1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/DIBuilder.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/ValueHandle.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 47 48 //===----------------------------------------------------------------------===// 49 // Local constant propagation. 50 // 51 52 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 53 /// constant value, convert it into an unconditional branch to the constant 54 /// destination. This is a nontrivial operation because the successors of this 55 /// basic block must have their PHI nodes updated. 56 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 57 /// conditions and indirectbr addresses this might make dead if 58 /// DeleteDeadConditions is true. 59 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 60 const TargetLibraryInfo *TLI) { 61 TerminatorInst *T = BB->getTerminator(); 62 IRBuilder<> Builder(T); 63 64 // Branch - See if we are conditional jumping on constant 65 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 66 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 67 BasicBlock *Dest1 = BI->getSuccessor(0); 68 BasicBlock *Dest2 = BI->getSuccessor(1); 69 70 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 71 // Are we branching on constant? 72 // YES. Change to unconditional branch... 73 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 74 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 75 76 //cerr << "Function: " << T->getParent()->getParent() 77 // << "\nRemoving branch from " << T->getParent() 78 // << "\n\nTo: " << OldDest << endl; 79 80 // Let the basic block know that we are letting go of it. Based on this, 81 // it will adjust it's PHI nodes. 82 OldDest->removePredecessor(BB); 83 84 // Replace the conditional branch with an unconditional one. 85 Builder.CreateBr(Destination); 86 BI->eraseFromParent(); 87 return true; 88 } 89 90 if (Dest2 == Dest1) { // Conditional branch to same location? 91 // This branch matches something like this: 92 // br bool %cond, label %Dest, label %Dest 93 // and changes it into: br label %Dest 94 95 // Let the basic block know that we are letting go of one copy of it. 96 assert(BI->getParent() && "Terminator not inserted in block!"); 97 Dest1->removePredecessor(BI->getParent()); 98 99 // Replace the conditional branch with an unconditional one. 100 Builder.CreateBr(Dest1); 101 Value *Cond = BI->getCondition(); 102 BI->eraseFromParent(); 103 if (DeleteDeadConditions) 104 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 105 return true; 106 } 107 return false; 108 } 109 110 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 111 // If we are switching on a constant, we can convert the switch into a 112 // single branch instruction! 113 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 114 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 115 BasicBlock *DefaultDest = TheOnlyDest; 116 117 // Figure out which case it goes to. 118 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 119 i != e; ++i) { 120 // Found case matching a constant operand? 121 if (i.getCaseValue() == CI) { 122 TheOnlyDest = i.getCaseSuccessor(); 123 break; 124 } 125 126 // Check to see if this branch is going to the same place as the default 127 // dest. If so, eliminate it as an explicit compare. 128 if (i.getCaseSuccessor() == DefaultDest) { 129 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 130 unsigned NCases = SI->getNumCases(); 131 // Fold the case metadata into the default if there will be any branches 132 // left, unless the metadata doesn't match the switch. 133 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 134 // Collect branch weights into a vector. 135 SmallVector<uint32_t, 8> Weights; 136 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 137 ++MD_i) { 138 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 139 assert(CI); 140 Weights.push_back(CI->getValue().getZExtValue()); 141 } 142 // Merge weight of this case to the default weight. 143 unsigned idx = i.getCaseIndex(); 144 Weights[0] += Weights[idx+1]; 145 // Remove weight for this case. 146 std::swap(Weights[idx+1], Weights.back()); 147 Weights.pop_back(); 148 SI->setMetadata(LLVMContext::MD_prof, 149 MDBuilder(BB->getContext()). 150 createBranchWeights(Weights)); 151 } 152 // Remove this entry. 153 DefaultDest->removePredecessor(SI->getParent()); 154 SI->removeCase(i); 155 --i; --e; 156 continue; 157 } 158 159 // Otherwise, check to see if the switch only branches to one destination. 160 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 161 // destinations. 162 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0; 163 } 164 165 if (CI && !TheOnlyDest) { 166 // Branching on a constant, but not any of the cases, go to the default 167 // successor. 168 TheOnlyDest = SI->getDefaultDest(); 169 } 170 171 // If we found a single destination that we can fold the switch into, do so 172 // now. 173 if (TheOnlyDest) { 174 // Insert the new branch. 175 Builder.CreateBr(TheOnlyDest); 176 BasicBlock *BB = SI->getParent(); 177 178 // Remove entries from PHI nodes which we no longer branch to... 179 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 180 // Found case matching a constant operand? 181 BasicBlock *Succ = SI->getSuccessor(i); 182 if (Succ == TheOnlyDest) 183 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 184 else 185 Succ->removePredecessor(BB); 186 } 187 188 // Delete the old switch. 189 Value *Cond = SI->getCondition(); 190 SI->eraseFromParent(); 191 if (DeleteDeadConditions) 192 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 193 return true; 194 } 195 196 if (SI->getNumCases() == 1) { 197 // Otherwise, we can fold this switch into a conditional branch 198 // instruction if it has only one non-default destination. 