1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 // The code in this file for handling inlines through invoke 14 // instructions preserves semantics only under some assumptions about 15 // the behavior of unwinders which correspond to gcc-style libUnwind 16 // exception personality functions. Eventually the IR will be 17 // improved to make this unnecessary, but until then, this code is 18 // marked [LIBUNWIND]. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Module.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Attributes.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/CallSite.h" 38 #include "llvm/Support/IRBuilder.h" 39 using namespace llvm; 40 41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { 42 return InlineFunction(CallSite(CI), IFI); 43 } 44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { 45 return InlineFunction(CallSite(II), IFI); 46 } 47 48 /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block. 49 static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) { 50 for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) { 51 EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i); 52 if (exn) return exn; 53 } 54 55 return 0; 56 } 57 58 /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for 59 /// the given llvm.eh.exception call. 60 static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) { 61 BasicBlock *exnBlock = exn->getParent(); 62 63 EHSelectorInst *outOfBlockSelector = 0; 64 for (Instruction::use_iterator 65 ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) { 66 EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui); 67 if (!sel) continue; 68 69 // Immediately accept an eh.selector in the same block as the 70 // excepton call. 71 if (sel->getParent() == exnBlock) return sel; 72 73 // Otherwise, use the first selector we see. 74 if (!outOfBlockSelector) outOfBlockSelector = sel; 75 } 76 77 return outOfBlockSelector; 78 } 79 80 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector 81 /// in the given landing pad. In principle, llvm.eh.exception is 82 /// required to be in the landing pad; in practice, SplitCriticalEdge 83 /// can break that invariant, and then inlining can break it further. 84 /// There's a real need for a reliable solution here, but until that 85 /// happens, we have some fragile workarounds here. 86 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) { 87 // Look for an exception call in the actual landing pad. 88 EHExceptionInst *exn = findExceptionInBlock(lpad); 89 if (exn) return findSelectorForException(exn); 90 91 // Okay, if that failed, look for one in an obvious successor. If 92 // we find one, we'll fix the IR by moving things back to the 93 // landing pad. 94 95 bool dominates = true; // does the lpad dominate the exn call 96 BasicBlock *nonDominated = 0; // if not, the first non-dominated block 97 BasicBlock *lastDominated = 0; // and the block which branched to it 98 99 BasicBlock *exnBlock = lpad; 100 101 // We need to protect against lpads that lead into infinite loops. 102 SmallPtrSet<BasicBlock*,4> visited; 103 visited.insert(exnBlock); 104 105 do { 106 // We're not going to apply this hack to anything more complicated 107 // than a series of unconditional branches, so if the block 108 // doesn't terminate in an unconditional branch, just fail. More 109 // complicated cases can arise when, say, sinking a call into a 110 // split unwind edge and then inlining it; but that can do almost 111 // *anything* to the CFG, including leaving the selector 112 // completely unreachable. The only way to fix that properly is 113 // to (1) prohibit transforms which move the exception or selector 114 // values away from the landing pad, e.g. by producing them with 115 // instructions that are pinned to an edge like a phi, or 116 // producing them with not-really-instructions, and (2) making 117 // transforms which split edges deal with that. 118 BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back()); 119 if (!branch || branch->isConditional()) return 0; 120 121 BasicBlock *successor = branch->getSuccessor(0); 122 123 // Fail if we found an infinite loop. 124 if (!visited.insert(successor)) return 0; 125 126 // If the successor isn't dominated by exnBlock: 127 if (!successor->getSinglePredecessor()) { 128 // We don't want to have to deal with threading the exception 129 // through multiple levels of phi, so give up if we've already 130 // followed a non-dominating edge. 131 if (!dominates) return 0; 132 133 // Otherwise, remember this as a non-dominating edge. 134 dominates = false; 135 nonDominated = successor; 136 lastDominated = exnBlock; 137 } 138 139 exnBlock = successor; 140 141 // Can we stop here? 142 exn = findExceptionInBlock(exnBlock); 143 } while (!exn); 144 145 // Look for a selector call for the exception we found. 146 EHSelectorInst *selector = findSelectorForException(exn); 147 if (!selector) return 0; 148 149 // The easy case is when the landing pad still dominates the 150 // exception call, in which case we can just move both calls back to 151 // the landing pad. 152 if (dominates) { 153 selector->moveBefore(lpad->getFirstNonPHI()); 154 exn->moveBefore(selector); 155 return selector; 156 } 157 158 // Otherwise, we have to split at the first non-dominating block. 159 // The CFG looks basically like this: 160 // lpad: 161 // phis_0 162 // insnsAndBranches_1 163 // br label %nonDominated 164 // nonDominated: 165 // phis_2 166 // insns_3 167 // %exn = call i8* @llvm.eh.exception() 168 // insnsAndBranches_4 169 // %selector = call @llvm.eh.selector(i8* %exn, ... 170 // We need to turn this into: 171 // lpad: 172 // phis_0 173 // %exn0 = call i8* @llvm.eh.exception() 174 // %selector0 = call @llvm.eh.selector(i8* %exn0, ... 175 // insnsAndBranches_1 176 // br label %split // from lastDominated 177 // nonDominated: 178 // phis_2 (without edge from lastDominated) 179 // %exn1 = call i8* @llvm.eh.exception() 180 // %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ... 181 // br label %split 182 // split: 183 // phis_2 (edge from lastDominated, edge from split) 184 // %exn = phi ... 185 // %selector = phi ... 