558 if (auto *L = LocalAsMetadata::getIfExists(V)) 1559 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1560 for (User *U : MDV->users()) 1561 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1562 DbgUsers.push_back(DII); 1563 } 1564 1565 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1566 DIBuilder &Builder, uint8_t DIExprFlags, 1567 int Offset) { 1568 auto DbgAddrs = FindDbgAddrUses(Address); 1569 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1570 DebugLoc Loc = DII->getDebugLoc(); 1571 auto *DIVar = DII->getVariable(); 1572 auto *DIExpr = DII->getExpression(); 1573 assert(DIVar && "Missing variable"); 1574 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1575 // Insert llvm.dbg.declare immediately before DII, and remove old 1576 // llvm.dbg.declare. 1577 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1578 DII->eraseFromParent(); 1579 } 1580 return !DbgAddrs.empty(); 1581 } 1582 1583 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1584 DIBuilder &Builder, int Offset) { 1585 DebugLoc Loc = DVI->getDebugLoc(); 1586 auto *DIVar = DVI->getVariable(); 1587 auto *DIExpr = DVI->getExpression(); 1588 assert(DIVar && "Missing variable"); 1589 1590 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1591 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1592 // it and give up. 1593 if (!DIExpr || DIExpr->getNumElements() < 1 || 1594 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1595 return; 1596 1597 // Insert the offset before the first deref. 1598 // We could just change the offset argument of dbg.value, but it's unsigned... 1599 if (Offset) 1600 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1601 1602 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1603 DVI->eraseFromParent(); 1604 } 1605 1606 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1607 DIBuilder &Builder, int Offset) { 1608 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1609 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1610 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1611 Use &U = *UI++; 1612 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1613 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1614 } 1615 } 1616 1617 /// Wrap \p V in a ValueAsMetadata instance. 1618 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1619 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1620 } 1621 1622 bool llvm::salvageDebugInfo(Instruction &I) { 1623 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1624 findDbgUsers(DbgUsers, &I); 1625 if (DbgUsers.empty()) 1626 return false; 1627 1628 return salvageDebugInfoForDbgValues(I, DbgUsers); 1629 } 1630 1631 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1632 if (!salvageDebugInfo(I)) 1633 replaceDbgUsesWithUndef(&I); 1634 } 1635 1636 bool llvm::salvageDebugInfoForDbgValues( 1637 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1638 auto &Ctx = I.getContext(); 1639 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1640 1641 for (auto *DII : DbgUsers) { 1642 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1643 // are implicitly pointing out the value as a DWARF memory location 1644 // description. 1645 bool StackValue = isa<DbgValueInst>(DII); 1646 1647 DIExpression *DIExpr = 1648 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1649 1650 // salvageDebugInfoImpl should fail on examining the first element of 1651 // DbgUsers, or none of them. 1652 if (!DIExpr) 1653 return false; 1654 1655 DII->setOperand(0, wrapMD(I.getOperand(0))); 1656 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1657 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1658 } 1659 1660 return true; 1661 } 1662 1663 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1664 DIExpression *SrcDIExpr, 1665 bool WithStackValue) { 1666 auto &M = *I.getModule(); 1667 auto &DL = M.getDataLayout(); 1668 1669 // Apply a vector of opcodes to the source DIExpression. 1670 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1671 DIExpression *DIExpr = SrcDIExpr; 1672 if (!Ops.empty()) { 1673 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1674 } 1675 return DIExpr; 1676 }; 1677 1678 // Apply the given offset to the source DIExpression. 1679 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1680 SmallVector<uint64_t, 8> Ops; 1681 DIExpression::appendOffset(Ops, Offset); 1682 return doSalvage(Ops); 1683 }; 1684 1685 // initializer-list helper for applying operators to the source DIExpression. 1686 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1687 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1688 return doSalvage(Ops); 1689 }; 1690 1691 if (auto *CI = dyn_cast<CastInst>(&I)) { 1692 // No-op casts and zexts are irrelevant for debug info. 1693 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1694 return SrcDIExpr; 1695 1696 Type *Type = CI->getType(); 1697 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1698 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1699 return nullptr; 1700 1701 Value *FromValue = CI->getOperand(0); 1702 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1703 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1704 1705 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1706 isa<SExtInst>(&I))); 1707 } 1708 1709 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1710 unsigned BitWidth = 1711 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1712 // Rewrite a constant GEP into a DIExpression. 1713 APInt Offset(BitWidth, 0); 1714 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1715 return applyOffset(Offset.getSExtValue()); 1716 } else { 1717 return nullptr; 1718 } 1719 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1720 // Rewrite binary operations with constant integer operands. 1721 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1722 if (!ConstInt || ConstInt->getBitWidth() > 64) 1723 return nullptr; 1724 1725 uint64_t Val = ConstInt->getSExtValue(); 1726 switch (BI->getOpcode()) { 1727 case Instruction::Add: 1728 return applyOffset(Val); 1729 case Instruction::Sub: 1730 return applyOffset(-int64_t(Val)); 1731 case Instruction::Mul: 1732 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1733 case Instruction::SDiv: 1734 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1735 case Instruction::SRem: 1736 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1737 case Instruction::Or: 1738 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1739 case Instruction::And: 1740 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1741 case Instruction::Xor: 1742 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1743 case Instruction::Shl: 1744 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1745 case Instruction::LShr: 1746 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1747 case Instruction::AShr: 1748 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1749 default: 1750 // TODO: Salvage constants from each kind of binop we know about. 