199 SwitchInst::CaseIt FirstCase = SI->case_begin(); 200 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 201 FirstCase.getCaseValue(), "cond"); 202 203 // Insert the new branch. 204 BranchInst *NewBr = Builder.CreateCondBr(Cond, 205 FirstCase.getCaseSuccessor(), 206 SI->getDefaultDest()); 207 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 208 if (MD && MD->getNumOperands() == 3) { 209 ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); 210 ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); 211 assert(SICase && SIDef); 212 // The TrueWeight should be the weight for the single case of SI. 213 NewBr->setMetadata(LLVMContext::MD_prof, 214 MDBuilder(BB->getContext()). 215 createBranchWeights(SICase->getValue().getZExtValue(), 216 SIDef->getValue().getZExtValue())); 217 } 218 219 // Delete the old switch. 220 SI->eraseFromParent(); 221 return true; 222 } 223 return false; 224 } 225 226 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 227 // indirectbr blockaddress(@F, @BB) -> br label @BB 228 if (BlockAddress *BA = 229 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 230 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 231 // Insert the new branch. 232 Builder.CreateBr(TheOnlyDest); 233 234 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 235 if (IBI->getDestination(i) == TheOnlyDest) 236 TheOnlyDest = 0; 237 else 238 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 239 } 240 Value *Address = IBI->getAddress(); 241 IBI->eraseFromParent(); 242 if (DeleteDeadConditions) 243 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 244 245 // If we didn't find our destination in the IBI successor list, then we 246 // have undefined behavior. Replace the unconditional branch with an 247 // 'unreachable' instruction. 248 if (TheOnlyDest) { 249 BB->getTerminator()->eraseFromParent(); 250 new UnreachableInst(BB->getContext(), BB); 251 } 252 253 return true; 254 } 255 } 256 257 return false; 258 } 259 260 261 //===----------------------------------------------------------------------===// 262 // Local dead code elimination. 263 // 264 265 /// isInstructionTriviallyDead - Return true if the result produced by the 266 /// instruction is not used, and the instruction has no side effects. 267 /// 268 bool llvm::isInstructionTriviallyDead(Instruction *I, 269 const TargetLibraryInfo *TLI) { 270 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 271 272 // We don't want the landingpad instruction removed by anything this general. 273 if (isa<LandingPadInst>(I)) 274 return false; 275 276 // We don't want debug info removed by anything this general, unless 277 // debug info is empty. 278 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 279 if (DDI->getAddress()) 280 return false; 281 return true; 282 } 283 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 284 if (DVI->getValue()) 285 return false; 286 return true; 287 } 288 289 if (!I->mayHaveSideEffects()) return true; 290 291 // Special case intrinsics that "may have side effects" but can be deleted 292 // when dead. 293 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 294 // Safe to delete llvm.stacksave if dead. 295 if (II->getIntrinsicID() == Intrinsic::stacksave) 296 return true; 297 298 // Lifetime intrinsics are dead when their right-hand is undef. 299 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 300 II->getIntrinsicID() == Intrinsic::lifetime_end) 301 return isa<UndefValue>(II->getArgOperand(1)); 302 } 303 304 if (isAllocLikeFn(I, TLI)) return true; 305 306 if (CallInst *CI = isFreeCall(I, TLI)) 307 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 308 return C->isNullValue() || isa<UndefValue>(C); 309 310 return false; 311 } 312 313 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 314 /// trivially dead instruction, delete it. If that makes any of its operands 315 /// trivially dead, delete them too, recursively. Return true if any 316 /// instructions were deleted. 317 bool 318 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 319 const TargetLibraryInfo *TLI) { 320 Instruction *I = dyn_cast<Instruction>(V); 321 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 322 return false; 323 324 SmallVector<Instruction*, 16> DeadInsts; 325 DeadInsts.push_back(I); 326 327 do { 328 I = DeadInsts.pop_back_val(); 329 330 // Null out all of the instruction's operands to see if any operand becomes 331 // dead as we go. 332 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 333 Value *OpV = I->getOperand(i); 334 I->setOperand(i, 0); 335 336 if (!OpV->use_empty()) continue; 337 338 // If the operand is an instruction that became dead as we nulled out the 339 // operand, and if it is 'trivially' dead, delete it in a future loop 340 // iteration. 341 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 342 if (isInstructionTriviallyDead(OpI, TLI)) 343 DeadInsts.push_back(OpI); 344 } 345 346 I->eraseFromParent(); 347 } while (!DeadInsts.empty()); 348 349 return true; 350 } 351 352 /// areAllUsesEqual - Check whether the uses of a value are all the same. 353 /// This is similar to Instruction::hasOneUse() except this will also return 354 /// true when there are no uses or multiple uses that all refer to the same 355 /// value. 