186 // insns_3 187 // insnsAndBranches_4 188 189 assert(nonDominated); 190 assert(lastDominated); 191 192 // First, make clones of the intrinsics to go in lpad. 193 EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone()); 194 EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone()); 195 lpadSelector->setArgOperand(0, lpadExn); 196 lpadSelector->insertBefore(lpad->getFirstNonPHI()); 197 lpadExn->insertBefore(lpadSelector); 198 199 // Split the non-dominated block. 200 BasicBlock *split = 201 nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(), 202 nonDominated->getName() + ".lpad-fix"); 203 204 // Redirect the last dominated branch there. 205 cast<BranchInst>(lastDominated->back()).setSuccessor(0, split); 206 207 // Move the existing intrinsics to the end of the old block. 208 selector->moveBefore(&nonDominated->back()); 209 exn->moveBefore(selector); 210 211 Instruction *splitIP = &split->front(); 212 213 // For all the phis in nonDominated, make a new phi in split to join 214 // that phi with the edge from lastDominated. 215 for (BasicBlock::iterator 216 i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) { 217 PHINode *phi = dyn_cast<PHINode>(i); 218 if (!phi) break; 219 220 PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(), 221 splitIP); 222 phi->replaceAllUsesWith(splitPhi); 223 splitPhi->addIncoming(phi, nonDominated); 224 splitPhi->addIncoming(phi->removeIncomingValue(lastDominated), 225 lastDominated); 226 } 227 228 // Make new phis for the exception and selector. 229 PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP); 230 exn->replaceAllUsesWith(exnPhi); 231 selector->setArgOperand(0, exn); // except for this use 232 exnPhi->addIncoming(exn, nonDominated); 233 exnPhi->addIncoming(lpadExn, lastDominated); 234 235 PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP); 236 selector->replaceAllUsesWith(selectorPhi); 237 selectorPhi->addIncoming(selector, nonDominated); 238 selectorPhi->addIncoming(lpadSelector, lastDominated); 239 240 return lpadSelector; 241 } 242 243 namespace { 244 /// A class for recording information about inlining through an invoke. 245 class InvokeInliningInfo { 246 BasicBlock *OuterUnwindDest; 247 EHSelectorInst *OuterSelector; 248 BasicBlock *InnerUnwindDest; 249 PHINode *InnerExceptionPHI; 250 PHINode *InnerSelectorPHI; 251 SmallVector<Value*, 8> UnwindDestPHIValues; 252 253 // New EH: 254 BasicBlock *OuterResumeDest; 255 BasicBlock *InnerResumeDest; 256 LandingPadInst *CallerLPad; 257 PHINode *InnerEHValuesPHI; 258 BasicBlock *SplitLPad; 259 260 public: 261 InvokeInliningInfo(InvokeInst *II) 262 : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0), 263 InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0), 264 265 OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 266 CallerLPad(0), InnerEHValuesPHI(0), SplitLPad(0) { 267 // If there are PHI nodes in the unwind destination block, we 268 // need to keep track of which values came into them from the 269 // invoke before removing the edge from this block. 270 llvm::BasicBlock *InvokeBB = II->getParent(); 271 BasicBlock::iterator I = OuterUnwindDest->begin(); 272 for (; isa<PHINode>(I); ++I) { 273 // Save the value to use for this edge. 274 PHINode *PHI = cast<PHINode>(I); 275 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 276 } 277 278 // FIXME: With the new EH, this if/dyn_cast should be a 'cast'. 279 if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) 280 CallerLPad = LPI; 281 } 282 283 /// The outer unwind destination is the target of unwind edges 284 /// introduced for calls within the inlined function. 285 BasicBlock *getOuterUnwindDest() const { 286 return OuterUnwindDest; 287 } 288 289 EHSelectorInst *getOuterSelector() { 290 if (!OuterSelector) 291 OuterSelector = findSelectorForLandingPad(OuterUnwindDest); 292 return OuterSelector; 293 } 294 295 BasicBlock *getInnerUnwindDest(); 296 BasicBlock *getInnerUnwindDest_new(); 297 298 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 299 BasicBlock *getSplitLandingPad() { 300 if (SplitLPad) return SplitLPad; 301 assert(CallerLPad && "Trying to split a block that isn't a landing pad!"); 302 BasicBlock::iterator I = CallerLPad; ++I; 303 SplitLPad = CallerLPad->getParent()->splitBasicBlock(I, "split.lpad"); 304 return SplitLPad; 305 } 306 307 bool forwardEHResume(CallInst *call, BasicBlock *src); 308 309 /// forwardResume - Forward the 'resume' instruction to the caller's landing 310 /// pad block. When the landing pad block has only one predecessor, this is 311 /// a simple branch. When there is more than one predecessor, we need to 312 /// split the landing pad block after the landingpad instruction and jump 313 /// to there. 314 void forwardResume(ResumeInst *RI); 315 316 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 317 /// destination block for the given basic block, using the values for the 318 /// original invoke's source block. 319 void addIncomingPHIValuesFor(BasicBlock *BB) const { 320 addIncomingPHIValuesForInto(BB, OuterUnwindDest); 321 } 322 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 323 BasicBlock::iterator I = dest->begin(); 324 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 325 PHINode *PHI = cast<PHINode>(I); 326 PHI->addIncoming(UnwindDestPHIValues[i], src); 327 } 328 } 329 }; 330 } 331 332 /// Get or create a target for the branch out of rewritten calls to 333 /// llvm.eh.resume. 334 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() { 335 if (InnerUnwindDest) return InnerUnwindDest; 336 337 // Find and hoist the llvm.eh.exception and llvm.eh.selector calls 338 // in the outer landing pad to immediately following the phis. 339 EHSelectorInst *selector = getOuterSelector(); 340 if (!selector) return 0; 341 342 // The call to llvm.eh.exception *must* be in the landing pad. 343 Instruction *exn = cast<Instruction>(selector->getArgOperand(0)); 344 assert(exn->getParent() == OuterUnwindDest); 345 346 // TODO: recognize when we've already done this, so that we don't 347 // get a linear number of these when inlining calls into lots of 348 // invokes with the same landing pad. 349 350 // Do the hoisting. 