xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision 37b96d51d0cfc82a64598aaae2a567fa77e44de9)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 
95 // Max recursion depth for collectBitParts used when detecting bswap and
96 // bitreverse idioms
97 static const unsigned BitPartRecursionMaxDepth = 64;
98 
99 //===----------------------------------------------------------------------===//
100 //  Local constant propagation.
101 //
102 
103 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
104 /// constant value, convert it into an unconditional branch to the constant
105 /// destination.  This is a nontrivial operation because the successors of this
106 /// basic block must have their PHI nodes updated.
107 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
108 /// conditions and indirectbr addresses this might make dead if
109 /// DeleteDeadConditions is true.
110 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
111                                   const TargetLibraryInfo *TLI,
112                                   DomTreeUpdater *DTU) {
113   Instruction *T = BB->getTerminator();
114   IRBuilder<> Builder(T);
115 
116   // Branch - See if we are conditional jumping on constant
117   if (auto *BI = dyn_cast<BranchInst>(T)) {
118     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
119     BasicBlock *Dest1 = BI->getSuccessor(0);
120     BasicBlock *Dest2 = BI->getSuccessor(1);
121 
122     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
123       // Are we branching on constant?
124       // YES.  Change to unconditional branch...
125       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
126       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
127 
128       // Let the basic block know that we are letting go of it.  Based on this,
129       // it will adjust it's PHI nodes.
130       OldDest->removePredecessor(BB);
131 
132       // Replace the conditional branch with an unconditional one.
133       Builder.CreateBr(Destination);
134       BI->eraseFromParent();
135       if (DTU)
136         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
137       return true;
138     }
139 
140     if (Dest2 == Dest1) {       // Conditional branch to same location?
141       // This branch matches something like this:
142       //     br bool %cond, label %Dest, label %Dest
143       // and changes it into:  br label %Dest
144 
145       // Let the basic block know that we are letting go of one copy of it.
146       assert(BI->getParent() && "Terminator not inserted in block!");
147       Dest1->removePredecessor(BI->getParent());
148 
149       // Replace the conditional branch with an unconditional one.
150       Builder.CreateBr(Dest1);
151       Value *Cond = BI->getCondition();
152       BI->eraseFromParent();
153       if (DeleteDeadConditions)
154         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
155       return true;
156     }
157     return false;
158   }
159 
160   if (auto *SI = dyn_cast<SwitchInst>(T)) {
161     // If we are switching on a constant, we can convert the switch to an
162     // unconditional branch.
163     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
164     BasicBlock *DefaultDest = SI->getDefaultDest();
165     BasicBlock *TheOnlyDest = DefaultDest;
166 
167     // If the default is unreachable, ignore it when searching for TheOnlyDest.
168     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
169         SI->getNumCases() > 0) {
170       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
171     }
172 
173     // Figure out which case it goes to.
174     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
175       // Found case matching a constant operand?
176       if (i->getCaseValue() == CI) {
177         TheOnlyDest = i->getCaseSuccessor();
178         break;
179       }
180 
181       // Check to see if this branch is going to the same place as the default
182       // dest.  If so, eliminate it as an explicit compare.
183       if (i->getCaseSuccessor() == DefaultDest) {
184         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
185         unsigned NCases = SI->getNumCases();
186         // Fold the case metadata into the default if there will be any branches
187         // left, unless the metadata doesn't match the switch.
188         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
189           // Collect branch weights into a vector.
190           SmallVector<uint32_t, 8> Weights;
191           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
192                ++MD_i) {
193             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
194             Weights.push_back(CI->getValue().getZExtValue());
195           }
196           // Merge weight of this case to the default weight.
197           unsigned idx = i->getCaseIndex();
198           Weights[0] += Weights[idx+1];
199           // Remove weight for this case.
200           std::swap(Weights[idx+1], Weights.back());
201           Weights.pop_back();
202           SI->setMetadata(LLVMContext::MD_prof,
203                           MDBuilder(BB->getContext()).
204                           createBranchWeights(Weights));
205         }
206         // Remove this entry.
207         BasicBlock *ParentBB = SI->getParent();
208         DefaultDest->removePredecessor(ParentBB);
209         i = SI->removeCase(i);
210         e = SI->case_end();
211         if (DTU)
212           DTU->applyUpdatesPermissive(
213               {{DominatorTree::Delete, ParentBB, DefaultDest}});
214         continue;
215       }
216 
217       // Otherwise, check to see if the switch only branches to one destination.
218       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219       // destinations.
220       if (i->getCaseSuccessor() != TheOnlyDest)
221         TheOnlyDest = nullptr;
222 
223       // Increment this iterator as we haven't removed the case.
224       ++i;
225     }
226 
227     if (CI && !TheOnlyDest) {
228       // Branching on a constant, but not any of the cases, go to the default
229       // successor.
230       TheOnlyDest = SI->getDefaultDest();
231     }
232 
233     // If we found a single destination that we can fold the switch into, do so
234     // now.
235     if (TheOnlyDest) {
236       // Insert the new branch.
237       Builder.CreateBr(TheOnlyDest);
238       BasicBlock *BB = SI->getParent();
239       std::vector <DominatorTree::UpdateType> Updates;
240       if (DTU)
241         Updates.reserve(SI->getNumSuccessors() - 1);
242 
243       // Remove entries from PHI nodes which we no longer branch to...
244       for (BasicBlock *Succ : successors(SI)) {
245         // Found case matching a constant operand?
246         if (Succ == TheOnlyDest) {
247           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
248         } else {
249           Succ->removePredecessor(BB);
250           if (DTU)
251             Updates.push_back({DominatorTree::Delete, BB, Succ});
252         }
253       }
254 
255       // Delete the old switch.
256       Value *Cond = SI->getCondition();
257       SI->eraseFromParent();
258       if (DeleteDeadConditions)
259         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
260       if (DTU)
261         DTU->applyUpdatesPermissive(Updates);
262       return true;
263     }
264 
265     if (SI->getNumCases() == 1) {
266       // Otherwise, we can fold this switch into a conditional branch
267       // instruction if it has only one non-default destination.
268       auto FirstCase = *SI->case_begin();
269       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
270           FirstCase.getCaseValue(), "cond");
271 
272       // Insert the new branch.
273       BranchInst *NewBr = Builder.CreateCondBr(Cond,
274                                                FirstCase.getCaseSuccessor(),
275                                                SI->getDefaultDest());
276       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
277       if (MD && MD->getNumOperands() == 3) {
278         ConstantInt *SICase =
279             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
280         ConstantInt *SIDef =
281             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
282         assert(SICase && SIDef);
283         // The TrueWeight should be the weight for the single case of SI.
284         NewBr->setMetadata(LLVMContext::MD_prof,
285                         MDBuilder(BB->getContext()).
286                         createBranchWeights(SICase->getValue().getZExtValue(),
287                                             SIDef->getValue().getZExtValue()));
288       }
289 
290       // Update make.implicit metadata to the newly-created conditional branch.
291       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
292       if (MakeImplicitMD)
293         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
294 
295       // Delete the old switch.
296       SI->eraseFromParent();
297       return true;
298     }
299     return false;
300   }
301 
302   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
303     // indirectbr blockaddress(@F, @BB) -> br label @BB
304     if (auto *BA =
305           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
306       BasicBlock *TheOnlyDest = BA->getBasicBlock();
307       std::vector <DominatorTree::UpdateType> Updates;
308       if (DTU)
309         Updates.reserve(IBI->getNumDestinations() - 1);
310 
311       // Insert the new branch.
312       Builder.CreateBr(TheOnlyDest);
313 
314       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
315         if (IBI->getDestination(i) == TheOnlyDest) {
316           TheOnlyDest = nullptr;
317         } else {
318           BasicBlock *ParentBB = IBI->getParent();
319           BasicBlock *DestBB = IBI->getDestination(i);
320           DestBB->removePredecessor(ParentBB);
321           if (DTU)
322             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
323         }
324       }
325       Value *Address = IBI->getAddress();
326       IBI->eraseFromParent();
327       if (DeleteDeadConditions)
328         // Delete pointer cast instructions.
329         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
330 
331       // Also zap the blockaddress constant if there are no users remaining,
332       // otherwise the destination is still marked as having its address taken.
333       if (BA->use_empty())
334         BA->destroyConstant();
335 
336       // If we didn't find our destination in the IBI successor list, then we
337       // have undefined behavior.  Replace the unconditional branch with an
338       // 'unreachable' instruction.
339       if (TheOnlyDest) {
340         BB->getTerminator()->eraseFromParent();
341         new UnreachableInst(BB->getContext(), BB);
342       }
343 
344       if (DTU)
345         DTU->applyUpdatesPermissive(Updates);
346       return true;
347     }
348   }
349 
350   return false;
351 }
352 
353 //===----------------------------------------------------------------------===//
354 //  Local dead code elimination.
355 //
356 
357 /// isInstructionTriviallyDead - Return true if the result produced by the
358 /// instruction is not used, and the instruction has no side effects.
359 ///
360 bool llvm::isInstructionTriviallyDead(Instruction *I,
361                                       const TargetLibraryInfo *TLI) {
362   if (!I->use_empty())
363     return false;
364   return wouldInstructionBeTriviallyDead(I, TLI);
365 }
366 
367 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
368                                            const TargetLibraryInfo *TLI) {
369   if (I->isTerminator())
370     return false;
371 
372   // We don't want the landingpad-like instructions removed by anything this
373   // general.
374   if (I->isEHPad())
375     return false;
376 
377   // We don't want debug info removed by anything this general, unless
378   // debug info is empty.
379   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
380     if (DDI->getAddress())
381       return false;
382     return true;
383   }
384   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
385     if (DVI->getValue())
386       return false;
387     return true;
388   }
389   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
390     if (DLI->getLabel())
391       return false;
392     return true;
393   }
394 
395   if (!I->mayHaveSideEffects())
396     return true;
397 
398   // Special case intrinsics that "may have side effects" but can be deleted
399   // when dead.
400   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
401     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
402     if (II->getIntrinsicID() == Intrinsic::stacksave ||
403         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
404       return true;
405 
406     if (II->isLifetimeStartOrEnd()) {
407       auto *Arg = II->getArgOperand(1);
408       // Lifetime intrinsics are dead when their right-hand is undef.
409       if (isa<UndefValue>(Arg))
410         return true;
411       // If the right-hand is an alloc, global, or argument and the only uses
412       // are lifetime intrinsics then the intrinsics are dead.
413       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
414         return llvm::all_of(Arg->uses(), [](Use &Use) {
415           if (IntrinsicInst *IntrinsicUse =
416                   dyn_cast<IntrinsicInst>(Use.getUser()))
417             return IntrinsicUse->isLifetimeStartOrEnd();
418           return false;
419         });
420       return false;
421     }
422 
423     // Assumptions are dead if their condition is trivially true.  Guards on
424     // true are operationally no-ops.  In the future we can consider more
425     // sophisticated tradeoffs for guards considering potential for check
426     // widening, but for now we keep things simple.
427     if ((II->getIntrinsicID() == Intrinsic::assume &&
428          isAssumeWithEmptyBundle(*II)) ||
429         II->getIntrinsicID() == Intrinsic::experimental_guard) {
430       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
431         return !Cond->isZero();
432 
433       return false;
434     }
435   }
436 
437   if (isAllocLikeFn(I, TLI))
438     return true;
439 
440   if (CallInst *CI = isFreeCall(I, TLI))
441     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
442       return C->isNullValue() || isa<UndefValue>(C);
443 
444   if (auto *Call = dyn_cast<CallBase>(I))
445     if (isMathLibCallNoop(Call, TLI))
446       return true;
447 
448   return false;
449 }
450 
451 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
452 /// trivially dead instruction, delete it.  If that makes any of its operands
453 /// trivially dead, delete them too, recursively.  Return true if any
454 /// instructions were deleted.