1751 return nullptr; 1752 } 1753 // *Not* to do: we should not attempt to salvage load instructions, 1754 // because the validity and lifetime of a dbg.value containing 1755 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1756 } 1757 return nullptr; 1758 } 1759 1760 /// A replacement for a dbg.value expression. 1761 using DbgValReplacement = Optional<DIExpression *>; 1762 1763 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1764 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1765 /// changes are made. 1766 static bool rewriteDebugUsers( 1767 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1768 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1769 // Find debug users of From. 1770 SmallVector<DbgVariableIntrinsic *, 1> Users; 1771 findDbgUsers(Users, &From); 1772 if (Users.empty()) 1773 return false; 1774 1775 // Prevent use-before-def of To. 1776 bool Changed = false; 1777 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1778 if (isa<Instruction>(&To)) { 1779 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1780 1781 for (auto *DII : Users) { 1782 // It's common to see a debug user between From and DomPoint. Move it 1783 // after DomPoint to preserve the variable update without any reordering. 1784 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1785 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1786 DII->moveAfter(&DomPoint); 1787 Changed = true; 1788 1789 // Users which otherwise aren't dominated by the replacement value must 1790 // be salvaged or deleted. 1791 } else if (!DT.dominates(&DomPoint, DII)) { 1792 UndefOrSalvage.insert(DII); 1793 } 1794 } 1795 } 1796 1797 // Update debug users without use-before-def risk. 1798 for (auto *DII : Users) { 1799 if (UndefOrSalvage.count(DII)) 1800 continue; 1801 1802 LLVMContext &Ctx = DII->getContext(); 1803 DbgValReplacement DVR = RewriteExpr(*DII); 1804 if (!DVR) 1805 continue; 1806 1807 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1808 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1809 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1810 Changed = true; 1811 } 1812 1813 if (!UndefOrSalvage.empty()) { 1814 // Try to salvage the remaining debug users. 1815 salvageDebugInfoOrMarkUndef(From); 1816 Changed = true; 1817 } 1818 1819 return Changed; 1820 } 1821 1822 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1823 /// losslessly preserve the bits and semantics of the value. This predicate is 1824 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1825 /// 1826 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1827 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1828 /// and also does not allow lossless pointer <-> integer conversions. 1829 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1830 Type *ToTy) { 1831 // Trivially compatible types. 1832 if (FromTy == ToTy) 1833 return true; 1834 1835 // Handle compatible pointer <-> integer conversions. 1836 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1837 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1838 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1839 !DL.isNonIntegralPointerType(ToTy); 1840 return SameSize && LosslessConversion; 1841 } 1842 1843 // TODO: This is not exhaustive. 1844 return false; 1845 } 1846 1847 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1848 Instruction &DomPoint, DominatorTree &DT) { 1849 // Exit early if From has no debug users. 1850 if (!From.isUsedByMetadata()) 1851 return false; 1852 1853 assert(&From != &To && "Can't replace something with itself"); 1854 1855 Type *FromTy = From.getType(); 1856 Type *ToTy = To.getType(); 1857 1858 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1859 return DII.getExpression(); 1860 }; 1861 1862 // Handle no-op conversions. 1863 Module &M = *From.getModule(); 1864 const DataLayout &DL = M.getDataLayout(); 1865 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1866 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1867 1868 // Handle integer-to-integer widening and narrowing. 1869 // FIXME: Use DW_OP_convert when it's available everywhere. 1870 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1871 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1872 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1873 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1874 1875 // When the width of the result grows, assume that a debugger will only 1876 // access the low `FromBits` bits when inspecting the source variable. 1877 if (FromBits < ToBits) 1878 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1879 1880 // The width of the result has shrunk. Use sign/zero extension to describe 1881 // the source variable's high bits. 1882 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1883 DILocalVariable *Var = DII.getVariable(); 1884 1885 // Without knowing signedness, sign/zero extension isn't possible. 1886 auto Signedness = Var->getSignedness(); 1887 if (!Signedness) 1888 return None; 1889 1890 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1891 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1892 Signed); 1893 }; 1894 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1895 } 1896 1897 // TODO: Floating-point conversions, vectors. 1898 return false; 1899 } 1900 1901 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1902 unsigned NumDeadInst = 0; 1903 // Delete the instructions backwards, as it has a reduced likelihood of 1904 // having to update as many def-use and use-def chains. 1905 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1906 while (EndInst != &BB->front()) { 1907 // Delete the next to last instruction. 1908 Instruction *Inst = &*--EndInst->getIterator(); 1909 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1910 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1911 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1912 EndInst = Inst; 1913 continue; 1914 } 1915 if (!isa<DbgInfoIntrinsic>(Inst)) 1916 ++NumDeadInst; 1917 Inst->eraseFromParent(); 1918 } 1919 return NumDeadInst; 1920 } 1921 1922 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1923 bool PreserveLCSSA, DomTreeUpdater *DTU, 1924 MemorySSAUpdater *MSSAU) { 1925 BasicBlock *BB = I->getParent(); 1926 std::vector <DominatorTree::UpdateType> Updates; 1927 1928 if (MSSAU) 1929 MSSAU->changeToUnreachable(I); 1930 1931 // Loop over all of the successors, removing BB's entry from any PHI 1932 // nodes. 