1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 AAResults *CalleeAAR, bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 AAResults *CalleeAAR, bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining a landing pad. 67 class LandingPadInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 LandingPadInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// Forward the 'resume' instruction to the caller's landing pad block. 103 /// When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// Add incoming-PHI values to the unwind destination block for the given 111 /// basic block, using the values for the original invoke's source block. 112 void addIncomingPHIValuesFor(BasicBlock *BB) const { 113 addIncomingPHIValuesForInto(BB, OuterResumeDest); 114 } 115 116 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 117 BasicBlock::iterator I = dest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *phi = cast<PHINode>(I); 120 phi->addIncoming(UnwindDestPHIValues[i], src); 121 } 122 } 123 }; 124 } 125 126 /// Get or create a target for the branch from ResumeInsts. 127 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 128 if (InnerResumeDest) return InnerResumeDest; 129 130 // Split the landing pad. 131 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 132 InnerResumeDest = 133 OuterResumeDest->splitBasicBlock(SplitPoint, 134 OuterResumeDest->getName() + ".body"); 135 136 // The number of incoming edges we expect to the inner landing pad. 137 const unsigned PHICapacity = 2; 138 139 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 140 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 141 BasicBlock::iterator I = OuterResumeDest->begin(); 142 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 143 PHINode *OuterPHI = cast<PHINode>(I); 144 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 145 OuterPHI->getName() + ".lpad-body", 146 InsertPoint); 147 OuterPHI->replaceAllUsesWith(InnerPHI); 148 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 149 } 150 151 // Create a PHI for the exception values. 152 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 153 "eh.lpad-body", InsertPoint); 154 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 155 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 156 157 // All done. 158 return InnerResumeDest; 159 } 160 161 /// Forward the 'resume' instruction to the caller's landing pad block. 162 /// When the landing pad block has only one predecessor, this is a simple 163 /// branch. When there is more than one predecessor, we need to split the 164 /// landing pad block after the landingpad instruction and jump to there. 165 void LandingPadInliningInfo::forwardResume( 166 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 167 BasicBlock *Dest = getInnerResumeDest(); 168 BasicBlock *Src = RI->getParent(); 169 170 BranchInst::Create(Dest, Src); 171 172 // Update the PHIs in the destination. They were inserted in an order which 173 // makes this work. 174 addIncomingPHIValuesForInto(Src, Dest); 175 176 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 177 RI->eraseFromParent(); 178 } 179 180 /// When we inline a basic block into an invoke, 181 /// we have to turn all of the calls that can throw into invokes. 182 /// This function analyze BB to see if there are any calls, and if so, 183 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 184 /// nodes in that block with the values specified in InvokeDestPHIValues. 185 static BasicBlock * 186 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { 187 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 188 Instruction *I = BBI++; 189 190 // We only need to check for function calls: inlined invoke 191 // instructions require no special handling. 192 CallInst *CI = dyn_cast<CallInst>(I); 193 194 // If this call cannot unwind, don't convert it to an invoke. 195 // Inline asm calls cannot throw. 196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 210 InvokeArgs, CI->getName(), BB); 211 II->setDebugLoc(CI->getDebugLoc()); 212 II->setCallingConv(CI->getCallingConv()); 213 II->setAttributes(CI->getAttributes()); 214 215 // Make sure that anything using the call now uses the invoke! This also 216 // updates the CallGraph if present, because it uses a WeakVH. 217 CI->replaceAllUsesWith(II); 218 219 // Delete the original call 220 Split->getInstList().pop_front(); 221 return BB; 222 } 223 return nullptr; 224 } 225 226 /// If we inlined an invoke site, we need to convert calls 227 /// in the body of the inlined function into invokes. 228 /// 229 /// II is the invoke instruction being inlined. FirstNewBlock is the first 230 /// block of the inlined code (the last block is the end of the function), 231 /// and InlineCodeInfo is information about the code that got inlined. 232 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 233 ClonedCodeInfo &InlinedCodeInfo) { 234 BasicBlock *InvokeDest = II->getUnwindDest(); 235 236 Function *Caller = FirstNewBlock->getParent(); 237 238 // The inlined code is currently at the end of the function, scan from the 239 // start of the inlined code to its end, checking for stuff we need to 240 // rewrite. 241 LandingPadInliningInfo Invoke(II); 242 243 // Get all of the inlined landing pad instructions. 244 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 245 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 246 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 247 InlinedLPads.insert(II->getLandingPadInst()); 248 249 // Append the clauses from the outer landing pad instruction into the inlined 250 // landing pad instructions. 251 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 252 for (LandingPadInst *InlinedLPad : InlinedLPads) { 253 unsigned OuterNum = OuterLPad->getNumClauses(); 254 InlinedLPad->reserveClauses(OuterNum); 255 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 256 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 257 if (OuterLPad->isCleanup()) 258 InlinedLPad->setCleanup(true); 259 } 260 261 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 262 if (InlinedCodeInfo.ContainsCalls) 263 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 264 BB, Invoke.getOuterResumeDest())) 265 // Update any PHI nodes in the exceptional block to indicate that there 266 // is now a new entry in them. 267 Invoke.addIncomingPHIValuesFor(NewBB); 268 269 // Forward any resumes that are remaining here. 270 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 271 Invoke.forwardResume(RI, InlinedLPads); 272 } 273 274 // Now that everything is happy, we have one final detail. The PHI nodes in 275 // the exception destination block still have entries due to the original 276 // invoke instruction. Eliminate these entries (which might even delete the 277 // PHI node) now. 278 InvokeDest->removePredecessor(II->getParent()); 279 } 280 281 /// If we inlined an invoke site, we need to convert calls 282 /// in the body of the inlined function into invokes. 