1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LibCallSemantics.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 using namespace llvm; 48 49 #define DEBUG_TYPE "local" 50 51 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 52 53 //===----------------------------------------------------------------------===// 54 // Local constant propagation. 55 // 56 57 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 58 /// constant value, convert it into an unconditional branch to the constant 59 /// destination. This is a nontrivial operation because the successors of this 60 /// basic block must have their PHI nodes updated. 61 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 62 /// conditions and indirectbr addresses this might make dead if 63 /// DeleteDeadConditions is true. 64 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 65 const TargetLibraryInfo *TLI) { 66 TerminatorInst *T = BB->getTerminator(); 67 IRBuilder<> Builder(T); 68 69 // Branch - See if we are conditional jumping on constant 70 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 71 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 72 BasicBlock *Dest1 = BI->getSuccessor(0); 73 BasicBlock *Dest2 = BI->getSuccessor(1); 74 75 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 76 // Are we branching on constant? 77 // YES. Change to unconditional branch... 78 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 79 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 80 81 //cerr << "Function: " << T->getParent()->getParent() 82 // << "\nRemoving branch from " << T->getParent() 83 // << "\n\nTo: " << OldDest << endl; 84 85 // Let the basic block know that we are letting go of it. Based on this, 86 // it will adjust it's PHI nodes. 87 OldDest->removePredecessor(BB); 88 89 // Replace the conditional branch with an unconditional one. 90 Builder.CreateBr(Destination); 91 BI->eraseFromParent(); 92 return true; 93 } 94 95 if (Dest2 == Dest1) { // Conditional branch to same location? 96 // This branch matches something like this: 97 // br bool %cond, label %Dest, label %Dest 98 // and changes it into: br label %Dest 99 100 // Let the basic block know that we are letting go of one copy of it. 101 assert(BI->getParent() && "Terminator not inserted in block!"); 102 Dest1->removePredecessor(BI->getParent()); 103 104 // Replace the conditional branch with an unconditional one. 105 Builder.CreateBr(Dest1); 106 Value *Cond = BI->getCondition(); 107 BI->eraseFromParent(); 108 if (DeleteDeadConditions) 109 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 110 return true; 111 } 112 return false; 113 } 114 115 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 116 // If we are switching on a constant, we can convert the switch to an 117 // unconditional branch. 118 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 119 BasicBlock *DefaultDest = SI->getDefaultDest(); 120 BasicBlock *TheOnlyDest = DefaultDest; 121 122 // If the default is unreachable, ignore it when searching for TheOnlyDest. 123 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 124 SI->getNumCases() > 0) { 125 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 126 } 127 128 // Figure out which case it goes to. 129 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 130 i != e; ++i) { 131 // Found case matching a constant operand? 132 if (i.getCaseValue() == CI) { 133 TheOnlyDest = i.getCaseSuccessor(); 134 break; 135 } 136 137 // Check to see if this branch is going to the same place as the default 138 // dest. If so, eliminate it as an explicit compare. 139 if (i.getCaseSuccessor() == DefaultDest) { 140 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 141 unsigned NCases = SI->getNumCases(); 142 // Fold the case metadata into the default if there will be any branches 143 // left, unless the metadata doesn't match the switch. 144 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 145 // Collect branch weights into a vector. 146 SmallVector<uint32_t, 8> Weights; 147 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 148 ++MD_i) { 149 ConstantInt *CI = 150 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 151 assert(CI); 152 Weights.push_back(CI->getValue().getZExtValue()); 153 } 154 // Merge weight of this case to the default weight. 155 unsigned idx = i.getCaseIndex(); 156 Weights[0] += Weights[idx+1]; 157 // Remove weight for this case. 158 std::swap(Weights[idx+1], Weights.back()); 159 Weights.pop_back(); 160 SI->setMetadata(LLVMContext::MD_prof, 161 MDBuilder(BB->getContext()). 162 createBranchWeights(Weights)); 163 } 164 // Remove this entry. 165 DefaultDest->removePredecessor(SI->getParent()); 166 SI->removeCase(i); 167 --i; --e; 168 continue; 169 } 170 171 // Otherwise, check to see if the switch only branches to one destination. 172 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 173 // destinations. 174 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 175 } 176 177 if (CI && !TheOnlyDest) { 178 // Branching on a constant, but not any of the cases, go to the default 179 // successor. 180 TheOnlyDest = SI->getDefaultDest(); 181 } 182 183 // If we found a single destination that we can fold the switch into, do so 184 // now. 185 if (TheOnlyDest) { 186 // Insert the new branch. 187 Builder.CreateBr(TheOnlyDest); 188 BasicBlock *BB = SI->getParent(); 189 190 // Remove entries from PHI nodes which we no longer branch to... 191 for (BasicBlock *Succ : SI->successors()) { 192 // Found case matching a constant operand? 193 if (Succ == TheOnlyDest) 194 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 195 else 196 Succ->removePredecessor(BB); 197 } 198 199 // Delete the old switch. 200 Value *Cond = SI->getCondition(); 201 SI->eraseFromParent(); 202 if (DeleteDeadConditions) 203 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 204 return true; 205 } 206 207 if (SI->getNumCases() == 1) { 208 // Otherwise, we can fold this switch into a conditional branch 209 // instruction if it has only one non-default destination. 210 SwitchInst::CaseIt FirstCase = SI->case_begin(); 211 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 212 FirstCase.getCaseValue(), "cond"); 213 214 // Insert the new branch. 