1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 // The code in this file for handling inlines through invoke 14 // instructions preserves semantics only under some assumptions about 15 // the behavior of unwinders which correspond to gcc-style libUnwind 16 // exception personality functions. Eventually the IR will be 17 // improved to make this unnecessary, but until then, this code is 18 // marked [LIBUNWIND]. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Module.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Attributes.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/CallSite.h" 38 #include "llvm/Support/IRBuilder.h" 39 using namespace llvm; 40 41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { 42 return InlineFunction(CallSite(CI), IFI); 43 } 44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { 45 return InlineFunction(CallSite(II), IFI); 46 } 47 48 // FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is 49 // turned on. 50 51 /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block. 52 static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) { 53 for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) { 54 EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i); 55 if (exn) return exn; 56 } 57 58 return 0; 59 } 60 61 /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for 62 /// the given llvm.eh.exception call. 63 static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) { 64 BasicBlock *exnBlock = exn->getParent(); 65 66 EHSelectorInst *outOfBlockSelector = 0; 67 for (Instruction::use_iterator 68 ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) { 69 EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui); 70 if (!sel) continue; 71 72 // Immediately accept an eh.selector in the same block as the 73 // excepton call. 74 if (sel->getParent() == exnBlock) return sel; 75 76 // Otherwise, use the first selector we see. 77 if (!outOfBlockSelector) outOfBlockSelector = sel; 78 } 79 80 return outOfBlockSelector; 81 } 82 83 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector 84 /// in the given landing pad. In principle, llvm.eh.exception is 85 /// required to be in the landing pad; in practice, SplitCriticalEdge 86 /// can break that invariant, and then inlining can break it further. 87 /// There's a real need for a reliable solution here, but until that 88 /// happens, we have some fragile workarounds here. 89 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) { 90 // Look for an exception call in the actual landing pad. 91 EHExceptionInst *exn = findExceptionInBlock(lpad); 92 if (exn) return findSelectorForException(exn); 93 94 // Okay, if that failed, look for one in an obvious successor. If 95 // we find one, we'll fix the IR by moving things back to the 96 // landing pad. 97 98 bool dominates = true; // does the lpad dominate the exn call 99 BasicBlock *nonDominated = 0; // if not, the first non-dominated block 100 BasicBlock *lastDominated = 0; // and the block which branched to it 101 102 BasicBlock *exnBlock = lpad; 103 104 // We need to protect against lpads that lead into infinite loops. 105 SmallPtrSet<BasicBlock*,4> visited; 106 visited.insert(exnBlock); 107 108 do { 109 // We're not going to apply this hack to anything more complicated 110 // than a series of unconditional branches, so if the block 111 // doesn't terminate in an unconditional branch, just fail. More 112 // complicated cases can arise when, say, sinking a call into a 113 // split unwind edge and then inlining it; but that can do almost 114 // *anything* to the CFG, including leaving the selector 115 // completely unreachable. The only way to fix that properly is 116 // to (1) prohibit transforms which move the exception or selector 117 // values away from the landing pad, e.g. by producing them with 118 // instructions that are pinned to an edge like a phi, or 119 // producing them with not-really-instructions, and (2) making 120 // transforms which split edges deal with that. 121 BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back()); 122 if (!branch || branch->isConditional()) return 0; 123 124 BasicBlock *successor = branch->getSuccessor(0); 125 126 // Fail if we found an infinite loop. 127 if (!visited.insert(successor)) return 0; 128 129 // If the successor isn't dominated by exnBlock: 130 if (!successor->getSinglePredecessor()) { 131 // We don't want to have to deal with threading the exception 132 // through multiple levels of phi, so give up if we've already 133 // followed a non-dominating edge. 134 if (!dominates) return 0; 135 136 // Otherwise, remember this as a non-dominating edge. 137 dominates = false; 138 nonDominated = successor; 139 lastDominated = exnBlock; 140 } 141 142 exnBlock = successor; 143 144 // Can we stop here? 145 exn = findExceptionInBlock(exnBlock); 146 } while (!exn); 147 148 // Look for a selector call for the exception we found. 149 EHSelectorInst *selector = findSelectorForException(exn); 150 if (!selector) return 0; 151 152 // The easy case is when the landing pad still dominates the 153 // exception call, in which case we can just move both calls back to 154 // the landing pad. 155 if (dominates) { 156 selector->moveBefore(lpad->getFirstNonPHI()); 157 exn->moveBefore(selector); 158 return selector; 159 } 160 161 // Otherwise, we have to split at the first non-dominating block. 162 // The CFG looks basically like this: 163 // lpad: 164 // phis_0 165 // insnsAndBranches_1 166 // br label %nonDominated 167 // nonDominated: 168 // phis_2 169 // insns_3 170 // %exn = call i8* @llvm.eh.exception() 171 // insnsAndBranches_4 172 // %selector = call @llvm.eh.selector(i8* %exn, ... 173 // We need to turn this into: 174 // lpad: 175 // phis_0 176 // %exn0 = call i8* @llvm.eh.exception() 177 // %selector0 = call @llvm.eh.selector(i8* %exn0, ... 