356 static bool areAllUsesEqual(Instruction *I) { 357 Value::use_iterator UI = I->use_begin(); 358 Value::use_iterator UE = I->use_end(); 359 if (UI == UE) 360 return true; 361 362 User *TheUse = *UI; 363 for (++UI; UI != UE; ++UI) { 364 if (*UI != TheUse) 365 return false; 366 } 367 return true; 368 } 369 370 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 371 /// dead PHI node, due to being a def-use chain of single-use nodes that 372 /// either forms a cycle or is terminated by a trivially dead instruction, 373 /// delete it. If that makes any of its operands trivially dead, delete them 374 /// too, recursively. Return true if a change was made. 375 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 376 const TargetLibraryInfo *TLI) { 377 SmallPtrSet<Instruction*, 4> Visited; 378 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 379 I = cast<Instruction>(*I->use_begin())) { 380 if (I->use_empty()) 381 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 382 383 // If we find an instruction more than once, we're on a cycle that 384 // won't prove fruitful. 385 if (!Visited.insert(I)) { 386 // Break the cycle and delete the instruction and its operands. 387 I->replaceAllUsesWith(UndefValue::get(I->getType())); 388 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 389 return true; 390 } 391 } 392 return false; 393 } 394 395 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 396 /// simplify any instructions in it and recursively delete dead instructions. 397 /// 398 /// This returns true if it changed the code, note that it can delete 399 /// instructions in other blocks as well in this block. 400 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 401 const TargetLibraryInfo *TLI) { 402 bool MadeChange = false; 403 404 #ifndef NDEBUG 405 // In debug builds, ensure that the terminator of the block is never replaced 406 // or deleted by these simplifications. The idea of simplification is that it 407 // cannot introduce new instructions, and there is no way to replace the 408 // terminator of a block without introducing a new instruction. 409 AssertingVH<Instruction> TerminatorVH(--BB->end()); 410 #endif 411 412 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 413 assert(!BI->isTerminator()); 414 Instruction *Inst = BI++; 415 416 WeakVH BIHandle(BI); 417 if (recursivelySimplifyInstruction(Inst, TD, TLI)) { 418 MadeChange = true; 419 if (BIHandle != BI) 420 BI = BB->begin(); 421 continue; 422 } 423 424 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 425 if (BIHandle != BI) 426 BI = BB->begin(); 427 } 428 return MadeChange; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // Control Flow Graph Restructuring. 433 // 434 435 436 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 437 /// method is called when we're about to delete Pred as a predecessor of BB. If 438 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 439 /// 440 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 441 /// nodes that collapse into identity values. For example, if we have: 442 /// x = phi(1, 0, 0, 0) 443 /// y = and x, z 444 /// 445 /// .. and delete the predecessor corresponding to the '1', this will attempt to 446 /// recursively fold the and to 0. 447 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 448 DataLayout *TD) { 449 // This only adjusts blocks with PHI nodes. 450 if (!isa<PHINode>(BB->begin())) 451 return; 452 453 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 454 // them down. This will leave us with single entry phi nodes and other phis 455 // that can be removed. 456 BB->removePredecessor(Pred, true); 457 458 WeakVH PhiIt = &BB->front(); 459 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 460 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 461 Value *OldPhiIt = PhiIt; 462 463 if (!recursivelySimplifyInstruction(PN, TD)) 464 continue; 465 466 // If recursive simplification ended up deleting the next PHI node we would 467 // iterate to, then our iterator is invalid, restart scanning from the top 468 // of the block. 469 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 470 } 471 } 472 473 474 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 475 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 476 /// between them, moving the instructions in the predecessor into DestBB and 477 /// deleting the predecessor block. 478 /// 479 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 480 // If BB has single-entry PHI nodes, fold them. 481 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 482 Value *NewVal = PN->getIncomingValue(0); 483 // Replace self referencing PHI with undef, it must be dead. 484 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 485 PN->replaceAllUsesWith(NewVal); 486 PN->eraseFromParent(); 487 } 488 489 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 490 assert(PredBB && "Block doesn't have a single predecessor!"); 491 492 // Zap anything that took the address of DestBB. Not doing this will give the 493 // address an invalid value. 494 if (DestBB->hasAddressTaken()) { 495 BlockAddress *BA = BlockAddress::get(DestBB); 496 Constant *Replacement = 497 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 498 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 499 BA->getType())); 500 BA->destroyConstant(); 501 } 502 503 // Anything that branched to PredBB now branches to DestBB. 504 PredBB->replaceAllUsesWith(DestBB); 505 506 // Splice all the instructions from PredBB to DestBB. 