351 Instruction *splitPoint = exn->getParent()->getFirstNonPHI(); 352 assert(splitPoint != selector && "selector-on-exception dominance broken!"); 353 if (splitPoint == exn) { 354 selector->removeFromParent(); 355 selector->insertAfter(exn); 356 splitPoint = selector->getNextNode(); 357 } else { 358 exn->moveBefore(splitPoint); 359 selector->moveBefore(splitPoint); 360 } 361 362 // Split the landing pad. 363 InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint, 364 OuterUnwindDest->getName() + ".body"); 365 366 // The number of incoming edges we expect to the inner landing pad. 367 const unsigned phiCapacity = 2; 368 369 // Create corresponding new phis for all the phis in the outer landing pad. 370 BasicBlock::iterator insertPoint = InnerUnwindDest->begin(); 371 BasicBlock::iterator I = OuterUnwindDest->begin(); 372 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 373 PHINode *outerPhi = cast<PHINode>(I); 374 PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity, 375 outerPhi->getName() + ".lpad-body", 376 insertPoint); 377 outerPhi->replaceAllUsesWith(innerPhi); 378 innerPhi->addIncoming(outerPhi, OuterUnwindDest); 379 } 380 381 // Create a phi for the exception value... 382 InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity, 383 "exn.lpad-body", insertPoint); 384 exn->replaceAllUsesWith(InnerExceptionPHI); 385 selector->setArgOperand(0, exn); // restore this use 386 InnerExceptionPHI->addIncoming(exn, OuterUnwindDest); 387 388 // ...and the selector. 389 InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity, 390 "selector.lpad-body", insertPoint); 391 selector->replaceAllUsesWith(InnerSelectorPHI); 392 InnerSelectorPHI->addIncoming(selector, OuterUnwindDest); 393 394 // All done. 395 return InnerUnwindDest; 396 } 397 398 /// [LIBUNWIND] Try to forward the given call, which logically occurs 399 /// at the end of the given block, as a branch to the inner unwind 400 /// block. Returns true if the call was forwarded. 401 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) { 402 // First, check whether this is a call to the intrinsic. 403 Function *fn = dyn_cast<Function>(call->getCalledValue()); 404 if (!fn || fn->getName() != "llvm.eh.resume") 405 return false; 406 407 // At this point, we need to return true on all paths, because 408 // otherwise we'll construct an invoke of the intrinsic, which is 409 // not well-formed. 410 411 // Try to find or make an inner unwind dest, which will fail if we 412 // can't find a selector call for the outer unwind dest. 413 BasicBlock *dest = getInnerUnwindDest(); 414 bool hasSelector = (dest != 0); 415 416 // If we failed, just use the outer unwind dest, dropping the 417 // exception and selector on the floor. 418 if (!hasSelector) 419 dest = OuterUnwindDest; 420 421 // Make a branch. 422 BranchInst::Create(dest, src); 423 424 // Update the phis in the destination. They were inserted in an 425 // order which makes this work. 426 addIncomingPHIValuesForInto(src, dest); 427 428 if (hasSelector) { 429 InnerExceptionPHI->addIncoming(call->getArgOperand(0), src); 430 InnerSelectorPHI->addIncoming(call->getArgOperand(1), src); 431 } 432 433 return true; 434 } 435 436 /// Get or create a target for the branch from ResumeInsts. 437 BasicBlock *InvokeInliningInfo::getInnerUnwindDest_new() { 438 if (InnerResumeDest) return InnerResumeDest; 439 440 // Split the landing pad. 441 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 442 InnerResumeDest = 443 OuterResumeDest->splitBasicBlock(SplitPoint, 444 OuterResumeDest->getName() + ".body"); 445 446 // The number of incoming edges we expect to the inner landing pad. 447 const unsigned PHICapacity = 2; 448 449 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 450 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 451 BasicBlock::iterator I = OuterResumeDest->begin(); 452 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 453 PHINode *OuterPHI = cast<PHINode>(I); 454 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 455 OuterPHI->getName() + ".lpad-body", 456 InsertPoint); 457 OuterPHI->replaceAllUsesWith(InnerPHI); 458 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 459 } 460 461 // Create a PHI for the exception values. 462 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 463 "eh.lpad-body", InsertPoint); 464 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 465 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 466 467 // All done. 468 return InnerResumeDest; 469 } 470 471 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 472 /// block. When the landing pad block has only one predecessor, this is a simple 473 /// branch. When there is more than one predecessor, we need to split the 474 /// landing pad block after the landingpad instruction and jump to there. 475 void InvokeInliningInfo::forwardResume(ResumeInst *RI) { 476 BasicBlock *Dest = getInnerUnwindDest_new(); 477 BasicBlock *Src = RI->getParent(); 478 479 BranchInst::Create(Dest, Src); 480 481 // Update the PHIs in the destination. They were inserted in an order which 482 // makes this work. 483 addIncomingPHIValuesForInto(Src, Dest); 484 485 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 486 RI->eraseFromParent(); 487 } 488 489 /// [LIBUNWIND] Check whether this selector is "only cleanups": 490 /// call i32 @llvm.eh.selector(blah, blah, i32 0) 491 static bool isCleanupOnlySelector(EHSelectorInst *selector) { 492 if (selector->getNumArgOperands() != 3) return false; 493 ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2)); 494 return (val && val->isZero()); 495 } 496 497 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 498 /// an invoke, we have to turn all of the calls that can throw into 499 /// invokes. This function analyze BB to see if there are any calls, and if so, 500 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 501 /// nodes in that block with the values specified in InvokeDestPHIValues. 502 /// 503 /// Returns true to indicate that the next block should be skipped. 504 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 505 InvokeInliningInfo &Invoke) { 506 LandingPadInst *LPI = Invoke.getLandingPadInst(); 507 508 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 509 Instruction *I = BBI++; 510 511 if (LPI) // FIXME: This won't be NULL in the new EH. 512 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 513 unsigned NumClauses = LPI->getNumClauses(); 514 L->reserveClauses(NumClauses); 515 for (unsigned i = 0; i != NumClauses; ++i) 516 L->addClause(LPI->getClauseType(i), LPI->getClauseValue(i)); 517 } 518 519 // We only need to check for function calls: inlined invoke 520 // instructions require no special handling. 