283 /// 284 /// II is the invoke instruction being inlined. FirstNewBlock is the first 285 /// block of the inlined code (the last block is the end of the function), 286 /// and InlineCodeInfo is information about the code that got inlined. 287 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 288 ClonedCodeInfo &InlinedCodeInfo) { 289 BasicBlock *UnwindDest = II->getUnwindDest(); 290 Function *Caller = FirstNewBlock->getParent(); 291 292 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 293 294 // If there are PHI nodes in the unwind destination block, we need to keep 295 // track of which values came into them from the invoke before removing the 296 // edge from this block. 297 SmallVector<Value *, 8> UnwindDestPHIValues; 298 llvm::BasicBlock *InvokeBB = II->getParent(); 299 for (Instruction &I : *UnwindDest) { 300 // Save the value to use for this edge. 301 PHINode *PHI = dyn_cast<PHINode>(&I); 302 if (!PHI) 303 break; 304 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 305 } 306 307 // Add incoming-PHI values to the unwind destination block for the given basic 308 // block, using the values for the original invoke's source block. 309 auto UpdatePHINodes = [&](BasicBlock *Src) { 310 BasicBlock::iterator I = UnwindDest->begin(); 311 for (Value *V : UnwindDestPHIValues) { 312 PHINode *PHI = cast<PHINode>(I); 313 PHI->addIncoming(V, Src); 314 ++I; 315 } 316 }; 317 318 // Forward EH terminator instructions to the caller's invoke destination. 319 // This is as simple as connect all the instructions which 'unwind to caller' 320 // to the invoke destination. 321 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 322 ++BB) { 323 Instruction *I = BB->getFirstNonPHI(); 324 if (I->isEHPad()) { 325 if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) { 326 if (CEPI->unwindsToCaller()) { 327 CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI); 328 CEPI->eraseFromParent(); 329 UpdatePHINodes(BB); 330 } 331 } else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(I)) { 332 if (CEPI->unwindsToCaller()) { 333 CleanupEndPadInst::Create(CEPI->getCleanupPad(), UnwindDest, CEPI); 334 CEPI->eraseFromParent(); 335 UpdatePHINodes(BB); 336 } 337 } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) { 338 if (TPI->unwindsToCaller()) { 339 SmallVector<Value *, 3> TerminatePadArgs; 340 for (Value *Operand : TPI->operands()) 341 TerminatePadArgs.push_back(Operand); 342 TerminatePadInst::Create(TPI->getContext(), UnwindDest, TPI); 343 TPI->eraseFromParent(); 344 UpdatePHINodes(BB); 345 } 346 } else { 347 assert(isa<CatchPadInst>(I) || isa<CleanupPadInst>(I)); 348 } 349 } 350 351 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 352 if (CRI->unwindsToCaller()) { 353 CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI); 354 CRI->eraseFromParent(); 355 UpdatePHINodes(BB); 356 } 357 } 358 } 359 360 if (InlinedCodeInfo.ContainsCalls) 361 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 362 ++BB) 363 if (BasicBlock *NewBB = 364 HandleCallsInBlockInlinedThroughInvoke(BB, UnwindDest)) 365 // Update any PHI nodes in the exceptional block to indicate that there 366 // is now a new entry in them. 367 UpdatePHINodes(NewBB); 368 369 // Now that everything is happy, we have one final detail. The PHI nodes in 370 // the exception destination block still have entries due to the original 371 // invoke instruction. Eliminate these entries (which might even delete the 372 // PHI node) now. 373 UnwindDest->removePredecessor(InvokeBB); 374 } 375 376 /// When inlining a function that contains noalias scope metadata, 377 /// this metadata needs to be cloned so that the inlined blocks 378 /// have different "unqiue scopes" at every call site. Were this not done, then 379 /// aliasing scopes from a function inlined into a caller multiple times could 380 /// not be differentiated (and this would lead to miscompiles because the 381 /// non-aliasing property communicated by the metadata could have 382 /// call-site-specific control dependencies). 383 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 384 const Function *CalledFunc = CS.getCalledFunction(); 385 SetVector<const MDNode *> MD; 386 387 // Note: We could only clone the metadata if it is already used in the 388 // caller. I'm omitting that check here because it might confuse 389 // inter-procedural alias analysis passes. We can revisit this if it becomes 390 // an efficiency or overhead problem. 391 392 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 393 I != IE; ++I) 394 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 395 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 396 MD.insert(M); 397 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 398 MD.insert(M); 399 } 400 401 if (MD.empty()) 402 return; 403 404 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 405 // the set. 406 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 407 while (!Queue.empty()) { 408 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 409 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 410 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 411 if (MD.insert(M1)) 412 Queue.push_back(M1); 413 } 414 415 // Now we have a complete set of all metadata in the chains used to specify 416 // the noalias scopes and the lists of those scopes. 417 SmallVector<TempMDTuple, 16> DummyNodes; 418 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 419 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 420 I != IE; ++I) { 421 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 422 MDMap[*I].reset(DummyNodes.back().get()); 423 } 424 425 // Create new metadata nodes to replace the dummy nodes, replacing old 426 // metadata references with either a dummy node or an already-created new 427 // node. 428 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 429 I != IE; ++I) { 430 SmallVector<Metadata *, 4> NewOps; 431 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 432 const Metadata *V = (*I)->getOperand(i); 433 if (const MDNode *M = dyn_cast<MDNode>(V)) 434 NewOps.push_back(MDMap[M]); 435 else 436 NewOps.push_back(const_cast<Metadata *>(V)); 437 } 438 439 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 440 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 441 assert(TempM->isTemporary() && "Expected temporary node"); 442 443 TempM->replaceAllUsesWith(NewM); 444 } 445 446 // Now replace the metadata in the new inlined instructions with the 447 // repacements from the map. 448 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 449 VMI != VMIE; ++VMI) { 450 if (!VMI->second) 451 continue; 452 453 Instruction *NI = dyn_cast<Instruction>(VMI->second); 454 if (!NI) 455 continue; 456 457 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 458 MDNode *NewMD = MDMap[M]; 459 // If the call site also had alias scope metadata (a list of scopes to 460 // which instructions inside it might belong), propagate those scopes to 461 // the inlined instructions. 