1933 if (DTU) 1934 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1935 for (BasicBlock *Successor : successors(BB)) { 1936 Successor->removePredecessor(BB, PreserveLCSSA); 1937 if (DTU) 1938 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1939 } 1940 // Insert a call to llvm.trap right before this. This turns the undefined 1941 // behavior into a hard fail instead of falling through into random code. 1942 if (UseLLVMTrap) { 1943 Function *TrapFn = 1944 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1945 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1946 CallTrap->setDebugLoc(I->getDebugLoc()); 1947 } 1948 auto *UI = new UnreachableInst(I->getContext(), I); 1949 UI->setDebugLoc(I->getDebugLoc()); 1950 1951 // All instructions after this are dead. 1952 unsigned NumInstrsRemoved = 0; 1953 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1954 while (BBI != BBE) { 1955 if (!BBI->use_empty()) 1956 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1957 BB->getInstList().erase(BBI++); 1958 ++NumInstrsRemoved; 1959 } 1960 if (DTU) 1961 DTU->applyUpdatesPermissive(Updates); 1962 return NumInstrsRemoved; 1963 } 1964 1965 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1966 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1967 SmallVector<OperandBundleDef, 1> OpBundles; 1968 II->getOperandBundlesAsDefs(OpBundles); 1969 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1970 II->getCalledValue(), Args, OpBundles); 1971 NewCall->setCallingConv(II->getCallingConv()); 1972 NewCall->setAttributes(II->getAttributes()); 1973 NewCall->setDebugLoc(II->getDebugLoc()); 1974 NewCall->copyMetadata(*II); 1975 return NewCall; 1976 } 1977 1978 /// changeToCall - Convert the specified invoke into a normal call. 1979 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1980 CallInst *NewCall = createCallMatchingInvoke(II); 1981 NewCall->takeName(II); 1982 NewCall->insertBefore(II); 1983 II->replaceAllUsesWith(NewCall); 1984 1985 // Follow the call by a branch to the normal destination. 1986 BasicBlock *NormalDestBB = II->getNormalDest(); 1987 BranchInst::Create(NormalDestBB, II); 1988 1989 // Update PHI nodes in the unwind destination 1990 BasicBlock *BB = II->getParent(); 1991 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1992 UnwindDestBB->removePredecessor(BB); 1993 II->eraseFromParent(); 1994 if (DTU) 1995 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1996 } 1997 1998 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1999 BasicBlock *UnwindEdge) { 2000 BasicBlock *BB = CI->getParent(); 2001 2002 // Convert this function call into an invoke instruction. First, split the 2003 // basic block. 2004 BasicBlock *Split = 2005 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2006 2007 // Delete the unconditional branch inserted by splitBasicBlock 2008 BB->getInstList().pop_back(); 2009 2010 // Create the new invoke instruction. 2011 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2012 SmallVector<OperandBundleDef, 1> OpBundles; 2013 2014 CI->getOperandBundlesAsDefs(OpBundles); 2015 2016 // Note: we're round tripping operand bundles through memory here, and that 2017 // can potentially be avoided with a cleverer API design that we do not have 2018 // as of this time. 2019 2020 InvokeInst *II = 2021 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2022 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2023 II->setDebugLoc(CI->getDebugLoc()); 2024 II->setCallingConv(CI->getCallingConv()); 2025 II->setAttributes(CI->getAttributes()); 2026 2027 // Make sure that anything using the call now uses the invoke! This also 2028 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2029 CI->replaceAllUsesWith(II); 2030 2031 // Delete the original call 2032 Split->getInstList().pop_front(); 2033 return Split; 2034 } 2035 2036 static bool markAliveBlocks(Function &F, 2037 SmallPtrSetImpl<BasicBlock *> &Reachable, 2038 DomTreeUpdater *DTU = nullptr) { 2039 SmallVector<BasicBlock*, 128> Worklist; 2040 BasicBlock *BB = &F.front(); 2041 Worklist.push_back(BB); 2042 Reachable.insert(BB); 2043 bool Changed = false; 2044 do { 2045 BB = Worklist.pop_back_val(); 2046 2047 // Do a quick scan of the basic block, turning any obviously unreachable 2048 // instructions into LLVM unreachable insts. The instruction combining pass 2049 // canonicalizes unreachable insts into stores to null or undef. 2050 for (Instruction &I : *BB) { 2051 if (auto *CI = dyn_cast<CallInst>(&I)) { 2052 Value *Callee = CI->getCalledValue(); 2053 // Handle intrinsic calls. 2054 if (Function *F = dyn_cast<Function>(Callee)) { 2055 auto IntrinsicID = F->getIntrinsicID(); 2056 // Assumptions that are known to be false are equivalent to 2057 // unreachable. Also, if the condition is undefined, then we make the 2058 // choice most beneficial to the optimizer, and choose that to also be 2059 // unreachable. 2060 if (IntrinsicID == Intrinsic::assume) { 2061 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2062 // Don't insert a call to llvm.trap right before the unreachable. 2063 changeToUnreachable(CI, false, false, DTU); 2064 Changed = true; 2065 break; 2066 } 2067 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2068 // A call to the guard intrinsic bails out of the current 2069 // compilation unit if the predicate passed to it is false. If the 2070 // predicate is a constant false, then we know the guard will bail 2071 // out of the current compile unconditionally, so all code following 2072 // it is dead. 2073 // 2074 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2075 // guards to treat `undef` as `false` since a guard on `undef` can 2076 // still be useful for widening. 2077 if (match(CI->getArgOperand(0), m_Zero())) 2078 if (!isa<UnreachableInst>(CI->getNextNode())) { 2079 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2080 false, DTU); 2081 Changed = true; 2082 break; 2083 } 2084 } 2085 } else if ((isa<ConstantPointerNull>(Callee) && 2086 !NullPointerIsDefined(CI->getFunction())) || 2087 isa<UndefValue>(Callee)) { 2088 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2089 Changed = true; 2090 break; 2091 } 2092 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2093 // If we found a call to a no-return function, insert an unreachable 2094 // instruction after it. Make sure there isn't *already* one there 2095 // though. 2096 if (!isa<UnreachableInst>(CI->getNextNode())) { 2097 // Don't insert a call to llvm.trap right before the unreachable. 