1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/KnownBits.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "local" 55 56 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 57 58 //===----------------------------------------------------------------------===// 59 // Local constant propagation. 60 // 61 62 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 63 /// constant value, convert it into an unconditional branch to the constant 64 /// destination. This is a nontrivial operation because the successors of this 65 /// basic block must have their PHI nodes updated. 66 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 67 /// conditions and indirectbr addresses this might make dead if 68 /// DeleteDeadConditions is true. 69 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 70 const TargetLibraryInfo *TLI) { 71 TerminatorInst *T = BB->getTerminator(); 72 IRBuilder<> Builder(T); 73 74 // Branch - See if we are conditional jumping on constant 75 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 76 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 77 BasicBlock *Dest1 = BI->getSuccessor(0); 78 BasicBlock *Dest2 = BI->getSuccessor(1); 79 80 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 81 // Are we branching on constant? 82 // YES. Change to unconditional branch... 83 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 84 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 85 86 //cerr << "Function: " << T->getParent()->getParent() 87 // << "\nRemoving branch from " << T->getParent() 88 // << "\n\nTo: " << OldDest << endl; 89 90 // Let the basic block know that we are letting go of it. Based on this, 91 // it will adjust it's PHI nodes. 92 OldDest->removePredecessor(BB); 93 94 // Replace the conditional branch with an unconditional one. 95 Builder.CreateBr(Destination); 96 BI->eraseFromParent(); 97 return true; 98 } 99 100 if (Dest2 == Dest1) { // Conditional branch to same location? 101 // This branch matches something like this: 102 // br bool %cond, label %Dest, label %Dest 103 // and changes it into: br label %Dest 104 105 // Let the basic block know that we are letting go of one copy of it. 106 assert(BI->getParent() && "Terminator not inserted in block!"); 107 Dest1->removePredecessor(BI->getParent()); 108 109 // Replace the conditional branch with an unconditional one. 110 Builder.CreateBr(Dest1); 111 Value *Cond = BI->getCondition(); 112 BI->eraseFromParent(); 113 if (DeleteDeadConditions) 114 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 115 return true; 116 } 117 return false; 118 } 119 120 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 121 // If we are switching on a constant, we can convert the switch to an 122 // unconditional branch. 123 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 124 BasicBlock *DefaultDest = SI->getDefaultDest(); 125 BasicBlock *TheOnlyDest = DefaultDest; 126 127 // If the default is unreachable, ignore it when searching for TheOnlyDest. 128 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 129 SI->getNumCases() > 0) { 130 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 131 } 132 133 // Figure out which case it goes to. 134 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 135 // Found case matching a constant operand? 136 if (i->getCaseValue() == CI) { 137 TheOnlyDest = i->getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i->getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i->getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 i = SI->removeCase(i); 169 e = SI->case_end(); 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i->getCaseSuccessor() != TheOnlyDest) 177 TheOnlyDest = nullptr; 178 179 // Increment this iterator as we haven't removed the case. 180 ++i; 181 } 182 183 if (CI && !TheOnlyDest) { 184 // Branching on a constant, but not any of the cases, go to the default 185 // successor. 186 TheOnlyDest = SI->getDefaultDest(); 187 } 188 189 // If we found a single destination that we can fold the switch into, do so 190 // now. 191 if (TheOnlyDest) { 192 // Insert the new branch. 193 Builder.CreateBr(TheOnlyDest); 194 BasicBlock *BB = SI->getParent(); 195 196 // Remove entries from PHI nodes which we no longer branch to... 197 for (BasicBlock *Succ : SI->successors()) { 198 // Found case matching a constant operand? 199 if (Succ == TheOnlyDest) 200 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 201 else 202 Succ->removePredecessor(BB); 203 } 204 205 // Delete the old switch. 206 Value *Cond = SI->getCondition(); 207 SI->eraseFromParent(); 208 if (DeleteDeadConditions) 209 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 210 return true; 211 } 212 213 if (SI->getNumCases() == 1) { 214 // Otherwise, we can fold this switch into a conditional branch 215 // instruction if it has only one non-default destination. 216 auto FirstCase = *SI->case_begin(); 217 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 218 FirstCase.getCaseValue(), "cond"); 219 220 // Insert the new branch. 221 BranchInst *NewBr = Builder.CreateCondBr(Cond, 222 FirstCase.getCaseSuccessor(), 223 SI->getDefaultDest()); 224 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 225 if (MD && MD->getNumOperands() == 3) { 226 ConstantInt *SICase = 227 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 228 ConstantInt *SIDef = 229 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 230 assert(SICase && SIDef); 231 // The TrueWeight should be the weight for the single case of SI. 232 NewBr->setMetadata(LLVMContext::MD_prof, 233 MDBuilder(BB->getContext()). 234 createBranchWeights(SICase->getValue().getZExtValue(), 235 SIDef->getValue().getZExtValue())); 236 } 237 238 // Update make.implicit metadata to the newly-created conditional branch. 239 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 240 if (MakeImplicitMD) 241 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 242 243 // Delete the old switch. 244 SI->eraseFromParent(); 245 return true; 246 } 247 return false; 248 } 249 250 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 251 // indirectbr blockaddress(@F, @BB) -> br label @BB 252 if (BlockAddress *BA = 253 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 254 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 255 // Insert the new branch. 256 Builder.CreateBr(TheOnlyDest); 257 258 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 259 if (IBI->getDestination(i) == TheOnlyDest) 260 TheOnlyDest = nullptr; 261 else 262 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 263 } 264 Value *Address = IBI->getAddress(); 265 IBI->eraseFromParent(); 266 if (DeleteDeadConditions) 267 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 268 269 // If we didn't find our destination in the IBI successor list, then we 270 // have undefined behavior. Replace the unconditional branch with an 271 // 'unreachable' instruction. 272 if (TheOnlyDest) { 273 BB->getTerminator()->eraseFromParent(); 274 new UnreachableInst(BB->getContext(), BB); 275 } 276 277 return true; 278 } 279 } 280 281 return false; 282 } 283 284 285 //===----------------------------------------------------------------------===// 286 // Local dead code elimination. 287 // 288 289 /// isInstructionTriviallyDead - Return true if the result produced by the 290 /// instruction is not used, and the instruction has no side effects. 291 /// 292 bool llvm::isInstructionTriviallyDead(Instruction *I, 293 const TargetLibraryInfo *TLI) { 294 if (!I->use_empty()) 295 return false; 296 return wouldInstructionBeTriviallyDead(I, TLI); 297 } 298 299 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 300 const TargetLibraryInfo *TLI) { 301 if (isa<TerminatorInst>(I)) 302 return false; 303 304 // We don't want the landingpad-like instructions removed by anything this 305 // general. 306 if (I->isEHPad()) 307 return false; 308 309 // We don't want debug info removed by anything this general, unless 310 // debug info is empty. 311 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 312 if (DDI->getAddress()) 313 return false; 314 return true; 315 } 316 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 317 if (DVI->getValue()) 318 return false; 319 return true; 320 } 321 322 if (!I->mayHaveSideEffects()) 323 return true; 324 325 // Special case intrinsics that "may have side effects" but can be deleted 326 // when dead. 327 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 328 // Safe to delete llvm.stacksave if dead. 329 if (II->getIntrinsicID() == Intrinsic::stacksave) 330 return true; 331 332 // Lifetime intrinsics are dead when their right-hand is undef. 333 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 334 II->getIntrinsicID() == Intrinsic::lifetime_end) 335 return isa<UndefValue>(II->getArgOperand(1)); 336 337 // Assumptions are dead if their condition is trivially true. Guards on 338 // true are operationally no-ops. In the future we can consider more 339 // sophisticated tradeoffs for guards considering potential for check 340 // widening, but for now we keep things simple. 