215 BranchInst *NewBr = Builder.CreateCondBr(Cond, 216 FirstCase.getCaseSuccessor(), 217 SI->getDefaultDest()); 218 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 219 if (MD && MD->getNumOperands() == 3) { 220 ConstantInt *SICase = 221 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 222 ConstantInt *SIDef = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 224 assert(SICase && SIDef); 225 // The TrueWeight should be the weight for the single case of SI. 226 NewBr->setMetadata(LLVMContext::MD_prof, 227 MDBuilder(BB->getContext()). 228 createBranchWeights(SICase->getValue().getZExtValue(), 229 SIDef->getValue().getZExtValue())); 230 } 231 232 // Update make.implicit metadata to the newly-created conditional branch. 233 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 234 if (MakeImplicitMD) 235 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 236 237 // Delete the old switch. 238 SI->eraseFromParent(); 239 return true; 240 } 241 return false; 242 } 243 244 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 245 // indirectbr blockaddress(@F, @BB) -> br label @BB 246 if (BlockAddress *BA = 247 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 248 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 249 // Insert the new branch. 250 Builder.CreateBr(TheOnlyDest); 251 252 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 253 if (IBI->getDestination(i) == TheOnlyDest) 254 TheOnlyDest = nullptr; 255 else 256 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 257 } 258 Value *Address = IBI->getAddress(); 259 IBI->eraseFromParent(); 260 if (DeleteDeadConditions) 261 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 262 263 // If we didn't find our destination in the IBI successor list, then we 264 // have undefined behavior. Replace the unconditional branch with an 265 // 'unreachable' instruction. 266 if (TheOnlyDest) { 267 BB->getTerminator()->eraseFromParent(); 268 new UnreachableInst(BB->getContext(), BB); 269 } 270 271 return true; 272 } 273 } 274 275 return false; 276 } 277 278 279 //===----------------------------------------------------------------------===// 280 // Local dead code elimination. 281 // 282 283 /// isInstructionTriviallyDead - Return true if the result produced by the 284 /// instruction is not used, and the instruction has no side effects. 285 /// 286 bool llvm::isInstructionTriviallyDead(Instruction *I, 287 const TargetLibraryInfo *TLI) { 288 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 289 290 // We don't want the landingpad-like instructions removed by anything this 291 // general. 292 if (I->isEHPad()) 293 return false; 294 295 // We don't want debug info removed by anything this general, unless 296 // debug info is empty. 297 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 298 if (DDI->getAddress()) 299 return false; 300 return true; 301 } 302 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 303 if (DVI->getValue()) 304 return false; 305 return true; 306 } 307 308 if (!I->mayHaveSideEffects()) return true; 309 310 // Special case intrinsics that "may have side effects" but can be deleted 311 // when dead. 312 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 313 // Safe to delete llvm.stacksave if dead. 314 if (II->getIntrinsicID() == Intrinsic::stacksave) 315 return true; 316 317 // Lifetime intrinsics are dead when their right-hand is undef. 318 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 319 II->getIntrinsicID() == Intrinsic::lifetime_end) 320 return isa<UndefValue>(II->getArgOperand(1)); 321 322 // Assumptions are dead if their condition is trivially true. 323 if (II->getIntrinsicID() == Intrinsic::assume) { 324 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 325 return !Cond->isZero(); 326 327 return false; 328 } 329 } 330 331 if (isAllocLikeFn(I, TLI)) return true; 332 333 if (CallInst *CI = isFreeCall(I, TLI)) 334 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 335 return C->isNullValue() || isa<UndefValue>(C); 336 337 return false; 338 } 339 340 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 341 /// trivially dead instruction, delete it. If that makes any of its operands 342 /// trivially dead, delete them too, recursively. Return true if any 343 /// instructions were deleted. 344 bool 345 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 346 const TargetLibraryInfo *TLI) { 347 Instruction *I = dyn_cast<Instruction>(V); 348 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 349 return false; 350 351 SmallVector<Instruction*, 16> DeadInsts; 352 DeadInsts.push_back(I); 353 354 do { 355 I = DeadInsts.pop_back_val(); 356 357 // Null out all of the instruction's operands to see if any operand becomes 358 // dead as we go. 359 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 360 Value *OpV = I->getOperand(i); 361 I->setOperand(i, nullptr); 362 363 if (!OpV->use_empty()) continue; 364 365 // If the operand is an instruction that became dead as we nulled out the 366 // operand, and if it is 'trivially' dead, delete it in a future loop 367 // iteration. 368 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 369 if (isInstructionTriviallyDead(OpI, TLI)) 370 DeadInsts.push_back(OpI); 371 } 372 373 I->eraseFromParent(); 374 } while (!DeadInsts.empty()); 375 376 return true; 377 } 378 379 /// areAllUsesEqual - Check whether the uses of a value are all the same. 380 /// This is similar to Instruction::hasOneUse() except this will also return 381 /// true when there are no uses or multiple uses that all refer to the same 382 /// value. 383 static bool areAllUsesEqual(Instruction *I) { 384 Value::user_iterator UI = I->user_begin(); 385 Value::user_iterator UE = I->user_end(); 386 if (UI == UE) 387 return true; 388 389 User *TheUse = *UI; 390 for (++UI; UI != UE; ++UI) { 391 if (*UI != TheUse) 392 return false; 393 } 394 return true; 395 } 396 397 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 398 /// dead PHI node, due to being a def-use chain of single-use nodes that 399 /// either forms a cycle or is terminated by a trivially dead instruction, 400 /// delete it. If that makes any of its operands trivially dead, delete them 401 /// too, recursively. Return true if a change was made. 402 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 403 const TargetLibraryInfo *TLI) { 404 SmallPtrSet<Instruction*, 4> Visited; 405 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 406 I = cast<Instruction>(*I->user_begin())) { 407 if (I->use_empty()) 408 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 409 410 // If we find an instruction more than once, we're on a cycle that 411 // won't prove fruitful. 