2098 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2099 Changed = true; 2100 } 2101 break; 2102 } 2103 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2104 // Store to undef and store to null are undefined and used to signal 2105 // that they should be changed to unreachable by passes that can't 2106 // modify the CFG. 2107 2108 // Don't touch volatile stores. 2109 if (SI->isVolatile()) continue; 2110 2111 Value *Ptr = SI->getOperand(1); 2112 2113 if (isa<UndefValue>(Ptr) || 2114 (isa<ConstantPointerNull>(Ptr) && 2115 !NullPointerIsDefined(SI->getFunction(), 2116 SI->getPointerAddressSpace()))) { 2117 changeToUnreachable(SI, true, false, DTU); 2118 Changed = true; 2119 break; 2120 } 2121 } 2122 } 2123 2124 Instruction *Terminator = BB->getTerminator(); 2125 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2126 // Turn invokes that call 'nounwind' functions into ordinary calls. 2127 Value *Callee = II->getCalledValue(); 2128 if ((isa<ConstantPointerNull>(Callee) && 2129 !NullPointerIsDefined(BB->getParent())) || 2130 isa<UndefValue>(Callee)) { 2131 changeToUnreachable(II, true, false, DTU); 2132 Changed = true; 2133 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2134 if (II->use_empty() && II->onlyReadsMemory()) { 2135 // jump to the normal destination branch. 2136 BasicBlock *NormalDestBB = II->getNormalDest(); 2137 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2138 BranchInst::Create(NormalDestBB, II); 2139 UnwindDestBB->removePredecessor(II->getParent()); 2140 II->eraseFromParent(); 2141 if (DTU) 2142 DTU->applyUpdatesPermissive( 2143 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2144 } else 2145 changeToCall(II, DTU); 2146 Changed = true; 2147 } 2148 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2149 // Remove catchpads which cannot be reached. 2150 struct CatchPadDenseMapInfo { 2151 static CatchPadInst *getEmptyKey() { 2152 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2153 } 2154 2155 static CatchPadInst *getTombstoneKey() { 2156 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2157 } 2158 2159 static unsigned getHashValue(CatchPadInst *CatchPad) { 2160 return static_cast<unsigned>(hash_combine_range( 2161 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2162 } 2163 2164 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2165 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2166 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2167 return LHS == RHS; 2168 return LHS->isIdenticalTo(RHS); 2169 } 2170 }; 2171 2172 // Set of unique CatchPads. 2173 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2174 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2175 HandlerSet; 2176 detail::DenseSetEmpty Empty; 2177 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2178 E = CatchSwitch->handler_end(); 2179 I != E; ++I) { 2180 BasicBlock *HandlerBB = *I; 2181 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2182 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2183 CatchSwitch->removeHandler(I); 2184 --I; 2185 --E; 2186 Changed = true; 2187 } 2188 } 2189 } 2190 2191 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2192 for (BasicBlock *Successor : successors(BB)) 2193 if (Reachable.insert(Successor).second) 2194 Worklist.push_back(Successor); 2195 } while (!Worklist.empty()); 2196 return Changed; 2197 } 2198 2199 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2200 Instruction *TI = BB->getTerminator(); 2201 2202 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2203 changeToCall(II, DTU); 2204 return; 2205 } 2206 2207 Instruction *NewTI; 2208 BasicBlock *UnwindDest; 2209 2210 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2211 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2212 UnwindDest = CRI->getUnwindDest(); 2213 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2214 auto *NewCatchSwitch = CatchSwitchInst::Create( 2215 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2216 CatchSwitch->getName(), CatchSwitch); 2217 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2218 NewCatchSwitch->addHandler(PadBB); 2219 2220 NewTI = NewCatchSwitch; 2221 UnwindDest = CatchSwitch->getUnwindDest(); 2222 } else { 2223 llvm_unreachable("Could not find unwind successor"); 2224 } 2225 2226 NewTI->takeName(TI); 2227 NewTI->setDebugLoc(TI->getDebugLoc()); 2228 UnwindDest->removePredecessor(BB); 2229 TI->replaceAllUsesWith(NewTI); 2230 TI->eraseFromParent(); 2231 if (DTU) 2232 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2233 } 2234 2235 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2236 /// if they are in a dead cycle. Return true if a change was made, false 2237 /// otherwise. 2238 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2239 MemorySSAUpdater *MSSAU) { 2240 SmallPtrSet<BasicBlock *, 16> Reachable; 2241 bool Changed = markAliveBlocks(F, Reachable, DTU); 2242 2243 // If there are unreachable blocks in the CFG... 2244 if (Reachable.size() == F.size()) 2245 return Changed; 2246 2247 assert(Reachable.size() < F.size()); 2248 NumRemoved += F.size() - Reachable.size(); 2249 2250 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2251 for (BasicBlock &BB : F) { 2252 // Skip reachable basic blocks 2253 if (Reachable.find(&BB) != Reachable.end()) 2254 continue; 2255 DeadBlockSet.insert(&BB); 2256 } 2257 2258 if (MSSAU) 2259 MSSAU->removeBlocks(DeadBlockSet); 2260 2261 // Loop over all of the basic blocks that are not reachable, dropping all of 2262 // their internal references. Update DTU if available. 2263 std::vector<DominatorTree::UpdateType> Updates; 2264 for (auto *BB : DeadBlockSet) { 2265 for (BasicBlock *Successor : successors(BB)) { 2266 if (!DeadBlockSet.count(Successor)) 2267 Successor->removePredecessor(BB); 2268 if (DTU) 2269 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2270 } 2271 BB->dropAllReferences(); 2272 if (DTU) { 2273 Instruction *TI = BB->getTerminator(); 2274 assert(TI && "Basic block should have a terminator"); 2275 // Terminators like invoke can have users. We have to replace their users, 2276 // before removing them. 2277 if (!TI->use_empty()) 2278 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2279 TI->eraseFromParent(); 2280 new UnreachableInst(BB->getContext(), BB); 2281 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2282 "applying corresponding DTU updates."); 2283 } 2284 } 2285 2286 if (DTU) { 2287 DTU->applyUpdatesPermissive(Updates); 2288 bool Deleted = false; 2289 for (auto *BB : DeadBlockSet) { 2290 if (DTU->isBBPendingDeletion(BB)) 2291 --NumRemoved; 2292 else 2293 Deleted = true; 2294 DTU->deleteBB(BB); 2295 } 2296 if (!Deleted) 2297 return false; 2298 } else { 2299 for (auto *BB : DeadBlockSet) 2300 BB->eraseFromParent(); 2301 } 2302 2303 return true; 2304 } 2305 2306 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2307 