455 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
456     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
457     std::function<void(Value *)> AboutToDeleteCallback) {
458   Instruction *I = dyn_cast<Instruction>(V);
459   if (!I || !isInstructionTriviallyDead(I, TLI))
460     return false;
461 
462   SmallVector<WeakTrackingVH, 16> DeadInsts;
463   DeadInsts.push_back(I);
464   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
465                                              AboutToDeleteCallback);
466 
467   return true;
468 }
469 
470 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
471     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
472     MemorySSAUpdater *MSSAU,
473     std::function<void(Value *)> AboutToDeleteCallback) {
474   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
475   for (; S != E; ++S) {
476     auto *I = cast<Instruction>(DeadInsts[S]);
477     if (!isInstructionTriviallyDead(I)) {
478       DeadInsts[S] = nullptr;
479       ++Alive;
480     }
481   }
482   if (Alive == E)
483     return false;
484   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
485                                              AboutToDeleteCallback);
486   return true;
487 }
488 
489 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
490     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
491     MemorySSAUpdater *MSSAU,
492     std::function<void(Value *)> AboutToDeleteCallback) {
493   // Process the dead instruction list until empty.
494   while (!DeadInsts.empty()) {
495     Value *V = DeadInsts.pop_back_val();
496     Instruction *I = cast_or_null<Instruction>(V);
497     if (!I)
498       continue;
499     assert(isInstructionTriviallyDead(I, TLI) &&
500            "Live instruction found in dead worklist!");
501     assert(I->use_empty() && "Instructions with uses are not dead.");
502 
503     // Don't lose the debug info while deleting the instructions.
504     salvageDebugInfo(*I);
505 
506     if (AboutToDeleteCallback)
507       AboutToDeleteCallback(I);
508 
509     // Null out all of the instruction's operands to see if any operand becomes
510     // dead as we go.
511     for (Use &OpU : I->operands()) {
512       Value *OpV = OpU.get();
513       OpU.set(nullptr);
514 
515       if (!OpV->use_empty())
516         continue;
517 
518       // If the operand is an instruction that became dead as we nulled out the
519       // operand, and if it is 'trivially' dead, delete it in a future loop
520       // iteration.
521       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
522         if (isInstructionTriviallyDead(OpI, TLI))
523           DeadInsts.push_back(OpI);
524     }
525     if (MSSAU)
526       MSSAU->removeMemoryAccess(I);
527 
528     I->eraseFromParent();
529   }
530 }
531 
532 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
533   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
534   findDbgUsers(DbgUsers, I);
535   for (auto *DII : DbgUsers) {
536     Value *Undef = UndefValue::get(I->getType());
537     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
538                                             ValueAsMetadata::get(Undef)));
539   }
540   return !DbgUsers.empty();
541 }
542 
543 /// areAllUsesEqual - Check whether the uses of a value are all the same.
544 /// This is similar to Instruction::hasOneUse() except this will also return
545 /// true when there are no uses or multiple uses that all refer to the same
546 /// value.
547 static bool areAllUsesEqual(Instruction *I) {
548   Value::user_iterator UI = I->user_begin();
549   Value::user_iterator UE = I->user_end();
550   if (UI == UE)
551     return true;
552 
553   User *TheUse = *UI;
554   for (++UI; UI != UE; ++UI) {
555     if (*UI != TheUse)
556       return false;
557   }
558   return true;
559 }
560 
561 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
562 /// dead PHI node, due to being a def-use chain of single-use nodes that
563 /// either forms a cycle or is terminated by a trivially dead instruction,
564 /// delete it.  If that makes any of its operands trivially dead, delete them
565 /// too, recursively.  Return true if a change was made.
566 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
567                                         const TargetLibraryInfo *TLI,
568                                         llvm::MemorySSAUpdater *MSSAU) {
569   SmallPtrSet<Instruction*, 4> Visited;
570   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
571        I = cast<Instruction>(*I->user_begin())) {
572     if (I->use_empty())
573       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
574 
575     // If we find an instruction more than once, we're on a cycle that
576     // won't prove fruitful.
577     if (!Visited.insert(I).second) {
578       // Break the cycle and delete the instruction and its operands.
579       I->replaceAllUsesWith(UndefValue::get(I->getType()));
580       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
581       return true;
582     }
583   }
584   return false;
585 }
586 
587 static bool
588 simplifyAndDCEInstruction(Instruction *I,
589                           SmallSetVector<Instruction *, 16> &WorkList,
590                           const DataLayout &DL,
591                           const TargetLibraryInfo *TLI) {
592   if (isInstructionTriviallyDead(I, TLI)) {
593     salvageDebugInfo(*I);
594 
595     // Null out all of the instruction's operands to see if any operand becomes
596     // dead as we go.
597     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
598       Value *OpV = I->getOperand(i);
599       I->setOperand(i, nullptr);
600 
601       if (!OpV->use_empty() || I == OpV)
602         continue;
603 
604       // If the operand is an instruction that became dead as we nulled out the
605       // operand, and if it is 'trivially' dead, delete it in a future loop
606       // iteration.
607       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
608         if (isInstructionTriviallyDead(OpI, TLI))
609           WorkList.insert(OpI);
610     }
611 
612     I->eraseFromParent();
613 
614     return true;
615   }
616 
617   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
618     // Add the users to the worklist. CAREFUL: an instruction can use itself,
619     // in the case of a phi node.
620     for (User *U : I->users()) {
621       if (U != I) {
622         WorkList.insert(cast<Instruction>(U));
623       }
624     }
625 
626     // Replace the instruction with its simplified value.
627     bool Changed = false;
628     if (!I->use_empty()) {
629       I->replaceAllUsesWith(SimpleV);
630       Changed = true;
631     }
632     if (isInstructionTriviallyDead(I, TLI)) {
633       I->eraseFromParent();
634       Changed = true;
635     }
636     return Changed;
637   }
638   return false;
639 }
640 
641 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
642 /// simplify any instructions in it and recursively delete dead instructions.
643 ///
644 /// This returns true if it changed the code, note that it can delete
645 /// instructions in other blocks as well in this block.
646 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
647                                        const TargetLibraryInfo *TLI) {
648   bool MadeChange = false;
649   const DataLayout &DL = BB->getModule()->getDataLayout();
650 
651 #ifndef NDEBUG
652   // In debug builds, ensure that the terminator of the block is never replaced
653   // or deleted by these simplifications. The idea of simplification is that it
654   // cannot introduce new instructions, and there is no way to replace the
655   // terminator of a block without introducing a new instruction.
656   AssertingVH<Instruction> TerminatorVH(&BB->back());
657 #endif
658 
659   SmallSetVector<Instruction *, 16> WorkList;
660   // Iterate over the original function, only adding insts to the worklist
661   // if they actually need to be revisited. This avoids having to pre-init
662   // the worklist with the entire function's worth of instructions.
663   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
664        BI != E;) {
665     assert(!BI->isTerminator());
666     Instruction *I = &*BI;
667     ++BI;
668 
669     // We're visiting this instruction now, so make sure it's not in the
670     // worklist from an earlier visit.
671     if (!WorkList.count(I))
672       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
673   }
674 
675   while (!WorkList.empty()) {
676     Instruction *I = WorkList.pop_back_val();
677     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
678   }
679   return MadeChange;
680 }
681 
682 //===----------------------------------------------------------------------===//
683 //  Control Flow Graph Restructuring.
684 //
685 
686 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
687                                         DomTreeUpdater *DTU) {
688   // This only adjusts blocks with PHI nodes.
689   if (!isa<PHINode>(BB->begin()))
690     return;
691 
692   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
693   // them down.  This will leave us with single entry phi nodes and other phis
694   // that can be removed.
695   BB->removePredecessor(Pred, true);
696 
697   WeakTrackingVH PhiIt = &BB->front();
698   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
699     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
700     Value *OldPhiIt = PhiIt;
701 
702     if (!recursivelySimplifyInstruction(PN))
703       continue;
704 
705     // If recursive simplification ended up deleting the next PHI node we would
706     // iterate to, then our iterator is invalid, restart scanning from the top
707     // of the block.
708     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
709   }
710   if (DTU)
711     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
712 }
713 
714 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
715                                        DomTreeUpdater *DTU) {
716 
717   // If BB has single-entry PHI nodes, fold them.
718   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
719     Value *NewVal = PN->getIncomingValue(0);
720     // Replace self referencing PHI with undef, it must be dead.
721     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
722     PN->replaceAllUsesWith(NewVal);
723     PN->eraseFromParent();
724   }
725 
726   BasicBlock *PredBB = DestBB->getSinglePredecessor();
727   assert(PredBB && "Block doesn't have a single predecessor!");
728 
729   bool ReplaceEntryBB = false;
730   if (PredBB == &DestBB->getParent()->getEntryBlock())
731     ReplaceEntryBB = true;
732 
733   // DTU updates: Collect all the edges that enter
734   // PredBB. These dominator edges will be redirected to DestBB.
735   SmallVector<DominatorTree::UpdateType, 32> Updates;
736 
737   if (DTU) {
738     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
739     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
740       Updates.push_back({DominatorTree::Delete, *I, PredBB});
741       // This predecessor of PredBB may already have DestBB as a successor.
742       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
743         Updates.push_back({DominatorTree::Insert, *I, DestBB});
744     }
745   }
746 
747   // Zap anything that took the address of DestBB.  Not doing this will give the
748   // address an invalid value.
749   if (DestBB->hasAddressTaken()) {
750     BlockAddress *BA = BlockAddress::get(DestBB);
751     Constant *Replacement =
752       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
753     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
754                                                      BA->getType()));
755     BA->destroyConstant();
756   }
757 
758   // Anything that branched to PredBB now branches to DestBB.
759   PredBB->replaceAllUsesWith(DestBB);
760 
761   // Splice all the instructions from PredBB to DestBB.
762   PredBB->getTerminator()->eraseFromParent();
763   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
764   new UnreachableInst(PredBB->getContext(), PredBB);
765 
766   // If the PredBB is the entry block of the function, move DestBB up to
767   // become the entry block after we erase PredBB.
768   if (ReplaceEntryBB)
769     DestBB->moveAfter(PredBB);
770 
771   if (DTU) {
772     assert(PredBB->getInstList().size() == 1 &&
773            isa<UnreachableInst>(PredBB->getTerminator()) &&
774            "The successor list of PredBB isn't empty before "
775            "applying corresponding DTU updates.");
776     DTU->applyUpdatesPermissive(Updates);
777     DTU->deleteBB(PredBB);
778     // Recalculation of DomTree is needed when updating a forward DomTree and
779     // the Entry BB is replaced.
780     if (ReplaceEntryBB && DTU->hasDomTree()) {
781       // The entry block was removed and there is no external interface for
782       // the dominator tree to be notified of this change. In this corner-case
783       // we recalculate the entire tree.
784       DTU->recalculate(*(DestBB->getParent()));
785     }
786   }
787 
788   else {
789     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
790   }
791 }
792 
793 /// Return true if we can choose one of these values to use in place of the
794 /// other. Note that we will always choose the non-undef value to keep.
795 static bool CanMergeValues(Value *First, Value *Second) {
796   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
797 }
798 
799 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
800 /// branch to Succ, into Succ.
801 ///
802 /// Assumption: Succ is the single successor for BB.
803 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
804   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
805 
806   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
807                     << Succ->getName() << "\n");
808   // Shortcut, if there is only a single predecessor it must be BB and merging
809   // is always safe
810   if (Succ->getSinglePredecessor()) return true;
811 
812   // Make a list of the predecessors of BB
813   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
814 
815   // Look at all the phi nodes in Succ, to see if they present a conflict when
816   // merging these blocks
817   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
818     PHINode *PN = cast<PHINode>(I);
819 
820     // If the incoming value from BB is again a PHINode in
821     // BB which has the same incoming value for *PI as PN does, we can
822     // merge the phi nodes and then the blocks can still be merged
823     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
824     if (BBPN && BBPN->getParent() == BB) {
825       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
826         BasicBlock *IBB = PN->getIncomingBlock(PI);
827         if (BBPreds.count(IBB) &&
828             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
829                             PN->getIncomingValue(PI))) {
830           LLVM_DEBUG(dbgs()
831                      << "Can't fold, phi node " << PN->getName() << " in "
832                      << Succ->getName() << " is conflicting with "
833                      << BBPN->getName() << " with regard to common predecessor "
834                      << IBB->getName() << "\n");
835           return false;
836         }
837       }
838     } else {
839       Value* Val = PN->getIncomingValueForBlock(BB);
840       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
841         // See if the incoming value for the common predecessor is equal to the
842         // one for BB, in which case this phi node will not prevent the merging
843         // of the block.