412 if (!Visited.insert(I).second) { 413 // Break the cycle and delete the instruction and its operands. 414 I->replaceAllUsesWith(UndefValue::get(I->getType())); 415 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 416 return true; 417 } 418 } 419 return false; 420 } 421 422 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 423 /// simplify any instructions in it and recursively delete dead instructions. 424 /// 425 /// This returns true if it changed the code, note that it can delete 426 /// instructions in other blocks as well in this block. 427 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 428 const TargetLibraryInfo *TLI) { 429 bool MadeChange = false; 430 431 #ifndef NDEBUG 432 // In debug builds, ensure that the terminator of the block is never replaced 433 // or deleted by these simplifications. The idea of simplification is that it 434 // cannot introduce new instructions, and there is no way to replace the 435 // terminator of a block without introducing a new instruction. 436 AssertingVH<Instruction> TerminatorVH(--BB->end()); 437 #endif 438 439 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 440 assert(!BI->isTerminator()); 441 Instruction *Inst = BI++; 442 443 WeakVH BIHandle(BI); 444 if (recursivelySimplifyInstruction(Inst, TLI)) { 445 MadeChange = true; 446 if (BIHandle != BI) 447 BI = BB->begin(); 448 continue; 449 } 450 451 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 452 if (BIHandle != BI) 453 BI = BB->begin(); 454 } 455 return MadeChange; 456 } 457 458 //===----------------------------------------------------------------------===// 459 // Control Flow Graph Restructuring. 460 // 461 462 463 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 464 /// method is called when we're about to delete Pred as a predecessor of BB. If 465 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 466 /// 467 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 468 /// nodes that collapse into identity values. For example, if we have: 469 /// x = phi(1, 0, 0, 0) 470 /// y = and x, z 471 /// 472 /// .. and delete the predecessor corresponding to the '1', this will attempt to 473 /// recursively fold the and to 0. 474 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 475 // This only adjusts blocks with PHI nodes. 476 if (!isa<PHINode>(BB->begin())) 477 return; 478 479 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 480 // them down. This will leave us with single entry phi nodes and other phis 481 // that can be removed. 482 BB->removePredecessor(Pred, true); 483 484 WeakVH PhiIt = &BB->front(); 485 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 486 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 487 Value *OldPhiIt = PhiIt; 488 489 if (!recursivelySimplifyInstruction(PN)) 490 continue; 491 492 // If recursive simplification ended up deleting the next PHI node we would 493 // iterate to, then our iterator is invalid, restart scanning from the top 494 // of the block. 495 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 496 } 497 } 498 499 500 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 501 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 502 /// between them, moving the instructions in the predecessor into DestBB and 503 /// deleting the predecessor block. 504 /// 505 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 506 // If BB has single-entry PHI nodes, fold them. 507 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 508 Value *NewVal = PN->getIncomingValue(0); 509 // Replace self referencing PHI with undef, it must be dead. 510 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 511 PN->replaceAllUsesWith(NewVal); 512 PN->eraseFromParent(); 513 } 514 515 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 516 assert(PredBB && "Block doesn't have a single predecessor!"); 517 518 // Zap anything that took the address of DestBB. Not doing this will give the 519 // address an invalid value. 520 if (DestBB->hasAddressTaken()) { 521 BlockAddress *BA = BlockAddress::get(DestBB); 522 Constant *Replacement = 523 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 524 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 525 BA->getType())); 526 BA->destroyConstant(); 527 } 528 529 // Anything that branched to PredBB now branches to DestBB. 530 PredBB->replaceAllUsesWith(DestBB); 531 532 // Splice all the instructions from PredBB to DestBB. 533 PredBB->getTerminator()->eraseFromParent(); 534 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 535 536 // If the PredBB is the entry block of the function, move DestBB up to 537 // become the entry block after we erase PredBB. 538 if (PredBB == &DestBB->getParent()->getEntryBlock()) 539 DestBB->moveAfter(PredBB); 540 541 if (DT) { 542 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 543 DT->changeImmediateDominator(DestBB, PredBBIDom); 544 DT->eraseNode(PredBB); 545 } 546 // Nuke BB. 547 PredBB->eraseFromParent(); 548 } 549 550 /// CanMergeValues - Return true if we can choose one of these values to use 551 /// in place of the other. Note that we will always choose the non-undef 552 /// value to keep. 553 static bool CanMergeValues(Value *First, Value *Second) { 554 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 555 } 556 557 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 558 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 559 /// 560 /// Assumption: Succ is the single successor for BB. 561 /// 562 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 563 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 564 565 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 566 << Succ->getName() << "\n"); 567 // Shortcut, if there is only a single predecessor it must be BB and merging 568 // is always safe 569 if (Succ->getSinglePredecessor()) return true; 570 571 // Make a list of the predecessors of BB 572 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 573 574 // Look at all the phi nodes in