521 CallInst *CI = dyn_cast<CallInst>(I); 522 if (CI == 0) continue; 523 524 // LIBUNWIND: merge selector instructions. 525 if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) { 526 EHSelectorInst *Outer = Invoke.getOuterSelector(); 527 if (!Outer) continue; 528 529 bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner); 530 bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer); 531 532 // If both selectors contain only cleanups, we don't need to do 533 // anything. TODO: this is really just a very specific instance 534 // of a much more general optimization. 535 if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue; 536 537 // Otherwise, we just append the outer selector to the inner selector. 538 SmallVector<Value*, 16> NewSelector; 539 for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i) 540 NewSelector.push_back(Inner->getArgOperand(i)); 541 for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i) 542 NewSelector.push_back(Outer->getArgOperand(i)); 543 544 CallInst *NewInner = 545 IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector); 546 // No need to copy attributes, calling convention, etc. 547 NewInner->takeName(Inner); 548 Inner->replaceAllUsesWith(NewInner); 549 Inner->eraseFromParent(); 550 continue; 551 } 552 553 // If this call cannot unwind, don't convert it to an invoke. 554 if (CI->doesNotThrow()) 555 continue; 556 557 // Convert this function call into an invoke instruction. 558 // First, split the basic block. 559 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 560 561 // Delete the unconditional branch inserted by splitBasicBlock 562 BB->getInstList().pop_back(); 563 564 // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch 565 // directly to the new landing pad. 566 if (Invoke.forwardEHResume(CI, BB)) { 567 // TODO: 'Split' is now unreachable; clean it up. 568 569 // We want to leave the original call intact so that the call 570 // graph and other structures won't get misled. We also have to 571 // avoid processing the next block, or we'll iterate here forever. 572 return true; 573 } 574 575 // Otherwise, create the new invoke instruction. 576 ImmutableCallSite CS(CI); 577 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 578 InvokeInst *II = 579 InvokeInst::Create(CI->getCalledValue(), Split, 580 Invoke.getOuterUnwindDest(), 581 InvokeArgs, CI->getName(), BB); 582 II->setCallingConv(CI->getCallingConv()); 583 II->setAttributes(CI->getAttributes()); 584 585 // Make sure that anything using the call now uses the invoke! This also 586 // updates the CallGraph if present, because it uses a WeakVH. 587 CI->replaceAllUsesWith(II); 588 589 Split->getInstList().pop_front(); // Delete the original call 590 591 // Update any PHI nodes in the exceptional block to indicate that 592 // there is now a new entry in them. 593 Invoke.addIncomingPHIValuesFor(BB); 594 return false; 595 } 596 597 return false; 598 } 599 600 601 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 602 /// in the body of the inlined function into invokes and turn unwind 603 /// instructions into branches to the invoke unwind dest. 604 /// 605 /// II is the invoke instruction being inlined. FirstNewBlock is the first 606 /// block of the inlined code (the last block is the end of the function), 607 /// and InlineCodeInfo is information about the code that got inlined. 608 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 609 ClonedCodeInfo &InlinedCodeInfo) { 610 BasicBlock *InvokeDest = II->getUnwindDest(); 611 612 Function *Caller = FirstNewBlock->getParent(); 613 614 // The inlined code is currently at the end of the function, scan from the 615 // start of the inlined code to its end, checking for stuff we need to 616 // rewrite. If the code doesn't have calls or unwinds, we know there is 617 // nothing to rewrite. 618 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { 619 // Now that everything is happy, we have one final detail. The PHI nodes in 620 // the exception destination block still have entries due to the original 621 // invoke instruction. Eliminate these entries (which might even delete the 622 // PHI node) now. 623 InvokeDest->removePredecessor(II->getParent()); 624 return; 625 } 626 627 InvokeInliningInfo Invoke(II); 628 629 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 630 if (InlinedCodeInfo.ContainsCalls) 631 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 632 // Honor a request to skip the next block. We don't need to 633 // consider UnwindInsts in this case either. 634 ++BB; 635 continue; 636 } 637 638 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 639 // An UnwindInst requires special handling when it gets inlined into an 640 // invoke site. Once this happens, we know that the unwind would cause 641 // a control transfer to the invoke exception destination, so we can 642 // transform it into a direct branch to the exception destination. 643 BranchInst::Create(InvokeDest, UI); 644 645 // Delete the unwind instruction! 646 UI->eraseFromParent(); 647 648 // Update any PHI nodes in the exceptional block to indicate that 649 // there is now a new entry in them. 650 Invoke.addIncomingPHIValuesFor(BB); 651 } 652 653 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 654 Invoke.forwardResume(RI); 655 } 656 } 657 658 // Now that everything is happy, we have one final detail. The PHI nodes in 659 // the exception destination block still have entries due to the original 660 // invoke instruction. Eliminate these entries (which might even delete the 661 // PHI node) now. 662 InvokeDest->removePredecessor(II->getParent()); 663 } 664 665 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 666 /// into the caller, update the specified callgraph to reflect the changes we 667 /// made. Note that it's possible that not all code was copied over, so only 668 /// some edges of the callgraph may remain. 