341 if (II->getIntrinsicID() == Intrinsic::assume || 342 II->getIntrinsicID() == Intrinsic::experimental_guard) { 343 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 344 return !Cond->isZero(); 345 346 return false; 347 } 348 } 349 350 if (isAllocLikeFn(I, TLI)) 351 return true; 352 353 if (CallInst *CI = isFreeCall(I, TLI)) 354 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 355 return C->isNullValue() || isa<UndefValue>(C); 356 357 if (CallSite CS = CallSite(I)) 358 if (isMathLibCallNoop(CS, TLI)) 359 return true; 360 361 return false; 362 } 363 364 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 365 /// trivially dead instruction, delete it. If that makes any of its operands 366 /// trivially dead, delete them too, recursively. Return true if any 367 /// instructions were deleted. 368 bool 369 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 370 const TargetLibraryInfo *TLI) { 371 Instruction *I = dyn_cast<Instruction>(V); 372 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 373 return false; 374 375 SmallVector<Instruction*, 16> DeadInsts; 376 DeadInsts.push_back(I); 377 378 do { 379 I = DeadInsts.pop_back_val(); 380 381 // Null out all of the instruction's operands to see if any operand becomes 382 // dead as we go. 383 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 384 Value *OpV = I->getOperand(i); 385 I->setOperand(i, nullptr); 386 387 if (!OpV->use_empty()) continue; 388 389 // If the operand is an instruction that became dead as we nulled out the 390 // operand, and if it is 'trivially' dead, delete it in a future loop 391 // iteration. 392 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 393 if (isInstructionTriviallyDead(OpI, TLI)) 394 DeadInsts.push_back(OpI); 395 } 396 397 I->eraseFromParent(); 398 } while (!DeadInsts.empty()); 399 400 return true; 401 } 402 403 /// areAllUsesEqual - Check whether the uses of a value are all the same. 404 /// This is similar to Instruction::hasOneUse() except this will also return 405 /// true when there are no uses or multiple uses that all refer to the same 406 /// value. 407 static bool areAllUsesEqual(Instruction *I) { 408 Value::user_iterator UI = I->user_begin(); 409 Value::user_iterator UE = I->user_end(); 410 if (UI == UE) 411 return true; 412 413 User *TheUse = *UI; 414 for (++UI; UI != UE; ++UI) { 415 if (*UI != TheUse) 416 return false; 417 } 418 return true; 419 } 420 421 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 422 /// dead PHI node, due to being a def-use chain of single-use nodes that 423 /// either forms a cycle or is terminated by a trivially dead instruction, 424 /// delete it. If that makes any of its operands trivially dead, delete them 425 /// too, recursively. Return true if a change was made. 426 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 427 const TargetLibraryInfo *TLI) { 428 SmallPtrSet<Instruction*, 4> Visited; 429 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 430 I = cast<Instruction>(*I->user_begin())) { 431 if (I->use_empty()) 432 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 433 434 // If we find an instruction more than once, we're on a cycle that 435 // won't prove fruitful. 436 if (!Visited.insert(I).second) { 437 // Break the cycle and delete the instruction and its operands. 438 I->replaceAllUsesWith(UndefValue::get(I->getType())); 439 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 440 return true; 441 } 442 } 443 return false; 444 } 445 446 static bool 447 simplifyAndDCEInstruction(Instruction *I, 448 SmallSetVector<Instruction *, 16> &WorkList, 449 const DataLayout &DL, 450 const TargetLibraryInfo *TLI) { 451 if (isInstructionTriviallyDead(I, TLI)) { 452 // Null out all of the instruction's operands to see if any operand becomes 453 // dead as we go. 454 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 455 Value *OpV = I->getOperand(i); 456 I->setOperand(i, nullptr); 457 458 if (!OpV->use_empty() || I == OpV) 459 continue; 460 461 // If the operand is an instruction that became dead as we nulled out the 462 // operand, and if it is 'trivially' dead, delete it in a future loop 463 // iteration. 464 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 465 if (isInstructionTriviallyDead(OpI, TLI)) 466 WorkList.insert(OpI); 467 } 468 469 I->eraseFromParent(); 470 471 return true; 472 } 473 474 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 475 // Add the users to the worklist. CAREFUL: an instruction can use itself, 476 // in the case of a phi node. 477 for (User *U : I->users()) { 478 if (U != I) { 479 WorkList.insert(cast<Instruction>(U)); 480 } 481 } 482 483 // Replace the instruction with its simplified value. 484 bool Changed = false; 485 if (!I->use_empty()) { 486 I->replaceAllUsesWith(SimpleV); 487 Changed = true; 488 } 489 if (isInstructionTriviallyDead(I, TLI)) { 490 I->eraseFromParent(); 491 Changed = true; 492 } 493 return Changed; 494 } 495 return false; 496 } 497 498 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 499 /// simplify any instructions in it and recursively delete dead instructions. 500 /// 501 /// This returns true if it changed the code, note that it can delete 502 /// instructions in other blocks as well in this block. 503 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 504 const TargetLibraryInfo *TLI) { 505 bool MadeChange = false; 506 const DataLayout &DL = BB->getModule()->getDataLayout(); 507 508 #ifndef NDEBUG 509 // In debug builds, ensure that the terminator of the block is never replaced 510 // or deleted by these simplifications. The idea of simplification is that it 511 // cannot introduce new instructions, and there is no way to replace the 512 // terminator of a block without introducing a new instruction. 513 AssertingVH<Instruction> TerminatorVH(&BB->back()); 514 #endif 515 516 SmallSetVector<Instruction *, 16> WorkList; 517 // Iterate over the original function, only adding insts to the worklist 518 // if they actually need to be revisited. This avoids having to pre-init 519 // the worklist with the entire function's worth of instructions. 520 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 521 BI != E;) { 522 assert(!BI->isTerminator()); 523 Instruction *I = &*BI; 524 ++BI; 525 526 // We're visiting this instruction now, so make sure it's not in the 527 // worklist from an earlier visit. 528 if (!WorkList.count(I)) 529 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 530 } 531 532 while (!WorkList.empty()) { 533 Instruction *I = WorkList.pop_back_val(); 534 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 535 } 536 return MadeChange; 537 } 538 539 //===----------------------------------------------------------------------===// 540 // Control Flow Graph Restructuring. 541 // 542 543 544 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 545 /// method is called when we're about to delete Pred as a predecessor of BB. If 546 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 547 /// 548 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 549 /// nodes that collapse into identity values. For example, if we have: 550 /// x = phi(1, 0, 0, 0) 551 /// y = and x, z 552 /// 553 /// .. and delete the predecessor corresponding to the '1', this will attempt to 554 /// recursively fold the and to 0. 555 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 556 // This only adjusts blocks with PHI nodes. 557 if (!isa<PHINode>(BB->begin())) 558 return; 559 560 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 561 // them down. This will leave us with single entry phi nodes and other phis 562 // that can be removed. 563 BB->removePredecessor(Pred, true); 564 565 WeakVH PhiIt = &BB->front(); 566 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 567 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 568 Value *OldPhiIt = PhiIt; 569 570 if (!recursivelySimplifyInstruction(PN)) 571 continue; 572 573 // If recursive simplification ended up deleting the next PHI node we would 574 // iterate to, then our iterator is invalid, restart scanning from the top 575 // of the block. 576 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 577 } 578 } 579 580 581 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 582 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 583 /// between them, moving the instructions in the predecessor into DestBB and 584 /// deleting the predecessor block. 585 /// 586 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 587 // If BB has single-entry PHI nodes, fold them. 588 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 589 Value *NewVal = PN->getIncomingValue(0); 590 // Replace self referencing PHI with undef, it must be dead. 591 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 592 PN->replaceAllUsesWith(NewVal); 593 PN->eraseFromParent(); 594 } 595 596 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 597 assert(PredBB && "Block doesn't have a single predecessor!"); 598 599 // Zap anything that took the address of DestBB. Not doing this will give the 600 // address an invalid value. 601 if (DestBB->hasAddressTaken()) { 602 BlockAddress *BA = BlockAddress::get(DestBB); 603 Constant *Replacement = 604 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 605 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 606 BA->getType())); 607 BA->destroyConstant(); 608 } 609 610 // Anything that branched to PredBB now branches to DestBB. 611 PredBB->replaceAllUsesWith(DestBB); 612 613 // Splice all the instructions from PredBB to DestBB. 