844         BasicBlock *IBB = PN->getIncomingBlock(PI);
845         if (BBPreds.count(IBB) &&
846             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
847           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
848                             << " in " << Succ->getName()
849                             << " is conflicting with regard to common "
850                             << "predecessor " << IBB->getName() << "\n");
851           return false;
852         }
853       }
854     }
855   }
856 
857   return true;
858 }
859 
860 using PredBlockVector = SmallVector<BasicBlock *, 16>;
861 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
862 
863 /// Determines the value to use as the phi node input for a block.
864 ///
865 /// Select between \p OldVal any value that we know flows from \p BB
866 /// to a particular phi on the basis of which one (if either) is not
867 /// undef. Update IncomingValues based on the selected value.
868 ///
869 /// \param OldVal The value we are considering selecting.
870 /// \param BB The block that the value flows in from.
871 /// \param IncomingValues A map from block-to-value for other phi inputs
872 /// that we have examined.
873 ///
874 /// \returns the selected value.
875 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
876                                           IncomingValueMap &IncomingValues) {
877   if (!isa<UndefValue>(OldVal)) {
878     assert((!IncomingValues.count(BB) ||
879             IncomingValues.find(BB)->second == OldVal) &&
880            "Expected OldVal to match incoming value from BB!");
881 
882     IncomingValues.insert(std::make_pair(BB, OldVal));
883     return OldVal;
884   }
885 
886   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887   if (It != IncomingValues.end()) return It->second;
888 
889   return OldVal;
890 }
891 
892 /// Create a map from block to value for the operands of a
893 /// given phi.
894 ///
895 /// Create a map from block to value for each non-undef value flowing
896 /// into \p PN.
897 ///
898 /// \param PN The phi we are collecting the map for.
899 /// \param IncomingValues [out] The map from block to value for this phi.
900 static void gatherIncomingValuesToPhi(PHINode *PN,
901                                       IncomingValueMap &IncomingValues) {
902   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
903     BasicBlock *BB = PN->getIncomingBlock(i);
904     Value *V = PN->getIncomingValue(i);
905 
906     if (!isa<UndefValue>(V))
907       IncomingValues.insert(std::make_pair(BB, V));
908   }
909 }
910 
911 /// Replace the incoming undef values to a phi with the values
912 /// from a block-to-value map.
913 ///
914 /// \param PN The phi we are replacing the undefs in.
915 /// \param IncomingValues A map from block to value.
916 static void replaceUndefValuesInPhi(PHINode *PN,
917                                     const IncomingValueMap &IncomingValues) {
918   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
919     Value *V = PN->getIncomingValue(i);
920 
921     if (!isa<UndefValue>(V)) continue;
922 
923     BasicBlock *BB = PN->getIncomingBlock(i);
924     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
925     if (It == IncomingValues.end()) continue;
926 
927     PN->setIncomingValue(i, It->second);
928   }
929 }
930 
931 /// Replace a value flowing from a block to a phi with
932 /// potentially multiple instances of that value flowing from the
933 /// block's predecessors to the phi.
934 ///
935 /// \param BB The block with the value flowing into the phi.
936 /// \param BBPreds The predecessors of BB.
937 /// \param PN The phi that we are updating.
938 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
939                                                 const PredBlockVector &BBPreds,
940                                                 PHINode *PN) {
941   Value *OldVal = PN->removeIncomingValue(BB, false);
942   assert(OldVal && "No entry in PHI for Pred BB!");
943 
944   IncomingValueMap IncomingValues;
945 
946   // We are merging two blocks - BB, and the block containing PN - and
947   // as a result we need to redirect edges from the predecessors of BB
948   // to go to the block containing PN, and update PN
949   // accordingly. Since we allow merging blocks in the case where the
950   // predecessor and successor blocks both share some predecessors,
951   // and where some of those common predecessors might have undef
952   // values flowing into PN, we want to rewrite those values to be
953   // consistent with the non-undef values.
954 
955   gatherIncomingValuesToPhi(PN, IncomingValues);
956 
957   // If this incoming value is one of the PHI nodes in BB, the new entries
958   // in the PHI node are the entries from the old PHI.
959   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
960     PHINode *OldValPN = cast<PHINode>(OldVal);
961     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
962       // Note that, since we are merging phi nodes and BB and Succ might
963       // have common predecessors, we could end up with a phi node with
964       // identical incoming branches. This will be cleaned up later (and
965       // will trigger asserts if we try to clean it up now, without also
966       // simplifying the corresponding conditional branch).
967       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
968       Value *PredVal = OldValPN->getIncomingValue(i);
969       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
970                                                     IncomingValues);
971 
972       // And add a new incoming value for this predecessor for the
973       // newly retargeted branch.
974       PN->addIncoming(Selected, PredBB);
975     }
976   } else {
977     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
978       // Update existing incoming values in PN for this
979       // predecessor of BB.
980       BasicBlock *PredBB = BBPreds[i];
981       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
982                                                     IncomingValues);
983 
984       // And add a new incoming value for this predecessor for the
985       // newly retargeted branch.
986       PN->addIncoming(Selected, PredBB);
987     }
988   }
989 
990   replaceUndefValuesInPhi(PN, IncomingValues);
991 }
992 
993 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
994                                                    DomTreeUpdater *DTU) {
995   assert(BB != &BB->getParent()->getEntryBlock() &&
996          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
997 
998   // We can't eliminate infinite loops.
999   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1000   if (BB == Succ) return false;
1001 
1002   // Check to see if merging these blocks would cause conflicts for any of the
1003   // phi nodes in BB or Succ. If not, we can safely merge.
1004   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1005 
1006   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1007   // has uses which will not disappear when the PHI nodes are merged.  It is
1008   // possible to handle such cases, but difficult: it requires checking whether
1009   // BB dominates Succ, which is non-trivial to calculate in the case where
1010   // Succ has multiple predecessors.  Also, it requires checking whether
1011   // constructing the necessary self-referential PHI node doesn't introduce any
1012   // conflicts; this isn't too difficult, but the previous code for doing this
1013   // was incorrect.
1014   //
1015   // Note that if this check finds a live use, BB dominates Succ, so BB is
1016   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1017   // folding the branch isn't profitable in that case anyway.
1018   if (!Succ->getSinglePredecessor()) {
1019     BasicBlock::iterator BBI = BB->begin();
1020     while (isa<PHINode>(*BBI)) {
1021       for (Use &U : BBI->uses()) {
1022         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1023           if (PN->getIncomingBlock(U) != BB)
1024             return false;
1025         } else {
1026           return false;
1027         }
1028       }
1029       ++BBI;
1030     }
1031   }
1032 
1033   // We cannot fold the block if it's a branch to an already present callbr
1034   // successor because that creates duplicate successors.
1035   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1036     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1037       if (Succ == CBI->getDefaultDest())
1038         return false;
1039       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1040         if (Succ == CBI->getIndirectDest(i))
1041           return false;
1042     }
1043   }
1044 
1045   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1046 
1047   SmallVector<DominatorTree::UpdateType, 32> Updates;
1048   if (DTU) {
1049     Updates.push_back({DominatorTree::Delete, BB, Succ});
1050     // All predecessors of BB will be moved to Succ.
1051     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1052       Updates.push_back({DominatorTree::Delete, *I, BB});
1053       // This predecessor of BB may already have Succ as a successor.
1054       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1055         Updates.push_back({DominatorTree::Insert, *I, Succ});
1056     }
1057   }
1058 
1059   if (isa<PHINode>(Succ->begin())) {
1060     // If there is more than one pred of succ, and there are PHI nodes in
1061     // the successor, then we need to add incoming edges for the PHI nodes
1062     //
1063     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1064 
1065     // Loop over all of the PHI nodes in the successor of BB.
1066     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1067       PHINode *PN = cast<PHINode>(I);
1068 
1069       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1070     }
1071   }
1072 
1073   if (Succ->getSinglePredecessor()) {
1074     // BB is the only predecessor of Succ, so Succ will end up with exactly
1075     // the same predecessors BB had.
1076 
1077     // Copy over any phi, debug or lifetime instruction.
1078     BB->getTerminator()->eraseFromParent();
1079     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1080                                BB->getInstList());
1081   } else {
1082     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1083       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1084       assert(PN->use_empty() && "There shouldn't be any uses here!");
1085       PN->eraseFromParent();
1086     }
1087   }
1088 
1089   // If the unconditional branch we replaced contains llvm.loop metadata, we
1090   // add the metadata to the branch instructions in the predecessors.
1091   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1092   Instruction *TI = BB->getTerminator();
1093   if (TI)
1094     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1095       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1096         BasicBlock *Pred = *PI;
1097         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1098       }
1099 
1100   // Everything that jumped to BB now goes to Succ.
1101   BB->replaceAllUsesWith(Succ);
1102   if (!Succ->hasName()) Succ->takeName(BB);
1103 
1104   // Clear the successor list of BB to match updates applying to DTU later.
1105   if (BB->getTerminator())
1106     BB->getInstList().pop_back();
1107   new UnreachableInst(BB->getContext(), BB);
1108   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1109                            "applying corresponding DTU updates.");
1110 
1111   if (DTU) {
1112     DTU->applyUpdatesPermissive(Updates);
1113     DTU->deleteBB(BB);
1114   } else {
1115     BB->eraseFromParent(); // Delete the old basic block.
1116   }
1117   return true;
1118 }
1119 
1120 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1121   // This implementation doesn't currently consider undef operands
1122   // specially. Theoretically, two phis which are identical except for
1123   // one having an undef where the other doesn't could be collapsed.
1124 
1125   struct PHIDenseMapInfo {
1126     static PHINode *getEmptyKey() {
1127       return DenseMapInfo<PHINode *>::getEmptyKey();
1128     }
1129 
1130     static PHINode *getTombstoneKey() {
1131       return DenseMapInfo<PHINode *>::getTombstoneKey();
1132     }
1133 
1134     static unsigned getHashValue(PHINode *PN) {
1135       // Compute a hash value on the operands. Instcombine will likely have
1136       // sorted them, which helps expose duplicates, but we have to check all
1137       // the operands to be safe in case instcombine hasn't run.
1138       return static_cast<unsigned>(hash_combine(
1139           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1140           hash_combine_range(PN->block_begin(), PN->block_end())));
1141     }
1142 
1143     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1144       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1145           RHS == getEmptyKey() || RHS == getTombstoneKey())
1146         return LHS == RHS;
1147       return LHS->isIdenticalTo(RHS);
1148     }
1149   };
1150 
1151   // Set of unique PHINodes.
1152   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1153 
1154   // Examine each PHI.
1155   bool Changed = false;
1156   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1157     auto Inserted = PHISet.insert(PN);
1158     if (!Inserted.second) {
1159       // A duplicate. Replace this PHI with its duplicate.
1160       PN->replaceAllUsesWith(*Inserted.first);
1161       PN->eraseFromParent();
1162       Changed = true;
1163 
1164       // The RAUW can change PHIs that we already visited. Start over from the
1165       // beginning.
1166       PHISet.clear();
1167       I = BB->begin();
1168     }
1169   }
1170 
1171   return Changed;
1172 }
1173 
1174 /// enforceKnownAlignment - If the specified pointer points to an object that
1175 /// we control, modify the object's alignment to PrefAlign. This isn't
1176 /// often possible though. If alignment is important, a more reliable approach
1177 /// is to simply align all global variables and allocation instructions to
1178 /// their preferred alignment from the beginning.
1179 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign,
1180                                    const DataLayout &DL) {
1181   assert(PrefAlign > Alignment);
1182 
1183   V = V->stripPointerCasts();
1184 
1185   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1186     // TODO: ideally, computeKnownBits ought to have used
1187     // AllocaInst::getAlignment() in its computation already, making
1188     // the below max redundant. But, as it turns out,
1189     // stripPointerCasts recurses through infinite layers of bitcasts,
1190     // while computeKnownBits is not allowed to traverse more than 6
1191     // levels.
1192     Alignment = std::max(AI->getAlign(), Alignment);
1193     if (PrefAlign <= Alignment)
1194       return Alignment;
1195 
1196     // If the preferred alignment is greater than the natural stack alignment
1197     // then don't round up. This avoids dynamic stack realignment.