507 PredBB->getTerminator()->eraseFromParent(); 508 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 509 510 if (P) { 511 if (DominatorTreeWrapperPass *DTWP = 512 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 513 DominatorTree &DT = DTWP->getDomTree(); 514 BasicBlock *PredBBIDom = DT.getNode(PredBB)->getIDom()->getBlock(); 515 DT.changeImmediateDominator(DestBB, PredBBIDom); 516 DT.eraseNode(PredBB); 517 } 518 } 519 // Nuke BB. 520 PredBB->eraseFromParent(); 521 } 522 523 /// CanMergeValues - Return true if we can choose one of these values to use 524 /// in place of the other. Note that we will always choose the non-undef 525 /// value to keep. 526 static bool CanMergeValues(Value *First, Value *Second) { 527 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 528 } 529 530 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 531 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 532 /// 533 /// Assumption: Succ is the single successor for BB. 534 /// 535 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 536 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 537 538 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 539 << Succ->getName() << "\n"); 540 // Shortcut, if there is only a single predecessor it must be BB and merging 541 // is always safe 542 if (Succ->getSinglePredecessor()) return true; 543 544 // Make a list of the predecessors of BB 545 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 546 547 // Look at all the phi nodes in Succ, to see if they present a conflict when 548 // merging these blocks 549 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 550 PHINode *PN = cast<PHINode>(I); 551 552 // If the incoming value from BB is again a PHINode in 553 // BB which has the same incoming value for *PI as PN does, we can 554 // merge the phi nodes and then the blocks can still be merged 555 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 556 if (BBPN && BBPN->getParent() == BB) { 557 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 558 BasicBlock *IBB = PN->getIncomingBlock(PI); 559 if (BBPreds.count(IBB) && 560 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 561 PN->getIncomingValue(PI))) { 562 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 563 << Succ->getName() << " is conflicting with " 564 << BBPN->getName() << " with regard to common predecessor " 565 << IBB->getName() << "\n"); 566 return false; 567 } 568 } 569 } else { 570 Value* Val = PN->getIncomingValueForBlock(BB); 571 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 572 // See if the incoming value for the common predecessor is equal to the 573 // one for BB, in which case this phi node will not prevent the merging 574 // of the block. 575 BasicBlock *IBB = PN->getIncomingBlock(PI); 576 if (BBPreds.count(IBB) && 577 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 578 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 579 << Succ->getName() << " is conflicting with regard to common " 580 << "predecessor " << IBB->getName() << "\n"); 581 return false; 582 } 583 } 584 } 585 } 586 587 return true; 588 } 589 590 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 591 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 592 593 /// \brief Determines the value to use as the phi node input for a block. 594 /// 595 /// Select between \p OldVal any value that we know flows from \p BB 596 /// to a particular phi on the basis of which one (if either) is not 597 /// undef. Update IncomingValues based on the selected value. 598 /// 599 /// \param OldVal The value we are considering selecting. 600 /// \param BB The block that the value flows in from. 601 /// \param IncomingValues A map from block-to-value for other phi inputs 602 /// that we have examined. 603 /// 604 /// \returns the selected value. 605 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 606 IncomingValueMap &IncomingValues) { 607 if (!isa<UndefValue>(OldVal)) { 608 assert((!IncomingValues.count(BB) || 609 IncomingValues.find(BB)->second == OldVal) && 610 "Expected OldVal to match incoming value from BB!"); 611 612 IncomingValues.insert(std::make_pair(BB, OldVal)); 613 return OldVal; 614 } 615 616 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 617 if (It != IncomingValues.end()) return It->second; 618 619 return OldVal; 620 } 621 622 /// \brief Create a map from block to value for the operands of a 623 /// given phi. 624 /// 625 /// Create a map from block to value for each non-undef value flowing 626 /// into \p PN. 627 /// 628 /// \param PN The phi we are collecting the map for. 629 /// \param IncomingValues [out] The map from block to value for this phi. 630 static void gatherIncomingValuesToPhi(PHINode *PN, 631 IncomingValueMap &IncomingValues) { 632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 633 BasicBlock *BB = PN->getIncomingBlock(i); 634 Value *V = PN->getIncomingValue(i); 635 636 if (!isa<UndefValue>(V)) 637 IncomingValues.insert(std::make_pair(BB, V)); 638 } 639 } 640 641 /// \brief Replace the incoming undef values to a phi with the values 642 /// from a block-to-value map. 643 /// 644 /// \param PN The phi we are replacing the undefs in. 645 /// \param IncomingValues A map from block to value. 646 static void replaceUndefValuesInPhi(PHINode *PN, 647 const IncomingValueMap &IncomingValues) { 648 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 649 Value *V = PN->getIncomingValue(i); 650 651 if (!isa<UndefValue>(V)) continue; 652 653 BasicBlock *BB = PN->getIncomingBlock(i); 654 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 655 if (It == IncomingValues.end()) continue; 656 657 PN->setIncomingValue(i, It->second); 658 } 659 } 660 661 /// \brief Replace a value flowing from a block to a phi with 662 /// potentially multiple instances of that value flowing from the 663 /// block's predecessors to the phi. 664 /// 665 /// \param BB The block with the value flowing into the phi. 666 /// \param BBPreds The predecessors of BB. 667 /// \param PN The phi that we are updating. 668 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 669 const PredBlockVector &BBPreds, 670 PHINode *PN) { 671 Value *OldVal = PN->removeIncomingValue(BB, false); 672 assert(OldVal && "No entry in PHI for Pred BB!"); 673 674 IncomingValueMap IncomingValues; 675 676 // We are merging two blocks - BB, and the block containing PN - and 677 // as a result we need to redirect edges from the predecessors of BB 678 // to go to the block containing PN, and update PN 679 // accordingly. Since we allow merging blocks in the case where the 680 // predecessor and successor blocks both share some predecessors, 681 // and where some of those common predecessors might have undef 682 // values flowing into PN, we want to rewrite those values to be 683 // consistent with the non-undef values. 