669 static void UpdateCallGraphAfterInlining(CallSite CS, 670 Function::iterator FirstNewBlock, 671 ValueToValueMapTy &VMap, 672 InlineFunctionInfo &IFI) { 673 CallGraph &CG = *IFI.CG; 674 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 675 const Function *Callee = CS.getCalledFunction(); 676 CallGraphNode *CalleeNode = CG[Callee]; 677 CallGraphNode *CallerNode = CG[Caller]; 678 679 // Since we inlined some uninlined call sites in the callee into the caller, 680 // add edges from the caller to all of the callees of the callee. 681 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 682 683 // Consider the case where CalleeNode == CallerNode. 684 CallGraphNode::CalledFunctionsVector CallCache; 685 if (CalleeNode == CallerNode) { 686 CallCache.assign(I, E); 687 I = CallCache.begin(); 688 E = CallCache.end(); 689 } 690 691 for (; I != E; ++I) { 692 const Value *OrigCall = I->first; 693 694 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 695 // Only copy the edge if the call was inlined! 696 if (VMI == VMap.end() || VMI->second == 0) 697 continue; 698 699 // If the call was inlined, but then constant folded, there is no edge to 700 // add. Check for this case. 701 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 702 if (NewCall == 0) continue; 703 704 // Remember that this call site got inlined for the client of 705 // InlineFunction. 706 IFI.InlinedCalls.push_back(NewCall); 707 708 // It's possible that inlining the callsite will cause it to go from an 709 // indirect to a direct call by resolving a function pointer. If this 710 // happens, set the callee of the new call site to a more precise 711 // destination. This can also happen if the call graph node of the caller 712 // was just unnecessarily imprecise. 713 if (I->second->getFunction() == 0) 714 if (Function *F = CallSite(NewCall).getCalledFunction()) { 715 // Indirect call site resolved to direct call. 716 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 717 718 continue; 719 } 720 721 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 722 } 723 724 // Update the call graph by deleting the edge from Callee to Caller. We must 725 // do this after the loop above in case Caller and Callee are the same. 726 CallerNode->removeCallEdgeFor(CS); 727 } 728 729 /// HandleByValArgument - When inlining a call site that has a byval argument, 730 /// we have to make the implicit memcpy explicit by adding it. 731 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 732 const Function *CalledFunc, 733 InlineFunctionInfo &IFI, 734 unsigned ByValAlignment) { 735 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 736 737 // If the called function is readonly, then it could not mutate the caller's 738 // copy of the byval'd memory. In this case, it is safe to elide the copy and 739 // temporary. 740 if (CalledFunc->onlyReadsMemory()) { 741 // If the byval argument has a specified alignment that is greater than the 742 // passed in pointer, then we either have to round up the input pointer or 743 // give up on this transformation. 744 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 745 return Arg; 746 747 // If the pointer is already known to be sufficiently aligned, or if we can 748 // round it up to a larger alignment, then we don't need a temporary. 749 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 750 IFI.TD) >= ByValAlignment) 751 return Arg; 752 753 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 754 // for code quality, but rarely happens and is required for correctness. 755 } 756 757 LLVMContext &Context = Arg->getContext(); 758 759 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 760 761 // Create the alloca. If we have TargetData, use nice alignment. 762 unsigned Align = 1; 763 if (IFI.TD) 764 Align = IFI.TD->getPrefTypeAlignment(AggTy); 765 766 // If the byval had an alignment specified, we *must* use at least that 767 // alignment, as it is required by the byval argument (and uses of the 768 // pointer inside the callee). 769 Align = std::max(Align, ByValAlignment); 770 771 Function *Caller = TheCall->getParent()->getParent(); 772 773 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 774 &*Caller->begin()->begin()); 775 // Emit a memcpy. 776 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 777 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 778 Intrinsic::memcpy, 779 Tys); 780 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 781 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 782 783 Value *Size; 784 if (IFI.TD == 0) 785 Size = ConstantExpr::getSizeOf(AggTy); 786 else 787 Size = ConstantInt::get(Type::getInt64Ty(Context), 788 IFI.TD->getTypeStoreSize(AggTy)); 789 790 // Always generate a memcpy of alignment 1 here because we don't know 791 // the alignment of the src pointer. Other optimizations can infer 792 // better alignment. 793 Value *CallArgs[] = { 794 DestCast, SrcCast, Size, 795 ConstantInt::get(Type::getInt32Ty(Context), 1), 796 ConstantInt::getFalse(Context) // isVolatile 797 }; 798 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 799 800 // Uses of the argument in the function should use our new alloca 801 // instead. 802 return NewAlloca; 803 } 804 805 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 806 // intrinsic. 807 static bool isUsedByLifetimeMarker(Value *V) { 808 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 809 ++UI) { 810 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 811 switch (II->getIntrinsicID()) { 812 default: break; 813 case Intrinsic::lifetime_start: 814 case Intrinsic::lifetime_end: 815 return true; 816 } 817 } 818 } 819 return false; 820 } 821 822 // hasLifetimeMarkers - Check whether the given alloca already has 823 // lifetime.start or lifetime.end intrinsics. 824 static bool hasLifetimeMarkers(AllocaInst *AI) { 825 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 826 if (AI->getType() == Int8PtrTy) 827 return isUsedByLifetimeMarker(AI); 828 829 // Do a scan to find all the casts to i8*. 830 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 831 ++I) { 832 if (I->getType() != Int8PtrTy) continue; 833 if (I->stripPointerCasts() != AI) continue; 834 if (isUsedByLifetimeMarker(*I)) 835 return true; 836 } 837 return false; 838 } 839 840 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively 841 /// update InlinedAtEntry of a DebugLoc. 