1198     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1199       return Alignment;
1200     AI->setAlignment(PrefAlign);
1201     return PrefAlign;
1202   }
1203 
1204   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1205     // TODO: as above, this shouldn't be necessary.
1206     Alignment = max(GO->getAlign(), Alignment);
1207     if (PrefAlign <= Alignment)
1208       return Alignment;
1209 
1210     // If there is a large requested alignment and we can, bump up the alignment
1211     // of the global.  If the memory we set aside for the global may not be the
1212     // memory used by the final program then it is impossible for us to reliably
1213     // enforce the preferred alignment.
1214     if (!GO->canIncreaseAlignment())
1215       return Alignment;
1216 
1217     GO->setAlignment(PrefAlign);
1218     return PrefAlign;
1219   }
1220 
1221   return Alignment;
1222 }
1223 
1224 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1225                                        const DataLayout &DL,
1226                                        const Instruction *CxtI,
1227                                        AssumptionCache *AC,
1228                                        const DominatorTree *DT) {
1229   assert(V->getType()->isPointerTy() &&
1230          "getOrEnforceKnownAlignment expects a pointer!");
1231 
1232   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1233   unsigned TrailZ = Known.countMinTrailingZeros();
1234 
1235   // Avoid trouble with ridiculously large TrailZ values, such as
1236   // those computed from a null pointer.
1237   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1238   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1239 
1240   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1241 
1242   if (PrefAlign && *PrefAlign > Alignment)
1243     Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL);
1244 
1245   // We don't need to make any adjustment.
1246   return Alignment;
1247 }
1248 
1249 ///===---------------------------------------------------------------------===//
1250 ///  Dbg Intrinsic utilities
1251 ///
1252 
1253 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1254 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1255                              DIExpression *DIExpr,
1256                              PHINode *APN) {
1257   // Since we can't guarantee that the original dbg.declare instrinsic
1258   // is removed by LowerDbgDeclare(), we need to make sure that we are
1259   // not inserting the same dbg.value intrinsic over and over.
1260   SmallVector<DbgValueInst *, 1> DbgValues;
1261   findDbgValues(DbgValues, APN);
1262   for (auto *DVI : DbgValues) {
1263     assert(DVI->getValue() == APN);
1264     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1265       return true;
1266   }
1267   return false;
1268 }
1269 
1270 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1271 /// (or fragment of the variable) described by \p DII.
1272 ///
1273 /// This is primarily intended as a helper for the different
1274 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1275 /// converted describes an alloca'd variable, so we need to use the
1276 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1277 /// identified as covering an n-bit fragment, if the store size of i1 is at
1278 /// least n bits.
1279 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1280   const DataLayout &DL = DII->getModule()->getDataLayout();
1281   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1282   if (auto FragmentSize = DII->getFragmentSizeInBits())
1283     return ValueSize >= *FragmentSize;
1284   // We can't always calculate the size of the DI variable (e.g. if it is a
1285   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1286   // intead.
1287   if (DII->isAddressOfVariable())
1288     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1289       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1290         return ValueSize >= *FragmentSize;
1291   // Could not determine size of variable. Conservatively return false.
1292   return false;
1293 }
1294 
1295 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1296 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1297 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1298 /// case this DebugLoc leaks into any adjacent instructions.
1299 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1300   // Original dbg.declare must have a location.
1301   DebugLoc DeclareLoc = DII->getDebugLoc();
1302   MDNode *Scope = DeclareLoc.getScope();
1303   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1304   // Produce an unknown location with the correct scope / inlinedAt fields.
1305   return DebugLoc::get(0, 0, Scope, InlinedAt);
1306 }
1307 
1308 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1309 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1310 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1311                                            StoreInst *SI, DIBuilder &Builder) {
1312   assert(DII->isAddressOfVariable());
1313   auto *DIVar = DII->getVariable();
1314   assert(DIVar && "Missing variable");
1315   auto *DIExpr = DII->getExpression();
1316   Value *DV = SI->getValueOperand();
1317 
1318   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1319 
1320   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1321     // FIXME: If storing to a part of the variable described by the dbg.declare,
1322     // then we want to insert a dbg.value for the corresponding fragment.
1323     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1324                       << *DII << '\n');
1325     // For now, when there is a store to parts of the variable (but we do not
1326     // know which part) we insert an dbg.value instrinsic to indicate that we
1327     // know nothing about the variable's content.
1328     DV = UndefValue::get(DV->getType());
1329     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1330     return;
1331   }
1332 
1333   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1334 }
1335 
1336 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1337 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1338 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1339                                            LoadInst *LI, DIBuilder &Builder) {
1340   auto *DIVar = DII->getVariable();
1341   auto *DIExpr = DII->getExpression();
1342   assert(DIVar && "Missing variable");
1343 
1344   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1345     // FIXME: If only referring to a part of the variable described by the
1346     // dbg.declare, then we want to insert a dbg.value for the corresponding
1347     // fragment.
1348     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1349                       << *DII << '\n');
1350     return;
1351   }
1352 
1353   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1354 
1355   // We are now tracking the loaded value instead of the address. In the
1356   // future if multi-location support is added to the IR, it might be
1357   // preferable to keep tracking both the loaded value and the original
1358   // address in case the alloca can not be elided.
1359   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1360       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1361   DbgValue->insertAfter(LI);
1362 }
1363 
1364 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1365 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1366 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1367                                            PHINode *APN, DIBuilder &Builder) {
1368   auto *DIVar = DII->getVariable();
1369   auto *DIExpr = DII->getExpression();
1370   assert(DIVar && "Missing variable");
1371 
1372   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1373     return;
1374 
1375   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1376     // FIXME: If only referring to a part of the variable described by the
1377     // dbg.declare, then we want to insert a dbg.value for the corresponding
1378     // fragment.
1379     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1380                       << *DII << '\n');
1381     return;
1382   }
1383 
1384   BasicBlock *BB = APN->getParent();
1385   auto InsertionPt = BB->getFirstInsertionPt();
1386 
1387   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1388 
1389   // The block may be a catchswitch block, which does not have a valid
1390   // insertion point.
1391   // FIXME: Insert dbg.value markers in the successors when appropriate.
1392   if (InsertionPt != BB->end())
1393     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1394 }
1395 
1396 /// Determine whether this alloca is either a VLA or an array.
1397 static bool isArray(AllocaInst *AI) {
1398   return AI->isArrayAllocation() ||
1399          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1400 }
1401 
1402 /// Determine whether this alloca is a structure.
1403 static bool isStructure(AllocaInst *AI) {
1404   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1405 }
1406 
1407 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1408 /// of llvm.dbg.value intrinsics.
1409 bool llvm::LowerDbgDeclare(Function &F) {
1410   bool Changed = false;
1411   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1412   SmallVector<DbgDeclareInst *, 4> Dbgs;
1413   for (auto &FI : F)
1414     for (Instruction &BI : FI)
1415       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1416         Dbgs.push_back(DDI);
1417 
1418   if (Dbgs.empty())
1419     return Changed;
1420 
1421   for (auto &I : Dbgs) {
1422     DbgDeclareInst *DDI = I;
1423     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1424     // If this is an alloca for a scalar variable, insert a dbg.value
1425     // at each load and store to the alloca and erase the dbg.declare.
1426     // The dbg.values allow tracking a variable even if it is not
1427     // stored on the stack, while the dbg.declare can only describe
1428     // the stack slot (and at a lexical-scope granularity). Later
1429     // passes will attempt to elide the stack slot.
1430     if (!AI || isArray(AI) || isStructure(AI))
1431       continue;
1432 
1433     // A volatile load/store means that the alloca can't be elided anyway.
1434     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1435           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1436             return LI->isVolatile();
1437           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1438             return SI->isVolatile();
1439           return false;
1440         }))
1441       continue;
1442 
1443     SmallVector<const Value *, 8> WorkList;
1444     WorkList.push_back(AI);
1445     while (!WorkList.empty()) {
1446       const Value *V = WorkList.pop_back_val();
1447       for (auto &AIUse : V->uses()) {
1448         User *U = AIUse.getUser();
1449         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1450           if (AIUse.getOperandNo() == 1)
1451             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1452         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1453           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1454         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1455           // This is a call by-value or some other instruction that takes a
1456           // pointer to the variable. Insert a *value* intrinsic that describes
1457           // the variable by dereferencing the alloca.
1458           if (!CI->isLifetimeStartOrEnd()) {
1459             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1460             auto *DerefExpr =
1461                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1462             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1463                                         NewLoc, CI);
1464           }
1465         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1466           if (BI->getType()->isPointerTy())
1467             WorkList.push_back(BI);
1468         }
1469       }
1470     }
1471     DDI->eraseFromParent();
1472     Changed = true;
1473   }
1474 
1475   if (Changed)
1476   for (BasicBlock &BB : F)
1477     RemoveRedundantDbgInstrs(&BB);
1478 
1479   return Changed;
1480 }
1481 
1482 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1483 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1484                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1485   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1486   if (InsertedPHIs.size() == 0)
1487     return;
1488 
1489   // Map existing PHI nodes to their dbg.values.
1490   ValueToValueMapTy DbgValueMap;
1491   for (auto &I : *BB) {
1492     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1493       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1494         DbgValueMap.insert({Loc, DbgII});
1495     }
1496   }
1497   if (DbgValueMap.size() == 0)
1498     return;
1499 
1500   // Then iterate through the new PHIs and look to see if they use one of the
1501   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1502   // propagate the info through the new PHI.
1503   LLVMContext &C = BB->getContext();
1504   for (auto PHI : InsertedPHIs) {
1505     BasicBlock *Parent = PHI->getParent();
1506     // Avoid inserting an intrinsic into an EH block.
1507     if (Parent->getFirstNonPHI()->isEHPad())
1508       continue;
1509     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1510     for (auto VI : PHI->operand_values()) {
1511       auto V = DbgValueMap.find(VI);
1512       if (V != DbgValueMap.end()) {
1513         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1514         Instruction *NewDbgII = DbgII->clone();
1515         NewDbgII->setOperand(0, PhiMAV);
1516         auto InsertionPt = Parent->getFirstInsertionPt();
1517         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1518         NewDbgII->insertBefore(&*InsertionPt);
1519       }
1520     }
1521   }
1522 }
1523 
1524 /// Finds all intrinsics declaring local variables as living in the memory that
1525 /// 'V' points to. This may include a mix of dbg.declare and
1526 /// dbg.addr intrinsics.
1527 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1528   // This function is hot. Check whether the value has any metadata to avoid a
1529   // DenseMap lookup.
1530   if (!V->isUsedByMetadata())
1531     return {};
1532   auto *L = LocalAsMetadata::getIfExists(V);
1533   if (!L)
1534     return {};
1535   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1536   if (!MDV)
1537     return {};
1538 
1539   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1540   for (User *U : MDV->users()) {
1541     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1542       if (DII->isAddressOfVariable())
1543         Declares.push_back(DII);
1544   }
1545 
1546   return Declares;
1547 }
1548 
1549 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1550   TinyPtrVector<DbgDeclareInst *> DDIs;
1551   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1552     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1553       DDIs.push_back(DDI);
1554   return DDIs;
1555 }
1556 
1557 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1558   // This function is hot. Check whether the value has any metadata to avoid a
1559   // DenseMap lookup.
1560   if (!V->isUsedByMetadata())
1561     return;
1562   if (auto *L = LocalAsMetadata::getIfExists(V))
1563     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1564       for (User *U : MDV->users())
1565         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1566           DbgValues.push_back(DVI);
1567 }
1568 
1569 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1570                         Value *V) {
1571   // This function is hot. Check whether the value has any metadata to avoid a
1572   // DenseMap lookup.
1573   if (!V->isUsedByMetadata())
1574     return;
1575   if (auto *L = LocalAsMetadata::getIfExists(V))
1576     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1577       for (User *U : MDV->users())
1578         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1579           DbgUsers.push_back(DII);
1580 }
1581 
1582 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1583                              DIBuilder &Builder, uint8_t DIExprFlags,
1584                              int Offset) {
1585   auto DbgAddrs = FindDbgAddrUses(Address);
1586   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1587     DebugLoc Loc = DII->getDebugLoc();
1588     auto *DIVar = DII->getVariable();
1589     auto *DIExpr = DII->getExpression();
1590     assert(DIVar && "Missing variable");
1591     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1592     // Insert llvm.dbg.declare immediately before DII, and remove old
1593     // llvm.dbg.declare.