614 PredBB->getTerminator()->eraseFromParent(); 615 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 616 617 // If the PredBB is the entry block of the function, move DestBB up to 618 // become the entry block after we erase PredBB. 619 if (PredBB == &DestBB->getParent()->getEntryBlock()) 620 DestBB->moveAfter(PredBB); 621 622 if (DT) { 623 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 624 DT->changeImmediateDominator(DestBB, PredBBIDom); 625 DT->eraseNode(PredBB); 626 } 627 // Nuke BB. 628 PredBB->eraseFromParent(); 629 } 630 631 /// CanMergeValues - Return true if we can choose one of these values to use 632 /// in place of the other. Note that we will always choose the non-undef 633 /// value to keep. 634 static bool CanMergeValues(Value *First, Value *Second) { 635 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 636 } 637 638 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 639 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 640 /// 641 /// Assumption: Succ is the single successor for BB. 642 /// 643 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 644 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 645 646 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 647 << Succ->getName() << "\n"); 648 // Shortcut, if there is only a single predecessor it must be BB and merging 649 // is always safe 650 if (Succ->getSinglePredecessor()) return true; 651 652 // Make a list of the predecessors of BB 653 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 654 655 // Look at all the phi nodes in Succ, to see if they present a conflict when 656 // merging these blocks 657 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 658 PHINode *PN = cast<PHINode>(I); 659 660 // If the incoming value from BB is again a PHINode in 661 // BB which has the same incoming value for *PI as PN does, we can 662 // merge the phi nodes and then the blocks can still be merged 663 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 664 if (BBPN && BBPN->getParent() == BB) { 665 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 666 BasicBlock *IBB = PN->getIncomingBlock(PI); 667 if (BBPreds.count(IBB) && 668 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 669 PN->getIncomingValue(PI))) { 670 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 671 << Succ->getName() << " is conflicting with " 672 << BBPN->getName() << " with regard to common predecessor " 673 << IBB->getName() << "\n"); 674 return false; 675 } 676 } 677 } else { 678 Value* Val = PN->getIncomingValueForBlock(BB); 679 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 680 // See if the incoming value for the common predecessor is equal to the 681 // one for BB, in which case this phi node will not prevent the merging 682 // of the block. 683 BasicBlock *IBB = PN->getIncomingBlock(PI); 684 if (BBPreds.count(IBB) && 685 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 686 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 687 << Succ->getName() << " is conflicting with regard to common " 688 << "predecessor " << IBB->getName() << "\n"); 689 return false; 690 } 691 } 692 } 693 } 694 695 return true; 696 } 697 698 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 699 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 700 701 /// \brief Determines the value to use as the phi node input for a block. 702 /// 703 /// Select between \p OldVal any value that we know flows from \p BB 704 /// to a particular phi on the basis of which one (if either) is not 705 /// undef. Update IncomingValues based on the selected value. 706 /// 707 /// \param OldVal The value we are considering selecting. 708 /// \param BB The block that the value flows in from. 709 /// \param IncomingValues A map from block-to-value for other phi inputs 710 /// that we have examined. 711 /// 712 /// \returns the selected value. 713 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 714 IncomingValueMap &IncomingValues) { 715 if (!isa<UndefValue>(OldVal)) { 716 assert((!IncomingValues.count(BB) || 717 IncomingValues.find(BB)->second == OldVal) && 718 "Expected OldVal to match incoming value from BB!"); 719 720 IncomingValues.insert(std::make_pair(BB, OldVal)); 721 return OldVal; 722 } 723 724 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 725 if (It != IncomingValues.end()) return It->second; 726 727 return OldVal; 728 } 729 730 /// \brief Create a map from block to value for the operands of a 731 /// given phi. 732 /// 733 /// Create a map from block to value for each non-undef value flowing 734 /// into \p PN. 735 /// 736 /// \param PN The phi we are collecting the map for. 737 /// \param IncomingValues [out] The map from block to value for this phi. 738 static void gatherIncomingValuesToPhi(PHINode *PN, 739 IncomingValueMap &IncomingValues) { 740 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 741 BasicBlock *BB = PN->getIncomingBlock(i); 742 Value *V = PN->getIncomingValue(i); 743 744 if (!isa<UndefValue>(V)) 745 IncomingValues.insert(std::make_pair(BB, V)); 746 } 747 } 748 749 /// \brief Replace the incoming undef values to a phi with the values 750 /// from a block-to-value map. 751 /// 752 /// \param PN The phi we are replacing the undefs in. 753 /// \param IncomingValues A map from block to value. 754 static void replaceUndefValuesInPhi(PHINode *PN, 755 const IncomingValueMap &IncomingValues) { 756 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 757 Value *V = PN->getIncomingValue(i); 758 759 if (!isa<UndefValue>(V)) continue; 760 761 BasicBlock *BB = PN->getIncomingBlock(i); 762 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 763 if (It == IncomingValues.end()) continue; 764 765 PN->setIncomingValue(i, It->second); 766 } 767 } 768 769 /// \brief Replace a value flowing from a block to a phi with 770 /// potentially multiple instances of that value flowing from the 771 /// block's predecessors to the phi. 772 /// 773 /// \param BB The block with the value flowing into the phi. 774 /// \param BBPreds The predecessors of BB. 775 /// \param PN The phi that we are updating. 776 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 777 const PredBlockVector &BBPreds, 778 PHINode *PN) { 779 Value *OldVal = PN->removeIncomingValue(BB, false); 780 assert(OldVal && "No entry in PHI for Pred BB!"); 781 782 IncomingValueMap IncomingValues; 783 784 // We are merging two blocks - BB, and the block containing PN - and 785 // as a result we need to redirect edges from the predecessors of BB 786 // to go to the block containing PN, and update PN 787 // accordingly. Since we allow merging blocks in the case where the 788 // predecessor and successor blocks both share some predecessors, 789 // and where some of those common predecessors might have undef 790 // values flowing into PN, we want to rewrite those values to be 791 // consistent with the non-undef values. 792 793 gatherIncomingValuesToPhi(PN, IncomingValues); 794 795 // If this incoming value is one of the PHI nodes in BB, the new entries 796 // in the PHI node are the entries from the old PHI. 797 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 798 PHINode *OldValPN = cast<PHINode>(OldVal); 799 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 800 // Note that, since we are merging phi nodes and BB and Succ might 801 // have common predecessors, we could end up with a phi node with 802 // identical incoming branches. This will be cleaned up later (and 803 // will trigger asserts if we try to clean it up now, without also 804 // simplifying the corresponding conditional branch). 805 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 806 Value *PredVal = OldValPN->getIncomingValue(i); 807 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 808 IncomingValues); 809 810 // And add a new incoming value for this predecessor for the 811 // newly retargeted branch. 812 PN->addIncoming(Selected, PredBB); 813 } 814 } else { 815 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 816 // Update existing incoming values in PN for this 817 // predecessor of BB. 818 BasicBlock *PredBB = BBPreds[i]; 819 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 820 IncomingValues); 821 822 // And add a new incoming value for this predecessor for the 823 // newly retargeted branch. 824 PN->addIncoming(Selected, PredBB); 825 } 826 } 827 828 replaceUndefValuesInPhi(PN, IncomingValues); 829 } 830 831 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 832 /// unconditional branch, and contains no instructions other than PHI nodes, 833 /// potential side-effect free intrinsics and the branch. If possible, 834 /// eliminate BB by rewriting all the predecessors to branch to the successor 835 /// block and return true. If we can't transform, return false. 836 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 837 assert(BB != &BB->getParent()->getEntryBlock() && 838 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 839 840 // We can't eliminate infinite loops. 841 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 842 if (BB == Succ) return false; 843 844 // Check to see if merging these blocks would cause conflicts for any of the 845 // phi nodes in BB or Succ. If not, we can safely merge. 