684 685 gatherIncomingValuesToPhi(PN, IncomingValues); 686 687 // If this incoming value is one of the PHI nodes in BB, the new entries 688 // in the PHI node are the entries from the old PHI. 689 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 690 PHINode *OldValPN = cast<PHINode>(OldVal); 691 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 692 // Note that, since we are merging phi nodes and BB and Succ might 693 // have common predecessors, we could end up with a phi node with 694 // identical incoming branches. This will be cleaned up later (and 695 // will trigger asserts if we try to clean it up now, without also 696 // simplifying the corresponding conditional branch). 697 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 698 Value *PredVal = OldValPN->getIncomingValue(i); 699 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 700 IncomingValues); 701 702 // And add a new incoming value for this predecessor for the 703 // newly retargeted branch. 704 PN->addIncoming(Selected, PredBB); 705 } 706 } else { 707 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 708 // Update existing incoming values in PN for this 709 // predecessor of BB. 710 BasicBlock *PredBB = BBPreds[i]; 711 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 712 IncomingValues); 713 714 // And add a new incoming value for this predecessor for the 715 // newly retargeted branch. 716 PN->addIncoming(Selected, PredBB); 717 } 718 } 719 720 replaceUndefValuesInPhi(PN, IncomingValues); 721 } 722 723 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 724 /// unconditional branch, and contains no instructions other than PHI nodes, 725 /// potential side-effect free intrinsics and the branch. If possible, 726 /// eliminate BB by rewriting all the predecessors to branch to the successor 727 /// block and return true. If we can't transform, return false. 728 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 729 assert(BB != &BB->getParent()->getEntryBlock() && 730 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 731 732 // We can't eliminate infinite loops. 733 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 734 if (BB == Succ) return false; 735 736 // Check to see if merging these blocks would cause conflicts for any of the 737 // phi nodes in BB or Succ. If not, we can safely merge. 738 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 739 740 // Check for cases where Succ has multiple predecessors and a PHI node in BB 741 // has uses which will not disappear when the PHI nodes are merged. It is 742 // possible to handle such cases, but difficult: it requires checking whether 743 // BB dominates Succ, which is non-trivial to calculate in the case where 744 // Succ has multiple predecessors. Also, it requires checking whether 745 // constructing the necessary self-referential PHI node doesn't introduce any 746 // conflicts; this isn't too difficult, but the previous code for doing this 747 // was incorrect. 748 // 749 // Note that if this check finds a live use, BB dominates Succ, so BB is 750 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 751 // folding the branch isn't profitable in that case anyway. 752 if (!Succ->getSinglePredecessor()) { 753 BasicBlock::iterator BBI = BB->begin(); 754 while (isa<PHINode>(*BBI)) { 755 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 756 UI != E; ++UI) { 757 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 758 if (PN->getIncomingBlock(UI) != BB) 759 return false; 760 } else { 761 return false; 762 } 763 } 764 ++BBI; 765 } 766 } 767 768 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 769 770 if (isa<PHINode>(Succ->begin())) { 771 // If there is more than one pred of succ, and there are PHI nodes in 772 // the successor, then we need to add incoming edges for the PHI nodes 773 // 774 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 775 776 // Loop over all of the PHI nodes in the successor of BB. 777 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 778 PHINode *PN = cast<PHINode>(I); 779 780 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 781 } 782 } 783 784 if (Succ->getSinglePredecessor()) { 785 // BB is the only predecessor of Succ, so Succ will end up with exactly 786 // the same predecessors BB had. 787 788 // Copy over any phi, debug or lifetime instruction. 789 BB->getTerminator()->eraseFromParent(); 790 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 791 } else { 792 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 793 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 794 assert(PN->use_empty() && "There shouldn't be any uses here!"); 795 PN->eraseFromParent(); 796 } 797 } 798 799 // Everything that jumped to BB now goes to Succ. 800 BB->replaceAllUsesWith(Succ); 801 if (!Succ->hasName()) Succ->takeName(BB); 802 BB->eraseFromParent(); // Delete the old basic block. 803 return true; 804 } 805 806 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 807 /// nodes in this block. This doesn't try to be clever about PHI nodes 808 /// which differ only in the order of the incoming values, but instcombine 809 /// orders them so it usually won't matter. 810 /// 811 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 812 bool Changed = false; 813 814 // This implementation doesn't currently consider undef operands 815 // specially. Theoretically, two phis which are identical except for 816 // one having an undef where the other doesn't could be collapsed. 