Succ, to see if they present a conflict when 575 // merging these blocks 576 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 577 PHINode *PN = cast<PHINode>(I); 578 579 // If the incoming value from BB is again a PHINode in 580 // BB which has the same incoming value for *PI as PN does, we can 581 // merge the phi nodes and then the blocks can still be merged 582 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 583 if (BBPN && BBPN->getParent() == BB) { 584 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 585 BasicBlock *IBB = PN->getIncomingBlock(PI); 586 if (BBPreds.count(IBB) && 587 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 588 PN->getIncomingValue(PI))) { 589 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 590 << Succ->getName() << " is conflicting with " 591 << BBPN->getName() << " with regard to common predecessor " 592 << IBB->getName() << "\n"); 593 return false; 594 } 595 } 596 } else { 597 Value* Val = PN->getIncomingValueForBlock(BB); 598 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 599 // See if the incoming value for the common predecessor is equal to the 600 // one for BB, in which case this phi node will not prevent the merging 601 // of the block. 602 BasicBlock *IBB = PN->getIncomingBlock(PI); 603 if (BBPreds.count(IBB) && 604 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 605 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 606 << Succ->getName() << " is conflicting with regard to common " 607 << "predecessor " << IBB->getName() << "\n"); 608 return false; 609 } 610 } 611 } 612 } 613 614 return true; 615 } 616 617 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 618 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 619 620 /// \brief Determines the value to use as the phi node input for a block. 621 /// 622 /// Select between \p OldVal any value that we know flows from \p BB 623 /// to a particular phi on the basis of which one (if either) is not 624 /// undef. Update IncomingValues based on the selected value. 625 /// 626 /// \param OldVal The value we are considering selecting. 627 /// \param BB The block that the value flows in from. 628 /// \param IncomingValues A map from block-to-value for other phi inputs 629 /// that we have examined. 630 /// 631 /// \returns the selected value. 632 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 633 IncomingValueMap &IncomingValues) { 634 if (!isa<UndefValue>(OldVal)) { 635 assert((!IncomingValues.count(BB) || 636 IncomingValues.find(BB)->second == OldVal) && 637 "Expected OldVal to match incoming value from BB!"); 638 639 IncomingValues.insert(std::make_pair(BB, OldVal)); 640 return OldVal; 641 } 642 643 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 644 if (It != IncomingValues.end()) return It->second; 645 646 return OldVal; 647 } 648 649 /// \brief Create a map from block to value for the operands of a 650 /// given phi. 651 /// 652 /// Create a map from block to value for each non-undef value flowing 653 /// into \p PN. 654 /// 655 /// \param PN The phi we are collecting the map for. 656 /// \param IncomingValues [out] The map from block to value for this phi. 657 static void gatherIncomingValuesToPhi(PHINode *PN, 658 IncomingValueMap &IncomingValues) { 659 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 660 BasicBlock *BB = PN->getIncomingBlock(i); 661 Value *V = PN->getIncomingValue(i); 662 663 if (!isa<UndefValue>(V)) 664 IncomingValues.insert(std::make_pair(BB, V)); 665 } 666 } 667 668 /// \brief Replace the incoming undef values to a phi with the values 669 /// from a block-to-value map. 670 /// 671 /// \param PN The phi we are replacing the undefs in. 672 /// \param IncomingValues A map from block to value. 673 static void replaceUndefValuesInPhi(PHINode *PN, 674 const IncomingValueMap &IncomingValues) { 675 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 676 Value *V = PN->getIncomingValue(i); 677 678 if (!isa<UndefValue>(V)) continue; 679 680 BasicBlock *BB = PN->getIncomingBlock(i); 681 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 682 if (It == IncomingValues.end()) continue; 683 684 PN->setIncomingValue(i, It->second); 685 } 686 } 687 688 /// \brief Replace a value flowing from a block to a phi with 689 /// potentially multiple instances of that value flowing from the 690 /// block's predecessors to the phi. 691 /// 692 /// \param BB The block with the value flowing into the phi. 693 /// \param BBPreds The predecessors of BB. 694 /// \param PN The phi that we are updating. 695 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 696 const PredBlockVector &BBPreds, 697 PHINode *PN) { 698 Value *OldVal = PN->removeIncomingValue(BB, false); 699 assert(OldVal && "No entry in PHI for Pred BB!"); 700 701 IncomingValueMap IncomingValues; 702 703 // We are merging two blocks - BB, and the block containing PN - and 704 // as a result we need to redirect edges from the predecessors of BB 705 // to go to the block containing PN, and update PN 706 // accordingly. Since we allow merging blocks in the case where the 707 // predecessor and successor blocks both share some predecessors, 708 // and where some of those common predecessors might have undef 709 // values flowing into PN, we want to rewrite those values to be 710 // consistent with the non-undef values. 711 712 gatherIncomingValuesToPhi(PN, IncomingValues); 713 714 // If this incoming value is one of the PHI nodes in BB, the new entries 715 // in the PHI node are the entries from the old PHI. 716 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 717 PHINode *OldValPN = cast<PHINode>(OldVal); 718 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 719 // Note that, since we are merging phi nodes and BB and Succ might 720 // have common predecessors, we could end up with a phi node with 721 // identical incoming branches. This will be cleaned up later (and 722 // will trigger asserts if we try to clean it up now, without also 723 // simplifying the corresponding conditional branch). 724 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 725 Value *PredVal = OldValPN->getIncomingValue(i); 726 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 727 IncomingValues); 728 729 // And add a new incoming value for this predecessor for the 730 // newly retargeted branch. 