846 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 847 848 // Check for cases where Succ has multiple predecessors and a PHI node in BB 849 // has uses which will not disappear when the PHI nodes are merged. It is 850 // possible to handle such cases, but difficult: it requires checking whether 851 // BB dominates Succ, which is non-trivial to calculate in the case where 852 // Succ has multiple predecessors. Also, it requires checking whether 853 // constructing the necessary self-referential PHI node doesn't introduce any 854 // conflicts; this isn't too difficult, but the previous code for doing this 855 // was incorrect. 856 // 857 // Note that if this check finds a live use, BB dominates Succ, so BB is 858 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 859 // folding the branch isn't profitable in that case anyway. 860 if (!Succ->getSinglePredecessor()) { 861 BasicBlock::iterator BBI = BB->begin(); 862 while (isa<PHINode>(*BBI)) { 863 for (Use &U : BBI->uses()) { 864 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 865 if (PN->getIncomingBlock(U) != BB) 866 return false; 867 } else { 868 return false; 869 } 870 } 871 ++BBI; 872 } 873 } 874 875 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 876 877 if (isa<PHINode>(Succ->begin())) { 878 // If there is more than one pred of succ, and there are PHI nodes in 879 // the successor, then we need to add incoming edges for the PHI nodes 880 // 881 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 882 883 // Loop over all of the PHI nodes in the successor of BB. 884 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 885 PHINode *PN = cast<PHINode>(I); 886 887 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 888 } 889 } 890 891 if (Succ->getSinglePredecessor()) { 892 // BB is the only predecessor of Succ, so Succ will end up with exactly 893 // the same predecessors BB had. 894 895 // Copy over any phi, debug or lifetime instruction. 896 BB->getTerminator()->eraseFromParent(); 897 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 898 BB->getInstList()); 899 } else { 900 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 901 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 902 assert(PN->use_empty() && "There shouldn't be any uses here!"); 903 PN->eraseFromParent(); 904 } 905 } 906 907 // If the unconditional branch we replaced contains llvm.loop metadata, we 908 // add the metadata to the branch instructions in the predecessors. 909 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 910 Instruction *TI = BB->getTerminator(); 911 if (TI) 912 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 913 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 914 BasicBlock *Pred = *PI; 915 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 916 } 917 918 // Everything that jumped to BB now goes to Succ. 919 BB->replaceAllUsesWith(Succ); 920 if (!Succ->hasName()) Succ->takeName(BB); 921 BB->eraseFromParent(); // Delete the old basic block. 922 return true; 923 } 924 925 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 926 /// nodes in this block. This doesn't try to be clever about PHI nodes 927 /// which differ only in the order of the incoming values, but instcombine 928 /// orders them so it usually won't matter. 929 /// 930 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 931 // This implementation doesn't currently consider undef operands 932 // specially. Theoretically, two phis which are identical except for 933 // one having an undef where the other doesn't could be collapsed. 934 935 struct PHIDenseMapInfo { 936 static PHINode *getEmptyKey() { 937 return DenseMapInfo<PHINode *>::getEmptyKey(); 938 } 939 static PHINode *getTombstoneKey() { 940 return DenseMapInfo<PHINode *>::getTombstoneKey(); 941 } 942 static unsigned getHashValue(PHINode *PN) { 943 // Compute a hash value on the operands. Instcombine will likely have 944 // sorted them, which helps expose duplicates, but we have to check all 945 // the operands to be safe in case instcombine hasn't run. 946 return static_cast<unsigned>(hash_combine( 947 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 948 hash_combine_range(PN->block_begin(), PN->block_end()))); 949 } 950 static bool isEqual(PHINode *LHS, PHINode *RHS) { 951 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 952 RHS == getEmptyKey() || RHS == getTombstoneKey()) 953 return LHS == RHS; 954 return LHS->isIdenticalTo(RHS); 955 } 956 }; 957 958 // Set of unique PHINodes. 959 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 960 961 // Examine each PHI. 962 bool Changed = false; 963 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 964 auto Inserted = PHISet.insert(PN); 965 if (!Inserted.second) { 966 // A duplicate. Replace this PHI with its duplicate. 967 PN->replaceAllUsesWith(*Inserted.first); 968 PN->eraseFromParent(); 969 Changed = true; 970 971 // The RAUW can change PHIs that we already visited. Start over from the 972 // beginning. 973 PHISet.clear(); 974 I = BB->begin(); 975 } 976 } 977 978 return Changed; 979 } 980 981 /// enforceKnownAlignment - If the specified pointer points to an object that 982 /// we control, modify the object's alignment to PrefAlign. This isn't 983 /// often possible though. If alignment is important, a more reliable approach 984 /// is to simply align all global variables and allocation instructions to 985 /// their preferred alignment from the beginning. 986 /// 987 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 988 unsigned PrefAlign, 989 const DataLayout &DL) { 990 assert(PrefAlign > Align); 991 992 V = V->stripPointerCasts(); 993 994 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 995 // TODO: ideally, computeKnownBits ought to have used 996 // AllocaInst::getAlignment() in its computation already, making 997 // the below max redundant. But, as it turns out, 998 // stripPointerCasts recurses through infinite layers of bitcasts, 999 // while computeKnownBits is not allowed to traverse more than 6 1000 // levels. 1001 Align = std::max(AI->getAlignment(), Align); 1002 if (PrefAlign <= Align) 1003 return Align; 1004 1005 // If the preferred alignment is greater than the natural stack alignment 1006 // then don't round up. This avoids dynamic stack realignment. 1007 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1008 return Align; 1009 AI->setAlignment(PrefAlign); 1010 return PrefAlign; 1011 } 1012 1013 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1014 // TODO: as above, this shouldn't be necessary. 1015 Align = std::max(GO->getAlignment(), Align); 1016 if (PrefAlign <= Align) 1017 return Align; 1018 1019 // If there is a large requested alignment and we can, bump up the alignment 1020 // of the global. If the memory we set aside for the global may not be the 1021 // memory used by the final program then it is impossible for us to reliably 1022 // enforce the preferred alignment. 1023 if (!GO->canIncreaseAlignment()) 1024 return Align; 1025 1026 GO->setAlignment(PrefAlign); 1027 return PrefAlign; 1028 } 1029 1030 return Align; 1031 } 1032 1033 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1034 const DataLayout &DL, 1035 const Instruction *CxtI, 1036 AssumptionCache *AC, 1037 const DominatorTree *DT) { 1038 assert(V->getType()->isPointerTy() && 1039 "getOrEnforceKnownAlignment expects a pointer!"); 1040 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1041 1042 KnownBits Known(BitWidth); 1043 computeKnownBits(V, Known, DL, 0, AC, CxtI, DT); 1044 unsigned TrailZ = Known.Zero.countTrailingOnes(); 1045 1046 // Avoid trouble with ridiculously large TrailZ values, such as 1047 // those computed from a null pointer. 1048 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1049 1050 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1051 1052 // LLVM doesn't support alignments larger than this currently. 1053 Align = std::min(Align, +Value::MaximumAlignment); 1054 1055 if (PrefAlign > Align) 1056 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1057 1058 // We don't need to make any adjustment. 1059 return Align; 1060 } 1061 1062 ///===---------------------------------------------------------------------===// 1063 /// Dbg Intrinsic utilities 1064 /// 1065 1066 /// See if there is a dbg.value intrinsic for DIVar before I. 1067 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1068 Instruction *I) { 1069 // Since we can't guarantee that the original dbg.declare instrinsic 1070 // is removed by LowerDbgDeclare(), we need to make sure that we are 1071 // not inserting the same dbg.value intrinsic over and over. 1072 llvm::BasicBlock::InstListType::iterator PrevI(I); 1073 if (PrevI != I->getParent()->getInstList().begin()) { 1074 --PrevI; 1075 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1076 if (DVI->getValue() == I->getOperand(0) && 1077 DVI->getOffset() == 0 && 1078 DVI->getVariable() == DIVar && 1079 DVI->getExpression() == DIExpr) 1080 return true; 1081 } 1082 return false; 1083 } 1084 1085 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1086 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1087 DIExpression *DIExpr, 1088 PHINode *APN) { 1089 // Since we can't guarantee that the original dbg.declare instrinsic 1090 // is removed by LowerDbgDeclare(), we need to make sure that we are 1091 // not inserting the same dbg.value intrinsic over and over. 1092 SmallVector<DbgValueInst *, 1> DbgValues; 1093 findDbgValues(DbgValues, APN); 1094 for (auto *DVI : DbgValues) { 1095 assert(DVI->getValue() == APN); 1096 assert(DVI->getOffset() == 0); 1097 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1098 return true; 1099 } 1100 return false; 1101 } 1102 1103 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1104 /// that has an associated llvm.dbg.decl intrinsic. 