178 // insnsAndBranches_1 179 // br label %split // from lastDominated 180 // nonDominated: 181 // phis_2 (without edge from lastDominated) 182 // %exn1 = call i8* @llvm.eh.exception() 183 // %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ... 184 // br label %split 185 // split: 186 // phis_2 (edge from lastDominated, edge from split) 187 // %exn = phi ... 188 // %selector = phi ... 189 // insns_3 190 // insnsAndBranches_4 191 192 assert(nonDominated); 193 assert(lastDominated); 194 195 // First, make clones of the intrinsics to go in lpad. 196 EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone()); 197 EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone()); 198 lpadSelector->setArgOperand(0, lpadExn); 199 lpadSelector->insertBefore(lpad->getFirstNonPHI()); 200 lpadExn->insertBefore(lpadSelector); 201 202 // Split the non-dominated block. 203 BasicBlock *split = 204 nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(), 205 nonDominated->getName() + ".lpad-fix"); 206 207 // Redirect the last dominated branch there. 208 cast<BranchInst>(lastDominated->back()).setSuccessor(0, split); 209 210 // Move the existing intrinsics to the end of the old block. 211 selector->moveBefore(&nonDominated->back()); 212 exn->moveBefore(selector); 213 214 Instruction *splitIP = &split->front(); 215 216 // For all the phis in nonDominated, make a new phi in split to join 217 // that phi with the edge from lastDominated. 218 for (BasicBlock::iterator 219 i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) { 220 PHINode *phi = dyn_cast<PHINode>(i); 221 if (!phi) break; 222 223 PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(), 224 splitIP); 225 phi->replaceAllUsesWith(splitPhi); 226 splitPhi->addIncoming(phi, nonDominated); 227 splitPhi->addIncoming(phi->removeIncomingValue(lastDominated), 228 lastDominated); 229 } 230 231 // Make new phis for the exception and selector. 232 PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP); 233 exn->replaceAllUsesWith(exnPhi); 234 selector->setArgOperand(0, exn); // except for this use 235 exnPhi->addIncoming(exn, nonDominated); 236 exnPhi->addIncoming(lpadExn, lastDominated); 237 238 PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP); 239 selector->replaceAllUsesWith(selectorPhi); 240 selectorPhi->addIncoming(selector, nonDominated); 241 selectorPhi->addIncoming(lpadSelector, lastDominated); 242 243 return lpadSelector; 244 } 245 246 namespace { 247 /// A class for recording information about inlining through an invoke. 248 class InvokeInliningInfo { 249 BasicBlock *OuterUnwindDest; 250 EHSelectorInst *OuterSelector; 251 BasicBlock *InnerUnwindDest; 252 PHINode *InnerExceptionPHI; 253 PHINode *InnerSelectorPHI; 254 SmallVector<Value*, 8> UnwindDestPHIValues; 255 256 // FIXME: New EH - These will replace the analogous ones above. 257 BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind. 258 BasicBlock *InnerResumeDest; //< Destination for the callee's resume. 259 LandingPadInst *CallerLPad; //< LandingPadInst associated with the invoke. 260 PHINode *InnerEHValuesPHI; //< PHI for EH values from landingpad insts. 261 262 public: 263 InvokeInliningInfo(InvokeInst *II) 264 : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0), 265 InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0), 266 OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 267 CallerLPad(0), InnerEHValuesPHI(0) { 268 // If there are PHI nodes in the unwind destination block, we need to keep 269 // track of which values came into them from the invoke before removing 270 // the edge from this block. 271 llvm::BasicBlock *InvokeBB = II->getParent(); 272 BasicBlock::iterator I = OuterUnwindDest->begin(); 273 for (; isa<PHINode>(I); ++I) { 274 // Save the value to use for this edge. 275 PHINode *PHI = cast<PHINode>(I); 276 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 277 } 278 279 CallerLPad = cast<LandingPadInst>(I); 280 } 281 282 /// The outer unwind destination is the target of unwind edges 283 /// introduced for calls within the inlined function. 284 BasicBlock *getOuterUnwindDest() const { 285 return OuterUnwindDest; 286 } 287 288 EHSelectorInst *getOuterSelector() { 289 if (!OuterSelector) 290 OuterSelector = findSelectorForLandingPad(OuterUnwindDest); 291 return OuterSelector; 292 } 293 294 BasicBlock *getInnerUnwindDest(); 295 296 // FIXME: New EH - Rename when new EH is turned on. 297 BasicBlock *getInnerUnwindDestNewEH(); 298 299 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 300 301 bool forwardEHResume(CallInst *call, BasicBlock *src); 302 303 /// forwardResume - Forward the 'resume' instruction to the caller's landing 304 /// pad block. When the landing pad block has only one predecessor, this is 305 /// a simple branch. When there is more than one predecessor, we need to 306 /// split the landing pad block after the landingpad instruction and jump 307 /// to there. 308 void forwardResume(ResumeInst *RI); 309 310 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 311 /// destination block for the given basic block, using the values for the 312 /// original invoke's source block. 313 void addIncomingPHIValuesFor(BasicBlock *BB) const { 314 addIncomingPHIValuesForInto(BB, OuterUnwindDest); 315 } 316 317 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 318 BasicBlock::iterator I = dest->begin(); 319 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 320 PHINode *phi = cast<PHINode>(I); 321 phi->addIncoming(UnwindDestPHIValues[i], src); 322 } 323 } 324 }; 325 } 326 327 /// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to 328 /// llvm.eh.resume. 