731 PN->addIncoming(Selected, PredBB); 732 } 733 } else { 734 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 735 // Update existing incoming values in PN for this 736 // predecessor of BB. 737 BasicBlock *PredBB = BBPreds[i]; 738 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 739 IncomingValues); 740 741 // And add a new incoming value for this predecessor for the 742 // newly retargeted branch. 743 PN->addIncoming(Selected, PredBB); 744 } 745 } 746 747 replaceUndefValuesInPhi(PN, IncomingValues); 748 } 749 750 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 751 /// unconditional branch, and contains no instructions other than PHI nodes, 752 /// potential side-effect free intrinsics and the branch. If possible, 753 /// eliminate BB by rewriting all the predecessors to branch to the successor 754 /// block and return true. If we can't transform, return false. 755 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 756 assert(BB != &BB->getParent()->getEntryBlock() && 757 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 758 759 // We can't eliminate infinite loops. 760 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 761 if (BB == Succ) return false; 762 763 // Check to see if merging these blocks would cause conflicts for any of the 764 // phi nodes in BB or Succ. If not, we can safely merge. 765 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 766 767 // Check for cases where Succ has multiple predecessors and a PHI node in BB 768 // has uses which will not disappear when the PHI nodes are merged. It is 769 // possible to handle such cases, but difficult: it requires checking whether 770 // BB dominates Succ, which is non-trivial to calculate in the case where 771 // Succ has multiple predecessors. Also, it requires checking whether 772 // constructing the necessary self-referential PHI node doesn't introduce any 773 // conflicts; this isn't too difficult, but the previous code for doing this 774 // was incorrect. 775 // 776 // Note that if this check finds a live use, BB dominates Succ, so BB is 777 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 778 // folding the branch isn't profitable in that case anyway. 779 if (!Succ->getSinglePredecessor()) { 780 BasicBlock::iterator BBI = BB->begin(); 781 while (isa<PHINode>(*BBI)) { 782 for (Use &U : BBI->uses()) { 783 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 784 if (PN->getIncomingBlock(U) != BB) 785 return false; 786 } else { 787 return false; 788 } 789 } 790 ++BBI; 791 } 792 } 793 794 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 795 796 if (isa<PHINode>(Succ->begin())) { 797 // If there is more than one pred of succ, and there are PHI nodes in 798 // the successor, then we need to add incoming edges for the PHI nodes 799 // 800 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 801 802 // Loop over all of the PHI nodes in the successor of BB. 803 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 804 PHINode *PN = cast<PHINode>(I); 805 806 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 807 } 808 } 809 810 if (Succ->getSinglePredecessor()) { 811 // BB is the only predecessor of Succ, so Succ will end up with exactly 812 // the same predecessors BB had. 813 814 // Copy over any phi, debug or lifetime instruction. 815 BB->getTerminator()->eraseFromParent(); 816 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 817 } else { 818 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 819 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 820 assert(PN->use_empty() && "There shouldn't be any uses here!"); 821 PN->eraseFromParent(); 822 } 823 } 824 825 // Everything that jumped to BB now goes to Succ. 826 BB->replaceAllUsesWith(Succ); 827 if (!Succ->hasName()) Succ->takeName(BB); 828 BB->eraseFromParent(); // Delete the old basic block. 829 return true; 830 } 831 832 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 833 /// nodes in this block. This doesn't try to be clever about PHI nodes 834 /// which differ only in the order of the incoming values, but instcombine 835 /// orders them so it usually won't matter. 836 /// 837 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 838 // This implementation doesn't currently consider undef operands 839 // specially. Theoretically, two phis which are identical except for 840 // one having an undef where the other doesn't could be collapsed. 841 842 struct PHIDenseMapInfo { 843 static PHINode *getEmptyKey() { 844 return DenseMapInfo<PHINode *>::getEmptyKey(); 845 } 846 static PHINode *getTombstoneKey() { 847 return DenseMapInfo<PHINode *>::getTombstoneKey(); 848 } 849 static unsigned getHashValue(PHINode *PN) { 850 // Compute a hash value on the operands. Instcombine will likely have 851 // sorted them, which helps expose duplicates, but we have to check all 852 // the operands to be safe in case instcombine hasn't run. 853 return static_cast<unsigned>(hash_combine( 854 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 855 hash_combine_range(PN->block_begin(), PN->block_end()))); 856 } 857 static bool isEqual(PHINode *LHS, PHINode *RHS) { 858 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 859 RHS == getEmptyKey() || RHS == getTombstoneKey()) 860 return LHS == RHS; 861 return LHS->isIdenticalTo(RHS); 862 } 863 }; 864 865 // Set of unique PHINodes. 866 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 867 868 // Examine each PHI. 869 bool Changed = false; 870 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 871 auto Inserted = PHISet.insert(PN); 872 if (!Inserted.second) { 873 // A duplicate. Replace this PHI with its duplicate. 874 PN->replaceAllUsesWith(*Inserted.first); 875 PN->eraseFromParent(); 876 Changed = true; 877 878 // The RAUW can change PHIs that we already visited. Start over from the 879 // beginning. 880 PHISet.clear(); 881 I = BB->begin(); 882 } 883 } 884 885 return Changed; 886 } 887 888 /// enforceKnownAlignment - If the specified pointer points to an object that 889 /// we control, modify the object's alignment to PrefAlign. This isn't 890 /// often possible though. If alignment is important, a more reliable approach 891 /// is to simply align all global variables and allocation instructions to 892 /// their preferred alignment from the beginning. 