1105 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1106 StoreInst *SI, DIBuilder &Builder) { 1107 auto *DIVar = DDI->getVariable(); 1108 auto *DIExpr = DDI->getExpression(); 1109 assert(DIVar && "Missing variable"); 1110 1111 // If an argument is zero extended then use argument directly. The ZExt 1112 // may be zapped by an optimization pass in future. 1113 Argument *ExtendedArg = nullptr; 1114 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1115 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1116 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1117 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1118 if (ExtendedArg) { 1119 // We're now only describing a subset of the variable. The fragment we're 1120 // describing will always be smaller than the variable size, because 1121 // VariableSize == Size of Alloca described by DDI. Since SI stores 1122 // to the alloca described by DDI, if it's first operand is an extend, 1123 // we're guaranteed that before extension, the value was narrower than 1124 // the size of the alloca, hence the size of the described variable. 1125 SmallVector<uint64_t, 3> Ops; 1126 unsigned FragmentOffset = 0; 1127 // If this already is a bit fragment, we drop the bit fragment from the 1128 // expression and record the offset. 1129 auto Fragment = DIExpr->getFragmentInfo(); 1130 if (Fragment) { 1131 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1132 FragmentOffset = Fragment->OffsetInBits; 1133 } else { 1134 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1135 } 1136 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1137 Ops.push_back(FragmentOffset); 1138 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1139 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1140 auto NewDIExpr = Builder.createExpression(Ops); 1141 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1142 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1143 DDI->getDebugLoc(), SI); 1144 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1145 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1146 DDI->getDebugLoc(), SI); 1147 } 1148 1149 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1150 /// that has an associated llvm.dbg.decl intrinsic. 1151 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1152 LoadInst *LI, DIBuilder &Builder) { 1153 auto *DIVar = DDI->getVariable(); 1154 auto *DIExpr = DDI->getExpression(); 1155 assert(DIVar && "Missing variable"); 1156 1157 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1158 return; 1159 1160 // We are now tracking the loaded value instead of the address. In the 1161 // future if multi-location support is added to the IR, it might be 1162 // preferable to keep tracking both the loaded value and the original 1163 // address in case the alloca can not be elided. 1164 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1165 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1166 DbgValue->insertAfter(LI); 1167 } 1168 1169 /// Inserts a llvm.dbg.value intrinsic after a phi 1170 /// that has an associated llvm.dbg.decl intrinsic. 1171 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1172 PHINode *APN, DIBuilder &Builder) { 1173 auto *DIVar = DDI->getVariable(); 1174 auto *DIExpr = DDI->getExpression(); 1175 assert(DIVar && "Missing variable"); 1176 1177 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1178 return; 1179 1180 BasicBlock *BB = APN->getParent(); 1181 auto InsertionPt = BB->getFirstInsertionPt(); 1182 1183 // The block may be a catchswitch block, which does not have a valid 1184 // insertion point. 1185 // FIXME: Insert dbg.value markers in the successors when appropriate. 1186 if (InsertionPt != BB->end()) 1187 Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1188 &*InsertionPt); 1189 } 1190 1191 /// Determine whether this alloca is either a VLA or an array. 1192 static bool isArray(AllocaInst *AI) { 1193 return AI->isArrayAllocation() || 1194 AI->getType()->getElementType()->isArrayTy(); 1195 } 1196 1197 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1198 /// of llvm.dbg.value intrinsics. 1199 bool llvm::LowerDbgDeclare(Function &F) { 1200 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1201 SmallVector<DbgDeclareInst *, 4> Dbgs; 1202 for (auto &FI : F) 1203 for (Instruction &BI : FI) 1204 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1205 Dbgs.push_back(DDI); 1206 1207 if (Dbgs.empty()) 1208 return false; 1209 1210 for (auto &I : Dbgs) { 1211 DbgDeclareInst *DDI = I; 1212 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1213 // If this is an alloca for a scalar variable, insert a dbg.value 1214 // at each load and store to the alloca and erase the dbg.declare. 1215 // The dbg.values allow tracking a variable even if it is not 1216 // stored on the stack, while the dbg.declare can only describe 1217 // the stack slot (and at a lexical-scope granularity). Later 1218 // passes will attempt to elide the stack slot. 1219 if (AI && !isArray(AI)) { 1220 for (auto &AIUse : AI->uses()) { 1221 User *U = AIUse.getUser(); 1222 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1223 if (AIUse.getOperandNo() == 1) 1224 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1225 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1226 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1227 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1228 // This is a call by-value or some other instruction that 1229 // takes a pointer to the variable. Insert a *value* 1230 // intrinsic that describes the alloca. 1231 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1232 DDI->getExpression(), DDI->getDebugLoc(), 1233 CI); 1234 } 1235 } 1236 DDI->eraseFromParent(); 1237 } 1238 } 1239 return true; 1240 } 1241 1242 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1243 /// alloca 'V', if any. 1244 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1245 if (auto *L = LocalAsMetadata::getIfExists(V)) 1246 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1247 for (User *U : MDV->users()) 1248 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1249 return DDI; 1250 1251 return nullptr; 1252 } 1253 1254 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1255 if (auto *L = LocalAsMetadata::getIfExists(V)) 1256 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1257 for (User *U : MDV->users()) 1258 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1259 DbgValues.push_back(DVI); 1260 } 1261 1262 1263 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1264 Instruction *InsertBefore, DIBuilder &Builder, 1265 bool Deref, int Offset) { 1266 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1267 if (!DDI) 1268 return false; 1269 DebugLoc Loc = DDI->getDebugLoc(); 1270 auto *DIVar = DDI->getVariable(); 1271 auto *DIExpr = DDI->getExpression(); 1272 assert(DIVar && "Missing variable"); 1273 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset); 1274 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1275 // old llvm.dbg.declare. 1276 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1277 DDI->eraseFromParent(); 1278 return true; 1279 } 1280 1281 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1282 DIBuilder &Builder, bool Deref, int Offset) { 1283 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1284 Deref, Offset); 1285 } 1286 1287 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1288 DIBuilder &Builder, int Offset) { 1289 DebugLoc Loc = DVI->getDebugLoc(); 1290 auto *DIVar = DVI->getVariable(); 1291 auto *DIExpr = DVI->getExpression(); 1292 assert(DIVar && "Missing variable"); 1293 1294 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1295 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1296 // it and give up. 1297 if (!DIExpr || DIExpr->getNumElements() < 1 || 1298 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1299 return; 1300 1301 // Insert the offset immediately after the first deref. 1302 // We could just change the offset argument of dbg.value, but it's unsigned... 1303 if (Offset) { 1304 SmallVector<uint64_t, 4> Ops; 1305 Ops.push_back(dwarf::DW_OP_deref); 1306 DIExpression::appendOffset(Ops, Offset); 1307 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1308 DIExpr = Builder.createExpression(Ops); 1309 } 1310 1311 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1312 Loc, DVI); 1313 DVI->eraseFromParent(); 1314 } 1315 1316 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1317 DIBuilder &Builder, int Offset) { 1318 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1319 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1320 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1321 Use &U = *UI++; 1322 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1323 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1324 } 1325 } 1326 1327 void llvm::salvageDebugInfo(Instruction &I) { 1328 SmallVector<DbgValueInst *, 1> DbgValues; 1329 auto &M = *I.getModule(); 1330 1331 auto MDWrap = [&](Value *V) { 1332 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1333 }; 1334 1335 if (isa<BitCastInst>(&I)) { 1336 findDbgValues(DbgValues, &I); 1337 for (auto *DVI : DbgValues) { 1338 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1339 // to use the cast's source. 