329 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() { 330 if (InnerUnwindDest) return InnerUnwindDest; 331 332 // Find and hoist the llvm.eh.exception and llvm.eh.selector calls 333 // in the outer landing pad to immediately following the phis. 334 EHSelectorInst *selector = getOuterSelector(); 335 if (!selector) return 0; 336 337 // The call to llvm.eh.exception *must* be in the landing pad. 338 Instruction *exn = cast<Instruction>(selector->getArgOperand(0)); 339 assert(exn->getParent() == OuterUnwindDest); 340 341 // TODO: recognize when we've already done this, so that we don't 342 // get a linear number of these when inlining calls into lots of 343 // invokes with the same landing pad. 344 345 // Do the hoisting. 346 Instruction *splitPoint = exn->getParent()->getFirstNonPHI(); 347 assert(splitPoint != selector && "selector-on-exception dominance broken!"); 348 if (splitPoint == exn) { 349 selector->removeFromParent(); 350 selector->insertAfter(exn); 351 splitPoint = selector->getNextNode(); 352 } else { 353 exn->moveBefore(splitPoint); 354 selector->moveBefore(splitPoint); 355 } 356 357 // Split the landing pad. 358 InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint, 359 OuterUnwindDest->getName() + ".body"); 360 361 // The number of incoming edges we expect to the inner landing pad. 362 const unsigned phiCapacity = 2; 363 364 // Create corresponding new phis for all the phis in the outer landing pad. 365 BasicBlock::iterator insertPoint = InnerUnwindDest->begin(); 366 BasicBlock::iterator I = OuterUnwindDest->begin(); 367 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 368 PHINode *outerPhi = cast<PHINode>(I); 369 PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity, 370 outerPhi->getName() + ".lpad-body", 371 insertPoint); 372 outerPhi->replaceAllUsesWith(innerPhi); 373 innerPhi->addIncoming(outerPhi, OuterUnwindDest); 374 } 375 376 // Create a phi for the exception value... 377 InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity, 378 "exn.lpad-body", insertPoint); 379 exn->replaceAllUsesWith(InnerExceptionPHI); 380 selector->setArgOperand(0, exn); // restore this use 381 InnerExceptionPHI->addIncoming(exn, OuterUnwindDest); 382 383 // ...and the selector. 384 InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity, 385 "selector.lpad-body", insertPoint); 386 selector->replaceAllUsesWith(InnerSelectorPHI); 387 InnerSelectorPHI->addIncoming(selector, OuterUnwindDest); 388 389 // All done. 390 return InnerUnwindDest; 391 } 392 393 /// [LIBUNWIND] Try to forward the given call, which logically occurs 394 /// at the end of the given block, as a branch to the inner unwind 395 /// block. Returns true if the call was forwarded. 396 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) { 397 // First, check whether this is a call to the intrinsic. 398 Function *fn = dyn_cast<Function>(call->getCalledValue()); 399 if (!fn || fn->getName() != "llvm.eh.resume") 400 return false; 401 402 // At this point, we need to return true on all paths, because 403 // otherwise we'll construct an invoke of the intrinsic, which is 404 // not well-formed. 405 406 // Try to find or make an inner unwind dest, which will fail if we 407 // can't find a selector call for the outer unwind dest. 408 BasicBlock *dest = getInnerUnwindDest(); 409 bool hasSelector = (dest != 0); 410 411 // If we failed, just use the outer unwind dest, dropping the 412 // exception and selector on the floor. 413 if (!hasSelector) 414 dest = OuterUnwindDest; 415 416 // Make a branch. 417 BranchInst::Create(dest, src); 418 419 // Update the phis in the destination. They were inserted in an 420 // order which makes this work. 421 addIncomingPHIValuesForInto(src, dest); 422 423 if (hasSelector) { 424 InnerExceptionPHI->addIncoming(call->getArgOperand(0), src); 425 InnerSelectorPHI->addIncoming(call->getArgOperand(1), src); 426 } 427 428 return true; 429 } 430 431 /// Get or create a target for the branch from ResumeInsts. 432 BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() { 433 // FIXME: New EH - rename this function when new EH is turned on. 434 if (InnerResumeDest) return InnerResumeDest; 435 436 // Split the landing pad. 437 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 438 InnerResumeDest = 439 OuterResumeDest->splitBasicBlock(SplitPoint, 440 OuterResumeDest->getName() + ".body"); 441 442 // The number of incoming edges we expect to the inner landing pad. 443 const unsigned PHICapacity = 2; 444 445 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 446 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 447 BasicBlock::iterator I = OuterResumeDest->begin(); 448 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 449 PHINode *OuterPHI = cast<PHINode>(I); 450 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 451 OuterPHI->getName() + ".lpad-body", 452 InsertPoint); 453 OuterPHI->replaceAllUsesWith(InnerPHI); 454 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 455 } 456 457 // Create a PHI for the exception values. 458 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 459 "eh.lpad-body", InsertPoint); 460 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 461 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 462 463 // All done. 464 return InnerResumeDest; 465 } 466 467 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 468 /// block. When the landing pad block has only one predecessor, this is a simple 469 /// branch. When there is more than one predecessor, we need to split the 470 /// landing pad block after the landingpad instruction and jump to there. 