1594     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1595     DII->eraseFromParent();
1596   }
1597   return !DbgAddrs.empty();
1598 }
1599 
1600 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1601                                         DIBuilder &Builder, int Offset) {
1602   DebugLoc Loc = DVI->getDebugLoc();
1603   auto *DIVar = DVI->getVariable();
1604   auto *DIExpr = DVI->getExpression();
1605   assert(DIVar && "Missing variable");
1606 
1607   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1608   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1609   // it and give up.
1610   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1611       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1612     return;
1613 
1614   // Insert the offset before the first deref.
1615   // We could just change the offset argument of dbg.value, but it's unsigned...
1616   if (Offset)
1617     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1618 
1619   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1620   DVI->eraseFromParent();
1621 }
1622 
1623 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1624                                     DIBuilder &Builder, int Offset) {
1625   if (auto *L = LocalAsMetadata::getIfExists(AI))
1626     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1627       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1628         Use &U = *UI++;
1629         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1630           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1631       }
1632 }
1633 
1634 /// Wrap \p V in a ValueAsMetadata instance.
1635 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1636   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1637 }
1638 
1639 /// Where possible to salvage debug information for \p I do so
1640 /// and return True. If not possible mark undef and return False.
1641 void llvm::salvageDebugInfo(Instruction &I) {
1642   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1643   findDbgUsers(DbgUsers, &I);
1644   salvageDebugInfoForDbgValues(I, DbgUsers);
1645 }
1646 
1647 void llvm::salvageDebugInfoForDbgValues(
1648     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1649   auto &Ctx = I.getContext();
1650   bool Salvaged = false;
1651   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1652 
1653   for (auto *DII : DbgUsers) {
1654     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1655     // are implicitly pointing out the value as a DWARF memory location
1656     // description.
1657     bool StackValue = isa<DbgValueInst>(DII);
1658 
1659     DIExpression *DIExpr =
1660         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1661 
1662     // salvageDebugInfoImpl should fail on examining the first element of
1663     // DbgUsers, or none of them.
1664     if (!DIExpr)
1665       break;
1666 
1667     DII->setOperand(0, wrapMD(I.getOperand(0)));
1668     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1669     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1670     Salvaged = true;
1671   }
1672 
1673   if (Salvaged)
1674     return;
1675 
1676   for (auto *DII : DbgUsers) {
1677     Value *Undef = UndefValue::get(I.getType());
1678     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1679                                             ValueAsMetadata::get(Undef)));
1680   }
1681 }
1682 
1683 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1684                                          DIExpression *SrcDIExpr,
1685                                          bool WithStackValue) {
1686   auto &M = *I.getModule();
1687   auto &DL = M.getDataLayout();
1688 
1689   // Apply a vector of opcodes to the source DIExpression.
1690   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1691     DIExpression *DIExpr = SrcDIExpr;
1692     if (!Ops.empty()) {
1693       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1694     }
1695     return DIExpr;
1696   };
1697 
1698   // Apply the given offset to the source DIExpression.
1699   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1700     SmallVector<uint64_t, 8> Ops;
1701     DIExpression::appendOffset(Ops, Offset);
1702     return doSalvage(Ops);
1703   };
1704 
1705   // initializer-list helper for applying operators to the source DIExpression.
1706   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1707     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1708     return doSalvage(Ops);
1709   };
1710 
1711   if (auto *CI = dyn_cast<CastInst>(&I)) {
1712     // No-op casts are irrelevant for debug info.
1713     if (CI->isNoopCast(DL))
1714       return SrcDIExpr;
1715 
1716     Type *Type = CI->getType();
1717     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1718     if (Type->isVectorTy() ||
1719         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1720       return nullptr;
1721 
1722     Value *FromValue = CI->getOperand(0);
1723     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1724     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1725 
1726     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1727                                             isa<SExtInst>(&I)));
1728   }
1729 
1730   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1731     unsigned BitWidth =
1732         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1733     // Rewrite a constant GEP into a DIExpression.
1734     APInt Offset(BitWidth, 0);
1735     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1736       return applyOffset(Offset.getSExtValue());
1737     } else {
1738       return nullptr;
1739     }
1740   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1741     // Rewrite binary operations with constant integer operands.
1742     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1743     if (!ConstInt || ConstInt->getBitWidth() > 64)
1744       return nullptr;
1745 
1746     uint64_t Val = ConstInt->getSExtValue();
1747     switch (BI->getOpcode()) {
1748     case Instruction::Add:
1749       return applyOffset(Val);
1750     case Instruction::Sub:
1751       return applyOffset(-int64_t(Val));
1752     case Instruction::Mul:
1753       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1754     case Instruction::SDiv:
1755       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1756     case Instruction::SRem:
1757       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1758     case Instruction::Or:
1759       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1760     case Instruction::And:
1761       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1762     case Instruction::Xor:
1763       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1764     case Instruction::Shl:
1765       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1766     case Instruction::LShr:
1767       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1768     case Instruction::AShr:
1769       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1770     default:
1771       // TODO: Salvage constants from each kind of binop we know about.
1772       return nullptr;
1773     }
1774     // *Not* to do: we should not attempt to salvage load instructions,
1775     // because the validity and lifetime of a dbg.value containing
1776     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1777   }
1778   return nullptr;
1779 }
1780 
1781 /// A replacement for a dbg.value expression.
1782 using DbgValReplacement = Optional<DIExpression *>;
1783 
1784 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1785 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1786 /// changes are made.
1787 static bool rewriteDebugUsers(
1788     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1789     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1790   // Find debug users of From.
1791   SmallVector<DbgVariableIntrinsic *, 1> Users;
1792   findDbgUsers(Users, &From);
1793   if (Users.empty())
1794     return false;
1795 
1796   // Prevent use-before-def of To.
1797   bool Changed = false;
1798   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1799   if (isa<Instruction>(&To)) {
1800     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1801 
1802     for (auto *DII : Users) {
1803       // It's common to see a debug user between From and DomPoint. Move it
1804       // after DomPoint to preserve the variable update without any reordering.
1805       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1806         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1807         DII->moveAfter(&DomPoint);
1808         Changed = true;
1809 
1810       // Users which otherwise aren't dominated by the replacement value must
1811       // be salvaged or deleted.
1812       } else if (!DT.dominates(&DomPoint, DII)) {
1813         UndefOrSalvage.insert(DII);
1814       }
1815     }
1816   }
1817 
1818   // Update debug users without use-before-def risk.
1819   for (auto *DII : Users) {
1820     if (UndefOrSalvage.count(DII))
1821       continue;
1822 
1823     LLVMContext &Ctx = DII->getContext();
1824     DbgValReplacement DVR = RewriteExpr(*DII);
1825     if (!DVR)
1826       continue;
1827 
1828     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1829     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1830     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1831     Changed = true;
1832   }
1833 
1834   if (!UndefOrSalvage.empty()) {
1835     // Try to salvage the remaining debug users.
1836     salvageDebugInfo(From);
1837     Changed = true;
1838   }
1839 
1840   return Changed;
1841 }
1842 
1843 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1844 /// losslessly preserve the bits and semantics of the value. This predicate is
1845 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1846 ///
1847 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1848 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1849 /// and also does not allow lossless pointer <-> integer conversions.
1850 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1851                                          Type *ToTy) {
1852   // Trivially compatible types.
1853   if (FromTy == ToTy)
1854     return true;
1855 
1856   // Handle compatible pointer <-> integer conversions.
1857   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1858     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1859     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1860                               !DL.isNonIntegralPointerType(ToTy);
1861     return SameSize && LosslessConversion;
1862   }
1863 
1864   // TODO: This is not exhaustive.
1865   return false;
1866 }
1867 
1868 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1869                                  Instruction &DomPoint, DominatorTree &DT) {
1870   // Exit early if From has no debug users.
1871   if (!From.isUsedByMetadata())
1872     return false;
1873 
1874   assert(&From != &To && "Can't replace something with itself");
1875 
1876   Type *FromTy = From.getType();
1877   Type *ToTy = To.getType();
1878 
1879   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1880     return DII.getExpression();
1881   };
1882 
1883   // Handle no-op conversions.
1884   Module &M = *From.getModule();
1885   const DataLayout &DL = M.getDataLayout();
1886   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1887     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1888 
1889   // Handle integer-to-integer widening and narrowing.
1890   // FIXME: Use DW_OP_convert when it's available everywhere.
1891   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1892     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1893     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1894     assert(FromBits != ToBits && "Unexpected no-op conversion");
1895 
1896     // When the width of the result grows, assume that a debugger will only
1897     // access the low `FromBits` bits when inspecting the source variable.
1898     if (FromBits < ToBits)
1899       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1900 
1901     // The width of the result has shrunk. Use sign/zero extension to describe
1902     // the source variable's high bits.
1903     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1904       DILocalVariable *Var = DII.getVariable();
1905 
1906       // Without knowing signedness, sign/zero extension isn't possible.
1907       auto Signedness = Var->getSignedness();
1908       if (!Signedness)
1909         return None;
1910 
1911       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1912       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1913                                      Signed);
1914     };
1915     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1916   }
1917 
1918   // TODO: Floating-point conversions, vectors.
1919   return false;
1920 }
1921 
1922 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1923   unsigned NumDeadInst = 0;
1924   // Delete the instructions backwards, as it has a reduced likelihood of
1925   // having to update as many def-use and use-def chains.
1926   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1927   while (EndInst != &BB->front()) {
1928     // Delete the next to last instruction.
1929     Instruction *Inst = &*--EndInst->getIterator();
1930     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1931       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1932     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1933       EndInst = Inst;
1934       continue;
1935     }
1936     if (!isa<DbgInfoIntrinsic>(Inst))
1937       ++NumDeadInst;
1938     Inst->eraseFromParent();
1939   }
1940   return NumDeadInst;
1941 }
1942 
1943 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1944                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1945                                    MemorySSAUpdater *MSSAU) {
1946   BasicBlock *BB = I->getParent();
1947   std::vector <DominatorTree::UpdateType> Updates;
1948 
1949   if (MSSAU)
1950     MSSAU->changeToUnreachable(I);
1951 
1952   // Loop over all of the successors, removing BB's entry from any PHI
1953   // nodes.
1954   if (DTU)
1955     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1956   for (BasicBlock *Successor : successors(BB)) {
1957     Successor->removePredecessor(BB, PreserveLCSSA);
1958     if (DTU)
1959       Updates.push_back({DominatorTree::Delete, BB, Successor});
1960   }
1961   // Insert a call to llvm.trap right before this.  This turns the undefined
1962   // behavior into a hard fail instead of falling through into random code.
1963   if (UseLLVMTrap) {
1964     Function *TrapFn =
1965       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1966     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1967     CallTrap->setDebugLoc(I->getDebugLoc());
1968   }
1969   auto *UI = new UnreachableInst(I->getContext(), I);
1970   UI->setDebugLoc(I->getDebugLoc());
1971 
1972   // All instructions after this are dead.
1973   unsigned NumInstrsRemoved = 0;
1974   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1975   while (BBI != BBE) {
1976     if (!BBI->use_empty())
1977       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1978     BB->getInstList().erase(BBI++);
1979     ++NumInstrsRemoved;
1980   }
1981   if (DTU)
1982     DTU->applyUpdatesPermissive(Updates);
1983   return NumInstrsRemoved;
1984 }
1985 
1986 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1987   SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1988   SmallVector<OperandBundleDef, 1> OpBundles;
1989   II->getOperandBundlesAsDefs(OpBundles);
1990   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1991                                        II->getCalledOperand(), Args, OpBundles);
1992   NewCall->setCallingConv(II->getCallingConv());
1993   NewCall->setAttributes(II->getAttributes());
1994   NewCall->setDebugLoc(II->getDebugLoc());
1995   NewCall->copyMetadata(*II);
1996 
1997   // If the invoke had profile metadata, try converting them for CallInst.
1998   uint64_t TotalWeight;
1999   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2000     // Set the total weight if it fits into i32, otherwise reset.
2001     MDBuilder MDB(NewCall->getContext());
2002     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2003                           ? nullptr
2004                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2005     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2006   }
2007 
2008   return NewCall;
2009 }
2010 
2011 /// changeToCall - Convert the specified invoke into a normal call.