462 if (MDNode *CSM = 463 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 464 NewMD = MDNode::concatenate(NewMD, CSM); 465 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 466 } else if (NI->mayReadOrWriteMemory()) { 467 if (MDNode *M = 468 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 469 NI->setMetadata(LLVMContext::MD_alias_scope, M); 470 } 471 472 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 473 MDNode *NewMD = MDMap[M]; 474 // If the call site also had noalias metadata (a list of scopes with 475 // which instructions inside it don't alias), propagate those scopes to 476 // the inlined instructions. 477 if (MDNode *CSM = 478 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 479 NewMD = MDNode::concatenate(NewMD, CSM); 480 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 481 } else if (NI->mayReadOrWriteMemory()) { 482 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 483 NI->setMetadata(LLVMContext::MD_noalias, M); 484 } 485 } 486 } 487 488 /// If the inlined function has noalias arguments, 489 /// then add new alias scopes for each noalias argument, tag the mapped noalias 490 /// parameters with noalias metadata specifying the new scope, and tag all 491 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 492 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 493 const DataLayout &DL, AAResults *CalleeAAR) { 494 if (!EnableNoAliasConversion) 495 return; 496 497 const Function *CalledFunc = CS.getCalledFunction(); 498 SmallVector<const Argument *, 4> NoAliasArgs; 499 500 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 501 E = CalledFunc->arg_end(); I != E; ++I) { 502 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 503 NoAliasArgs.push_back(I); 504 } 505 506 if (NoAliasArgs.empty()) 507 return; 508 509 // To do a good job, if a noalias variable is captured, we need to know if 510 // the capture point dominates the particular use we're considering. 511 DominatorTree DT; 512 DT.recalculate(const_cast<Function&>(*CalledFunc)); 513 514 // noalias indicates that pointer values based on the argument do not alias 515 // pointer values which are not based on it. So we add a new "scope" for each 516 // noalias function argument. Accesses using pointers based on that argument 517 // become part of that alias scope, accesses using pointers not based on that 518 // argument are tagged as noalias with that scope. 519 520 DenseMap<const Argument *, MDNode *> NewScopes; 521 MDBuilder MDB(CalledFunc->getContext()); 522 523 // Create a new scope domain for this function. 524 MDNode *NewDomain = 525 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 526 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 527 const Argument *A = NoAliasArgs[i]; 528 529 std::string Name = CalledFunc->getName(); 530 if (A->hasName()) { 531 Name += ": %"; 532 Name += A->getName(); 533 } else { 534 Name += ": argument "; 535 Name += utostr(i); 536 } 537 538 // Note: We always create a new anonymous root here. This is true regardless 539 // of the linkage of the callee because the aliasing "scope" is not just a 540 // property of the callee, but also all control dependencies in the caller. 541 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 542 NewScopes.insert(std::make_pair(A, NewScope)); 543 } 544 545 // Iterate over all new instructions in the map; for all memory-access 546 // instructions, add the alias scope metadata. 547 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 548 VMI != VMIE; ++VMI) { 549 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 550 if (!VMI->second) 551 continue; 552 553 Instruction *NI = dyn_cast<Instruction>(VMI->second); 554 if (!NI) 555 continue; 556 557 bool IsArgMemOnlyCall = false, IsFuncCall = false; 558 SmallVector<const Value *, 2> PtrArgs; 559 560 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 561 PtrArgs.push_back(LI->getPointerOperand()); 562 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 563 PtrArgs.push_back(SI->getPointerOperand()); 564 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 565 PtrArgs.push_back(VAAI->getPointerOperand()); 566 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 567 PtrArgs.push_back(CXI->getPointerOperand()); 568 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 569 PtrArgs.push_back(RMWI->getPointerOperand()); 570 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 571 // If we know that the call does not access memory, then we'll still 572 // know that about the inlined clone of this call site, and we don't 573 // need to add metadata. 574 if (ICS.doesNotAccessMemory()) 575 continue; 576 577 IsFuncCall = true; 578 if (CalleeAAR) { 579 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 580 if (MRB == FMRB_OnlyAccessesArgumentPointees || 581 MRB == FMRB_OnlyReadsArgumentPointees) 582 IsArgMemOnlyCall = true; 583 } 584 585 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 586 AE = ICS.arg_end(); AI != AE; ++AI) { 587 // We need to check the underlying objects of all arguments, not just 588 // the pointer arguments, because we might be passing pointers as 589 // integers, etc. 590 // However, if we know that the call only accesses pointer arguments, 591 // then we only need to check the pointer arguments. 592 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 593 continue; 594 595 PtrArgs.push_back(*AI); 596 } 597 } 598 599 // If we found no pointers, then this instruction is not suitable for 600 // pairing with an instruction to receive aliasing metadata. 601 // However, if this is a call, this we might just alias with none of the 602 // noalias arguments. 603 if (PtrArgs.empty() && !IsFuncCall) 604 continue; 605 606 // It is possible that there is only one underlying object, but you 607 // need to go through several PHIs to see it, and thus could be 608 // repeated in the Objects list. 609 SmallPtrSet<const Value *, 4> ObjSet; 610 SmallVector<Metadata *, 4> Scopes, NoAliases; 611 612 SmallSetVector<const Argument *, 4> NAPtrArgs; 613 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 614 SmallVector<Value *, 4> Objects; 615 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 616 Objects, DL, /* MaxLookup = */ 0); 617 618 for (Value *O : Objects) 619 ObjSet.insert(O); 620 } 621 622 // Figure out if we're derived from anything that is not a noalias 623 // argument. 624 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 625 for (const Value *V : ObjSet) { 626 // Is this value a constant that cannot be derived from any pointer 627 // value (we need to exclude constant expressions, for example, that 628 // are formed from arithmetic on global symbols). 629 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 630 isa<ConstantPointerNull>(V) || 631 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 632 if (IsNonPtrConst) 633 continue; 634 635 // If this is anything other than a noalias argument, then we cannot 636 // completely describe the aliasing properties using alias.scope 637 // metadata (and, thus, won't add any). 638 if (const Argument *A = dyn_cast<Argument>(V)) { 639 if (!A->hasNoAliasAttr()) 640 UsesAliasingPtr = true; 641 } else { 642 UsesAliasingPtr = true; 643 } 644 645 // If this is not some identified function-local object (which cannot 646 // directly alias a noalias argument), or some other argument (which, 647 // by definition, also cannot alias a noalias argument), then we could 648 // alias a noalias argument that has been captured). 