471 void InvokeInliningInfo::forwardResume(ResumeInst *RI) { 472 BasicBlock *Dest = getInnerUnwindDestNewEH(); 473 BasicBlock *Src = RI->getParent(); 474 475 BranchInst::Create(Dest, Src); 476 477 // Update the PHIs in the destination. They were inserted in an order which 478 // makes this work. 479 addIncomingPHIValuesForInto(Src, Dest); 480 481 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 482 RI->eraseFromParent(); 483 } 484 485 /// [LIBUNWIND] Check whether this selector is "only cleanups": 486 /// call i32 @llvm.eh.selector(blah, blah, i32 0) 487 static bool isCleanupOnlySelector(EHSelectorInst *selector) { 488 if (selector->getNumArgOperands() != 3) return false; 489 ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2)); 490 return (val && val->isZero()); 491 } 492 493 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 494 /// an invoke, we have to turn all of the calls that can throw into 495 /// invokes. This function analyze BB to see if there are any calls, and if so, 496 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 497 /// nodes in that block with the values specified in InvokeDestPHIValues. 498 /// 499 /// Returns true to indicate that the next block should be skipped. 500 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 501 InvokeInliningInfo &Invoke) { 502 LandingPadInst *LPI = Invoke.getLandingPadInst(); 503 504 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 505 Instruction *I = BBI++; 506 507 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 508 unsigned NumClauses = LPI->getNumClauses(); 509 L->reserveClauses(NumClauses); 510 for (unsigned i = 0; i != NumClauses; ++i) 511 L->addClause(LPI->getClause(i)); 512 } 513 514 // We only need to check for function calls: inlined invoke 515 // instructions require no special handling. 516 CallInst *CI = dyn_cast<CallInst>(I); 517 if (CI == 0) continue; 518 519 // LIBUNWIND: merge selector instructions. 520 if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) { 521 EHSelectorInst *Outer = Invoke.getOuterSelector(); 522 if (!Outer) continue; 523 524 bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner); 525 bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer); 526 527 // If both selectors contain only cleanups, we don't need to do 528 // anything. TODO: this is really just a very specific instance 529 // of a much more general optimization. 530 if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue; 531 532 // Otherwise, we just append the outer selector to the inner selector. 533 SmallVector<Value*, 16> NewSelector; 534 for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i) 535 NewSelector.push_back(Inner->getArgOperand(i)); 536 for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i) 537 NewSelector.push_back(Outer->getArgOperand(i)); 538 539 CallInst *NewInner = 540 IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector); 541 // No need to copy attributes, calling convention, etc. 542 NewInner->takeName(Inner); 543 Inner->replaceAllUsesWith(NewInner); 544 Inner->eraseFromParent(); 545 continue; 546 } 547 548 // If this call cannot unwind, don't convert it to an invoke. 549 if (CI->doesNotThrow()) 550 continue; 551 552 // Convert this function call into an invoke instruction. 553 // First, split the basic block. 554 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 555 556 // Delete the unconditional branch inserted by splitBasicBlock 557 BB->getInstList().pop_back(); 558 559 // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch 560 // directly to the new landing pad. 561 if (Invoke.forwardEHResume(CI, BB)) { 562 // TODO: 'Split' is now unreachable; clean it up. 563 564 // We want to leave the original call intact so that the call 565 // graph and other structures won't get misled. We also have to 566 // avoid processing the next block, or we'll iterate here forever. 567 return true; 568 } 569 570 // Otherwise, create the new invoke instruction. 571 ImmutableCallSite CS(CI); 572 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 573 InvokeInst *II = 574 InvokeInst::Create(CI->getCalledValue(), Split, 575 Invoke.getOuterUnwindDest(), 576 InvokeArgs, CI->getName(), BB); 577 II->setCallingConv(CI->getCallingConv()); 578 II->setAttributes(CI->getAttributes()); 579 580 // Make sure that anything using the call now uses the invoke! This also 581 // updates the CallGraph if present, because it uses a WeakVH. 582 CI->replaceAllUsesWith(II); 583 584 Split->getInstList().pop_front(); // Delete the original call 585 586 // Update any PHI nodes in the exceptional block to indicate that 587 // there is now a new entry in them. 588 Invoke.addIncomingPHIValuesFor(BB); 589 return false; 590 } 591 592 return false; 593 } 594 595 596 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 597 /// in the body of the inlined function into invokes and turn unwind 598 /// instructions into branches to the invoke unwind dest. 599 /// 600 /// II is the invoke instruction being inlined. FirstNewBlock is the first 601 /// block of the inlined code (the last block is the end of the function), 602 /// and InlineCodeInfo is information about the code that got inlined. 603 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 604 ClonedCodeInfo &InlinedCodeInfo) { 605 BasicBlock *InvokeDest = II->getUnwindDest(); 606 607 Function *Caller = FirstNewBlock->getParent(); 608 609 // The inlined code is currently at the end of the function, scan from the 610 // start of the inlined code to its end, checking for stuff we need to 611 // rewrite. If the code doesn't have calls or unwinds, we know there is 612 // nothing to rewrite. 613 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { 614 // Now that everything is happy, we have one final detail. The PHI nodes in 615 // the exception destination block still have entries due to the original 616 // invoke instruction. Eliminate these entries (which might even delete the 617 // PHI node) now. 618 InvokeDest->removePredecessor(II->getParent()); 619 return; 620 } 621 622 InvokeInliningInfo Invoke(II); 623 624 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 625 if (InlinedCodeInfo.ContainsCalls) 626 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 627 // Honor a request to skip the next block. We don't need to 628 // consider UnwindInsts in this case either. 