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2308 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2309 K->dropUnknownNonDebugMetadata(KnownIDs); 2310 K->getAllMetadataOtherThanDebugLoc(Metadata); 2311 for (const auto &MD : Metadata) { 2312 unsigned Kind = MD.first; 2313 MDNode *JMD = J->getMetadata(Kind); 2314 MDNode *KMD = MD.second; 2315 2316 switch (Kind) { 2317 default: 2318 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2319 break; 2320 case LLVMContext::MD_dbg: 2321 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2322 case LLVMContext::MD_tbaa: 2323 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2324 break; 2325 case LLVMContext::MD_alias_scope: 2326 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2327 break; 2328 case LLVMContext::MD_noalias: 2329 case LLVMContext::MD_mem_parallel_loop_access: 2330 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2331 break; 2332 case LLVMContext::MD_access_group: 2333 K->setMetadata(LLVMContext::MD_access_group, 2334 intersectAccessGroups(K, J)); 2335 break; 2336 case LLVMContext::MD_range: 2337 2338 // If K does move, use most generic range. Otherwise keep the range of 2339 // K. 2340 if (DoesKMove) 2341 // FIXME: If K does move, we should drop the range info and nonnull. 2342 // Currently this function is used with DoesKMove in passes 2343 // doing hoisting/sinking and the current behavior of using the 2344 // most generic range is correct in those cases. 2345 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2346 break; 2347 case LLVMContext::MD_fpmath: 2348 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2349 break; 2350 case LLVMContext::MD_invariant_load: 2351 // Only set the !invariant.load if it is present in both instructions. 2352 K->setMetadata(Kind, JMD); 2353 break; 2354 case LLVMContext::MD_nonnull: 2355 // If K does move, keep nonull if it is present in both instructions. 2356 if (DoesKMove) 2357 K->setMetadata(Kind, JMD); 2358 break; 2359 case LLVMContext::MD_invariant_group: 2360 // Preserve !invariant.group in K. 2361 break; 2362 case LLVMContext::MD_align: 2363 K->setMetadata(Kind, 2364 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2365 break; 2366 case LLVMContext::MD_dereferenceable: 2367 case LLVMContext::MD_dereferenceable_or_null: 2368 K->setMetadata(Kind, 2369 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2370 break; 2371 case LLVMContext::MD_preserve_access_index: 2372 // Preserve !preserve.access.index in K. 2373 break; 2374 } 2375 } 2376 // Set !invariant.group from J if J has it. If both instructions have it 2377 // then we will just pick it from J - even when they are different. 2378 // Also make sure that K is load or store - f.e. combining bitcast with load 2379 // could produce bitcast with invariant.group metadata, which is invalid. 2380 // FIXME: we should try to preserve both invariant.group md if they are 2381 // different, but right now instruction can only have one invariant.group. 2382 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2383 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2384 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2385 } 2386 2387 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2388 bool KDominatesJ) { 2389 unsigned KnownIDs[] = { 2390 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2391 LLVMContext::MD_noalias, LLVMContext::MD_range, 2392 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2393 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2394 LLVMContext::MD_dereferenceable, 2395 LLVMContext::MD_dereferenceable_or_null, 2396 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2397 combineMetadata(K, J, KnownIDs, KDominatesJ); 2398 } 2399 2400 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2401 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2402 Source.getAllMetadata(MD); 2403 MDBuilder MDB(Dest.getContext()); 2404 Type *NewType = Dest.getType(); 2405 const DataLayout &DL = Source.getModule()->getDataLayout(); 2406 for (const auto &MDPair : MD) { 2407 unsigned ID = MDPair.first; 2408 MDNode *N = MDPair.second; 2409 // Note, essentially every kind of metadata should be preserved here! This 2410 // routine is supposed to clone a load instruction changing *only its type*. 2411 // The only metadata it makes sense to drop is metadata which is invalidated 2412 // when the pointer type changes. This should essentially never be the case 2413 // in LLVM, but we explicitly switch over only known metadata to be 2414 // conservatively correct. If you are adding metadata to LLVM which pertains 2415 // to loads, you almost certainly want to add it here. 2416 switch (ID) { 2417 case LLVMContext::MD_dbg: 2418 case LLVMContext::MD_tbaa: 2419 case LLVMContext::MD_prof: 2420 case LLVMContext::MD_fpmath: 2421 case LLVMContext::MD_tbaa_struct: 2422 case LLVMContext::MD_invariant_load: 2423 case LLVMContext::MD_alias_scope: 2424 case LLVMContext::MD_noalias: 2425 case LLVMContext::MD_nontemporal: 2426 case LLVMContext::MD_mem_parallel_loop_access: 2427 case LLVMContext::MD_access_group: 2428 // All of these directly apply. 2429 Dest.setMetadata(ID, N); 2430 break; 2431 2432 case LLVMContext::MD_nonnull: 2433 copyNonnullMetadata(Source, N, Dest); 2434 break; 2435 2436 case LLVMContext::MD_align: 2437 case LLVMContext::MD_dereferenceable: 2438 case LLVMContext::MD_dereferenceable_or_null: 2439 // These only directly apply if the new type is also a pointer. 2440 if (NewType->isPointerTy()) 2441 Dest.setMetadata(ID, N); 2442 break; 2443 2444 case LLVMContext::MD_range: 2445 copyRangeMetadata(DL, Source, N, Dest); 2446 break; 2447 } 2448 } 2449 } 2450 2451 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2452 auto *ReplInst = dyn_cast<Instruction>(Repl); 2453 if (!ReplInst) 2454 return; 2455 2456 // Patch the replacement so that it is not more restrictive than the value 2457 // being replaced. 2458 // Note that if 'I' is a load being replaced by some operation, 2459 // for example, by an arithmetic operation, then andIRFlags() 2460 // would just erase all math flags from the original arithmetic 2461 // operation, which is clearly not wanted and not needed. 2462 if (!isa<LoadInst>(I)) 2463 ReplInst->andIRFlags(I); 2464 2465 // FIXME: If both the original and replacement value are part of the 2466 // same control-flow region (meaning that the execution of one 2467 // guarantees the execution of the other), then we can combine the 2468 // noalias scopes here and do better than the general conservative 2469 // answer used in combineMetadata(). 2470 2471 // In general, GVN unifies expressions over different control-flow 2472 // regions, and so we need a conservative combination of the noalias 2473 // scopes. 