xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision 0c970f94e9d18913b09ac7d438512643d9f7efe0)
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/DebugInfo.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28 
29 //===----------------------------------------------------------------------===//
30 //  Local constant propagation.
31 //
32 
33 // ConstantFoldTerminator - If a terminator instruction is predicated on a
34 // constant value, convert it into an unconditional branch to the constant
35 // destination.
36 //
37 bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
38   TerminatorInst *T = BB->getTerminator();
39 
40   // Branch - See if we are conditional jumping on constant
41   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
42     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
43     BasicBlock *Dest1 = BI->getSuccessor(0);
44     BasicBlock *Dest2 = BI->getSuccessor(1);
45 
46     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
47       // Are we branching on constant?
48       // YES.  Change to unconditional branch...
49       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
50       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
51 
52       //cerr << "Function: " << T->getParent()->getParent()
53       //     << "\nRemoving branch from " << T->getParent()
54       //     << "\n\nTo: " << OldDest << endl;
55 
56       // Let the basic block know that we are letting go of it.  Based on this,
57       // it will adjust it's PHI nodes.
58       assert(BI->getParent() && "Terminator not inserted in block!");
59       OldDest->removePredecessor(BI->getParent());
60 
61       // Set the unconditional destination, and change the insn to be an
62       // unconditional branch.
63       BI->setUnconditionalDest(Destination);
64       return true;
65     } else if (Dest2 == Dest1) {       // Conditional branch to same location?
66       // This branch matches something like this:
67       //     br bool %cond, label %Dest, label %Dest
68       // and changes it into:  br label %Dest
69 
70       // Let the basic block know that we are letting go of one copy of it.
71       assert(BI->getParent() && "Terminator not inserted in block!");
72       Dest1->removePredecessor(BI->getParent());
73 
74       // Change a conditional branch to unconditional.
75       BI->setUnconditionalDest(Dest1);
76       return true;
77     }
78   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
79     // If we are switching on a constant, we can convert the switch into a
80     // single branch instruction!
81     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
82     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
83     BasicBlock *DefaultDest = TheOnlyDest;
84     assert(TheOnlyDest == SI->getDefaultDest() &&
85            "Default destination is not successor #0?");
86 
87     // Figure out which case it goes to...
88     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
89       // Found case matching a constant operand?
90       if (SI->getSuccessorValue(i) == CI) {
91         TheOnlyDest = SI->getSuccessor(i);
92         break;
93       }
94 
95       // Check to see if this branch is going to the same place as the default
96       // dest.  If so, eliminate it as an explicit compare.
97       if (SI->getSuccessor(i) == DefaultDest) {
98         // Remove this entry...
99         DefaultDest->removePredecessor(SI->getParent());
100         SI->removeCase(i);
101         --i; --e;  // Don't skip an entry...
102         continue;
103       }
104 
105       // Otherwise, check to see if the switch only branches to one destination.
106       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
107       // destinations.
108       if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
109     }
110 
111     if (CI && !TheOnlyDest) {
112       // Branching on a constant, but not any of the cases, go to the default
113       // successor.
114       TheOnlyDest = SI->getDefaultDest();
115     }
116 
117     // If we found a single destination that we can fold the switch into, do so
118     // now.
119     if (TheOnlyDest) {
120       // Insert the new branch..
121       BranchInst::Create(TheOnlyDest, SI);
122       BasicBlock *BB = SI->getParent();
123 
124       // Remove entries from PHI nodes which we no longer branch to...
125       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
126         // Found case matching a constant operand?
127         BasicBlock *Succ = SI->getSuccessor(i);
128         if (Succ == TheOnlyDest)
129           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
130         else
131           Succ->removePredecessor(BB);
132       }
133 
134       // Delete the old switch...
135       BB->getInstList().erase(SI);
136       return true;
137     } else if (SI->getNumSuccessors() == 2) {
138       // Otherwise, we can fold this switch into a conditional branch
139       // instruction if it has only one non-default destination.
140       Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
141                                  SI->getSuccessorValue(1), "cond", SI);
142       // Insert the new branch...
143       BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
144 
145       // Delete the old switch...
146       SI->eraseFromParent();
147       return true;
148     }
149   }
150   return false;
151 }
152 
153 
154 //===----------------------------------------------------------------------===//
155 //  Local dead code elimination...
156 //
157 
158 /// isInstructionTriviallyDead - Return true if the result produced by the
159 /// instruction is not used, and the instruction has no side effects.
160 ///
161 bool llvm::isInstructionTriviallyDead(Instruction *I) {
162   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
163 
164   // We don't want debug info removed by anything this general.
165   if (isa<DbgInfoIntrinsic>(I)) return false;
166 
167   if (!I->mayWriteToMemory())
168     return true;
169 
170   // Special case intrinsics that "may write to memory" but can be deleted when
171   // dead.