629 ++BB; 630 continue; 631 } 632 633 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 634 // An UnwindInst requires special handling when it gets inlined into an 635 // invoke site. Once this happens, we know that the unwind would cause 636 // a control transfer to the invoke exception destination, so we can 637 // transform it into a direct branch to the exception destination. 638 BranchInst::Create(InvokeDest, UI); 639 640 // Delete the unwind instruction! 641 UI->eraseFromParent(); 642 643 // Update any PHI nodes in the exceptional block to indicate that 644 // there is now a new entry in them. 645 Invoke.addIncomingPHIValuesFor(BB); 646 } 647 648 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 649 Invoke.forwardResume(RI); 650 } 651 } 652 653 // Now that everything is happy, we have one final detail. The PHI nodes in 654 // the exception destination block still have entries due to the original 655 // invoke instruction. Eliminate these entries (which might even delete the 656 // PHI node) now. 657 InvokeDest->removePredecessor(II->getParent()); 658 } 659 660 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 661 /// into the caller, update the specified callgraph to reflect the changes we 662 /// made. Note that it's possible that not all code was copied over, so only 663 /// some edges of the callgraph may remain. 664 static void UpdateCallGraphAfterInlining(CallSite CS, 665 Function::iterator FirstNewBlock, 666 ValueToValueMapTy &VMap, 667 InlineFunctionInfo &IFI) { 668 CallGraph &CG = *IFI.CG; 669 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 670 const Function *Callee = CS.getCalledFunction(); 671 CallGraphNode *CalleeNode = CG[Callee]; 672 CallGraphNode *CallerNode = CG[Caller]; 673 674 // Since we inlined some uninlined call sites in the callee into the caller, 675 // add edges from the caller to all of the callees of the callee. 676 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 677 678 // Consider the case where CalleeNode == CallerNode. 679 CallGraphNode::CalledFunctionsVector CallCache; 680 if (CalleeNode == CallerNode) { 681 CallCache.assign(I, E); 682 I = CallCache.begin(); 683 E = CallCache.end(); 684 } 685 686 for (; I != E; ++I) { 687 const Value *OrigCall = I->first; 688 689 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 690 // Only copy the edge if the call was inlined! 691 if (VMI == VMap.end() || VMI->second == 0) 692 continue; 693 694 // If the call was inlined, but then constant folded, there is no edge to 695 // add. Check for this case. 696 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 697 if (NewCall == 0) continue; 698 699 // Remember that this call site got inlined for the client of 700 // InlineFunction. 701 IFI.InlinedCalls.push_back(NewCall); 702 703 // It's possible that inlining the callsite will cause it to go from an 704 // indirect to a direct call by resolving a function pointer. If this 705 // happens, set the callee of the new call site to a more precise 706 // destination. This can also happen if the call graph node of the caller 707 // was just unnecessarily imprecise. 708 if (I->second->getFunction() == 0) 709 if (Function *F = CallSite(NewCall).getCalledFunction()) { 710 // Indirect call site resolved to direct call. 711 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 712 713 continue; 714 } 715 716 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 717 } 718 719 // Update the call graph by deleting the edge from Callee to Caller. We must 720 // do this after the loop above in case Caller and Callee are the same. 721 CallerNode->removeCallEdgeFor(CS); 722 } 723 724 /// HandleByValArgument - When inlining a call site that has a byval argument, 725 /// we have to make the implicit memcpy explicit by adding it. 726 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 727 const Function *CalledFunc, 728 InlineFunctionInfo &IFI, 729 unsigned ByValAlignment) { 730 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 731 732 // If the called function is readonly, then it could not mutate the caller's 733 // copy of the byval'd memory. In this case, it is safe to elide the copy and 734 // temporary. 735 if (CalledFunc->onlyReadsMemory()) { 736 // If the byval argument has a specified alignment that is greater than the 737 // passed in pointer, then we either have to round up the input pointer or 738 // give up on this transformation. 739 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 740 return Arg; 741 742 // If the pointer is already known to be sufficiently aligned, or if we can 743 // round it up to a larger alignment, then we don't need a temporary. 744 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 745 IFI.TD) >= ByValAlignment) 746 return Arg; 747 748 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 749 // for code quality, but rarely happens and is required for correctness. 750 } 751 752 LLVMContext &Context = Arg->getContext(); 753 754 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 755 756 // Create the alloca. If we have TargetData, use nice alignment. 757 unsigned Align = 1; 758 if (IFI.TD) 759 Align = IFI.TD->getPrefTypeAlignment(AggTy); 760 761 // If the byval had an alignment specified, we *must* use at least that 762 // alignment, as it is required by the byval argument (and uses of the 763 // pointer inside the callee). 764 Align = std::max(Align, ByValAlignment); 765 766 Function *Caller = TheCall->getParent()->getParent(); 767 768 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 769 &*Caller->begin()->begin()); 770 // Emit a memcpy. 771 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 772 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 773 Intrinsic::memcpy, 774 Tys); 775 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 776 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 777 778 Value *Size; 779 if (IFI.TD == 0) 780 Size = ConstantExpr::getSizeOf(AggTy); 781 else 782 Size = ConstantInt::get(Type::getInt64Ty(Context), 783 IFI.TD->getTypeStoreSize(AggTy)); 784 785 // Always generate a memcpy of alignment 1 here because we don't know 786 // the alignment of the src pointer. Other optimizations can infer 787 // better alignment. 