842 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 843 const DebugLoc &InlinedAtDL, 844 LLVMContext &Ctx) { 845 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 846 DebugLoc NewInlinedAtDL 847 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 848 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 849 NewInlinedAtDL.getAsMDNode(Ctx)); 850 } 851 852 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 853 InlinedAtDL.getAsMDNode(Ctx)); 854 } 855 856 857 /// fixupLineNumbers - Update inlined instructions' line numbers to 858 /// to encode location where these instructions are inlined. 859 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 860 Instruction *TheCall) { 861 DebugLoc TheCallDL = TheCall->getDebugLoc(); 862 if (TheCallDL.isUnknown()) 863 return; 864 865 for (; FI != Fn->end(); ++FI) { 866 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 867 BI != BE; ++BI) { 868 DebugLoc DL = BI->getDebugLoc(); 869 if (!DL.isUnknown()) { 870 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 871 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 872 LLVMContext &Ctx = BI->getContext(); 873 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 874 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 875 InlinedAt, Ctx)); 876 } 877 } 878 } 879 } 880 } 881 882 // InlineFunction - This function inlines the called function into the basic 883 // block of the caller. This returns false if it is not possible to inline this 884 // call. The program is still in a well defined state if this occurs though. 885 // 886 // Note that this only does one level of inlining. For example, if the 887 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 888 // exists in the instruction stream. Similarly this will inline a recursive 889 // function by one level. 890 // 891 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { 892 Instruction *TheCall = CS.getInstruction(); 893 LLVMContext &Context = TheCall->getContext(); 894 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 895 "Instruction not in function!"); 896 897 // If IFI has any state in it, zap it before we fill it in. 898 IFI.reset(); 899 900 const Function *CalledFunc = CS.getCalledFunction(); 901 if (CalledFunc == 0 || // Can't inline external function or indirect 902 CalledFunc->isDeclaration() || // call, or call to a vararg function! 903 CalledFunc->getFunctionType()->isVarArg()) return false; 904 905 // If the call to the callee is not a tail call, we must clear the 'tail' 906 // flags on any calls that we inline. 907 bool MustClearTailCallFlags = 908 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 909 910 // If the call to the callee cannot throw, set the 'nounwind' flag on any 911 // calls that we inline. 912 bool MarkNoUnwind = CS.doesNotThrow(); 913 914 BasicBlock *OrigBB = TheCall->getParent(); 915 Function *Caller = OrigBB->getParent(); 916 917 // GC poses two hazards to inlining, which only occur when the callee has GC: 918 // 1. If the caller has no GC, then the callee's GC must be propagated to the 919 // caller. 920 // 2. If the caller has a differing GC, it is invalid to inline. 921 if (CalledFunc->hasGC()) { 922 if (!Caller->hasGC()) 923 Caller->setGC(CalledFunc->getGC()); 924 else if (CalledFunc->getGC() != Caller->getGC()) 925 return false; 926 } 927 928 // Find the personality function used by the landing pads of the caller. If it 929 // exists, then check to see that it matches the personality function used in 930 // the callee. 931 for (Function::const_iterator 932 I = Caller->begin(), E = Caller->end(); I != E; ++I) 933 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 934 const BasicBlock *BB = II->getUnwindDest(); 935 // FIXME: This 'isa' here should become go away once the new EH system is 936 // in place. 937 if (!isa<LandingPadInst>(BB->getFirstNonPHI())) 938 continue; 939 const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI()); 940 const Value *CallerPersFn = LP->getPersonalityFn(); 941 942 // If the personality functions match, then we can perform the 943 // inlining. Otherwise, we can't inline. 944 // TODO: This isn't 100% true. Some personality functions are proper 945 // supersets of others and can be used in place of the other. 946 for (Function::const_iterator 947 I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I) 948 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 949 const BasicBlock *BB = II->getUnwindDest(); 950 // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once 951 // the new EH system is in place. 952 if (const LandingPadInst *LP = 953 dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) 954 if (CallerPersFn != LP->getPersonalityFn()) 955 return false; 956 break; 957 } 958 959 break; 960 } 961 962 // Get an iterator to the last basic block in the function, which will have 963 // the new function inlined after it. 964 // 965 Function::iterator LastBlock = &Caller->back(); 966 967 // Make sure to capture all of the return instructions from the cloned 968 // function. 969 SmallVector<ReturnInst*, 8> Returns; 970 ClonedCodeInfo InlinedFunctionInfo; 971 Function::iterator FirstNewBlock; 972 973 { // Scope to destroy VMap after cloning. 974 ValueToValueMapTy VMap; 975 976 assert(CalledFunc->arg_size() == CS.arg_size() && 977 "No varargs calls can be inlined!"); 978 979 // Calculate the vector of arguments to pass into the function cloner, which 980 // matches up the formal to the actual argument values. 981 CallSite::arg_iterator AI = CS.arg_begin(); 982 unsigned ArgNo = 0; 983 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 984 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 985 Value *ActualArg = *AI; 986 987 // When byval arguments actually inlined, we need to make the copy implied 988 // by them explicit. However, we don't do this if the callee is readonly 989 // or readnone, because the copy would be unneeded: the callee doesn't 990 // modify the struct. 991 if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) { 992 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 993 CalledFunc->getParamAlignment(ArgNo+1)); 994 995 // Calls that we inline may use the new alloca, so we need to clear 996 // their 'tail' flags if HandleByValArgument introduced a new alloca and 997 // the callee has calls. 