649 if (!isa<Argument>(V) && 650 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 651 CanDeriveViaCapture = true; 652 } 653 654 // A function call can always get captured noalias pointers (via other 655 // parameters, globals, etc.). 656 if (IsFuncCall && !IsArgMemOnlyCall) 657 CanDeriveViaCapture = true; 658 659 // First, we want to figure out all of the sets with which we definitely 660 // don't alias. Iterate over all noalias set, and add those for which: 661 // 1. The noalias argument is not in the set of objects from which we 662 // definitely derive. 663 // 2. The noalias argument has not yet been captured. 664 // An arbitrary function that might load pointers could see captured 665 // noalias arguments via other noalias arguments or globals, and so we 666 // must always check for prior capture. 667 for (const Argument *A : NoAliasArgs) { 668 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 669 // It might be tempting to skip the 670 // PointerMayBeCapturedBefore check if 671 // A->hasNoCaptureAttr() is true, but this is 672 // incorrect because nocapture only guarantees 673 // that no copies outlive the function, not 674 // that the value cannot be locally captured. 675 !PointerMayBeCapturedBefore(A, 676 /* ReturnCaptures */ false, 677 /* StoreCaptures */ false, I, &DT))) 678 NoAliases.push_back(NewScopes[A]); 679 } 680 681 if (!NoAliases.empty()) 682 NI->setMetadata(LLVMContext::MD_noalias, 683 MDNode::concatenate( 684 NI->getMetadata(LLVMContext::MD_noalias), 685 MDNode::get(CalledFunc->getContext(), NoAliases))); 686 687 // Next, we want to figure out all of the sets to which we might belong. 688 // We might belong to a set if the noalias argument is in the set of 689 // underlying objects. If there is some non-noalias argument in our list 690 // of underlying objects, then we cannot add a scope because the fact 691 // that some access does not alias with any set of our noalias arguments 692 // cannot itself guarantee that it does not alias with this access 693 // (because there is some pointer of unknown origin involved and the 694 // other access might also depend on this pointer). We also cannot add 695 // scopes to arbitrary functions unless we know they don't access any 696 // non-parameter pointer-values. 697 bool CanAddScopes = !UsesAliasingPtr; 698 if (CanAddScopes && IsFuncCall) 699 CanAddScopes = IsArgMemOnlyCall; 700 701 if (CanAddScopes) 702 for (const Argument *A : NoAliasArgs) { 703 if (ObjSet.count(A)) 704 Scopes.push_back(NewScopes[A]); 705 } 706 707 if (!Scopes.empty()) 708 NI->setMetadata( 709 LLVMContext::MD_alias_scope, 710 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 711 MDNode::get(CalledFunc->getContext(), Scopes))); 712 } 713 } 714 } 715 716 /// If the inlined function has non-byval align arguments, then 717 /// add @llvm.assume-based alignment assumptions to preserve this information. 718 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 719 if (!PreserveAlignmentAssumptions) 720 return; 721 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 722 723 // To avoid inserting redundant assumptions, we should check for assumptions 724 // already in the caller. To do this, we might need a DT of the caller. 725 DominatorTree DT; 726 bool DTCalculated = false; 727 728 Function *CalledFunc = CS.getCalledFunction(); 729 for (Function::arg_iterator I = CalledFunc->arg_begin(), 730 E = CalledFunc->arg_end(); 731 I != E; ++I) { 732 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 733 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 734 if (!DTCalculated) { 735 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 736 ->getParent())); 737 DTCalculated = true; 738 } 739 740 // If we can already prove the asserted alignment in the context of the 741 // caller, then don't bother inserting the assumption. 742 Value *Arg = CS.getArgument(I->getArgNo()); 743 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 744 &IFI.ACT->getAssumptionCache(*CS.getCaller()), 745 &DT) >= Align) 746 continue; 747 748 IRBuilder<>(CS.getInstruction()) 749 .CreateAlignmentAssumption(DL, Arg, Align); 750 } 751 } 752 } 753 754 /// Once we have cloned code over from a callee into the caller, 755 /// update the specified callgraph to reflect the changes we made. 756 /// Note that it's possible that not all code was copied over, so only 757 /// some edges of the callgraph may remain. 758 static void UpdateCallGraphAfterInlining(CallSite CS, 759 Function::iterator FirstNewBlock, 760 ValueToValueMapTy &VMap, 761 InlineFunctionInfo &IFI) { 762 CallGraph &CG = *IFI.CG; 763 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 764 const Function *Callee = CS.getCalledFunction(); 765 CallGraphNode *CalleeNode = CG[Callee]; 766 CallGraphNode *CallerNode = CG[Caller]; 767 768 // Since we inlined some uninlined call sites in the callee into the caller, 769 // add edges from the caller to all of the callees of the callee. 770 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 771 772 // Consider the case where CalleeNode == CallerNode. 773 CallGraphNode::CalledFunctionsVector CallCache; 774 if (CalleeNode == CallerNode) { 775 CallCache.assign(I, E); 776 I = CallCache.begin(); 777 E = CallCache.end(); 778 } 779 780 for (; I != E; ++I) { 781 const Value *OrigCall = I->first; 782 783 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 784 // Only copy the edge if the call was inlined! 785 if (VMI == VMap.end() || VMI->second == nullptr) 786 continue; 787 788 // If the call was inlined, but then constant folded, there is no edge to 789 // add. Check for this case. 790 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 791 if (!NewCall) 792 continue; 793 794 // We do not treat intrinsic calls like real function calls because we 795 // expect them to become inline code; do not add an edge for an intrinsic. 796 CallSite CS = CallSite(NewCall); 797 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 798 continue; 799 800 // Remember that this call site got inlined for the client of 801 // InlineFunction. 802 IFI.InlinedCalls.push_back(NewCall); 803 804 // It's possible that inlining the callsite will cause it to go from an 805 // indirect to a direct call by resolving a function pointer. If this 806 // happens, set the callee of the new call site to a more precise 807 // destination. This can also happen if the call graph node of the caller 808 // was just unnecessarily imprecise. 