788 Value *CallArgs[] = { 789 DestCast, SrcCast, Size, 790 ConstantInt::get(Type::getInt32Ty(Context), 1), 791 ConstantInt::getFalse(Context) // isVolatile 792 }; 793 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 794 795 // Uses of the argument in the function should use our new alloca 796 // instead. 797 return NewAlloca; 798 } 799 800 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 801 // intrinsic. 802 static bool isUsedByLifetimeMarker(Value *V) { 803 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 804 ++UI) { 805 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 806 switch (II->getIntrinsicID()) { 807 default: break; 808 case Intrinsic::lifetime_start: 809 case Intrinsic::lifetime_end: 810 return true; 811 } 812 } 813 } 814 return false; 815 } 816 817 // hasLifetimeMarkers - Check whether the given alloca already has 818 // lifetime.start or lifetime.end intrinsics. 819 static bool hasLifetimeMarkers(AllocaInst *AI) { 820 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 821 if (AI->getType() == Int8PtrTy) 822 return isUsedByLifetimeMarker(AI); 823 824 // Do a scan to find all the casts to i8*. 825 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 826 ++I) { 827 if (I->getType() != Int8PtrTy) continue; 828 if (I->stripPointerCasts() != AI) continue; 829 if (isUsedByLifetimeMarker(*I)) 830 return true; 831 } 832 return false; 833 } 834 835 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively 836 /// update InlinedAtEntry of a DebugLoc. 837 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 838 const DebugLoc &InlinedAtDL, 839 LLVMContext &Ctx) { 840 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 841 DebugLoc NewInlinedAtDL 842 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 843 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 844 NewInlinedAtDL.getAsMDNode(Ctx)); 845 } 846 847 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 848 InlinedAtDL.getAsMDNode(Ctx)); 849 } 850 851 852 /// fixupLineNumbers - Update inlined instructions' line numbers to 853 /// to encode location where these instructions are inlined. 854 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 855 Instruction *TheCall) { 856 DebugLoc TheCallDL = TheCall->getDebugLoc(); 857 if (TheCallDL.isUnknown()) 858 return; 859 860 for (; FI != Fn->end(); ++FI) { 861 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 862 BI != BE; ++BI) { 863 DebugLoc DL = BI->getDebugLoc(); 864 if (!DL.isUnknown()) { 865 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 866 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 867 LLVMContext &Ctx = BI->getContext(); 868 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 869 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 870 InlinedAt, Ctx)); 871 } 872 } 873 } 874 } 875 } 876 877 // InlineFunction - This function inlines the called function into the basic 878 // block of the caller. This returns false if it is not possible to inline this 879 // call. The program is still in a well defined state if this occurs though. 880 // 881 // Note that this only does one level of inlining. For example, if the 882 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 883 // exists in the instruction stream. Similarly this will inline a recursive 884 // function by one level. 885 // 886 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { 887 Instruction *TheCall = CS.getInstruction(); 888 LLVMContext &Context = TheCall->getContext(); 889 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 890 "Instruction not in function!"); 891 892 // If IFI has any state in it, zap it before we fill it in. 893 IFI.reset(); 894 895 const Function *CalledFunc = CS.getCalledFunction(); 896 if (CalledFunc == 0 || // Can't inline external function or indirect 897 CalledFunc->isDeclaration() || // call, or call to a vararg function! 898 CalledFunc->getFunctionType()->isVarArg()) return false; 899 900 // If the call to the callee is not a tail call, we must clear the 'tail' 901 // flags on any calls that we inline. 902 bool MustClearTailCallFlags = 903 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 904 905 // If the call to the callee cannot throw, set the 'nounwind' flag on any 906 // calls that we inline. 907 bool MarkNoUnwind = CS.doesNotThrow(); 908 909 BasicBlock *OrigBB = TheCall->getParent(); 910 Function *Caller = OrigBB->getParent(); 911 912 // GC poses two hazards to inlining, which only occur when the callee has GC: 913 // 1. If the caller has no GC, then the callee's GC must be propagated to the 914 // caller. 915 // 2. If the caller has a differing GC, it is invalid to inline. 916 if (CalledFunc->hasGC()) { 917 if (!Caller->hasGC()) 918 Caller->setGC(CalledFunc->getGC()); 919 else if (CalledFunc->getGC() != Caller->getGC()) 920 return false; 921 } 922 923 // Get the personality function from the callee if it contains a landing pad. 924 Value *CalleePersonality = 0; 925 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 926 I != E; ++I) 927 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 928 const BasicBlock *BB = II->getUnwindDest(); 929 const LandingPadInst *LP = BB->getLandingPadInst(); 930 CalleePersonality = LP->getPersonalityFn(); 931 break; 932 } 933 934 // Find the personality function used by the landing pads of the caller. If it 935 // exists, then check to see that it matches the personality function used in 936 // the callee. 937 if (CalleePersonality) 938 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 939 I != E; ++I) 940 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 941 const BasicBlock *BB = II->getUnwindDest(); 942 const LandingPadInst *LP = BB->getLandingPadInst(); 943 944 // If the personality functions match, then we can perform the 945 // inlining. Otherwise, we can't inline. 