1340 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1341 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1342 } 1343 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1344 findDbgValues(DbgValues, &I); 1345 for (auto *DVI : DbgValues) { 1346 unsigned BitWidth = 1347 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1348 APInt Offset(BitWidth, 0); 1349 // Rewrite a constant GEP into a DIExpression. Since we are performing 1350 // arithmetic to compute the variable's *value* in the DIExpression, we 1351 // need to mark the expression with a DW_OP_stack_value. 1352 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1353 auto *DIExpr = DVI->getExpression(); 1354 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1355 // GEP offsets are i32 and thus always fit into an int64_t. 1356 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, 1357 Offset.getSExtValue(), 1358 DIExpression::WithStackValue); 1359 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1360 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1361 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1362 } 1363 } 1364 } else if (isa<LoadInst>(&I)) { 1365 findDbgValues(DbgValues, &I); 1366 for (auto *DVI : DbgValues) { 1367 // Rewrite the load into DW_OP_deref. 1368 auto *DIExpr = DVI->getExpression(); 1369 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1370 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1371 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1372 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1373 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1374 } 1375 } 1376 } 1377 1378 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1379 unsigned NumDeadInst = 0; 1380 // Delete the instructions backwards, as it has a reduced likelihood of 1381 // having to update as many def-use and use-def chains. 1382 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1383 while (EndInst != &BB->front()) { 1384 // Delete the next to last instruction. 1385 Instruction *Inst = &*--EndInst->getIterator(); 1386 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1387 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1388 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1389 EndInst = Inst; 1390 continue; 1391 } 1392 if (!isa<DbgInfoIntrinsic>(Inst)) 1393 ++NumDeadInst; 1394 Inst->eraseFromParent(); 1395 } 1396 return NumDeadInst; 1397 } 1398 1399 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1400 bool PreserveLCSSA) { 1401 BasicBlock *BB = I->getParent(); 1402 // Loop over all of the successors, removing BB's entry from any PHI 1403 // nodes. 1404 for (BasicBlock *Successor : successors(BB)) 1405 Successor->removePredecessor(BB, PreserveLCSSA); 1406 1407 // Insert a call to llvm.trap right before this. This turns the undefined 1408 // behavior into a hard fail instead of falling through into random code. 1409 if (UseLLVMTrap) { 1410 Function *TrapFn = 1411 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1412 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1413 CallTrap->setDebugLoc(I->getDebugLoc()); 1414 } 1415 new UnreachableInst(I->getContext(), I); 1416 1417 // All instructions after this are dead. 1418 unsigned NumInstrsRemoved = 0; 1419 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1420 while (BBI != BBE) { 1421 if (!BBI->use_empty()) 1422 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1423 BB->getInstList().erase(BBI++); 1424 ++NumInstrsRemoved; 1425 } 1426 return NumInstrsRemoved; 1427 } 1428 1429 /// changeToCall - Convert the specified invoke into a normal call. 1430 static void changeToCall(InvokeInst *II) { 1431 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1432 SmallVector<OperandBundleDef, 1> OpBundles; 1433 II->getOperandBundlesAsDefs(OpBundles); 1434 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1435 "", II); 1436 NewCall->takeName(II); 1437 NewCall->setCallingConv(II->getCallingConv()); 1438 NewCall->setAttributes(II->getAttributes()); 1439 NewCall->setDebugLoc(II->getDebugLoc()); 1440 II->replaceAllUsesWith(NewCall); 1441 1442 // Follow the call by a branch to the normal destination. 1443 BranchInst::Create(II->getNormalDest(), II); 1444 1445 // Update PHI nodes in the unwind destination 1446 II->getUnwindDest()->removePredecessor(II->getParent()); 1447 II->eraseFromParent(); 1448 } 1449 1450 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1451 BasicBlock *UnwindEdge) { 1452 BasicBlock *BB = CI->getParent(); 1453 1454 // Convert this function call into an invoke instruction. First, split the 1455 // basic block. 1456 BasicBlock *Split = 1457 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1458 1459 // Delete the unconditional branch inserted by splitBasicBlock 1460 BB->getInstList().pop_back(); 1461 1462 // Create the new invoke instruction. 1463 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1464 SmallVector<OperandBundleDef, 1> OpBundles; 1465 1466 CI->getOperandBundlesAsDefs(OpBundles); 1467 1468 // Note: we're round tripping operand bundles through memory here, and that 1469 // can potentially be avoided with a cleverer API design that we do not have 1470 // as of this time. 1471 1472 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1473 InvokeArgs, OpBundles, CI->getName(), BB); 1474 II->setDebugLoc(CI->getDebugLoc()); 1475 II->setCallingConv(CI->getCallingConv()); 1476 II->setAttributes(CI->getAttributes()); 1477 1478 // Make sure that anything using the call now uses the invoke! This also 1479 // updates the CallGraph if present, because it uses a WeakVH. 1480 CI->replaceAllUsesWith(II); 1481 1482 // Delete the original call 1483 Split->getInstList().pop_front(); 1484 return Split; 1485 } 1486 1487 static bool markAliveBlocks(Function &F, 1488 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1489 1490 SmallVector<BasicBlock*, 128> Worklist; 1491 BasicBlock *BB = &F.front(); 1492 Worklist.push_back(BB); 1493 Reachable.insert(BB); 1494 bool Changed = false; 1495 do { 1496 BB = Worklist.pop_back_val(); 1497 1498 // Do a quick scan of the basic block, turning any obviously unreachable 1499 // instructions into LLVM unreachable insts. The instruction combining pass 1500 // canonicalizes unreachable insts into stores to null or undef. 1501 for (Instruction &I : *BB) { 1502 // Assumptions that are known to be false are equivalent to unreachable. 1503 // Also, if the condition is undefined, then we make the choice most 1504 // beneficial to the optimizer, and choose that to also be unreachable. 1505 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1506 if (II->getIntrinsicID() == Intrinsic::assume) { 1507 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1508 // Don't insert a call to llvm.trap right before the unreachable. 1509 changeToUnreachable(II, false); 1510 Changed = true; 1511 break; 1512 } 1513 } 1514 1515 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1516 // A call to the guard intrinsic bails out of the current compilation 1517 // unit if the predicate passed to it is false. If the predicate is a 1518 // constant false, then we know the guard will bail out of the current 1519 // compile unconditionally, so all code following it is dead. 1520 // 1521 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1522 // guards to treat `undef` as `false` since a guard on `undef` can 1523 // still be useful for widening. 1524 if (match(II->getArgOperand(0), m_Zero())) 1525 if (!isa<UnreachableInst>(II->getNextNode())) { 1526 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1527 Changed = true; 1528 break; 1529 } 1530 } 1531 } 1532 1533 if (auto *CI = dyn_cast<CallInst>(&I)) { 1534 Value *Callee = CI->getCalledValue(); 1535 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1536 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1537 Changed = true; 1538 break; 1539 } 1540 if (CI->doesNotReturn()) { 1541 // If we found a call to a no-return function, insert an unreachable 1542 // instruction after it. Make sure there isn't *already* one there 1543 // though. 1544 if (!isa<UnreachableInst>(CI->getNextNode())) { 1545 // Don't insert a call to llvm.trap right before the unreachable. 1546 changeToUnreachable(CI->getNextNode(), false); 1547 Changed = true; 1548 } 1549 break; 1550 } 1551 } 1552 1553 // Store to undef and store to null are undefined and used to signal that 1554 // they should be changed to unreachable by passes that can't modify the 1555 // CFG. 1556 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1557 // Don't touch volatile stores. 1558 if (SI->isVolatile()) continue; 1559 1560 Value *Ptr = SI->getOperand(1); 1561 1562 if (isa<UndefValue>(Ptr) || 1563 (isa<ConstantPointerNull>(Ptr) && 1564 SI->getPointerAddressSpace() == 0)) { 1565 changeToUnreachable(SI, true); 1566 Changed = true; 1567 break; 1568 } 1569 } 1570 } 1571 1572 TerminatorInst *Terminator = BB->getTerminator(); 1573 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1574 // Turn invokes that call 'nounwind' functions into ordinary calls. 