817 818 // Map from PHI hash values to PHI nodes. If multiple PHIs have 819 // the same hash value, the element is the first PHI in the 820 // linked list in CollisionMap. 821 DenseMap<uintptr_t, PHINode *> HashMap; 822 823 // Maintain linked lists of PHI nodes with common hash values. 824 DenseMap<PHINode *, PHINode *> CollisionMap; 825 826 // Examine each PHI. 827 for (BasicBlock::iterator I = BB->begin(); 828 PHINode *PN = dyn_cast<PHINode>(I++); ) { 829 // Compute a hash value on the operands. Instcombine will likely have sorted 830 // them, which helps expose duplicates, but we have to check all the 831 // operands to be safe in case instcombine hasn't run. 832 uintptr_t Hash = 0; 833 // This hash algorithm is quite weak as hash functions go, but it seems 834 // to do a good enough job for this particular purpose, and is very quick. 835 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 836 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 837 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 838 } 839 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 840 I != E; ++I) { 841 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 842 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 843 } 844 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 845 Hash >>= 1; 846 // If we've never seen this hash value before, it's a unique PHI. 847 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 848 HashMap.insert(std::make_pair(Hash, PN)); 849 if (Pair.second) continue; 850 // Otherwise it's either a duplicate or a hash collision. 851 for (PHINode *OtherPN = Pair.first->second; ; ) { 852 if (OtherPN->isIdenticalTo(PN)) { 853 // A duplicate. Replace this PHI with its duplicate. 854 PN->replaceAllUsesWith(OtherPN); 855 PN->eraseFromParent(); 856 Changed = true; 857 break; 858 } 859 // A non-duplicate hash collision. 860 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 861 if (I == CollisionMap.end()) { 862 // Set this PHI to be the head of the linked list of colliding PHIs. 863 PHINode *Old = Pair.first->second; 864 Pair.first->second = PN; 865 CollisionMap[PN] = Old; 866 break; 867 } 868 // Proceed to the next PHI in the list. 869 OtherPN = I->second; 870 } 871 } 872 873 return Changed; 874 } 875 876 /// enforceKnownAlignment - If the specified pointer points to an object that 877 /// we control, modify the object's alignment to PrefAlign. This isn't 878 /// often possible though. If alignment is important, a more reliable approach 879 /// is to simply align all global variables and allocation instructions to 880 /// their preferred alignment from the beginning. 881 /// 882 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 883 unsigned PrefAlign, const DataLayout *TD) { 884 V = V->stripPointerCasts(); 885 886 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 887 // If the preferred alignment is greater than the natural stack alignment 888 // then don't round up. This avoids dynamic stack realignment. 889 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 890 return Align; 891 // If there is a requested alignment and if this is an alloca, round up. 892 if (AI->getAlignment() >= PrefAlign) 893 return AI->getAlignment(); 894 AI->setAlignment(PrefAlign); 895 return PrefAlign; 896 } 897 898 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 899 // If there is a large requested alignment and we can, bump up the alignment 900 // of the global. 901 if (GV->isDeclaration()) return Align; 902 // If the memory we set aside for the global may not be the memory used by 903 // the final program then it is impossible for us to reliably enforce the 904 // preferred alignment. 905 if (GV->isWeakForLinker()) return Align; 906 907 if (GV->getAlignment() >= PrefAlign) 908 return GV->getAlignment(); 909 // We can only increase the alignment of the global if it has no alignment 910 // specified or if it is not assigned a section. If it is assigned a 911 // section, the global could be densely packed with other objects in the 912 // section, increasing the alignment could cause padding issues. 913 if (!GV->hasSection() || GV->getAlignment() == 0) 914 GV->setAlignment(PrefAlign); 915 return GV->getAlignment(); 916 } 917 918 return Align; 919 } 920 921 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 922 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 923 /// and it is more than the alignment of the ultimate object, see if we can 924 /// increase the alignment of the ultimate object, making this check succeed. 925 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 926 const DataLayout *DL) { 927 assert(V->getType()->isPointerTy() && 928 "getOrEnforceKnownAlignment expects a pointer!"); 929 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 930 931 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 932 ComputeMaskedBits(V, KnownZero, KnownOne, DL); 933 unsigned TrailZ = KnownZero.countTrailingOnes(); 934 935 // Avoid trouble with ridiculously large TrailZ values, such as 936 // those computed from a null pointer. 937 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 938 939 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 940 941 // LLVM doesn't support alignments larger than this currently. 942 Align = std::min(Align, +Value::MaximumAlignment); 943 944 if (PrefAlign > Align) 945 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 946 947 // We don't need to make any adjustment. 