2474 static const unsigned KnownIDs[] = { 2475 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2476 LLVMContext::MD_noalias, LLVMContext::MD_range, 2477 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2478 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2479 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2480 combineMetadata(ReplInst, I, KnownIDs, false); 2481 } 2482 2483 template <typename RootType, typename DominatesFn> 2484 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2485 const RootType &Root, 2486 const DominatesFn &Dominates) { 2487 assert(From->getType() == To->getType()); 2488 2489 unsigned Count = 0; 2490 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2491 UI != UE;) { 2492 Use &U = *UI++; 2493 if (!Dominates(Root, U)) 2494 continue; 2495 U.set(To); 2496 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2497 << "' as " << *To << " in " << *U << "\n"); 2498 ++Count; 2499 } 2500 return Count; 2501 } 2502 2503 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2504 assert(From->getType() == To->getType()); 2505 auto *BB = From->getParent(); 2506 unsigned Count = 0; 2507 2508 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2509 UI != UE;) { 2510 Use &U = *UI++; 2511 auto *I = cast<Instruction>(U.getUser()); 2512 if (I->getParent() == BB) 2513 continue; 2514 U.set(To); 2515 ++Count; 2516 } 2517 return Count; 2518 } 2519 2520 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2521 DominatorTree &DT, 2522 const BasicBlockEdge &Root) { 2523 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2524 return DT.dominates(Root, U); 2525 }; 2526 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2527 } 2528 2529 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2530 DominatorTree &DT, 2531 const BasicBlock *BB) { 2532 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2533 auto *I = cast<Instruction>(U.getUser())->getParent(); 2534 return DT.properlyDominates(BB, I); 2535 }; 2536 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2537 } 2538 2539 bool llvm::callsGCLeafFunction(const CallBase *Call, 2540 const TargetLibraryInfo &TLI) { 2541 // Check if the function is specifically marked as a gc leaf function. 2542 if (Call->hasFnAttr("gc-leaf-function")) 2543 return true; 2544 if (const Function *F = Call->getCalledFunction()) { 2545 if (F->hasFnAttribute("gc-leaf-function")) 2546 return true; 2547 2548 if (auto IID = F->getIntrinsicID()) 2549 // Most LLVM intrinsics do not take safepoints. 2550 return IID != Intrinsic::experimental_gc_statepoint && 2551 IID != Intrinsic::experimental_deoptimize; 2552 } 2553 2554 // Lib calls can be materialized by some passes, and won't be 2555 // marked as 'gc-leaf-function.' All available Libcalls are 2556 // GC-leaf. 2557 LibFunc LF; 2558 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2559 return TLI.has(LF); 2560 } 2561 2562 return false; 2563 } 2564 2565 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2566 LoadInst &NewLI) { 2567 auto *NewTy = NewLI.getType(); 2568 2569 // This only directly applies if the new type is also a pointer. 2570 if (NewTy->isPointerTy()) { 2571 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2572 return; 2573 } 2574 2575 // The only other translation we can do is to integral loads with !range 2576 // metadata. 2577 if (!NewTy->isIntegerTy()) 2578 return; 2579 2580 MDBuilder MDB(NewLI.getContext()); 2581 const Value *Ptr = OldLI.getPointerOperand(); 2582 auto *ITy = cast<IntegerType>(NewTy); 2583 auto *NullInt = ConstantExpr::getPtrToInt( 2584 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2585 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2586 NewLI.setMetadata(LLVMContext::MD_range, 2587 MDB.createRange(NonNullInt, NullInt)); 2588 } 2589 2590 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2591 MDNode *N, LoadInst &NewLI) { 2592 auto *NewTy = NewLI.getType(); 2593 2594 // Give up unless it is converted to a pointer where there is a single very 2595 // valuable mapping we can do reliably. 2596 // FIXME: It would be nice to propagate this in more ways, but the type 2597 // conversions make it hard. 2598 if (!NewTy->isPointerTy()) 2599 return; 2600 2601 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2602 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2603 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2604 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2605 } 2606 } 2607 2608 void llvm::dropDebugUsers(Instruction &I) { 2609 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2610 findDbgUsers(DbgUsers, &I); 2611 for (auto *DII : DbgUsers) 2612 DII->eraseFromParent(); 2613 } 2614 2615 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2616 BasicBlock *BB) { 2617 // Since we are moving the instructions out of its basic block, we do not 2618 // retain their original debug locations (DILocations) and debug intrinsic 2619 // instructions. 2620 // 2621 // Doing so would degrade the debugging experience and adversely affect the 2622 // accuracy of profiling information. 2623 // 2624 // Currently, when hoisting the instructions, we take the following actions: 2625 // - Remove their debug intrinsic instructions. 2626 // - Set their debug locations to the values from the insertion point. 2627 // 2628 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2629 // need to be deleted, is because there will not be any instructions with a 2630 // DILocation in either branch left after performing the transformation. We 2631 // can only insert a dbg.value after the two branches are joined again. 2632 // 2633 // See PR38762, PR39243 for more details. 2634 // 2635 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2636 // encode predicated DIExpressions that yield different results on different 2637 // code paths. 2638 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2639 Instruction *I = &*II; 2640 I->dropUnknownNonDebugMetadata(); 2641 if (I->isUsedByMetadata()) 2642 dropDebugUsers(*I); 2643 if (isa<DbgInfoIntrinsic>(I)) { 2644 // Remove DbgInfo Intrinsics. 2645 II = I->eraseFromParent(); 2646 continue; 2647 } 2648 I->setDebugLoc(InsertPt->getDebugLoc()); 2649 ++II; 2650 } 2651 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2652 BB->begin(), 2653 BB->getTerminator()->getIterator()); 2654 } 2655 2656 namespace { 2657 2658 /// A potential constituent of a bitreverse or bswap expression. See 2659 /// collectBitParts for a fuller explanation. 2660 struct BitPart { 2661 BitPart(Value *P, unsigned BW) : Provider(P) { 2662 Provenance.resize(BW); 2663 } 2664 2665 /// The Value that this is a bitreverse/bswap of. 2666 Value *Provider; 2667 2668 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2669 /// in Provider becomes bit B in the result of this expression. 