998 MustClearTailCallFlags |= ActualArg != *AI; 999 } 1000 1001 VMap[I] = ActualArg; 1002 } 1003 1004 // We want the inliner to prune the code as it copies. We would LOVE to 1005 // have no dead or constant instructions leftover after inlining occurs 1006 // (which can happen, e.g., because an argument was constant), but we'll be 1007 // happy with whatever the cloner can do. 1008 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1009 /*ModuleLevelChanges=*/false, Returns, ".i", 1010 &InlinedFunctionInfo, IFI.TD, TheCall); 1011 1012 // Remember the first block that is newly cloned over. 1013 FirstNewBlock = LastBlock; ++FirstNewBlock; 1014 1015 // Update the callgraph if requested. 1016 if (IFI.CG) 1017 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1018 1019 // Update inlined instructions' line number information. 1020 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1021 } 1022 1023 // If there are any alloca instructions in the block that used to be the entry 1024 // block for the callee, move them to the entry block of the caller. First 1025 // calculate which instruction they should be inserted before. We insert the 1026 // instructions at the end of the current alloca list. 1027 // 1028 { 1029 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1030 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1031 E = FirstNewBlock->end(); I != E; ) { 1032 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1033 if (AI == 0) continue; 1034 1035 // If the alloca is now dead, remove it. This often occurs due to code 1036 // specialization. 1037 if (AI->use_empty()) { 1038 AI->eraseFromParent(); 1039 continue; 1040 } 1041 1042 if (!isa<Constant>(AI->getArraySize())) 1043 continue; 1044 1045 // Keep track of the static allocas that we inline into the caller. 1046 IFI.StaticAllocas.push_back(AI); 1047 1048 // Scan for the block of allocas that we can move over, and move them 1049 // all at once. 1050 while (isa<AllocaInst>(I) && 1051 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1052 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1053 ++I; 1054 } 1055 1056 // Transfer all of the allocas over in a block. Using splice means 1057 // that the instructions aren't removed from the symbol table, then 1058 // reinserted. 1059 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1060 FirstNewBlock->getInstList(), 1061 AI, I); 1062 } 1063 } 1064 1065 // Leave lifetime markers for the static alloca's, scoping them to the 1066 // function we just inlined. 1067 if (!IFI.StaticAllocas.empty()) { 1068 IRBuilder<> builder(FirstNewBlock->begin()); 1069 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1070 AllocaInst *AI = IFI.StaticAllocas[ai]; 1071 1072 // If the alloca is already scoped to something smaller than the whole 1073 // function then there's no need to add redundant, less accurate markers. 1074 if (hasLifetimeMarkers(AI)) 1075 continue; 1076 1077 builder.CreateLifetimeStart(AI); 1078 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 1079 IRBuilder<> builder(Returns[ri]); 1080 builder.CreateLifetimeEnd(AI); 1081 } 1082 } 1083 } 1084 1085 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1086 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1087 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1088 Module *M = Caller->getParent(); 1089 // Get the two intrinsics we care about. 1090 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1091 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1092 1093 // Insert the llvm.stacksave. 1094 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1095 .CreateCall(StackSave, "savedstack"); 1096 1097 // Insert a call to llvm.stackrestore before any return instructions in the 1098 // inlined function. 1099 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1100 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 1101 } 1102 1103 // Count the number of StackRestore calls we insert. 1104 unsigned NumStackRestores = Returns.size(); 1105 1106 // If we are inlining an invoke instruction, insert restores before each 1107 // unwind. These unwinds will be rewritten into branches later. 1108 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { 1109 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1110 BB != E; ++BB) 1111 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 1112 IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr); 1113 ++NumStackRestores; 1114 } 1115 } 1116 } 1117 1118 // If we are inlining tail call instruction through a call site that isn't 1119 // marked 'tail', we must remove the tail marker for any calls in the inlined 1120 // code. Also, calls inlined through a 'nounwind' call site should be marked 1121 // 'nounwind'. 1122 if (InlinedFunctionInfo.ContainsCalls && 1123 (MustClearTailCallFlags || MarkNoUnwind)) { 1124 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1125 BB != E; ++BB) 1126 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1127 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1128 if (MustClearTailCallFlags) 1129 CI->setTailCall(false); 1130 if (MarkNoUnwind) 1131 CI->setDoesNotThrow(); 1132 } 1133 } 1134 1135 // If we are inlining through a 'nounwind' call site then any inlined 'unwind' 1136 // instructions are unreachable. 1137 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) 1138 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1139 BB != E; ++BB) { 1140 TerminatorInst *Term = BB->getTerminator(); 1141 if (isa<UnwindInst>(Term)) { 1142 new UnreachableInst(Context, Term); 1143 BB->getInstList().erase(Term); 1144 } 1145 } 1146 1147 // If we are inlining for an invoke instruction, we must make sure to rewrite 1148 // any inlined 'unwind' instructions into branches to the invoke exception 1149 // destination, and call instructions into invoke instructions. 1150 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1151 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1152 1153 // If we cloned in _exactly one_ basic block, and if that block ends in a 1154 // return instruction, we splice the body of the inlined callee directly into 1155 // the calling basic block. 1156 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1157 // Move all of the instructions right before the call. 1158 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1159 FirstNewBlock->begin(), FirstNewBlock->end()); 1160 // Remove the cloned basic block. 