2012 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2013   CallInst *NewCall = createCallMatchingInvoke(II);
2014   NewCall->takeName(II);
2015   NewCall->insertBefore(II);
2016   II->replaceAllUsesWith(NewCall);
2017 
2018   // Follow the call by a branch to the normal destination.
2019   BasicBlock *NormalDestBB = II->getNormalDest();
2020   BranchInst::Create(NormalDestBB, II);
2021 
2022   // Update PHI nodes in the unwind destination
2023   BasicBlock *BB = II->getParent();
2024   BasicBlock *UnwindDestBB = II->getUnwindDest();
2025   UnwindDestBB->removePredecessor(BB);
2026   II->eraseFromParent();
2027   if (DTU)
2028     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
2029 }
2030 
2031 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2032                                                    BasicBlock *UnwindEdge) {
2033   BasicBlock *BB = CI->getParent();
2034 
2035   // Convert this function call into an invoke instruction.  First, split the
2036   // basic block.
2037   BasicBlock *Split =
2038       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2039 
2040   // Delete the unconditional branch inserted by splitBasicBlock
2041   BB->getInstList().pop_back();
2042 
2043   // Create the new invoke instruction.
2044   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2045   SmallVector<OperandBundleDef, 1> OpBundles;
2046 
2047   CI->getOperandBundlesAsDefs(OpBundles);
2048 
2049   // Note: we're round tripping operand bundles through memory here, and that
2050   // can potentially be avoided with a cleverer API design that we do not have
2051   // as of this time.
2052 
2053   InvokeInst *II =
2054       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2055                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2056   II->setDebugLoc(CI->getDebugLoc());
2057   II->setCallingConv(CI->getCallingConv());
2058   II->setAttributes(CI->getAttributes());
2059 
2060   // Make sure that anything using the call now uses the invoke!  This also
2061   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2062   CI->replaceAllUsesWith(II);
2063 
2064   // Delete the original call
2065   Split->getInstList().pop_front();
2066   return Split;
2067 }
2068 
2069 static bool markAliveBlocks(Function &F,
2070                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2071                             DomTreeUpdater *DTU = nullptr) {
2072   SmallVector<BasicBlock*, 128> Worklist;
2073   BasicBlock *BB = &F.front();
2074   Worklist.push_back(BB);
2075   Reachable.insert(BB);
2076   bool Changed = false;
2077   do {
2078     BB = Worklist.pop_back_val();
2079 
2080     // Do a quick scan of the basic block, turning any obviously unreachable
2081     // instructions into LLVM unreachable insts.  The instruction combining pass
2082     // canonicalizes unreachable insts into stores to null or undef.
2083     for (Instruction &I : *BB) {
2084       if (auto *CI = dyn_cast<CallInst>(&I)) {
2085         Value *Callee = CI->getCalledOperand();
2086         // Handle intrinsic calls.
2087         if (Function *F = dyn_cast<Function>(Callee)) {
2088           auto IntrinsicID = F->getIntrinsicID();
2089           // Assumptions that are known to be false are equivalent to
2090           // unreachable. Also, if the condition is undefined, then we make the
2091           // choice most beneficial to the optimizer, and choose that to also be
2092           // unreachable.
2093           if (IntrinsicID == Intrinsic::assume) {
2094             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2095               // Don't insert a call to llvm.trap right before the unreachable.
2096               changeToUnreachable(CI, false, false, DTU);
2097               Changed = true;
2098               break;
2099             }
2100           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2101             // A call to the guard intrinsic bails out of the current
2102             // compilation unit if the predicate passed to it is false. If the
2103             // predicate is a constant false, then we know the guard will bail
2104             // out of the current compile unconditionally, so all code following
2105             // it is dead.
2106             //
2107             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2108             // guards to treat `undef` as `false` since a guard on `undef` can
2109             // still be useful for widening.
2110             if (match(CI->getArgOperand(0), m_Zero()))
2111               if (!isa<UnreachableInst>(CI->getNextNode())) {
2112                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2113                                     false, DTU);
2114                 Changed = true;
2115                 break;
2116               }
2117           }
2118         } else if ((isa<ConstantPointerNull>(Callee) &&
2119                     !NullPointerIsDefined(CI->getFunction())) ||
2120                    isa<UndefValue>(Callee)) {
2121           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2122           Changed = true;
2123           break;
2124         }
2125         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2126           // If we found a call to a no-return function, insert an unreachable
2127           // instruction after it.  Make sure there isn't *already* one there
2128           // though.
2129           if (!isa<UnreachableInst>(CI->getNextNode())) {
2130             // Don't insert a call to llvm.trap right before the unreachable.
2131             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2132             Changed = true;
2133           }
2134           break;
2135         }
2136       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2137         // Store to undef and store to null are undefined and used to signal
2138         // that they should be changed to unreachable by passes that can't
2139         // modify the CFG.
2140 
2141         // Don't touch volatile stores.
2142         if (SI->isVolatile()) continue;
2143 
2144         Value *Ptr = SI->getOperand(1);
2145 
2146         if (isa<UndefValue>(Ptr) ||
2147             (isa<ConstantPointerNull>(Ptr) &&
2148              !NullPointerIsDefined(SI->getFunction(),
2149                                    SI->getPointerAddressSpace()))) {
2150           changeToUnreachable(SI, true, false, DTU);
2151           Changed = true;
2152           break;
2153         }
2154       }
2155     }
2156 
2157     Instruction *Terminator = BB->getTerminator();
2158     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2159       // Turn invokes that call 'nounwind' functions into ordinary calls.
2160       Value *Callee = II->getCalledOperand();
2161       if ((isa<ConstantPointerNull>(Callee) &&
2162            !NullPointerIsDefined(BB->getParent())) ||
2163           isa<UndefValue>(Callee)) {
2164         changeToUnreachable(II, true, false, DTU);
2165         Changed = true;
2166       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2167         if (II->use_empty() && II->onlyReadsMemory()) {
2168           // jump to the normal destination branch.
2169           BasicBlock *NormalDestBB = II->getNormalDest();
2170           BasicBlock *UnwindDestBB = II->getUnwindDest();
2171           BranchInst::Create(NormalDestBB, II);
2172           UnwindDestBB->removePredecessor(II->getParent());
2173           II->eraseFromParent();
2174           if (DTU)
2175             DTU->applyUpdatesPermissive(
2176                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2177         } else
2178           changeToCall(II, DTU);
2179         Changed = true;
2180       }
2181     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2182       // Remove catchpads which cannot be reached.
2183       struct CatchPadDenseMapInfo {
2184         static CatchPadInst *getEmptyKey() {
2185           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2186         }
2187 
2188         static CatchPadInst *getTombstoneKey() {
2189           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2190         }
2191 
2192         static unsigned getHashValue(CatchPadInst *CatchPad) {
2193           return static_cast<unsigned>(hash_combine_range(
2194               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2195         }
2196 
2197         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2198           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2199               RHS == getEmptyKey() || RHS == getTombstoneKey())
2200             return LHS == RHS;
2201           return LHS->isIdenticalTo(RHS);
2202         }
2203       };
2204 
2205       // Set of unique CatchPads.
2206       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2207                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2208           HandlerSet;
2209       detail::DenseSetEmpty Empty;
2210       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2211                                              E = CatchSwitch->handler_end();
2212            I != E; ++I) {
2213         BasicBlock *HandlerBB = *I;
2214         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2215         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2216           CatchSwitch->removeHandler(I);
2217           --I;
2218           --E;
2219           Changed = true;
2220         }
2221       }
2222     }
2223 
2224     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2225     for (BasicBlock *Successor : successors(BB))
2226       if (Reachable.insert(Successor).second)
2227         Worklist.push_back(Successor);
2228   } while (!Worklist.empty());
2229   return Changed;
2230 }
2231 
2232 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2233   Instruction *TI = BB->getTerminator();
2234 
2235   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2236     changeToCall(II, DTU);
2237     return;
2238   }
2239 
2240   Instruction *NewTI;
2241   BasicBlock *UnwindDest;
2242 
2243   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2244     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2245     UnwindDest = CRI->getUnwindDest();
2246   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2247     auto *NewCatchSwitch = CatchSwitchInst::Create(
2248         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2249         CatchSwitch->getName(), CatchSwitch);
2250     for (BasicBlock *PadBB : CatchSwitch->handlers())
2251       NewCatchSwitch->addHandler(PadBB);
2252 
2253     NewTI = NewCatchSwitch;
2254     UnwindDest = CatchSwitch->getUnwindDest();
2255   } else {
2256     llvm_unreachable("Could not find unwind successor");
2257   }
2258 
2259   NewTI->takeName(TI);
2260   NewTI->setDebugLoc(TI->getDebugLoc());
2261   UnwindDest->removePredecessor(BB);
2262   TI->replaceAllUsesWith(NewTI);
2263   TI->eraseFromParent();
2264   if (DTU)
2265     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2266 }
2267 
2268 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2269 /// if they are in a dead cycle.  Return true if a change was made, false
2270 /// otherwise.
2271 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2272                                    MemorySSAUpdater *MSSAU) {
2273   SmallPtrSet<BasicBlock *, 16> Reachable;
2274   bool Changed = markAliveBlocks(F, Reachable, DTU);
2275 
2276   // If there are unreachable blocks in the CFG...
2277   if (Reachable.size() == F.size())
2278     return Changed;
2279 
2280   assert(Reachable.size() < F.size());
2281   NumRemoved += F.size() - Reachable.size();
2282 
2283   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2284   for (BasicBlock &BB : F) {
2285     // Skip reachable basic blocks
2286     if (Reachable.count(&BB))
2287       continue;
2288     DeadBlockSet.insert(&BB);
2289   }
2290 
2291   if (MSSAU)
2292     MSSAU->removeBlocks(DeadBlockSet);
2293 
2294   // Loop over all of the basic blocks that are not reachable, dropping all of
2295   // their internal references. Update DTU if available.
2296   std::vector<DominatorTree::UpdateType> Updates;
2297   for (auto *BB : DeadBlockSet) {
2298     for (BasicBlock *Successor : successors(BB)) {
2299       if (!DeadBlockSet.count(Successor))
2300         Successor->removePredecessor(BB);
2301       if (DTU)
2302         Updates.push_back({DominatorTree::Delete, BB, Successor});
2303     }
2304     BB->dropAllReferences();
2305     if (DTU) {
2306       Instruction *TI = BB->getTerminator();
2307       assert(TI && "Basic block should have a terminator");
2308       // Terminators like invoke can have users. We have to replace their users,
2309       // before removing them.
2310       if (!TI->use_empty())
2311         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2312       TI->eraseFromParent();
2313       new UnreachableInst(BB->getContext(), BB);
2314       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2315                                "applying corresponding DTU updates.");
2316     }
2317   }
2318 
2319   if (DTU) {
2320     DTU->applyUpdatesPermissive(Updates);
2321     bool Deleted = false;
2322     for (auto *BB : DeadBlockSet) {
2323       if (DTU->isBBPendingDeletion(BB))
2324         --NumRemoved;
2325       else
2326         Deleted = true;
2327       DTU->deleteBB(BB);
2328     }
2329     if (!Deleted)
2330       return false;
2331   } else {
2332     for (auto *BB : DeadBlockSet)
2333       BB->eraseFromParent();
2334   }
2335 
2336   return true;
2337 }
2338 
2339 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2340                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2341   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2342   K->dropUnknownNonDebugMetadata(KnownIDs);
2343   K->getAllMetadataOtherThanDebugLoc(Metadata);
2344   for (const auto &MD : Metadata) {
2345     unsigned Kind = MD.first;
2346     MDNode *JMD = J->getMetadata(Kind);
2347     MDNode *KMD = MD.second;
2348 
2349     switch (Kind) {
2350       default:
2351         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2352         break;
2353       case LLVMContext::MD_dbg:
2354         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2355       case LLVMContext::MD_tbaa:
2356         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2357         break;
2358       case LLVMContext::MD_alias_scope:
2359         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2360         break;
2361       case LLVMContext::MD_noalias:
2362       case LLVMContext::MD_mem_parallel_loop_access:
2363         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2364         break;
2365       case LLVMContext::MD_access_group:
2366         K->setMetadata(LLVMContext::MD_access_group,
2367                        intersectAccessGroups(K, J));
2368         break;
2369       case LLVMContext::MD_range:
2370 
2371         // If K does move, use most generic range. Otherwise keep the range of
2372         // K.