948 return Align; 949 } 950 951 ///===---------------------------------------------------------------------===// 952 /// Dbg Intrinsic utilities 953 /// 954 955 /// See if there is a dbg.value intrinsic for DIVar before I. 956 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 957 // Since we can't guarantee that the original dbg.declare instrinsic 958 // is removed by LowerDbgDeclare(), we need to make sure that we are 959 // not inserting the same dbg.value intrinsic over and over. 960 llvm::BasicBlock::InstListType::iterator PrevI(I); 961 if (PrevI != I->getParent()->getInstList().begin()) { 962 --PrevI; 963 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 964 if (DVI->getValue() == I->getOperand(0) && 965 DVI->getOffset() == 0 && 966 DVI->getVariable() == DIVar) 967 return true; 968 } 969 return false; 970 } 971 972 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 973 /// that has an associated llvm.dbg.decl intrinsic. 974 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 975 StoreInst *SI, DIBuilder &Builder) { 976 DIVariable DIVar(DDI->getVariable()); 977 assert((!DIVar || DIVar.isVariable()) && 978 "Variable in DbgDeclareInst should be either null or a DIVariable."); 979 if (!DIVar) 980 return false; 981 982 if (LdStHasDebugValue(DIVar, SI)) 983 return true; 984 985 Instruction *DbgVal = NULL; 986 // If an argument is zero extended then use argument directly. The ZExt 987 // may be zapped by an optimization pass in future. 988 Argument *ExtendedArg = NULL; 989 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 990 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 991 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 992 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 993 if (ExtendedArg) 994 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 995 else 996 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 997 998 // Propagate any debug metadata from the store onto the dbg.value. 999 DebugLoc SIDL = SI->getDebugLoc(); 1000 if (!SIDL.isUnknown()) 1001 DbgVal->setDebugLoc(SIDL); 1002 // Otherwise propagate debug metadata from dbg.declare. 1003 else 1004 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1005 return true; 1006 } 1007 1008 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1009 /// that has an associated llvm.dbg.decl intrinsic. 1010 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1011 LoadInst *LI, DIBuilder &Builder) { 1012 DIVariable DIVar(DDI->getVariable()); 1013 assert((!DIVar || DIVar.isVariable()) && 1014 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1015 if (!DIVar) 1016 return false; 1017 1018 if (LdStHasDebugValue(DIVar, LI)) 1019 return true; 1020 1021 Instruction *DbgVal = 1022 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 1023 DIVar, LI); 1024 1025 // Propagate any debug metadata from the store onto the dbg.value. 1026 DebugLoc LIDL = LI->getDebugLoc(); 1027 if (!LIDL.isUnknown()) 1028 DbgVal->setDebugLoc(LIDL); 1029 // Otherwise propagate debug metadata from dbg.declare. 1030 else 1031 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1032 return true; 1033 } 1034 1035 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1036 /// of llvm.dbg.value intrinsics. 1037 bool llvm::LowerDbgDeclare(Function &F) { 1038 DIBuilder DIB(*F.getParent()); 1039 SmallVector<DbgDeclareInst *, 4> Dbgs; 1040 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 1041 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 1042 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 1043 Dbgs.push_back(DDI); 1044 } 1045 if (Dbgs.empty()) 1046 return false; 1047 1048 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(), 1049 E = Dbgs.end(); I != E; ++I) { 1050 DbgDeclareInst *DDI = *I; 1051 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1052 // If this is an alloca for a scalar variable, insert a dbg.value 1053 // at each load and store to the alloca and erase the dbg.declare. 1054 if (AI && !AI->isArrayAllocation()) { 1055 1056 // We only remove the dbg.declare intrinsic if all uses are 1057 // converted to dbg.value intrinsics. 1058 bool RemoveDDI = true; 1059 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 1060 UI != E; ++UI) 1061 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 1062 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1063 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 1064 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1065 else 1066 RemoveDDI = false; 1067 if (RemoveDDI) 1068 DDI->eraseFromParent(); 1069 } 1070 } 1071 return true; 1072 } 1073 1074 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1075 /// alloca 'V', if any. 1076 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1077 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 1078 for (Value::use_iterator UI = DebugNode->use_begin(), 1079 E = DebugNode->use_end(); UI != E; ++UI) 1080 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 1081 return DDI; 1082 1083 return 0; 1084 } 1085 1086 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1087 DIBuilder &Builder) { 1088 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1089 if (!DDI) 1090 return false; 1091 DIVariable DIVar(DDI->getVariable()); 1092 assert((!DIVar || DIVar.isVariable()) && 1093 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1094 if (!DIVar) 1095 return false; 1096 1097 // Create a copy of the original DIDescriptor for user variable, appending 1098 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1099 // will take a value storing address of the memory for variable, not 1100 // alloca itself. 1101 Type *Int64Ty = Type::getInt64Ty(AI->getContext()); 1102 SmallVector<Value*, 4> NewDIVarAddress; 1103 if (DIVar.hasComplexAddress()) { 1104 for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) { 1105 NewDIVarAddress.push_back( 1106 ConstantInt::get(Int64Ty, DIVar.getAddrElement(i))); 1107 } 1108 } 1109 NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref)); 1110 DIVariable NewDIVar = Builder.createComplexVariable( 1111 DIVar.getTag(), DIVar.getContext(), DIVar.getName(), 1112 DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(), 1113 NewDIVarAddress, DIVar.getArgNumber()); 1114 1115 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1116 // and remove old llvm.dbg.declare. 