2670 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2671 2672 enum { Unset = -1 }; 2673 }; 2674 2675 } // end anonymous namespace 2676 2677 /// Analyze the specified subexpression and see if it is capable of providing 2678 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2679 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2680 /// the output of the expression came from a corresponding bit in some other 2681 /// value. This function is recursive, and the end result is a mapping of 2682 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2683 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2684 /// 2685 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2686 /// that the expression deposits the low byte of %X into the high byte of the 2687 /// result and that all other bits are zero. This expression is accepted and a 2688 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2689 /// [0-7]. 2690 /// 2691 /// To avoid revisiting values, the BitPart results are memoized into the 2692 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2693 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2694 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2695 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2696 /// type instead to provide the same functionality. 2697 /// 2698 /// Because we pass around references into \c BPS, we must use a container that 2699 /// does not invalidate internal references (std::map instead of DenseMap). 2700 static const Optional<BitPart> & 2701 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2702 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2703 auto I = BPS.find(V); 2704 if (I != BPS.end()) 2705 return I->second; 2706 2707 auto &Result = BPS[V] = None; 2708 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2709 2710 // Prevent stack overflow by limiting the recursion depth 2711 if (Depth == BitPartRecursionMaxDepth) { 2712 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2713 return Result; 2714 } 2715 2716 if (Instruction *I = dyn_cast<Instruction>(V)) { 2717 // If this is an or instruction, it may be an inner node of the bswap. 2718 if (I->getOpcode() == Instruction::Or) { 2719 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2720 MatchBitReversals, BPS, Depth + 1); 2721 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2722 MatchBitReversals, BPS, Depth + 1); 2723 if (!A || !B) 2724 return Result; 2725 2726 // Try and merge the two together. 2727 if (!A->Provider || A->Provider != B->Provider) 2728 return Result; 2729 2730 Result = BitPart(A->Provider, BitWidth); 2731 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2732 if (A->Provenance[i] != BitPart::Unset && 2733 B->Provenance[i] != BitPart::Unset && 2734 A->Provenance[i] != B->Provenance[i]) 2735 return Result = None; 2736 2737 if (A->Provenance[i] == BitPart::Unset) 2738 Result->Provenance[i] = B->Provenance[i]; 2739 else 2740 Result->Provenance[i] = A->Provenance[i]; 2741 } 2742 2743 return Result; 2744 } 2745 2746 // If this is a logical shift by a constant, recurse then shift the result. 2747 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2748 unsigned BitShift = 2749 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2750 // Ensure the shift amount is defined. 2751 if (BitShift > BitWidth) 2752 return Result; 2753 2754 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2755 MatchBitReversals, BPS, Depth + 1); 2756 if (!Res) 2757 return Result; 2758 Result = Res; 2759 2760 // Perform the "shift" on BitProvenance. 2761 auto &P = Result->Provenance; 2762 if (I->getOpcode() == Instruction::Shl) { 2763 P.erase(std::prev(P.end(), BitShift), P.end()); 2764 P.insert(P.begin(), BitShift, BitPart::Unset); 2765 } else { 2766 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2767 P.insert(P.end(), BitShift, BitPart::Unset); 2768 } 2769 2770 return Result; 2771 } 2772 2773 // If this is a logical 'and' with a mask that clears bits, recurse then 2774 // unset the appropriate bits. 2775 if (I->getOpcode() == Instruction::And && 2776 isa<ConstantInt>(I->getOperand(1))) { 2777 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2778 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2779 2780 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2781 // early exit. 2782 unsigned NumMaskedBits = AndMask.countPopulation(); 2783 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2784 return Result; 2785 2786 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2787 MatchBitReversals, BPS, Depth + 1); 2788 if (!Res) 2789 return Result; 2790 Result = Res; 2791 2792 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2793 // If the AndMask is zero for this bit, clear the bit. 2794 if ((AndMask & Bit) == 0) 2795 Result->Provenance[i] = BitPart::Unset; 2796 return Result; 2797 } 2798 2799 // If this is a zext instruction zero extend the result. 2800 if (I->getOpcode() == Instruction::ZExt) { 2801 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2802 MatchBitReversals, BPS, Depth + 1); 2803 if (!Res) 2804 return Result; 2805 2806 Result = BitPart(Res->Provider, BitWidth); 2807 auto NarrowBitWidth = 2808 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2809 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2810 Result->Provenance[i] = Res->Provenance[i]; 2811 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2812 Result->Provenance[i] = BitPart::Unset; 2813 return Result; 2814 } 2815 } 2816 2817 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2818 // the input value to the bswap/bitreverse. 2819 Result = BitPart(V, BitWidth); 2820 for (unsigned i = 0; i < BitWidth; ++i) 2821 Result->Provenance[i] = i; 2822 return Result; 2823 } 2824 2825 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2826 unsigned BitWidth) { 2827 if (From % 8 != To % 8) 2828 return false; 2829 // Convert from bit indices to byte indices and check for a byte reversal. 2830 From >>= 3; 2831 To >>= 3; 2832 BitWidth >>= 3; 2833 return From == BitWidth - To - 1; 2834 } 2835 2836 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2837 unsigned BitWidth) { 2838 return From == BitWidth - To - 1; 2839 } 2840 2841 bool llvm::recognizeBSwapOrBitReverseIdiom( 2842 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2843 SmallVectorImpl<Instruction *> &InsertedInsts) { 2844 if (Operator::getOpcode(I) != Instruction::Or) 2845 return false; 2846 if (!MatchBSwaps && !MatchBitReversals) 2847 return false; 2848 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2849 if (!ITy || ITy->getBitWidth() > 128) 2850 return false; // Can't do vectors or integers > 128 bits. 2851 unsigned BW = ITy->getBitWidth(); 2852 2853 unsigned DemandedBW = BW; 2854 IntegerType *DemandedTy = ITy; 2855 if (I->hasOneUse()) { 2856 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2857 DemandedTy = cast<IntegerType>(Trunc->getType()); 2858 DemandedBW = DemandedTy->getBitWidth(); 2859 } 2860 } 2861 2862 // Try to find all the pieces corresponding to the bswap. 