809 if (!I->second->getFunction()) 810 if (Function *F = CallSite(NewCall).getCalledFunction()) { 811 // Indirect call site resolved to direct call. 812 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 813 814 continue; 815 } 816 817 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 818 } 819 820 // Update the call graph by deleting the edge from Callee to Caller. We must 821 // do this after the loop above in case Caller and Callee are the same. 822 CallerNode->removeCallEdgeFor(CS); 823 } 824 825 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 826 BasicBlock *InsertBlock, 827 InlineFunctionInfo &IFI) { 828 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 829 IRBuilder<> Builder(InsertBlock->begin()); 830 831 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 832 833 // Always generate a memcpy of alignment 1 here because we don't know 834 // the alignment of the src pointer. Other optimizations can infer 835 // better alignment. 836 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 837 } 838 839 /// When inlining a call site that has a byval argument, 840 /// we have to make the implicit memcpy explicit by adding it. 841 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 842 const Function *CalledFunc, 843 InlineFunctionInfo &IFI, 844 unsigned ByValAlignment) { 845 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 846 Type *AggTy = ArgTy->getElementType(); 847 848 Function *Caller = TheCall->getParent()->getParent(); 849 850 // If the called function is readonly, then it could not mutate the caller's 851 // copy of the byval'd memory. In this case, it is safe to elide the copy and 852 // temporary. 853 if (CalledFunc->onlyReadsMemory()) { 854 // If the byval argument has a specified alignment that is greater than the 855 // passed in pointer, then we either have to round up the input pointer or 856 // give up on this transformation. 857 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 858 return Arg; 859 860 const DataLayout &DL = Caller->getParent()->getDataLayout(); 861 862 // If the pointer is already known to be sufficiently aligned, or if we can 863 // round it up to a larger alignment, then we don't need a temporary. 864 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 865 &IFI.ACT->getAssumptionCache(*Caller)) >= 866 ByValAlignment) 867 return Arg; 868 869 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 870 // for code quality, but rarely happens and is required for correctness. 871 } 872 873 // Create the alloca. If we have DataLayout, use nice alignment. 874 unsigned Align = 875 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 876 877 // If the byval had an alignment specified, we *must* use at least that 878 // alignment, as it is required by the byval argument (and uses of the 879 // pointer inside the callee). 880 Align = std::max(Align, ByValAlignment); 881 882 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 883 &*Caller->begin()->begin()); 884 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 885 886 // Uses of the argument in the function should use our new alloca 887 // instead. 888 return NewAlloca; 889 } 890 891 // Check whether this Value is used by a lifetime intrinsic. 892 static bool isUsedByLifetimeMarker(Value *V) { 893 for (User *U : V->users()) { 894 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 895 switch (II->getIntrinsicID()) { 896 default: break; 897 case Intrinsic::lifetime_start: 898 case Intrinsic::lifetime_end: 899 return true; 900 } 901 } 902 } 903 return false; 904 } 905 906 // Check whether the given alloca already has 907 // lifetime.start or lifetime.end intrinsics. 908 static bool hasLifetimeMarkers(AllocaInst *AI) { 909 Type *Ty = AI->getType(); 910 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 911 Ty->getPointerAddressSpace()); 912 if (Ty == Int8PtrTy) 913 return isUsedByLifetimeMarker(AI); 914 915 // Do a scan to find all the casts to i8*. 916 for (User *U : AI->users()) { 917 if (U->getType() != Int8PtrTy) continue; 918 if (U->stripPointerCasts() != AI) continue; 919 if (isUsedByLifetimeMarker(U)) 920 return true; 921 } 922 return false; 923 } 924 925 /// Rebuild the entire inlined-at chain for this instruction so that the top of 926 /// the chain now is inlined-at the new call site. 927 static DebugLoc 928 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 929 DenseMap<const DILocation *, DILocation *> &IANodes) { 930 SmallVector<DILocation *, 3> InlinedAtLocations; 931 DILocation *Last = InlinedAtNode; 932 DILocation *CurInlinedAt = DL; 933 934 // Gather all the inlined-at nodes 935 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 936 // Skip any we've already built nodes for 937 if (DILocation *Found = IANodes[IA]) { 938 Last = Found; 939 break; 940 } 941 942 InlinedAtLocations.push_back(IA); 943 CurInlinedAt = IA; 944 } 945 946 // Starting from the top, rebuild the nodes to point to the new inlined-at 947 // location (then rebuilding the rest of the chain behind it) and update the 948 // map of already-constructed inlined-at nodes. 949 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 950 InlinedAtLocations.rend())) { 951 Last = IANodes[MD] = DILocation::getDistinct( 952 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 953 } 954 955 // And finally create the normal location for this instruction, referring to 956 // the new inlined-at chain. 957 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 958 } 959 960 /// Update inlined instructions' line numbers to 961 /// to encode location where these instructions are inlined. 962 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 963 Instruction *TheCall) { 964 DebugLoc TheCallDL = TheCall->getDebugLoc(); 965 if (!TheCallDL) 966 return; 967 968 auto &Ctx = Fn->getContext(); 969 DILocation *InlinedAtNode = TheCallDL; 970 971 // Create a unique call site, not to be confused with any other call from the 972 // same location. 973 InlinedAtNode = DILocation::getDistinct( 974 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 975 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 976 977 // Cache the inlined-at nodes as they're built so they are reused, without 978 // this every instruction's inlined-at chain would become distinct from each 979 // other. 980 DenseMap<const DILocation *, DILocation *> IANodes; 981 982 for (; FI != Fn->end(); ++FI) { 983 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 984 BI != BE; ++BI) { 985 DebugLoc DL = BI->getDebugLoc(); 986 if (!DL) { 987 // If the inlined instruction has no line number, make it look as if it 988 // originates from the call location. This is important for 989 // ((__always_inline__, __nodebug__)) functions which must use caller 990 // location for all instructions in their function body. 991 992 // Don't update static allocas, as they may get moved later. 993 if (auto *AI = dyn_cast<AllocaInst>(BI)) 994 if (isa<Constant>(AI->getArraySize())) 995 continue; 996 997 BI->setDebugLoc(TheCallDL); 998 } else { 999 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1000 } 1001 } 1002 } 1003 } 1004 1005 /// This function inlines the called function into the basic block of the 1006 /// caller. This returns false if it is not possible to inline this call. 1007 /// The program is still in a well defined state if this occurs though. 1008 /// 1009 /// Note that this only does one level of inlining. For example, if the 1010 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1011 /// exists in the instruction stream. Similarly this will inline a recursive 1012 /// function by one level. 