2373         if (DoesKMove)
2374           // FIXME: If K does move, we should drop the range info and nonnull.
2375           //        Currently this function is used with DoesKMove in passes
2376           //        doing hoisting/sinking and the current behavior of using the
2377           //        most generic range is correct in those cases.
2378           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2379         break;
2380       case LLVMContext::MD_fpmath:
2381         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2382         break;
2383       case LLVMContext::MD_invariant_load:
2384         // Only set the !invariant.load if it is present in both instructions.
2385         K->setMetadata(Kind, JMD);
2386         break;
2387       case LLVMContext::MD_nonnull:
2388         // If K does move, keep nonull if it is present in both instructions.
2389         if (DoesKMove)
2390           K->setMetadata(Kind, JMD);
2391         break;
2392       case LLVMContext::MD_invariant_group:
2393         // Preserve !invariant.group in K.
2394         break;
2395       case LLVMContext::MD_align:
2396         K->setMetadata(Kind,
2397           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2398         break;
2399       case LLVMContext::MD_dereferenceable:
2400       case LLVMContext::MD_dereferenceable_or_null:
2401         K->setMetadata(Kind,
2402           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2403         break;
2404       case LLVMContext::MD_preserve_access_index:
2405         // Preserve !preserve.access.index in K.
2406         break;
2407     }
2408   }
2409   // Set !invariant.group from J if J has it. If both instructions have it
2410   // then we will just pick it from J - even when they are different.
2411   // Also make sure that K is load or store - f.e. combining bitcast with load
2412   // could produce bitcast with invariant.group metadata, which is invalid.
2413   // FIXME: we should try to preserve both invariant.group md if they are
2414   // different, but right now instruction can only have one invariant.group.
2415   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2416     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2417       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2418 }
2419 
2420 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2421                                  bool KDominatesJ) {
2422   unsigned KnownIDs[] = {
2423       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2424       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2425       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2426       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2427       LLVMContext::MD_dereferenceable,
2428       LLVMContext::MD_dereferenceable_or_null,
2429       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2430   combineMetadata(K, J, KnownIDs, KDominatesJ);
2431 }
2432 
2433 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2434   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2435   Source.getAllMetadata(MD);
2436   MDBuilder MDB(Dest.getContext());
2437   Type *NewType = Dest.getType();
2438   const DataLayout &DL = Source.getModule()->getDataLayout();
2439   for (const auto &MDPair : MD) {
2440     unsigned ID = MDPair.first;
2441     MDNode *N = MDPair.second;
2442     // Note, essentially every kind of metadata should be preserved here! This
2443     // routine is supposed to clone a load instruction changing *only its type*.
2444     // The only metadata it makes sense to drop is metadata which is invalidated
2445     // when the pointer type changes. This should essentially never be the case
2446     // in LLVM, but we explicitly switch over only known metadata to be
2447     // conservatively correct. If you are adding metadata to LLVM which pertains
2448     // to loads, you almost certainly want to add it here.
2449     switch (ID) {
2450     case LLVMContext::MD_dbg:
2451     case LLVMContext::MD_tbaa:
2452     case LLVMContext::MD_prof:
2453     case LLVMContext::MD_fpmath:
2454     case LLVMContext::MD_tbaa_struct:
2455     case LLVMContext::MD_invariant_load:
2456     case LLVMContext::MD_alias_scope:
2457     case LLVMContext::MD_noalias:
2458     case LLVMContext::MD_nontemporal:
2459     case LLVMContext::MD_mem_parallel_loop_access:
2460     case LLVMContext::MD_access_group:
2461       // All of these directly apply.
2462       Dest.setMetadata(ID, N);
2463       break;
2464 
2465     case LLVMContext::MD_nonnull:
2466       copyNonnullMetadata(Source, N, Dest);
2467       break;
2468 
2469     case LLVMContext::MD_align:
2470     case LLVMContext::MD_dereferenceable:
2471     case LLVMContext::MD_dereferenceable_or_null:
2472       // These only directly apply if the new type is also a pointer.
2473       if (NewType->isPointerTy())
2474         Dest.setMetadata(ID, N);
2475       break;
2476 
2477     case LLVMContext::MD_range:
2478       copyRangeMetadata(DL, Source, N, Dest);
2479       break;
2480     }
2481   }
2482 }
2483 
2484 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2485   auto *ReplInst = dyn_cast<Instruction>(Repl);
2486   if (!ReplInst)
2487     return;
2488 
2489   // Patch the replacement so that it is not more restrictive than the value
2490   // being replaced.
2491   // Note that if 'I' is a load being replaced by some operation,
2492   // for example, by an arithmetic operation, then andIRFlags()
2493   // would just erase all math flags from the original arithmetic
2494   // operation, which is clearly not wanted and not needed.
2495   if (!isa<LoadInst>(I))
2496     ReplInst->andIRFlags(I);
2497 
2498   // FIXME: If both the original and replacement value are part of the
2499   // same control-flow region (meaning that the execution of one
2500   // guarantees the execution of the other), then we can combine the
2501   // noalias scopes here and do better than the general conservative
2502   // answer used in combineMetadata().
2503 
2504   // In general, GVN unifies expressions over different control-flow
2505   // regions, and so we need a conservative combination of the noalias
2506   // scopes.
2507   static const unsigned KnownIDs[] = {
2508       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2509       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2510       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2511       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2512       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2513   combineMetadata(ReplInst, I, KnownIDs, false);
2514 }
2515 
2516 template <typename RootType, typename DominatesFn>
2517 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2518                                          const RootType &Root,
2519                                          const DominatesFn &Dominates) {
2520   assert(From->getType() == To->getType());
2521 
2522   unsigned Count = 0;
2523   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2524        UI != UE;) {
2525     Use &U = *UI++;
2526     if (!Dominates(Root, U))
2527       continue;
2528     U.set(To);
2529     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2530                       << "' as " << *To << " in " << *U << "\n");
2531     ++Count;
2532   }
2533   return Count;
2534 }
2535 
2536 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2537    assert(From->getType() == To->getType());
2538    auto *BB = From->getParent();
2539    unsigned Count = 0;
2540 
2541   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2542        UI != UE;) {
2543     Use &U = *UI++;
2544     auto *I = cast<Instruction>(U.getUser());
2545     if (I->getParent() == BB)
2546       continue;
2547     U.set(To);
2548     ++Count;
2549   }
2550   return Count;
2551 }
2552 
2553 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2554                                         DominatorTree &DT,
2555                                         const BasicBlockEdge &Root) {
2556   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2557     return DT.dominates(Root, U);
2558   };
2559   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2560 }
2561 
2562 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2563                                         DominatorTree &DT,
2564                                         const BasicBlock *BB) {
2565   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2566     auto *I = cast<Instruction>(U.getUser())->getParent();
2567     return DT.properlyDominates(BB, I);
2568   };
2569   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2570 }
2571 
2572 bool llvm::callsGCLeafFunction(const CallBase *Call,
2573                                const TargetLibraryInfo &TLI) {
2574   // Check if the function is specifically marked as a gc leaf function.
2575   if (Call->hasFnAttr("gc-leaf-function"))
2576     return true;
2577   if (const Function *F = Call->getCalledFunction()) {
2578     if (F->hasFnAttribute("gc-leaf-function"))
2579       return true;
2580 
2581     if (auto IID = F->getIntrinsicID())
2582       // Most LLVM intrinsics do not take safepoints.
2583       return IID != Intrinsic::experimental_gc_statepoint &&
2584              IID != Intrinsic::experimental_deoptimize;
2585   }
2586 
2587   // Lib calls can be materialized by some passes, and won't be
2588   // marked as 'gc-leaf-function.' All available Libcalls are
2589   // GC-leaf.
2590   LibFunc LF;
2591   if (TLI.getLibFunc(*Call, LF)) {
2592     return TLI.has(LF);
2593   }
2594 
2595   return false;
2596 }
2597 
2598 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2599                                LoadInst &NewLI) {
2600   auto *NewTy = NewLI.getType();
2601 
2602   // This only directly applies if the new type is also a pointer.
2603   if (NewTy->isPointerTy()) {
2604     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2605     return;
2606   }
2607 
2608   // The only other translation we can do is to integral loads with !range
2609   // metadata.
2610   if (!NewTy->isIntegerTy())
2611     return;
2612 
2613   MDBuilder MDB(NewLI.getContext());
2614   const Value *Ptr = OldLI.getPointerOperand();
2615   auto *ITy = cast<IntegerType>(NewTy);
2616   auto *NullInt = ConstantExpr::getPtrToInt(
2617       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2618   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2619   NewLI.setMetadata(LLVMContext::MD_range,
2620                     MDB.createRange(NonNullInt, NullInt));
2621 }
2622 
2623 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2624                              MDNode *N, LoadInst &NewLI) {
2625   auto *NewTy = NewLI.getType();
2626 
2627   // Give up unless it is converted to a pointer where there is a single very
2628   // valuable mapping we can do reliably.
2629   // FIXME: It would be nice to propagate this in more ways, but the type
2630   // conversions make it hard.
2631   if (!NewTy->isPointerTy())
2632     return;
2633 
2634   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2635   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2636     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2637     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2638   }
2639 }
2640 
2641 void llvm::dropDebugUsers(Instruction &I) {
2642   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2643   findDbgUsers(DbgUsers, &I);
2644   for (auto *DII : DbgUsers)
2645     DII->eraseFromParent();
2646 }
2647 
2648 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2649                                     BasicBlock *BB) {
2650   // Since we are moving the instructions out of its basic block, we do not
2651   // retain their original debug locations (DILocations) and debug intrinsic
2652   // instructions.
2653   //
2654   // Doing so would degrade the debugging experience and adversely affect the
2655   // accuracy of profiling information.
2656   //
2657   // Currently, when hoisting the instructions, we take the following actions:
2658   // - Remove their debug intrinsic instructions.
2659   // - Set their debug locations to the values from the insertion point.
2660   //
2661   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2662   // need to be deleted, is because there will not be any instructions with a
2663   // DILocation in either branch left after performing the transformation. We
2664   // can only insert a dbg.value after the two branches are joined again.
2665   //
2666   // See PR38762, PR39243 for more details.
2667   //
2668   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2669   // encode predicated DIExpressions that yield different results on different
2670   // code paths.
2671   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2672     Instruction *I = &*II;
2673     I->dropUnknownNonDebugMetadata();
2674     if (I->isUsedByMetadata())
2675       dropDebugUsers(*I);
2676     if (isa<DbgInfoIntrinsic>(I)) {
2677       // Remove DbgInfo Intrinsics.
2678       II = I->eraseFromParent();
2679       continue;
2680     }
2681     I->setDebugLoc(InsertPt->getDebugLoc());
2682     ++II;
2683   }
2684   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2685                                  BB->begin(),
2686                                  BB->getTerminator()->getIterator());
2687 }
2688 
2689 namespace {
2690 
2691 /// A potential constituent of a bitreverse or bswap expression. See
2692 /// collectBitParts for a fuller explanation.
2693 struct BitPart {
2694   BitPart(Value *P, unsigned BW) : Provider(P) {
2695     Provenance.resize(BW);
2696   }
2697 
2698   /// The Value that this is a bitreverse/bswap of.
2699   Value *Provider;
2700 
2701   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2702   /// in Provider becomes bit B in the result of this expression.
2703   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2704 
2705   enum { Unset = -1 };
2706 };
2707 
2708 } // end anonymous namespace
2709 
2710 /// Analyze the specified subexpression and see if it is capable of providing
2711 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2712 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2713 /// the output of the expression came from a corresponding bit in some other
2714 /// value. This function is recursive, and the end result is a mapping of
2715 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2716 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2717 ///
2718 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2719 /// that the expression deposits the low byte of %X into the high byte of the
2720 /// result and that all other bits are zero. This expression is accepted and a
2721 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2722 /// [0-7].
2723 ///
2724 /// To avoid revisiting values, the BitPart results are memoized into the
2725 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2726 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2727 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2728 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2729 /// type instead to provide the same functionality.