1575 Value *Callee = II->getCalledValue(); 1576 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1577 changeToUnreachable(II, true); 1578 Changed = true; 1579 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1580 if (II->use_empty() && II->onlyReadsMemory()) { 1581 // jump to the normal destination branch. 1582 BranchInst::Create(II->getNormalDest(), II); 1583 II->getUnwindDest()->removePredecessor(II->getParent()); 1584 II->eraseFromParent(); 1585 } else 1586 changeToCall(II); 1587 Changed = true; 1588 } 1589 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1590 // Remove catchpads which cannot be reached. 1591 struct CatchPadDenseMapInfo { 1592 static CatchPadInst *getEmptyKey() { 1593 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1594 } 1595 static CatchPadInst *getTombstoneKey() { 1596 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1597 } 1598 static unsigned getHashValue(CatchPadInst *CatchPad) { 1599 return static_cast<unsigned>(hash_combine_range( 1600 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1601 } 1602 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1603 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1604 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1605 return LHS == RHS; 1606 return LHS->isIdenticalTo(RHS); 1607 } 1608 }; 1609 1610 // Set of unique CatchPads. 1611 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1612 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1613 HandlerSet; 1614 detail::DenseSetEmpty Empty; 1615 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1616 E = CatchSwitch->handler_end(); 1617 I != E; ++I) { 1618 BasicBlock *HandlerBB = *I; 1619 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1620 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1621 CatchSwitch->removeHandler(I); 1622 --I; 1623 --E; 1624 Changed = true; 1625 } 1626 } 1627 } 1628 1629 Changed |= ConstantFoldTerminator(BB, true); 1630 for (BasicBlock *Successor : successors(BB)) 1631 if (Reachable.insert(Successor).second) 1632 Worklist.push_back(Successor); 1633 } while (!Worklist.empty()); 1634 return Changed; 1635 } 1636 1637 void llvm::removeUnwindEdge(BasicBlock *BB) { 1638 TerminatorInst *TI = BB->getTerminator(); 1639 1640 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1641 changeToCall(II); 1642 return; 1643 } 1644 1645 TerminatorInst *NewTI; 1646 BasicBlock *UnwindDest; 1647 1648 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1649 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1650 UnwindDest = CRI->getUnwindDest(); 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1652 auto *NewCatchSwitch = CatchSwitchInst::Create( 1653 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1654 CatchSwitch->getName(), CatchSwitch); 1655 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1656 NewCatchSwitch->addHandler(PadBB); 1657 1658 NewTI = NewCatchSwitch; 1659 UnwindDest = CatchSwitch->getUnwindDest(); 1660 } else { 1661 llvm_unreachable("Could not find unwind successor"); 1662 } 1663 1664 NewTI->takeName(TI); 1665 NewTI->setDebugLoc(TI->getDebugLoc()); 1666 UnwindDest->removePredecessor(BB); 1667 TI->replaceAllUsesWith(NewTI); 1668 TI->eraseFromParent(); 1669 } 1670 1671 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1672 /// if they are in a dead cycle. Return true if a change was made, false 1673 /// otherwise. 1674 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1675 SmallPtrSet<BasicBlock*, 16> Reachable; 1676 bool Changed = markAliveBlocks(F, Reachable); 1677 1678 // If there are unreachable blocks in the CFG... 1679 if (Reachable.size() == F.size()) 1680 return Changed; 1681 1682 assert(Reachable.size() < F.size()); 1683 NumRemoved += F.size()-Reachable.size(); 1684 1685 // Loop over all of the basic blocks that are not reachable, dropping all of 1686 // their internal references... 1687 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1688 if (Reachable.count(&*BB)) 1689 continue; 1690 1691 for (BasicBlock *Successor : successors(&*BB)) 1692 if (Reachable.count(Successor)) 1693 Successor->removePredecessor(&*BB); 1694 if (LVI) 1695 LVI->eraseBlock(&*BB); 1696 BB->dropAllReferences(); 1697 } 1698 1699 for (Function::iterator I = ++F.begin(); I != F.end();) 1700 if (!Reachable.count(&*I)) 1701 I = F.getBasicBlockList().erase(I); 1702 else 1703 ++I; 1704 1705 return true; 1706 } 1707 1708 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1709 ArrayRef<unsigned> KnownIDs) { 1710 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1711 K->dropUnknownNonDebugMetadata(KnownIDs); 1712 K->getAllMetadataOtherThanDebugLoc(Metadata); 1713 for (const auto &MD : Metadata) { 1714 unsigned Kind = MD.first; 1715 MDNode *JMD = J->getMetadata(Kind); 1716 MDNode *KMD = MD.second; 1717 1718 switch (Kind) { 1719 default: 1720 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1721 break; 1722 case LLVMContext::MD_dbg: 1723 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1724 case LLVMContext::MD_tbaa: 1725 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1726 break; 1727 case LLVMContext::MD_alias_scope: 1728 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1729 break; 1730 case LLVMContext::MD_noalias: 1731 case LLVMContext::MD_mem_parallel_loop_access: 1732 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1733 break; 1734 case LLVMContext::MD_range: 1735 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1736 break; 1737 case LLVMContext::MD_fpmath: 1738 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1739 break; 1740 case LLVMContext::MD_invariant_load: 1741 // Only set the !invariant.load if it is present in both instructions. 1742 K->setMetadata(Kind, JMD); 1743 break; 1744 case LLVMContext::MD_nonnull: 1745 // Only set the !nonnull if it is present in both instructions. 1746 K->setMetadata(Kind, JMD); 1747 break; 1748 case LLVMContext::MD_invariant_group: 1749 // Preserve !invariant.group in K. 1750 break; 1751 case LLVMContext::MD_align: 1752 K->setMetadata(Kind, 1753 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1754 break; 1755 case LLVMContext::MD_dereferenceable: 1756 case LLVMContext::MD_dereferenceable_or_null: 1757 K->setMetadata(Kind, 1758 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1759 break; 1760 } 1761 } 1762 // Set !invariant.group from J if J has it. If both instructions have it 1763 // then we will just pick it from J - even when they are different. 1764 // Also make sure that K is load or store - f.e. combining bitcast with load 1765 // could produce bitcast with invariant.group metadata, which is invalid. 1766 // FIXME: we should try to preserve both invariant.group md if they are 1767 // different, but right now instruction can only have one invariant.group. 1768 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1769 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1770 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1771 } 1772 1773 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1774 unsigned KnownIDs[] = { 1775 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1776 LLVMContext::MD_noalias, LLVMContext::MD_range, 1777 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1778 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1779 LLVMContext::MD_dereferenceable, 1780 LLVMContext::MD_dereferenceable_or_null}; 1781 combineMetadata(K, J, KnownIDs); 1782 } 1783 1784 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1785 DominatorTree &DT, 1786 const BasicBlockEdge &Root) { 1787 assert(From->getType() == To->getType()); 1788 1789 unsigned Count = 0; 1790 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1791 UI != UE; ) { 1792 Use &U = *UI++; 1793 if (DT.dominates(Root, U)) { 1794 U.set(To); 1795 DEBUG(dbgs() << "Replace dominated use of '" 1796 << From->getName() << "' as " 1797 << *To << " in " << *U << "\n"); 1798 ++Count; 1799 } 1800 } 1801 return Count; 1802 } 1803 1804 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1805 DominatorTree &DT, 1806 const BasicBlock *BB) { 1807 assert(From->getType() == To->getType()); 1808 1809 unsigned Count = 0; 1810 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1811 UI != UE;) { 1812 Use &U = *UI++; 1813 auto *I = cast<Instruction>(U.getUser()); 1814 if (DT.properlyDominates(BB, I->getParent())) { 1815 U.set(To); 1816 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1817 << *To << " in " << *U << "\n"); 1818 ++Count; 1819 } 1820 } 1821 return Count; 1822 } 1823 1824 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1825 // Check if the function is specifically marked as a gc leaf function. 1826 if (CS.hasFnAttr("gc-leaf-function")) 1827 return true; 1828 if (const Function *F = CS.getCalledFunction()) { 1829 if (F->hasFnAttribute("gc-leaf-function")) 1830 return true; 1831 1832 if (auto IID = F->getIntrinsicID()) 1833 // Most LLVM intrinsics do not take safepoints. 1834 return IID != Intrinsic::experimental_gc_statepoint && 1835 IID != Intrinsic::experimental_deoptimize; 1836 } 1837 1838 return false; 1839 } 1840 1841 namespace { 1842 /// A potential constituent of a bitreverse or bswap expression. See 1843 /// collectBitParts for a fuller explanation. 