1013 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1014 AAResults *CalleeAAR, bool InsertLifetime) { 1015 Instruction *TheCall = CS.getInstruction(); 1016 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1017 "Instruction not in function!"); 1018 1019 // If IFI has any state in it, zap it before we fill it in. 1020 IFI.reset(); 1021 1022 const Function *CalledFunc = CS.getCalledFunction(); 1023 if (!CalledFunc || // Can't inline external function or indirect 1024 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1025 CalledFunc->getFunctionType()->isVarArg()) return false; 1026 1027 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1028 // calls that we inline. 1029 bool MarkNoUnwind = CS.doesNotThrow(); 1030 1031 BasicBlock *OrigBB = TheCall->getParent(); 1032 Function *Caller = OrigBB->getParent(); 1033 1034 // GC poses two hazards to inlining, which only occur when the callee has GC: 1035 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1036 // caller. 1037 // 2. If the caller has a differing GC, it is invalid to inline. 1038 if (CalledFunc->hasGC()) { 1039 if (!Caller->hasGC()) 1040 Caller->setGC(CalledFunc->getGC()); 1041 else if (CalledFunc->getGC() != Caller->getGC()) 1042 return false; 1043 } 1044 1045 // Get the personality function from the callee if it contains a landing pad. 1046 Constant *CalledPersonality = 1047 CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn() : nullptr; 1048 1049 // Find the personality function used by the landing pads of the caller. If it 1050 // exists, then check to see that it matches the personality function used in 1051 // the callee. 1052 Constant *CallerPersonality = 1053 Caller->hasPersonalityFn() ? Caller->getPersonalityFn() : nullptr; 1054 if (CalledPersonality) { 1055 if (!CallerPersonality) 1056 Caller->setPersonalityFn(CalledPersonality); 1057 // If the personality functions match, then we can perform the 1058 // inlining. Otherwise, we can't inline. 1059 // TODO: This isn't 100% true. Some personality functions are proper 1060 // supersets of others and can be used in place of the other. 1061 else if (CalledPersonality != CallerPersonality) 1062 return false; 1063 } 1064 1065 // Get an iterator to the last basic block in the function, which will have 1066 // the new function inlined after it. 1067 Function::iterator LastBlock = &Caller->back(); 1068 1069 // Make sure to capture all of the return instructions from the cloned 1070 // function. 1071 SmallVector<ReturnInst*, 8> Returns; 1072 ClonedCodeInfo InlinedFunctionInfo; 1073 Function::iterator FirstNewBlock; 1074 1075 { // Scope to destroy VMap after cloning. 1076 ValueToValueMapTy VMap; 1077 // Keep a list of pair (dst, src) to emit byval initializations. 1078 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1079 1080 auto &DL = Caller->getParent()->getDataLayout(); 1081 1082 assert(CalledFunc->arg_size() == CS.arg_size() && 1083 "No varargs calls can be inlined!"); 1084 1085 // Calculate the vector of arguments to pass into the function cloner, which 1086 // matches up the formal to the actual argument values. 1087 CallSite::arg_iterator AI = CS.arg_begin(); 1088 unsigned ArgNo = 0; 1089 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1090 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1091 Value *ActualArg = *AI; 1092 1093 // When byval arguments actually inlined, we need to make the copy implied 1094 // by them explicit. However, we don't do this if the callee is readonly 1095 // or readnone, because the copy would be unneeded: the callee doesn't 1096 // modify the struct. 1097 if (CS.isByValArgument(ArgNo)) { 1098 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1099 CalledFunc->getParamAlignment(ArgNo+1)); 1100 if (ActualArg != *AI) 1101 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1102 } 1103 1104 VMap[I] = ActualArg; 1105 } 1106 1107 // Add alignment assumptions if necessary. We do this before the inlined 1108 // instructions are actually cloned into the caller so that we can easily 1109 // check what will be known at the start of the inlined code. 1110 AddAlignmentAssumptions(CS, IFI); 1111 1112 // We want the inliner to prune the code as it copies. We would LOVE to 1113 // have no dead or constant instructions leftover after inlining occurs 1114 // (which can happen, e.g., because an argument was constant), but we'll be 1115 // happy with whatever the cloner can do. 1116 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1117 /*ModuleLevelChanges=*/false, Returns, ".i", 1118 &InlinedFunctionInfo, TheCall); 1119 1120 // Remember the first block that is newly cloned over. 1121 FirstNewBlock = LastBlock; ++FirstNewBlock; 1122 1123 // Inject byval arguments initialization. 1124 for (std::pair<Value*, Value*> &Init : ByValInit) 1125 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1126 FirstNewBlock, IFI); 1127 1128 // Update the callgraph if requested. 1129 if (IFI.CG) 1130 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1131 1132 // Update inlined instructions' line number information. 1133 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1134 1135 // Clone existing noalias metadata if necessary. 1136 CloneAliasScopeMetadata(CS, VMap); 1137 1138 // Add noalias metadata if necessary. 1139 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1140 1141 // FIXME: We could register any cloned assumptions instead of clearing the 1142 // whole function's cache. 1143 if (IFI.ACT) 1144 IFI.ACT->getAssumptionCache(*Caller).clear(); 1145 } 1146 1147 // If there are any alloca instructions in the block that used to be the entry 1148 // block for the callee, move them to the entry block of the caller. First 1149 // calculate which instruction they should be inserted before. We insert the 1150 // instructions at the end of the current alloca list. 1151 { 1152 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1153 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1154 E = FirstNewBlock->end(); I != E; ) { 1155 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1156 if (!AI) continue; 1157 1158 // If the alloca is now dead, remove it. This often occurs due to code 1159 // specialization. 1160 if (AI->use_empty()) { 1161 AI->eraseFromParent(); 1162 continue; 1163 } 1164 1165 if (!isa<Constant>(AI->getArraySize())) 1166 continue; 1167 1168 // Keep track of the static allocas that we inline into the caller. 1169 IFI.StaticAllocas.push_back(AI); 1170 1171 // Scan for the block of allocas that we can move over, and move them 1172 // all at once. 1173 while (isa<AllocaInst>(I) && 1174 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1175 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1176 ++I; 1177 } 1178 1179 // Transfer all of the allocas over in a block. Using splice means 1180 // that the instructions aren't removed from the symbol table, then 1181 // reinserted. 1182 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1183 FirstNewBlock->getInstList(), 1184 AI, I); 1185 } 1186 // Move any dbg.declares describing the allocas into the entry basic block. 