893 /// 894 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 895 unsigned PrefAlign, 896 const DataLayout &DL) { 897 V = V->stripPointerCasts(); 898 899 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 900 // If the preferred alignment is greater than the natural stack alignment 901 // then don't round up. This avoids dynamic stack realignment. 902 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 903 return Align; 904 // If there is a requested alignment and if this is an alloca, round up. 905 if (AI->getAlignment() >= PrefAlign) 906 return AI->getAlignment(); 907 AI->setAlignment(PrefAlign); 908 return PrefAlign; 909 } 910 911 if (auto *GO = dyn_cast<GlobalObject>(V)) { 912 // If there is a large requested alignment and we can, bump up the alignment 913 // of the global. If the memory we set aside for the global may not be the 914 // memory used by the final program then it is impossible for us to reliably 915 // enforce the preferred alignment. 916 if (!GO->isStrongDefinitionForLinker()) 917 return Align; 918 919 if (GO->getAlignment() >= PrefAlign) 920 return GO->getAlignment(); 921 // We can only increase the alignment of the global if it has no alignment 922 // specified or if it is not assigned a section. If it is assigned a 923 // section, the global could be densely packed with other objects in the 924 // section, increasing the alignment could cause padding issues. 925 if (!GO->hasSection() || GO->getAlignment() == 0) 926 GO->setAlignment(PrefAlign); 927 return GO->getAlignment(); 928 } 929 930 return Align; 931 } 932 933 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 934 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 935 /// and it is more than the alignment of the ultimate object, see if we can 936 /// increase the alignment of the ultimate object, making this check succeed. 937 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 938 const DataLayout &DL, 939 const Instruction *CxtI, 940 AssumptionCache *AC, 941 const DominatorTree *DT) { 942 assert(V->getType()->isPointerTy() && 943 "getOrEnforceKnownAlignment expects a pointer!"); 944 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 945 946 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 947 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 948 unsigned TrailZ = KnownZero.countTrailingOnes(); 949 950 // Avoid trouble with ridiculously large TrailZ values, such as 951 // those computed from a null pointer. 952 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 953 954 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 955 956 // LLVM doesn't support alignments larger than this currently. 957 Align = std::min(Align, +Value::MaximumAlignment); 958 959 if (PrefAlign > Align) 960 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 961 962 // We don't need to make any adjustment. 963 return Align; 964 } 965 966 ///===---------------------------------------------------------------------===// 967 /// Dbg Intrinsic utilities 968 /// 969 970 /// See if there is a dbg.value intrinsic for DIVar before I. 971 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) { 972 // Since we can't guarantee that the original dbg.declare instrinsic 973 // is removed by LowerDbgDeclare(), we need to make sure that we are 974 // not inserting the same dbg.value intrinsic over and over. 975 llvm::BasicBlock::InstListType::iterator PrevI(I); 976 if (PrevI != I->getParent()->getInstList().begin()) { 977 --PrevI; 978 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 979 if (DVI->getValue() == I->getOperand(0) && 980 DVI->getOffset() == 0 && 981 DVI->getVariable() == DIVar) 982 return true; 983 } 984 return false; 985 } 986 987 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 988 /// that has an associated llvm.dbg.decl intrinsic. 989 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 990 StoreInst *SI, DIBuilder &Builder) { 991 auto *DIVar = DDI->getVariable(); 992 auto *DIExpr = DDI->getExpression(); 993 assert(DIVar && "Missing variable"); 994 995 if (LdStHasDebugValue(DIVar, SI)) 996 return true; 997 998 // If an argument is zero extended then use argument directly. The ZExt 999 // may be zapped by an optimization pass in future. 1000 Argument *ExtendedArg = nullptr; 1001 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1002 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1003 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1004 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1005 if (ExtendedArg) 1006 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, 1007 DDI->getDebugLoc(), SI); 1008 else 1009 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1010 DDI->getDebugLoc(), SI); 1011 return true; 1012 } 1013 1014 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1015 /// that has an associated llvm.dbg.decl intrinsic. 1016 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1017 LoadInst *LI, DIBuilder &Builder) { 1018 auto *DIVar = DDI->getVariable(); 1019 auto *DIExpr = DDI->getExpression(); 1020 assert(DIVar && "Missing variable"); 1021 1022 if (LdStHasDebugValue(DIVar, LI)) 1023 return true; 1024 1025 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, 1026 DDI->getDebugLoc(), LI); 1027 return true; 1028 } 1029 1030 /// Determine whether this alloca is either a VLA or an array. 1031 static bool isArray(AllocaInst *AI) { 1032 return AI->isArrayAllocation() || 1033 AI->getType()->getElementType()->isArrayTy(); 1034 } 1035 1036 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1037 /// of llvm.dbg.value intrinsics. 1038 bool llvm::LowerDbgDeclare(Function &F) { 1039 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1040 SmallVector<DbgDeclareInst *, 4> Dbgs; 1041 for (auto &FI : F) 1042 for (BasicBlock::iterator BI : FI) 1043 if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) 1044 Dbgs.push_back(DDI); 1045 1046 if (Dbgs.empty()) 1047 return false; 1048 1049 for (auto &I : Dbgs) { 1050 DbgDeclareInst *DDI = I; 1051 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1052 // If this is an alloca for a scalar variable, insert a dbg.value 1053 // at each load and store to the alloca and erase the dbg.declare. 