2730 ///
2731 /// Because we pass around references into \c BPS, we must use a container that
2732 /// does not invalidate internal references (std::map instead of DenseMap).
2733 static const Optional<BitPart> &
2734 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2735                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2736   auto I = BPS.find(V);
2737   if (I != BPS.end())
2738     return I->second;
2739 
2740   auto &Result = BPS[V] = None;
2741   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2742 
2743   // Prevent stack overflow by limiting the recursion depth
2744   if (Depth == BitPartRecursionMaxDepth) {
2745     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2746     return Result;
2747   }
2748 
2749   if (Instruction *I = dyn_cast<Instruction>(V)) {
2750     // If this is an or instruction, it may be an inner node of the bswap.
2751     if (I->getOpcode() == Instruction::Or) {
2752       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2753                                 MatchBitReversals, BPS, Depth + 1);
2754       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2755                                 MatchBitReversals, BPS, Depth + 1);
2756       if (!A || !B)
2757         return Result;
2758 
2759       // Try and merge the two together.
2760       if (!A->Provider || A->Provider != B->Provider)
2761         return Result;
2762 
2763       Result = BitPart(A->Provider, BitWidth);
2764       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2765         if (A->Provenance[i] != BitPart::Unset &&
2766             B->Provenance[i] != BitPart::Unset &&
2767             A->Provenance[i] != B->Provenance[i])
2768           return Result = None;
2769 
2770         if (A->Provenance[i] == BitPart::Unset)
2771           Result->Provenance[i] = B->Provenance[i];
2772         else
2773           Result->Provenance[i] = A->Provenance[i];
2774       }
2775 
2776       return Result;
2777     }
2778 
2779     // If this is a logical shift by a constant, recurse then shift the result.
2780     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2781       unsigned BitShift =
2782           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2783       // Ensure the shift amount is defined.
2784       if (BitShift > BitWidth)
2785         return Result;
2786 
2787       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2788                                   MatchBitReversals, BPS, Depth + 1);
2789       if (!Res)
2790         return Result;
2791       Result = Res;
2792 
2793       // Perform the "shift" on BitProvenance.
2794       auto &P = Result->Provenance;
2795       if (I->getOpcode() == Instruction::Shl) {
2796         P.erase(std::prev(P.end(), BitShift), P.end());
2797         P.insert(P.begin(), BitShift, BitPart::Unset);
2798       } else {
2799         P.erase(P.begin(), std::next(P.begin(), BitShift));
2800         P.insert(P.end(), BitShift, BitPart::Unset);
2801       }
2802 
2803       return Result;
2804     }
2805 
2806     // If this is a logical 'and' with a mask that clears bits, recurse then
2807     // unset the appropriate bits.
2808     if (I->getOpcode() == Instruction::And &&
2809         isa<ConstantInt>(I->getOperand(1))) {
2810       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2811       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2812 
2813       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2814       // early exit.
2815       unsigned NumMaskedBits = AndMask.countPopulation();
2816       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2817         return Result;
2818 
2819       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2820                                   MatchBitReversals, BPS, Depth + 1);
2821       if (!Res)
2822         return Result;
2823       Result = Res;
2824 
2825       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2826         // If the AndMask is zero for this bit, clear the bit.
2827         if ((AndMask & Bit) == 0)
2828           Result->Provenance[i] = BitPart::Unset;
2829       return Result;
2830     }
2831 
2832     // If this is a zext instruction zero extend the result.
2833     if (I->getOpcode() == Instruction::ZExt) {
2834       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2835                                   MatchBitReversals, BPS, Depth + 1);
2836       if (!Res)
2837         return Result;
2838 
2839       Result = BitPart(Res->Provider, BitWidth);
2840       auto NarrowBitWidth =
2841           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2842       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2843         Result->Provenance[i] = Res->Provenance[i];
2844       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2845         Result->Provenance[i] = BitPart::Unset;
2846       return Result;
2847     }
2848   }
2849 
2850   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2851   // the input value to the bswap/bitreverse.
2852   Result = BitPart(V, BitWidth);
2853   for (unsigned i = 0; i < BitWidth; ++i)
2854     Result->Provenance[i] = i;
2855   return Result;
2856 }
2857 
2858 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2859                                           unsigned BitWidth) {
2860   if (From % 8 != To % 8)
2861     return false;
2862   // Convert from bit indices to byte indices and check for a byte reversal.
2863   From >>= 3;
2864   To >>= 3;
2865   BitWidth >>= 3;
2866   return From == BitWidth - To - 1;
2867 }
2868 
2869 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2870                                                unsigned BitWidth) {
2871   return From == BitWidth - To - 1;
2872 }
2873 
2874 bool llvm::recognizeBSwapOrBitReverseIdiom(
2875     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2876     SmallVectorImpl<Instruction *> &InsertedInsts) {
2877   if (Operator::getOpcode(I) != Instruction::Or)
2878     return false;
2879   if (!MatchBSwaps && !MatchBitReversals)
2880     return false;
2881   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2882   if (!ITy || ITy->getBitWidth() > 128)
2883     return false;   // Can't do vectors or integers > 128 bits.
2884   unsigned BW = ITy->getBitWidth();
2885 
2886   unsigned DemandedBW = BW;
2887   IntegerType *DemandedTy = ITy;
2888   if (I->hasOneUse()) {
2889     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2890       DemandedTy = cast<IntegerType>(Trunc->getType());
2891       DemandedBW = DemandedTy->getBitWidth();
2892     }
2893   }
2894 
2895   // Try to find all the pieces corresponding to the bswap.
2896   std::map<Value *, Optional<BitPart>> BPS;
2897   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2898   if (!Res)
2899     return false;
2900   auto &BitProvenance = Res->Provenance;
2901 
2902   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2903   // only byteswap values with an even number of bytes.
2904   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2905   for (unsigned i = 0; i < DemandedBW; ++i) {
2906     OKForBSwap &=
2907         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2908     OKForBitReverse &=
2909         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2910   }
2911 
2912   Intrinsic::ID Intrin;
2913   if (OKForBSwap && MatchBSwaps)
2914     Intrin = Intrinsic::bswap;
2915   else if (OKForBitReverse && MatchBitReversals)
2916     Intrin = Intrinsic::bitreverse;
2917   else
2918     return false;
2919 
2920   if (ITy != DemandedTy) {
2921     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2922     Value *Provider = Res->Provider;
2923     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2924     // We may need to truncate the provider.
2925     if (DemandedTy != ProviderTy) {
2926       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2927                                      "trunc", I);
2928       InsertedInsts.push_back(Trunc);
2929       Provider = Trunc;
2930     }
2931     auto *CI = CallInst::Create(F, Provider, "rev", I);
2932     InsertedInsts.push_back(CI);
2933     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2934     InsertedInsts.push_back(ExtInst);
2935     return true;
2936   }
2937 
2938   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2939   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2940   return true;
2941 }
2942 
2943 // CodeGen has special handling for some string functions that may replace
2944 // them with target-specific intrinsics.  Since that'd skip our interceptors
2945 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2946 // we mark affected calls as NoBuiltin, which will disable optimization
2947 // in CodeGen.
2948 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2949     CallInst *CI, const TargetLibraryInfo *TLI) {
2950   Function *F = CI->getCalledFunction();
2951   LibFunc Func;
2952   if (F && !F->hasLocalLinkage() && F->hasName() &&
2953       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2954       !F->doesNotAccessMemory())
2955     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2956 }
2957 
2958 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2959   // We can't have a PHI with a metadata type.
2960   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2961     return false;
2962 
2963   // Early exit.
2964   if (!isa<Constant>(I->getOperand(OpIdx)))
2965     return true;
2966 
2967   switch (I->getOpcode()) {
2968   default:
2969     return true;
2970   case Instruction::Call:
2971   case Instruction::Invoke: {
2972     const auto &CB = cast<CallBase>(*I);
2973 
2974     // Can't handle inline asm. Skip it.
2975     if (CB.isInlineAsm())
2976       return false;
2977 
2978     // Constant bundle operands may need to retain their constant-ness for
2979     // correctness.
2980     if (CB.isBundleOperand(OpIdx))
2981       return false;
2982 
2983     if (OpIdx < CB.getNumArgOperands()) {
2984       // Some variadic intrinsics require constants in the variadic arguments,
2985       // which currently aren't markable as immarg.
2986       if (isa<IntrinsicInst>(CB) &&
2987           OpIdx >= CB.getFunctionType()->getNumParams()) {
2988         // This is known to be OK for stackmap.
2989         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
2990       }
2991 
2992       // gcroot is a special case, since it requires a constant argument which
2993       // isn't also required to be a simple ConstantInt.
2994       if (CB.getIntrinsicID() == Intrinsic::gcroot)
2995         return false;
2996 
2997       // Some intrinsic operands are required to be immediates.
2998       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
2999     }
3000 
3001     // It is never allowed to replace the call argument to an intrinsic, but it
3002     // may be possible for a call.
3003     return !isa<IntrinsicInst>(CB);
3004   }
3005   case Instruction::ShuffleVector:
3006     // Shufflevector masks are constant.
3007     return OpIdx != 2;
3008   case Instruction::Switch:
3009   case Instruction::ExtractValue:
3010     // All operands apart from the first are constant.
3011     return OpIdx == 0;
3012   case Instruction::InsertValue:
3013     // All operands apart from the first and the second are constant.
3014     return OpIdx < 2;
3015   case Instruction::Alloca:
3016     // Static allocas (constant size in the entry block) are handled by
3017     // prologue/epilogue insertion so they're free anyway. We definitely don't
3018     // want to make them non-constant.
3019     return !cast<AllocaInst>(I)->isStaticAlloca();
3020   case Instruction::GetElementPtr:
3021     if (OpIdx == 0)
3022       return true;
3023     gep_type_iterator It = gep_type_begin(I);
3024     for (auto E = std::next(It, OpIdx); It != E; ++It)
3025       if (It.isStruct())
3026         return false;
3027     return true;
3028   }
3029 }
3030 
3031 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
3032 AllocaInst *llvm::findAllocaForValue(Value *V,
3033                                      AllocaForValueMapTy &AllocaForValue) {
3034   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3035     return AI;
3036   // See if we've already calculated (or started to calculate) alloca for a
3037   // given value.
3038   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3039   if (I != AllocaForValue.end())
3040     return I->second;
3041   // Store 0 while we're calculating alloca for value V to avoid
3042   // infinite recursion if the value references itself.
3043   AllocaForValue[V] = nullptr;
3044   AllocaInst *Res = nullptr;
3045   if (CastInst *CI = dyn_cast<CastInst>(V))
3046     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
3047   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3048     for (Value *IncValue : PN->incoming_values()) {
3049       // Allow self-referencing phi-nodes.
3050       if (IncValue == PN)
3051         continue;
3052       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
3053       // AI for incoming values should exist and should all be equal.
3054       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3055         return nullptr;
3056       Res = IncValueAI;
3057     }
3058   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3059     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3060   } else {
3061     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3062                       << *V << "\n");
3063   }
3064   if (Res)
3065     AllocaForValue[V] = Res;
3066   return Res;
3067 }
3068 
3069 Value *llvm::invertCondition(Value *Condition) {
3070   // First: Check if it's a constant
3071   if (Constant *C = dyn_cast<Constant>(Condition))
3072     return ConstantExpr::getNot(C);
3073 
3074   // Second: If the condition is already inverted, return the original value
3075   Value *NotCondition;
3076   if (match(Condition, m_Not(m_Value(NotCondition))))
3077     return NotCondition;
3078 
3079   BasicBlock *Parent = nullptr;
3080   Instruction *Inst = dyn_cast<Instruction>(Condition);
3081   if (Inst)
3082     Parent = Inst->getParent();
3083   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3084     Parent = &Arg->getParent()->getEntryBlock();
3085   assert(Parent && "Unsupported condition to invert");
3086 
3087   // Third: Check all the users for an invert
3088   for (User *U : Condition->users())
3089     if (Instruction *I = dyn_cast<Instruction>(U))
3090       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3091         return I;
3092 
3093   // Last option: Create a new instruction
3094   auto *Inverted =
3095       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3096   if (Inst && !isa<PHINode>(Inst))
3097     Inverted->insertAfter(Inst);
3098   else
3099     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3100   return Inverted;
3101 }
3102