1187 DIBuilder DIB(*Caller->getParent()); 1188 for (auto &AI : IFI.StaticAllocas) 1189 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1190 } 1191 1192 bool InlinedMustTailCalls = false; 1193 if (InlinedFunctionInfo.ContainsCalls) { 1194 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1195 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1196 CallSiteTailKind = CI->getTailCallKind(); 1197 1198 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1199 ++BB) { 1200 for (Instruction &I : *BB) { 1201 CallInst *CI = dyn_cast<CallInst>(&I); 1202 if (!CI) 1203 continue; 1204 1205 // We need to reduce the strength of any inlined tail calls. For 1206 // musttail, we have to avoid introducing potential unbounded stack 1207 // growth. For example, if functions 'f' and 'g' are mutually recursive 1208 // with musttail, we can inline 'g' into 'f' so long as we preserve 1209 // musttail on the cloned call to 'f'. If either the inlined call site 1210 // or the cloned call site is *not* musttail, the program already has 1211 // one frame of stack growth, so it's safe to remove musttail. Here is 1212 // a table of example transformations: 1213 // 1214 // f -> musttail g -> musttail f ==> f -> musttail f 1215 // f -> musttail g -> tail f ==> f -> tail f 1216 // f -> g -> musttail f ==> f -> f 1217 // f -> g -> tail f ==> f -> f 1218 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1219 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1220 CI->setTailCallKind(ChildTCK); 1221 InlinedMustTailCalls |= CI->isMustTailCall(); 1222 1223 // Calls inlined through a 'nounwind' call site should be marked 1224 // 'nounwind'. 1225 if (MarkNoUnwind) 1226 CI->setDoesNotThrow(); 1227 } 1228 } 1229 } 1230 1231 // Leave lifetime markers for the static alloca's, scoping them to the 1232 // function we just inlined. 1233 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1234 IRBuilder<> builder(FirstNewBlock->begin()); 1235 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1236 AllocaInst *AI = IFI.StaticAllocas[ai]; 1237 1238 // If the alloca is already scoped to something smaller than the whole 1239 // function then there's no need to add redundant, less accurate markers. 1240 if (hasLifetimeMarkers(AI)) 1241 continue; 1242 1243 // Try to determine the size of the allocation. 1244 ConstantInt *AllocaSize = nullptr; 1245 if (ConstantInt *AIArraySize = 1246 dyn_cast<ConstantInt>(AI->getArraySize())) { 1247 auto &DL = Caller->getParent()->getDataLayout(); 1248 Type *AllocaType = AI->getAllocatedType(); 1249 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1250 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1251 1252 // Don't add markers for zero-sized allocas. 1253 if (AllocaArraySize == 0) 1254 continue; 1255 1256 // Check that array size doesn't saturate uint64_t and doesn't 1257 // overflow when it's multiplied by type size. 1258 if (AllocaArraySize != ~0ULL && 1259 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1260 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1261 AllocaArraySize * AllocaTypeSize); 1262 } 1263 } 1264 1265 builder.CreateLifetimeStart(AI, AllocaSize); 1266 for (ReturnInst *RI : Returns) { 1267 // Don't insert llvm.lifetime.end calls between a musttail call and a 1268 // return. The return kills all local allocas. 1269 if (InlinedMustTailCalls && 1270 RI->getParent()->getTerminatingMustTailCall()) 1271 continue; 1272 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1273 } 1274 } 1275 } 1276 1277 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1278 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1279 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1280 Module *M = Caller->getParent(); 1281 // Get the two intrinsics we care about. 1282 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1283 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1284 1285 // Insert the llvm.stacksave. 1286 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1287 .CreateCall(StackSave, {}, "savedstack"); 1288 1289 // Insert a call to llvm.stackrestore before any return instructions in the 1290 // inlined function. 1291 for (ReturnInst *RI : Returns) { 1292 // Don't insert llvm.stackrestore calls between a musttail call and a 1293 // return. The return will restore the stack pointer. 1294 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1295 continue; 1296 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1297 } 1298 } 1299 1300 // If we are inlining for an invoke instruction, we must make sure to rewrite 1301 // any call instructions into invoke instructions. 1302 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1303 BasicBlock *UnwindDest = II->getUnwindDest(); 1304 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1305 if (isa<LandingPadInst>(FirstNonPHI)) { 1306 HandleInlinedLandingPad(II, FirstNewBlock, InlinedFunctionInfo); 1307 } else { 1308 HandleInlinedEHPad(II, FirstNewBlock, InlinedFunctionInfo); 1309 } 1310 } 1311 1312 // Handle any inlined musttail call sites. In order for a new call site to be 1313 // musttail, the source of the clone and the inlined call site must have been 1314 // musttail. Therefore it's safe to return without merging control into the 1315 // phi below. 1316 if (InlinedMustTailCalls) { 1317 // Check if we need to bitcast the result of any musttail calls. 1318 Type *NewRetTy = Caller->getReturnType(); 1319 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1320 1321 // Handle the returns preceded by musttail calls separately. 1322 SmallVector<ReturnInst *, 8> NormalReturns; 1323 for (ReturnInst *RI : Returns) { 1324 CallInst *ReturnedMustTail = 1325 RI->getParent()->getTerminatingMustTailCall(); 1326 if (!ReturnedMustTail) { 1327 NormalReturns.push_back(RI); 1328 continue; 1329 } 1330 if (!NeedBitCast) 1331 continue; 1332 1333 // Delete the old return and any preceding bitcast. 1334 BasicBlock *CurBB = RI->getParent(); 1335 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1336 RI->eraseFromParent(); 1337 if (OldCast) 1338 OldCast->eraseFromParent(); 1339 1340 // Insert a new bitcast and return with the right type. 1341 IRBuilder<> Builder(CurBB); 1342 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1343 } 1344 1345 // Leave behind the normal returns so we can merge control flow. 1346 std::swap(Returns, NormalReturns); 1347 } 1348 1349 // If we cloned in _exactly one_ basic block, and if that block ends in a 1350 // return instruction, we splice the body of the inlined callee directly into 1351 // the calling basic block. 1352 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1353 // Move all of the instructions right before the call. 1354 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1355 FirstNewBlock->begin(), FirstNewBlock->end()); 1356 // Remove the cloned basic block. 1357 Caller->getBasicBlockList().pop_back(); 1358 1359 // If the call site was an invoke instruction, add a branch to the normal 1360 // destination. 