946 // TODO: This isn't 100% true. Some personality functions are proper 947 // supersets of others and can be used in place of the other. 948 if (LP->getPersonalityFn() != CalleePersonality) 949 return false; 950 951 break; 952 } 953 954 // Get an iterator to the last basic block in the function, which will have 955 // the new function inlined after it. 956 // 957 Function::iterator LastBlock = &Caller->back(); 958 959 // Make sure to capture all of the return instructions from the cloned 960 // function. 961 SmallVector<ReturnInst*, 8> Returns; 962 ClonedCodeInfo InlinedFunctionInfo; 963 Function::iterator FirstNewBlock; 964 965 { // Scope to destroy VMap after cloning. 966 ValueToValueMapTy VMap; 967 968 assert(CalledFunc->arg_size() == CS.arg_size() && 969 "No varargs calls can be inlined!"); 970 971 // Calculate the vector of arguments to pass into the function cloner, which 972 // matches up the formal to the actual argument values. 973 CallSite::arg_iterator AI = CS.arg_begin(); 974 unsigned ArgNo = 0; 975 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 976 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 977 Value *ActualArg = *AI; 978 979 // When byval arguments actually inlined, we need to make the copy implied 980 // by them explicit. However, we don't do this if the callee is readonly 981 // or readnone, because the copy would be unneeded: the callee doesn't 982 // modify the struct. 983 if (CS.isByValArgument(ArgNo)) { 984 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 985 CalledFunc->getParamAlignment(ArgNo+1)); 986 987 // Calls that we inline may use the new alloca, so we need to clear 988 // their 'tail' flags if HandleByValArgument introduced a new alloca and 989 // the callee has calls. 990 MustClearTailCallFlags |= ActualArg != *AI; 991 } 992 993 VMap[I] = ActualArg; 994 } 995 996 // We want the inliner to prune the code as it copies. We would LOVE to 997 // have no dead or constant instructions leftover after inlining occurs 998 // (which can happen, e.g., because an argument was constant), but we'll be 999 // happy with whatever the cloner can do. 1000 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1001 /*ModuleLevelChanges=*/false, Returns, ".i", 1002 &InlinedFunctionInfo, IFI.TD, TheCall); 1003 1004 // Remember the first block that is newly cloned over. 1005 FirstNewBlock = LastBlock; ++FirstNewBlock; 1006 1007 // Update the callgraph if requested. 1008 if (IFI.CG) 1009 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1010 1011 // Update inlined instructions' line number information. 1012 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1013 } 1014 1015 // If there are any alloca instructions in the block that used to be the entry 1016 // block for the callee, move them to the entry block of the caller. First 1017 // calculate which instruction they should be inserted before. We insert the 1018 // instructions at the end of the current alloca list. 1019 // 1020 { 1021 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1022 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1023 E = FirstNewBlock->end(); I != E; ) { 1024 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1025 if (AI == 0) continue; 1026 1027 // If the alloca is now dead, remove it. This often occurs due to code 1028 // specialization. 1029 if (AI->use_empty()) { 1030 AI->eraseFromParent(); 1031 continue; 1032 } 1033 1034 if (!isa<Constant>(AI->getArraySize())) 1035 continue; 1036 1037 // Keep track of the static allocas that we inline into the caller. 1038 IFI.StaticAllocas.push_back(AI); 1039 1040 // Scan for the block of allocas that we can move over, and move them 1041 // all at once. 1042 while (isa<AllocaInst>(I) && 1043 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1044 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1045 ++I; 1046 } 1047 1048 // Transfer all of the allocas over in a block. Using splice means 1049 // that the instructions aren't removed from the symbol table, then 1050 // reinserted. 1051 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1052 FirstNewBlock->getInstList(), 1053 AI, I); 1054 } 1055 } 1056 1057 // Leave lifetime markers for the static alloca's, scoping them to the 1058 // function we just inlined. 1059 if (!IFI.StaticAllocas.empty()) { 1060 IRBuilder<> builder(FirstNewBlock->begin()); 1061 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1062 AllocaInst *AI = IFI.StaticAllocas[ai]; 1063 1064 // If the alloca is already scoped to something smaller than the whole 1065 // function then there's no need to add redundant, less accurate markers. 1066 if (hasLifetimeMarkers(AI)) 1067 continue; 1068 1069 builder.CreateLifetimeStart(AI); 1070 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 1071 IRBuilder<> builder(Returns[ri]); 1072 builder.CreateLifetimeEnd(AI); 1073 } 1074 } 1075 } 1076 1077 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1078 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1079 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1080 Module *M = Caller->getParent(); 1081 // Get the two intrinsics we care about. 1082 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1083 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1084 1085 // Insert the llvm.stacksave. 1086 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1087 .CreateCall(StackSave, "savedstack"); 1088 1089 // Insert a call to llvm.stackrestore before any return instructions in the 1090 // inlined function. 1091 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1092 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 1093 } 1094 1095 // Count the number of StackRestore calls we insert. 