2863 std::map<Value *, Optional<BitPart>> BPS; 2864 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2865 if (!Res) 2866 return false; 2867 auto &BitProvenance = Res->Provenance; 2868 2869 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2870 // only byteswap values with an even number of bytes. 2871 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2872 for (unsigned i = 0; i < DemandedBW; ++i) { 2873 OKForBSwap &= 2874 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2875 OKForBitReverse &= 2876 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2877 } 2878 2879 Intrinsic::ID Intrin; 2880 if (OKForBSwap && MatchBSwaps) 2881 Intrin = Intrinsic::bswap; 2882 else if (OKForBitReverse && MatchBitReversals) 2883 Intrin = Intrinsic::bitreverse; 2884 else 2885 return false; 2886 2887 if (ITy != DemandedTy) { 2888 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2889 Value *Provider = Res->Provider; 2890 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2891 // We may need to truncate the provider. 2892 if (DemandedTy != ProviderTy) { 2893 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2894 "trunc", I); 2895 InsertedInsts.push_back(Trunc); 2896 Provider = Trunc; 2897 } 2898 auto *CI = CallInst::Create(F, Provider, "rev", I); 2899 InsertedInsts.push_back(CI); 2900 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2901 InsertedInsts.push_back(ExtInst); 2902 return true; 2903 } 2904 2905 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2906 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2907 return true; 2908 } 2909 2910 // CodeGen has special handling for some string functions that may replace 2911 // them with target-specific intrinsics. Since that'd skip our interceptors 2912 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2913 // we mark affected calls as NoBuiltin, which will disable optimization 2914 // in CodeGen. 2915 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2916 CallInst *CI, const TargetLibraryInfo *TLI) { 2917 Function *F = CI->getCalledFunction(); 2918 LibFunc Func; 2919 if (F && !F->hasLocalLinkage() && F->hasName() && 2920 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2921 !F->doesNotAccessMemory()) 2922 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2923 } 2924 2925 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2926 // We can't have a PHI with a metadata type. 2927 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2928 return false; 2929 2930 // Early exit. 2931 if (!isa<Constant>(I->getOperand(OpIdx))) 2932 return true; 2933 2934 switch (I->getOpcode()) { 2935 default: 2936 return true; 2937 case Instruction::Call: 2938 case Instruction::Invoke: { 2939 ImmutableCallSite CS(I); 2940 2941 // Can't handle inline asm. Skip it. 2942 if (CS.isInlineAsm()) 2943 return false; 2944 2945 // Constant bundle operands may need to retain their constant-ness for 2946 // correctness. 2947 if (CS.isBundleOperand(OpIdx)) 2948 return false; 2949 2950 if (OpIdx < CS.getNumArgOperands()) { 2951 // Some variadic intrinsics require constants in the variadic arguments, 2952 // which currently aren't markable as immarg. 2953 if (CS.isIntrinsic() && OpIdx >= CS.getFunctionType()->getNumParams()) { 2954 // This is known to be OK for stackmap. 2955 return CS.getIntrinsicID() == Intrinsic::experimental_stackmap; 2956 } 2957 2958 // gcroot is a special case, since it requires a constant argument which 2959 // isn't also required to be a simple ConstantInt. 2960 if (CS.getIntrinsicID() == Intrinsic::gcroot) 2961 return false; 2962 2963 // Some intrinsic operands are required to be immediates. 2964 return !CS.paramHasAttr(OpIdx, Attribute::ImmArg); 2965 } 2966 2967 // It is never allowed to replace the call argument to an intrinsic, but it 2968 // may be possible for a call. 2969 return !CS.isIntrinsic(); 2970 } 2971 case Instruction::ShuffleVector: 2972 // Shufflevector masks are constant. 2973 return OpIdx != 2; 2974 case Instruction::Switch: 2975 case Instruction::ExtractValue: 2976 // All operands apart from the first are constant. 2977 return OpIdx == 0; 2978 case Instruction::InsertValue: 2979 // All operands apart from the first and the second are constant. 2980 return OpIdx < 2; 2981 case Instruction::Alloca: 2982 // Static allocas (constant size in the entry block) are handled by 2983 // prologue/epilogue insertion so they're free anyway. We definitely don't 2984 // want to make them non-constant. 2985 return !cast<AllocaInst>(I)->isStaticAlloca(); 2986 case Instruction::GetElementPtr: 2987 if (OpIdx == 0) 2988 return true; 2989 gep_type_iterator It = gep_type_begin(I); 2990 for (auto E = std::next(It, OpIdx); It != E; ++It) 2991 if (It.isStruct()) 2992 return false; 2993 return true; 2994 } 2995 } 2996 2997 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2998 AllocaInst *llvm::findAllocaForValue(Value *V, 2999 AllocaForValueMapTy &AllocaForValue) { 3000 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 3001 return AI; 3002 // See if we've already calculated (or started to calculate) alloca for a 3003 // given value. 3004 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3005 if (I != AllocaForValue.end()) 3006 return I->second; 3007 // Store 0 while we're calculating alloca for value V to avoid 3008 // infinite recursion if the value references itself. 3009 AllocaForValue[V] = nullptr; 3010 AllocaInst *Res = nullptr; 3011 if (CastInst *CI = dyn_cast<CastInst>(V)) 3012 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 3013 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3014 for (Value *IncValue : PN->incoming_values()) { 3015 // Allow self-referencing phi-nodes. 3016 if (IncValue == PN) 3017 continue; 3018 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 3019 // AI for incoming values should exist and should all be equal. 3020 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3021 return nullptr; 3022 Res = IncValueAI; 3023 } 3024 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3025 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3026 } else { 3027 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3028 << *V << "\n"); 3029 } 3030 if (Res) 3031 AllocaForValue[V] = Res; 3032 return Res; 3033 } 3034