1361 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1362 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1363 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1364 } 1365 1366 // If the return instruction returned a value, replace uses of the call with 1367 // uses of the returned value. 1368 if (!TheCall->use_empty()) { 1369 ReturnInst *R = Returns[0]; 1370 if (TheCall == R->getReturnValue()) 1371 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1372 else 1373 TheCall->replaceAllUsesWith(R->getReturnValue()); 1374 } 1375 // Since we are now done with the Call/Invoke, we can delete it. 1376 TheCall->eraseFromParent(); 1377 1378 // Since we are now done with the return instruction, delete it also. 1379 Returns[0]->eraseFromParent(); 1380 1381 // We are now done with the inlining. 1382 return true; 1383 } 1384 1385 // Otherwise, we have the normal case, of more than one block to inline or 1386 // multiple return sites. 1387 1388 // We want to clone the entire callee function into the hole between the 1389 // "starter" and "ender" blocks. How we accomplish this depends on whether 1390 // this is an invoke instruction or a call instruction. 1391 BasicBlock *AfterCallBB; 1392 BranchInst *CreatedBranchToNormalDest = nullptr; 1393 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1394 1395 // Add an unconditional branch to make this look like the CallInst case... 1396 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1397 1398 // Split the basic block. This guarantees that no PHI nodes will have to be 1399 // updated due to new incoming edges, and make the invoke case more 1400 // symmetric to the call case. 1401 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1402 CalledFunc->getName()+".exit"); 1403 1404 } else { // It's a call 1405 // If this is a call instruction, we need to split the basic block that 1406 // the call lives in. 1407 // 1408 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1409 CalledFunc->getName()+".exit"); 1410 } 1411 1412 // Change the branch that used to go to AfterCallBB to branch to the first 1413 // basic block of the inlined function. 1414 // 1415 TerminatorInst *Br = OrigBB->getTerminator(); 1416 assert(Br && Br->getOpcode() == Instruction::Br && 1417 "splitBasicBlock broken!"); 1418 Br->setOperand(0, FirstNewBlock); 1419 1420 1421 // Now that the function is correct, make it a little bit nicer. In 1422 // particular, move the basic blocks inserted from the end of the function 1423 // into the space made by splitting the source basic block. 1424 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1425 FirstNewBlock, Caller->end()); 1426 1427 // Handle all of the return instructions that we just cloned in, and eliminate 1428 // any users of the original call/invoke instruction. 1429 Type *RTy = CalledFunc->getReturnType(); 1430 1431 PHINode *PHI = nullptr; 1432 if (Returns.size() > 1) { 1433 // The PHI node should go at the front of the new basic block to merge all 1434 // possible incoming values. 1435 if (!TheCall->use_empty()) { 1436 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1437 AfterCallBB->begin()); 1438 // Anything that used the result of the function call should now use the 1439 // PHI node as their operand. 1440 TheCall->replaceAllUsesWith(PHI); 1441 } 1442 1443 // Loop over all of the return instructions adding entries to the PHI node 1444 // as appropriate. 1445 if (PHI) { 1446 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1447 ReturnInst *RI = Returns[i]; 1448 assert(RI->getReturnValue()->getType() == PHI->getType() && 1449 "Ret value not consistent in function!"); 1450 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1451 } 1452 } 1453 1454 1455 // Add a branch to the merge points and remove return instructions. 1456 DebugLoc Loc; 1457 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1458 ReturnInst *RI = Returns[i]; 1459 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1460 Loc = RI->getDebugLoc(); 1461 BI->setDebugLoc(Loc); 1462 RI->eraseFromParent(); 1463 } 1464 // We need to set the debug location to *somewhere* inside the 1465 // inlined function. The line number may be nonsensical, but the 1466 // instruction will at least be associated with the right 1467 // function. 1468 if (CreatedBranchToNormalDest) 1469 CreatedBranchToNormalDest->setDebugLoc(Loc); 1470 } else if (!Returns.empty()) { 1471 // Otherwise, if there is exactly one return value, just replace anything 1472 // using the return value of the call with the computed value. 1473 if (!TheCall->use_empty()) { 1474 if (TheCall == Returns[0]->getReturnValue()) 1475 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1476 else 1477 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1478 } 1479 1480 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1481 BasicBlock *ReturnBB = Returns[0]->getParent(); 1482 ReturnBB->replaceAllUsesWith(AfterCallBB); 1483 1484 // Splice the code from the return block into the block that it will return 1485 // to, which contains the code that was after the call. 1486 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1487 ReturnBB->getInstList()); 1488 1489 if (CreatedBranchToNormalDest) 1490 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1491 1492 // Delete the return instruction now and empty ReturnBB now. 1493 Returns[0]->eraseFromParent(); 1494 ReturnBB->eraseFromParent(); 1495 } else if (!TheCall->use_empty()) { 1496 // No returns, but something is using the return value of the call. Just 1497 // nuke the result. 1498 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1499 } 1500 1501 // Since we are now done with the Call/Invoke, we can delete it. 1502 TheCall->eraseFromParent(); 1503 1504 // If we inlined any musttail calls and the original return is now 1505 // unreachable, delete it. It can only contain a bitcast and ret. 1506 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1507 AfterCallBB->eraseFromParent(); 1508 1509 // We should always be able to fold the entry block of the function into the 1510 // single predecessor of the block... 1511 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1512 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1513 1514 // Splice the code entry block into calling block, right before the 1515 // unconditional branch. 1516 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1517 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1518 1519 // Remove the unconditional branch. 1520 OrigBB->getInstList().erase(Br); 1521 1522 // Now we can remove the CalleeEntry block, which is now empty. 1523 Caller->getBasicBlockList().erase(CalleeEntry); 1524 1525 // If we inserted a phi node, check to see if it has a single value (e.g. all 1526 // the entries are the same or undef). If so, remove the PHI so it doesn't 1527 // block other optimizations. 1528 if (PHI) { 1529 auto &DL = Caller->getParent()->getDataLayout(); 1530 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1531 &IFI.ACT->getAssumptionCache(*Caller))) { 1532 PHI->replaceAllUsesWith(V); 1533 PHI->eraseFromParent(); 1534 } 1535 } 1536 1537 return true; 1538 } 1539