1054 // The dbg.values allow tracking a variable even if it is not 1055 // stored on the stack, while the dbg.declare can only describe 1056 // the stack slot (and at a lexical-scope granularity). Later 1057 // passes will attempt to elide the stack slot. 1058 if (AI && !isArray(AI)) { 1059 for (User *U : AI->users()) 1060 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1061 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1062 else if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1063 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1064 else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1065 // This is a call by-value or some other instruction that 1066 // takes a pointer to the variable. Insert a *value* 1067 // intrinsic that describes the alloca. 1068 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1069 DDI->getExpression(), DDI->getDebugLoc(), 1070 CI); 1071 } 1072 DDI->eraseFromParent(); 1073 } 1074 } 1075 return true; 1076 } 1077 1078 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1079 /// alloca 'V', if any. 1080 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1081 if (auto *L = LocalAsMetadata::getIfExists(V)) 1082 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1083 for (User *U : MDV->users()) 1084 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1085 return DDI; 1086 1087 return nullptr; 1088 } 1089 1090 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1091 DIBuilder &Builder, bool Deref) { 1092 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1093 if (!DDI) 1094 return false; 1095 DebugLoc Loc = DDI->getDebugLoc(); 1096 auto *DIVar = DDI->getVariable(); 1097 auto *DIExpr = DDI->getExpression(); 1098 assert(DIVar && "Missing variable"); 1099 1100 if (Deref) { 1101 // Create a copy of the original DIDescriptor for user variable, prepending 1102 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1103 // will take a value storing address of the memory for variable, not 1104 // alloca itself. 1105 SmallVector<uint64_t, 4> NewDIExpr; 1106 NewDIExpr.push_back(dwarf::DW_OP_deref); 1107 if (DIExpr) 1108 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1109 DIExpr = Builder.createExpression(NewDIExpr); 1110 } 1111 1112 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1113 // and remove old llvm.dbg.declare. 1114 BasicBlock *BB = AI->getParent(); 1115 Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, BB); 1116 DDI->eraseFromParent(); 1117 return true; 1118 } 1119 1120 /// changeToUnreachable - Insert an unreachable instruction before the specified 1121 /// instruction, making it and the rest of the code in the block dead. 1122 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1123 BasicBlock *BB = I->getParent(); 1124 // Loop over all of the successors, removing BB's entry from any PHI 1125 // nodes. 1126 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1127 (*SI)->removePredecessor(BB); 1128 1129 // Insert a call to llvm.trap right before this. This turns the undefined 1130 // behavior into a hard fail instead of falling through into random code. 1131 if (UseLLVMTrap) { 1132 Function *TrapFn = 1133 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1134 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1135 CallTrap->setDebugLoc(I->getDebugLoc()); 1136 } 1137 new UnreachableInst(I->getContext(), I); 1138 1139 // All instructions after this are dead. 1140 BasicBlock::iterator BBI = I, BBE = BB->end(); 1141 while (BBI != BBE) { 1142 if (!BBI->use_empty()) 1143 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1144 BB->getInstList().erase(BBI++); 1145 } 1146 } 1147 1148 /// changeToCall - Convert the specified invoke into a normal call. 1149 static void changeToCall(InvokeInst *II) { 1150 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1151 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1152 NewCall->takeName(II); 1153 NewCall->setCallingConv(II->getCallingConv()); 1154 NewCall->setAttributes(II->getAttributes()); 1155 NewCall->setDebugLoc(II->getDebugLoc()); 1156 II->replaceAllUsesWith(NewCall); 1157 1158 // Follow the call by a branch to the normal destination. 1159 BranchInst::Create(II->getNormalDest(), II); 1160 1161 // Update PHI nodes in the unwind destination 1162 II->getUnwindDest()->removePredecessor(II->getParent()); 1163 II->eraseFromParent(); 1164 } 1165 1166 static bool markAliveBlocks(Function &F, 1167 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1168 1169 SmallVector<BasicBlock*, 128> Worklist; 1170 BasicBlock *BB = F.begin(); 1171 Worklist.push_back(BB); 1172 Reachable.insert(BB); 1173 bool Changed = false; 1174 do { 1175 BB = Worklist.pop_back_val(); 1176 1177 // Do a quick scan of the basic block, turning any obviously unreachable 1178 // instructions into LLVM unreachable insts. The instruction combining pass 1179 // canonicalizes unreachable insts into stores to null or undef. 1180 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1181 // Assumptions that are known to be false are equivalent to unreachable. 1182 // Also, if the condition is undefined, then we make the choice most 1183 // beneficial to the optimizer, and choose that to also be unreachable. 1184 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1185 if (II->getIntrinsicID() == Intrinsic::assume) { 1186 bool MakeUnreachable = false; 1187 if (isa<UndefValue>(II->getArgOperand(0))) 1188 MakeUnreachable = true; 1189 else if (ConstantInt *Cond = 1190 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1191 MakeUnreachable = Cond->isZero(); 1192 1193 if (MakeUnreachable) { 1194 // Don't insert a call to llvm.trap right before the unreachable. 1195 changeToUnreachable(BBI, false); 1196 Changed = true; 1197 break; 1198 } 1199 } 1200 1201 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1202 if (CI->doesNotReturn()) { 1203 // If we found a call to a no-return function, insert an unreachable 1204 // instruction after it. Make sure there isn't *already* one there 1205 // though. 1206 ++BBI; 1207 if (!isa<UnreachableInst>(BBI)) { 1208 // Don't insert a call to llvm.trap right before the unreachable. 1209 changeToUnreachable(BBI, false); 1210 Changed = true; 1211 } 1212 break; 1213 } 1214 } 1215 1216 // Store to undef and store to null are undefined and used to signal that 1217 // they should be changed to unreachable by passes that can't modify the 1218 // CFG. 1219 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1220 // Don't touch volatile stores. 