1117 BasicBlock *BB = AI->getParent(); 1118 Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB); 1119 DDI->eraseFromParent(); 1120 return true; 1121 } 1122 1123 /// changeToUnreachable - Insert an unreachable instruction before the specified 1124 /// instruction, making it and the rest of the code in the block dead. 1125 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1126 BasicBlock *BB = I->getParent(); 1127 // Loop over all of the successors, removing BB's entry from any PHI 1128 // nodes. 1129 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1130 (*SI)->removePredecessor(BB); 1131 1132 // Insert a call to llvm.trap right before this. This turns the undefined 1133 // behavior into a hard fail instead of falling through into random code. 1134 if (UseLLVMTrap) { 1135 Function *TrapFn = 1136 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1137 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1138 CallTrap->setDebugLoc(I->getDebugLoc()); 1139 } 1140 new UnreachableInst(I->getContext(), I); 1141 1142 // All instructions after this are dead. 1143 BasicBlock::iterator BBI = I, BBE = BB->end(); 1144 while (BBI != BBE) { 1145 if (!BBI->use_empty()) 1146 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1147 BB->getInstList().erase(BBI++); 1148 } 1149 } 1150 1151 /// changeToCall - Convert the specified invoke into a normal call. 1152 static void changeToCall(InvokeInst *II) { 1153 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1154 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1155 NewCall->takeName(II); 1156 NewCall->setCallingConv(II->getCallingConv()); 1157 NewCall->setAttributes(II->getAttributes()); 1158 NewCall->setDebugLoc(II->getDebugLoc()); 1159 II->replaceAllUsesWith(NewCall); 1160 1161 // Follow the call by a branch to the normal destination. 1162 BranchInst::Create(II->getNormalDest(), II); 1163 1164 // Update PHI nodes in the unwind destination 1165 II->getUnwindDest()->removePredecessor(II->getParent()); 1166 II->eraseFromParent(); 1167 } 1168 1169 static bool markAliveBlocks(BasicBlock *BB, 1170 SmallPtrSet<BasicBlock*, 128> &Reachable) { 1171 1172 SmallVector<BasicBlock*, 128> Worklist; 1173 Worklist.push_back(BB); 1174 Reachable.insert(BB); 1175 bool Changed = false; 1176 do { 1177 BB = Worklist.pop_back_val(); 1178 1179 // Do a quick scan of the basic block, turning any obviously unreachable 1180 // instructions into LLVM unreachable insts. The instruction combining pass 1181 // canonicalizes unreachable insts into stores to null or undef. 1182 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1183 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1184 if (CI->doesNotReturn()) { 1185 // If we found a call to a no-return function, insert an unreachable 1186 // instruction after it. Make sure there isn't *already* one there 1187 // though. 1188 ++BBI; 1189 if (!isa<UnreachableInst>(BBI)) { 1190 // Don't insert a call to llvm.trap right before the unreachable. 1191 changeToUnreachable(BBI, false); 1192 Changed = true; 1193 } 1194 break; 1195 } 1196 } 1197 1198 // Store to undef and store to null are undefined and used to signal that 1199 // they should be changed to unreachable by passes that can't modify the 1200 // CFG. 1201 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1202 // Don't touch volatile stores. 1203 if (SI->isVolatile()) continue; 1204 1205 Value *Ptr = SI->getOperand(1); 1206 1207 if (isa<UndefValue>(Ptr) || 1208 (isa<ConstantPointerNull>(Ptr) && 1209 SI->getPointerAddressSpace() == 0)) { 1210 changeToUnreachable(SI, true); 1211 Changed = true; 1212 break; 1213 } 1214 } 1215 } 1216 1217 // Turn invokes that call 'nounwind' functions into ordinary calls. 1218 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1219 Value *Callee = II->getCalledValue(); 1220 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1221 changeToUnreachable(II, true); 1222 Changed = true; 1223 } else if (II->doesNotThrow()) { 1224 if (II->use_empty() && II->onlyReadsMemory()) { 1225 // jump to the normal destination branch. 1226 BranchInst::Create(II->getNormalDest(), II); 1227 II->getUnwindDest()->removePredecessor(II->getParent()); 1228 II->eraseFromParent(); 1229 } else 1230 changeToCall(II); 1231 Changed = true; 1232 } 1233 } 1234 1235 Changed |= ConstantFoldTerminator(BB, true); 1236 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1237 if (Reachable.insert(*SI)) 1238 Worklist.push_back(*SI); 1239 } while (!Worklist.empty()); 1240 return Changed; 1241 } 1242 1243 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1244 /// if they are in a dead cycle. Return true if a change was made, false 1245 /// otherwise. 1246 bool llvm::removeUnreachableBlocks(Function &F) { 1247 SmallPtrSet<BasicBlock*, 128> Reachable; 1248 bool Changed = markAliveBlocks(F.begin(), Reachable); 1249 1250 // If there are unreachable blocks in the CFG... 1251 if (Reachable.size() == F.size()) 1252 return Changed; 1253 1254 assert(Reachable.size() < F.size()); 1255 NumRemoved += F.size()-Reachable.size(); 1256 1257 // Loop over all of the basic blocks that are not reachable, dropping all of 1258 // their internal references... 1259 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1260 if (Reachable.count(BB)) 1261 continue; 1262 1263 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1264 if (Reachable.count(*SI)) 1265 (*SI)->removePredecessor(BB); 1266 BB->dropAllReferences(); 1267 } 1268 1269 for (Function::iterator I = ++F.begin(); I != F.end();) 1270 if (!Reachable.count(I)) 1271 I = F.getBasicBlockList().erase(I); 1272 else 1273 ++I; 1274 1275 return true; 1276 } 1277