172   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
173     // Safe to delete llvm.stacksave if dead.
174     if (II->getIntrinsicID() == Intrinsic::stacksave)
175       return true;
176 
177   return false;
178 }
179 
180 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
181 /// trivially dead instruction, delete it.  If that makes any of its operands
182 /// trivially dead, delete them too, recursively.
183 ///
184 /// If DeadInst is specified, the vector is filled with the instructions that
185 /// are actually deleted.
186 void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
187                                       SmallVectorImpl<Instruction*> *DeadInst) {
188   Instruction *I = dyn_cast<Instruction>(V);
189   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
190     return;
191 
192   SmallVector<Instruction*, 16> DeadInsts;
193   DeadInsts.push_back(I);
194 
195   while (!DeadInsts.empty()) {
196     I = DeadInsts.back();
197     DeadInsts.pop_back();
198 
199     // If the client wanted to know, tell it about deleted instructions.
200     if (DeadInst)
201       DeadInst->push_back(I);
202 
203     // Null out all of the instruction's operands to see if any operand becomes
204     // dead as we go.
205     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
206       Value *OpV = I->getOperand(i);
207       I->setOperand(i, 0);
208 
209       if (!OpV->use_empty()) continue;
210 
211       // If the operand is an instruction that became dead as we nulled out the
212       // operand, and if it is 'trivially' dead, delete it in a future loop
213       // iteration.
214       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
215         if (isInstructionTriviallyDead(OpI))
216           DeadInsts.push_back(OpI);
217     }
218 
219     I->eraseFromParent();
220   }
221 }
222 
223 
224 //===----------------------------------------------------------------------===//
225 //  Control Flow Graph Restructuring...
226 //
227 
228 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
229 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
230 /// between them, moving the instructions in the predecessor into DestBB and
231 /// deleting the predecessor block.
232 ///
233 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
234   // If BB has single-entry PHI nodes, fold them.
235   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
236     Value *NewVal = PN->getIncomingValue(0);
237     // Replace self referencing PHI with undef, it must be dead.
238     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
239     PN->replaceAllUsesWith(NewVal);
240     PN->eraseFromParent();
241   }
242 
243   BasicBlock *PredBB = DestBB->getSinglePredecessor();
244   assert(PredBB && "Block doesn't have a single predecessor!");
245 
246   // Splice all the instructions from PredBB to DestBB.
247   PredBB->getTerminator()->eraseFromParent();
248   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
249 
250   // Anything that branched to PredBB now branches to DestBB.
251   PredBB->replaceAllUsesWith(DestBB);
252 
253   // Nuke BB.
254   PredBB->eraseFromParent();
255 }
256 
257 /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
258 /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
259 /// with the DbgInfoIntrinsic that use the instruction I.
260 bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
261                                SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
262   if (DbgInUses)
263     DbgInUses->clear();
264 
265   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
266        ++UI) {
267     if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
268       if (DbgInUses)
269         DbgInUses->push_back(DI);
270     } else {
271       if (DbgInUses)
272         DbgInUses->clear();
273       return false;
274     }
275   }
276   return true;
277 }
278 
279 /// UserIsDebugInfo - Return true if U is a constant expr used by
280 /// llvm.dbg.variable or llvm.dbg.global_variable
281 bool llvm::UserIsDebugInfo(User *U) {
282   ConstantExpr *CE = dyn_cast<ConstantExpr>(U);
283 
284   if (!CE || CE->getNumUses() != 1)
285     return false;
286 
287   Constant *Init = dyn_cast<Constant>(CE->use_back());
288   if (!Init || Init->getNumUses() != 1)
289     return false;
290 
291   GlobalVariable *GV = dyn_cast<GlobalVariable>(Init->use_back());
292   if (!GV || !GV->hasInitializer() || GV->getInitializer() != Init)
293     return false;
294 
295   DIVariable DV(GV);
296   if (!DV.isNull())
297     return true; // User is llvm.dbg.variable
298 
299   DIGlobalVariable DGV(GV);
300   if (!DGV.isNull())
301     return true; // User is llvm.dbg.global_variable
302 
303   return false;
304 }
305 
306 /// RemoveDbgInfoUser - Remove an User which is representing debug info.
307 void llvm::RemoveDbgInfoUser(User *U) {
308   assert (UserIsDebugInfo(U) && "Unexpected User!");
309   ConstantExpr *CE = cast<ConstantExpr>(U);
310   while (!CE->use_empty()) {
311     Constant *C = cast<Constant>(CE->use_back());
312     while (!C->use_empty()) {
313       GlobalVariable *GV = cast<GlobalVariable>(C->use_back());
314       GV->eraseFromParent();
315     }
316     C->destroyConstant();
317   }
318   CE->destroyConstant();
319 }
320