1221 if (SI->isVolatile()) continue; 1222 1223 Value *Ptr = SI->getOperand(1); 1224 1225 if (isa<UndefValue>(Ptr) || 1226 (isa<ConstantPointerNull>(Ptr) && 1227 SI->getPointerAddressSpace() == 0)) { 1228 changeToUnreachable(SI, true); 1229 Changed = true; 1230 break; 1231 } 1232 } 1233 } 1234 1235 // Turn invokes that call 'nounwind' functions into ordinary calls. 1236 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1237 Value *Callee = II->getCalledValue(); 1238 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1239 changeToUnreachable(II, true); 1240 Changed = true; 1241 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1242 if (II->use_empty() && II->onlyReadsMemory()) { 1243 // jump to the normal destination branch. 1244 BranchInst::Create(II->getNormalDest(), II); 1245 II->getUnwindDest()->removePredecessor(II->getParent()); 1246 II->eraseFromParent(); 1247 } else 1248 changeToCall(II); 1249 Changed = true; 1250 } 1251 } 1252 1253 Changed |= ConstantFoldTerminator(BB, true); 1254 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1255 if (Reachable.insert(*SI).second) 1256 Worklist.push_back(*SI); 1257 } while (!Worklist.empty()); 1258 return Changed; 1259 } 1260 1261 void llvm::removeUnwindEdge(BasicBlock *BB) { 1262 TerminatorInst *TI = BB->getTerminator(); 1263 1264 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1265 changeToCall(II); 1266 return; 1267 } 1268 1269 TerminatorInst *NewTI; 1270 BasicBlock *UnwindDest; 1271 1272 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1273 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1274 UnwindDest = CRI->getUnwindDest(); 1275 } else if (auto *CEP = dyn_cast<CleanupEndPadInst>(TI)) { 1276 NewTI = CleanupEndPadInst::Create(CEP->getCleanupPad(), nullptr, CEP); 1277 UnwindDest = CEP->getUnwindDest(); 1278 } else if (auto *CEP = dyn_cast<CatchEndPadInst>(TI)) { 1279 NewTI = CatchEndPadInst::Create(CEP->getContext(), nullptr, CEP); 1280 UnwindDest = CEP->getUnwindDest(); 1281 } else if (auto *TPI = dyn_cast<TerminatePadInst>(TI)) { 1282 SmallVector<Value *, 3> TerminatePadArgs; 1283 for (Value *Operand : TPI->arg_operands()) 1284 TerminatePadArgs.push_back(Operand); 1285 NewTI = TerminatePadInst::Create(TPI->getContext(), nullptr, 1286 TerminatePadArgs, TPI); 1287 UnwindDest = TPI->getUnwindDest(); 1288 } else { 1289 llvm_unreachable("Could not find unwind successor"); 1290 } 1291 1292 NewTI->takeName(TI); 1293 NewTI->setDebugLoc(TI->getDebugLoc()); 1294 UnwindDest->removePredecessor(BB); 1295 TI->eraseFromParent(); 1296 } 1297 1298 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1299 /// if they are in a dead cycle. Return true if a change was made, false 1300 /// otherwise. 1301 bool llvm::removeUnreachableBlocks(Function &F) { 1302 SmallPtrSet<BasicBlock*, 128> Reachable; 1303 bool Changed = markAliveBlocks(F, Reachable); 1304 1305 // If there are unreachable blocks in the CFG... 1306 if (Reachable.size() == F.size()) 1307 return Changed; 1308 1309 assert(Reachable.size() < F.size()); 1310 NumRemoved += F.size()-Reachable.size(); 1311 1312 // Loop over all of the basic blocks that are not reachable, dropping all of 1313 // their internal references... 1314 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1315 if (Reachable.count(BB)) 1316 continue; 1317 1318 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1319 if (Reachable.count(*SI)) 1320 (*SI)->removePredecessor(BB); 1321 BB->dropAllReferences(); 1322 } 1323 1324 for (Function::iterator I = ++F.begin(); I != F.end();) 1325 if (!Reachable.count(I)) 1326 I = F.getBasicBlockList().erase(I); 1327 else 1328 ++I; 1329 1330 return true; 1331 } 1332 1333 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { 1334 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1335 K->dropUnknownNonDebugMetadata(KnownIDs); 1336 K->getAllMetadataOtherThanDebugLoc(Metadata); 1337 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1338 unsigned Kind = Metadata[i].first; 1339 MDNode *JMD = J->getMetadata(Kind); 1340 MDNode *KMD = Metadata[i].second; 1341 1342 switch (Kind) { 1343 default: 1344 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1345 break; 1346 case LLVMContext::MD_dbg: 1347 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1348 case LLVMContext::MD_tbaa: 1349 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1350 break; 1351 case LLVMContext::MD_alias_scope: 1352 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1353 break; 1354 case LLVMContext::MD_noalias: 1355 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1356 break; 1357 case LLVMContext::MD_range: 1358 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1359 break; 1360 case LLVMContext::MD_fpmath: 1361 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1362 break; 1363 case LLVMContext::MD_invariant_load: 1364 // Only set the !invariant.load if it is present in both instructions. 1365 K->setMetadata(Kind, JMD); 1366 break; 1367 case LLVMContext::MD_nonnull: 1368 // Only set the !nonnull if it is present in both instructions. 1369 K->setMetadata(Kind, JMD); 1370 break; 1371 } 1372 } 1373 } 1374 1375 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1376 DominatorTree &DT, 1377 const BasicBlockEdge &Root) { 1378 assert(From->getType() == To->getType()); 1379 1380 unsigned Count = 0; 1381 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1382 UI != UE; ) { 1383 Use &U = *UI++; 1384 if (DT.dominates(Root, U)) { 1385 U.set(To); 1386 DEBUG(dbgs() << "Replace dominated use of '" 1387 << From->getName() << "' as " 1388 << *To << " in " << *U << "\n"); 1389 ++Count; 1390 } 1391 } 1392 return Count; 1393 } 1394 1395 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1396 DominatorTree &DT, 1397 const BasicBlock *BB) { 1398 assert(From->getType() == To->getType()); 1399 1400 unsigned Count = 0; 1401 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1402 UI != UE;) { 1403 Use &U = *UI++; 1404 auto *I = cast<Instruction>(U.getUser()); 1405 if (DT.dominates(BB, I->getParent())) { 1406 U.set(To); 1407 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1408 << *To << " in " << *U << "\n"); 1409 ++Count; 1410 } 1411 } 1412 return Count; 1413 } 1414