1844 struct BitPart { 1845 BitPart(Value *P, unsigned BW) : Provider(P) { 1846 Provenance.resize(BW); 1847 } 1848 1849 /// The Value that this is a bitreverse/bswap of. 1850 Value *Provider; 1851 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1852 /// in Provider becomes bit B in the result of this expression. 1853 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1854 1855 enum { Unset = -1 }; 1856 }; 1857 } // end anonymous namespace 1858 1859 /// Analyze the specified subexpression and see if it is capable of providing 1860 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1861 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1862 /// the output of the expression came from a corresponding bit in some other 1863 /// value. This function is recursive, and the end result is a mapping of 1864 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1865 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1866 /// 1867 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1868 /// that the expression deposits the low byte of %X into the high byte of the 1869 /// result and that all other bits are zero. This expression is accepted and a 1870 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1871 /// [0-7]. 1872 /// 1873 /// To avoid revisiting values, the BitPart results are memoized into the 1874 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1875 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1876 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1877 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1878 /// type instead to provide the same functionality. 1879 /// 1880 /// Because we pass around references into \c BPS, we must use a container that 1881 /// does not invalidate internal references (std::map instead of DenseMap). 1882 /// 1883 static const Optional<BitPart> & 1884 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1885 std::map<Value *, Optional<BitPart>> &BPS) { 1886 auto I = BPS.find(V); 1887 if (I != BPS.end()) 1888 return I->second; 1889 1890 auto &Result = BPS[V] = None; 1891 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1892 1893 if (Instruction *I = dyn_cast<Instruction>(V)) { 1894 // If this is an or instruction, it may be an inner node of the bswap. 1895 if (I->getOpcode() == Instruction::Or) { 1896 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1897 MatchBitReversals, BPS); 1898 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1899 MatchBitReversals, BPS); 1900 if (!A || !B) 1901 return Result; 1902 1903 // Try and merge the two together. 1904 if (!A->Provider || A->Provider != B->Provider) 1905 return Result; 1906 1907 Result = BitPart(A->Provider, BitWidth); 1908 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1909 if (A->Provenance[i] != BitPart::Unset && 1910 B->Provenance[i] != BitPart::Unset && 1911 A->Provenance[i] != B->Provenance[i]) 1912 return Result = None; 1913 1914 if (A->Provenance[i] == BitPart::Unset) 1915 Result->Provenance[i] = B->Provenance[i]; 1916 else 1917 Result->Provenance[i] = A->Provenance[i]; 1918 } 1919 1920 return Result; 1921 } 1922 1923 // If this is a logical shift by a constant, recurse then shift the result. 1924 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1925 unsigned BitShift = 1926 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1927 // Ensure the shift amount is defined. 1928 if (BitShift > BitWidth) 1929 return Result; 1930 1931 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1932 MatchBitReversals, BPS); 1933 if (!Res) 1934 return Result; 1935 Result = Res; 1936 1937 // Perform the "shift" on BitProvenance. 1938 auto &P = Result->Provenance; 1939 if (I->getOpcode() == Instruction::Shl) { 1940 P.erase(std::prev(P.end(), BitShift), P.end()); 1941 P.insert(P.begin(), BitShift, BitPart::Unset); 1942 } else { 1943 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1944 P.insert(P.end(), BitShift, BitPart::Unset); 1945 } 1946 1947 return Result; 1948 } 1949 1950 // If this is a logical 'and' with a mask that clears bits, recurse then 1951 // unset the appropriate bits. 1952 if (I->getOpcode() == Instruction::And && 1953 isa<ConstantInt>(I->getOperand(1))) { 1954 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1955 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1956 1957 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1958 // early exit. 1959 unsigned NumMaskedBits = AndMask.countPopulation(); 1960 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1961 return Result; 1962 1963 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1964 MatchBitReversals, BPS); 1965 if (!Res) 1966 return Result; 1967 Result = Res; 1968 1969 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1970 // If the AndMask is zero for this bit, clear the bit. 1971 if ((AndMask & Bit) == 0) 1972 Result->Provenance[i] = BitPart::Unset; 1973 return Result; 1974 } 1975 1976 // If this is a zext instruction zero extend the result. 1977 if (I->getOpcode() == Instruction::ZExt) { 1978 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1979 MatchBitReversals, BPS); 1980 if (!Res) 1981 return Result; 1982 1983 Result = BitPart(Res->Provider, BitWidth); 1984 auto NarrowBitWidth = 1985 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1986 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1987 Result->Provenance[i] = Res->Provenance[i]; 1988 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1989 Result->Provenance[i] = BitPart::Unset; 1990 return Result; 1991 } 1992 } 1993 1994 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1995 // the input value to the bswap/bitreverse. 1996 Result = BitPart(V, BitWidth); 1997 for (unsigned i = 0; i < BitWidth; ++i) 1998 Result->Provenance[i] = i; 1999 return Result; 2000 } 2001 2002 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2003 unsigned BitWidth) { 2004 if (From % 8 != To % 8) 2005 return false; 2006 // Convert from bit indices to byte indices and check for a byte reversal. 2007 From >>= 3; 2008 To >>= 3; 2009 BitWidth >>= 3; 2010 return From == BitWidth - To - 1; 2011 } 2012 2013 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2014 unsigned BitWidth) { 2015 return From == BitWidth - To - 1; 2016 } 2017 2018 /// Given an OR instruction, check to see if this is a bitreverse 2019 /// idiom. If so, insert the new intrinsic and return true. 2020 bool llvm::recognizeBSwapOrBitReverseIdiom( 2021 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2022 SmallVectorImpl<Instruction *> &InsertedInsts) { 2023 if (Operator::getOpcode(I) != Instruction::Or) 2024 return false; 2025 if (!MatchBSwaps && !MatchBitReversals) 2026 return false; 2027 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2028 if (!ITy || ITy->getBitWidth() > 128) 2029 return false; // Can't do vectors or integers > 128 bits. 2030 unsigned BW = ITy->getBitWidth(); 2031 2032 unsigned DemandedBW = BW; 2033 IntegerType *DemandedTy = ITy; 2034 if (I->hasOneUse()) { 2035 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2036 DemandedTy = cast<IntegerType>(Trunc->getType()); 2037 DemandedBW = DemandedTy->getBitWidth(); 2038 } 2039 } 2040 2041 // Try to find all the pieces corresponding to the bswap. 2042 std::map<Value *, Optional<BitPart>> BPS; 2043 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2044 if (!Res) 2045 return false; 2046 auto &BitProvenance = Res->Provenance; 2047 2048 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2049 // only byteswap values with an even number of bytes. 2050 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2051 for (unsigned i = 0; i < DemandedBW; ++i) { 2052 OKForBSwap &= 2053 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2054 OKForBitReverse &= 2055 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2056 } 2057 2058 Intrinsic::ID Intrin; 2059 if (OKForBSwap && MatchBSwaps) 2060 Intrin = Intrinsic::bswap; 2061 else if (OKForBitReverse && MatchBitReversals) 2062 Intrin = Intrinsic::bitreverse; 2063 else 2064 return false; 2065 2066 if (ITy != DemandedTy) { 2067 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2068 Value *Provider = Res->Provider; 2069 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2070 // We may need to truncate the provider. 2071 if (DemandedTy != ProviderTy) { 2072 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2073 "trunc", I); 2074 InsertedInsts.push_back(Trunc); 2075 Provider = Trunc; 2076 } 2077 auto *CI = CallInst::Create(F, Provider, "rev", I); 2078 InsertedInsts.push_back(CI); 2079 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2080 InsertedInsts.push_back(ExtInst); 2081 return true; 2082 } 2083 2084 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2085 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2086 return true; 2087 } 2088 2089 // CodeGen has special handling for some string functions that may replace 2090 // them with target-specific intrinsics. Since that'd skip our interceptors 2091 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2092 // we mark affected calls as NoBuiltin, which will disable optimization 2093 // in CodeGen. 2094 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2095 CallInst *CI, const TargetLibraryInfo *TLI) { 2096 Function *F = CI->getCalledFunction(); 2097 LibFunc Func; 2098 if (F && !F->hasLocalLinkage() && F->hasName() && 2099 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2100 !F->doesNotAccessMemory()) 2101 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2102 } 2103