1161 Caller->getBasicBlockList().pop_back(); 1162 1163 // If the call site was an invoke instruction, add a branch to the normal 1164 // destination. 1165 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1166 BranchInst::Create(II->getNormalDest(), TheCall); 1167 1168 // If the return instruction returned a value, replace uses of the call with 1169 // uses of the returned value. 1170 if (!TheCall->use_empty()) { 1171 ReturnInst *R = Returns[0]; 1172 if (TheCall == R->getReturnValue()) 1173 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1174 else 1175 TheCall->replaceAllUsesWith(R->getReturnValue()); 1176 } 1177 // Since we are now done with the Call/Invoke, we can delete it. 1178 TheCall->eraseFromParent(); 1179 1180 // Since we are now done with the return instruction, delete it also. 1181 Returns[0]->eraseFromParent(); 1182 1183 // We are now done with the inlining. 1184 return true; 1185 } 1186 1187 // Otherwise, we have the normal case, of more than one block to inline or 1188 // multiple return sites. 1189 1190 // We want to clone the entire callee function into the hole between the 1191 // "starter" and "ender" blocks. How we accomplish this depends on whether 1192 // this is an invoke instruction or a call instruction. 1193 BasicBlock *AfterCallBB; 1194 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1195 1196 // Add an unconditional branch to make this look like the CallInst case... 1197 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1198 1199 // Split the basic block. This guarantees that no PHI nodes will have to be 1200 // updated due to new incoming edges, and make the invoke case more 1201 // symmetric to the call case. 1202 AfterCallBB = OrigBB->splitBasicBlock(NewBr, 1203 CalledFunc->getName()+".exit"); 1204 1205 } else { // It's a call 1206 // If this is a call instruction, we need to split the basic block that 1207 // the call lives in. 1208 // 1209 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1210 CalledFunc->getName()+".exit"); 1211 } 1212 1213 // Change the branch that used to go to AfterCallBB to branch to the first 1214 // basic block of the inlined function. 1215 // 1216 TerminatorInst *Br = OrigBB->getTerminator(); 1217 assert(Br && Br->getOpcode() == Instruction::Br && 1218 "splitBasicBlock broken!"); 1219 Br->setOperand(0, FirstNewBlock); 1220 1221 1222 // Now that the function is correct, make it a little bit nicer. In 1223 // particular, move the basic blocks inserted from the end of the function 1224 // into the space made by splitting the source basic block. 1225 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1226 FirstNewBlock, Caller->end()); 1227 1228 // Handle all of the return instructions that we just cloned in, and eliminate 1229 // any users of the original call/invoke instruction. 1230 Type *RTy = CalledFunc->getReturnType(); 1231 1232 PHINode *PHI = 0; 1233 if (Returns.size() > 1) { 1234 // The PHI node should go at the front of the new basic block to merge all 1235 // possible incoming values. 1236 if (!TheCall->use_empty()) { 1237 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1238 AfterCallBB->begin()); 1239 // Anything that used the result of the function call should now use the 1240 // PHI node as their operand. 1241 TheCall->replaceAllUsesWith(PHI); 1242 } 1243 1244 // Loop over all of the return instructions adding entries to the PHI node 1245 // as appropriate. 1246 if (PHI) { 1247 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1248 ReturnInst *RI = Returns[i]; 1249 assert(RI->getReturnValue()->getType() == PHI->getType() && 1250 "Ret value not consistent in function!"); 1251 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1252 } 1253 } 1254 1255 1256 // Add a branch to the merge points and remove return instructions. 1257 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1258 ReturnInst *RI = Returns[i]; 1259 BranchInst::Create(AfterCallBB, RI); 1260 RI->eraseFromParent(); 1261 } 1262 } else if (!Returns.empty()) { 1263 // Otherwise, if there is exactly one return value, just replace anything 1264 // using the return value of the call with the computed value. 1265 if (!TheCall->use_empty()) { 1266 if (TheCall == Returns[0]->getReturnValue()) 1267 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1268 else 1269 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1270 } 1271 1272 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1273 BasicBlock *ReturnBB = Returns[0]->getParent(); 1274 ReturnBB->replaceAllUsesWith(AfterCallBB); 1275 1276 // Splice the code from the return block into the block that it will return 1277 // to, which contains the code that was after the call. 1278 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1279 ReturnBB->getInstList()); 1280 1281 // Delete the return instruction now and empty ReturnBB now. 1282 Returns[0]->eraseFromParent(); 1283 ReturnBB->eraseFromParent(); 1284 } else if (!TheCall->use_empty()) { 1285 // No returns, but something is using the return value of the call. Just 1286 // nuke the result. 1287 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1288 } 1289 1290 // Since we are now done with the Call/Invoke, we can delete it. 1291 TheCall->eraseFromParent(); 1292 1293 // We should always be able to fold the entry block of the function into the 1294 // single predecessor of the block... 1295 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1296 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1297 1298 // Splice the code entry block into calling block, right before the 1299 // unconditional branch. 1300 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1301 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1302 1303 // Remove the unconditional branch. 1304 OrigBB->getInstList().erase(Br); 1305 1306 // Now we can remove the CalleeEntry block, which is now empty. 1307 Caller->getBasicBlockList().erase(CalleeEntry); 1308 1309 // If we inserted a phi node, check to see if it has a single value (e.g. all 1310 // the entries are the same or undef). If so, remove the PHI so it doesn't 1311 // block other optimizations. 1312 if (PHI) 1313 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 1314 PHI->replaceAllUsesWith(V); 1315 PHI->eraseFromParent(); 1316 } 1317 1318 return true; 1319 } 1320