1096 unsigned NumStackRestores = Returns.size(); 1097 1098 // If we are inlining an invoke instruction, insert restores before each 1099 // unwind. These unwinds will be rewritten into branches later. 1100 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { 1101 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1102 BB != E; ++BB) 1103 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 1104 IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr); 1105 ++NumStackRestores; 1106 } 1107 } 1108 } 1109 1110 // If we are inlining tail call instruction through a call site that isn't 1111 // marked 'tail', we must remove the tail marker for any calls in the inlined 1112 // code. Also, calls inlined through a 'nounwind' call site should be marked 1113 // 'nounwind'. 1114 if (InlinedFunctionInfo.ContainsCalls && 1115 (MustClearTailCallFlags || MarkNoUnwind)) { 1116 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1117 BB != E; ++BB) 1118 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1119 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1120 if (MustClearTailCallFlags) 1121 CI->setTailCall(false); 1122 if (MarkNoUnwind) 1123 CI->setDoesNotThrow(); 1124 } 1125 } 1126 1127 // If we are inlining through a 'nounwind' call site then any inlined 'unwind' 1128 // instructions are unreachable. 1129 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) 1130 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1131 BB != E; ++BB) { 1132 TerminatorInst *Term = BB->getTerminator(); 1133 if (isa<UnwindInst>(Term)) { 1134 new UnreachableInst(Context, Term); 1135 BB->getInstList().erase(Term); 1136 } 1137 } 1138 1139 // If we are inlining for an invoke instruction, we must make sure to rewrite 1140 // any inlined 'unwind' instructions into branches to the invoke exception 1141 // destination, and call instructions into invoke instructions. 1142 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1143 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1144 1145 // If we cloned in _exactly one_ basic block, and if that block ends in a 1146 // return instruction, we splice the body of the inlined callee directly into 1147 // the calling basic block. 1148 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1149 // Move all of the instructions right before the call. 1150 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1151 FirstNewBlock->begin(), FirstNewBlock->end()); 1152 // Remove the cloned basic block. 1153 Caller->getBasicBlockList().pop_back(); 1154 1155 // If the call site was an invoke instruction, add a branch to the normal 1156 // destination. 1157 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1158 BranchInst::Create(II->getNormalDest(), TheCall); 1159 1160 // If the return instruction returned a value, replace uses of the call with 1161 // uses of the returned value. 1162 if (!TheCall->use_empty()) { 1163 ReturnInst *R = Returns[0]; 1164 if (TheCall == R->getReturnValue()) 1165 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1166 else 1167 TheCall->replaceAllUsesWith(R->getReturnValue()); 1168 } 1169 // Since we are now done with the Call/Invoke, we can delete it. 1170 TheCall->eraseFromParent(); 1171 1172 // Since we are now done with the return instruction, delete it also. 1173 Returns[0]->eraseFromParent(); 1174 1175 // We are now done with the inlining. 1176 return true; 1177 } 1178 1179 // Otherwise, we have the normal case, of more than one block to inline or 1180 // multiple return sites. 1181 1182 // We want to clone the entire callee function into the hole between the 1183 // "starter" and "ender" blocks. How we accomplish this depends on whether 1184 // this is an invoke instruction or a call instruction. 1185 BasicBlock *AfterCallBB; 1186 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1187 1188 // Add an unconditional branch to make this look like the CallInst case... 1189 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1190 1191 // Split the basic block. This guarantees that no PHI nodes will have to be 1192 // updated due to new incoming edges, and make the invoke case more 1193 // symmetric to the call case. 1194 AfterCallBB = OrigBB->splitBasicBlock(NewBr, 1195 CalledFunc->getName()+".exit"); 1196 1197 } else { // It's a call 1198 // If this is a call instruction, we need to split the basic block that 1199 // the call lives in. 1200 // 1201 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1202 CalledFunc->getName()+".exit"); 1203 } 1204 1205 // Change the branch that used to go to AfterCallBB to branch to the first 1206 // basic block of the inlined function. 1207 // 1208 TerminatorInst *Br = OrigBB->getTerminator(); 1209 assert(Br && Br->getOpcode() == Instruction::Br && 1210 "splitBasicBlock broken!"); 1211 Br->setOperand(0, FirstNewBlock); 1212 1213 1214 // Now that the function is correct, make it a little bit nicer. In 1215 // particular, move the basic blocks inserted from the end of the function 1216 // into the space made by splitting the source basic block. 1217 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1218 FirstNewBlock, Caller->end()); 1219 1220 // Handle all of the return instructions that we just cloned in, and eliminate 1221 // any users of the original call/invoke instruction. 1222 Type *RTy = CalledFunc->getReturnType(); 1223 1224 PHINode *PHI = 0; 1225 if (Returns.size() > 1) { 1226 // The PHI node should go at the front of the new basic block to merge all 1227 // possible incoming values. 1228 if (!TheCall->use_empty()) { 1229 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1230 AfterCallBB->begin()); 1231 // Anything that used the result of the function call should now use the 1232 // PHI node as their operand. 1233 TheCall->replaceAllUsesWith(PHI); 1234 } 1235 1236 // Loop over all of the return instructions adding entries to the PHI node 1237 // as appropriate. 1238 if (PHI) { 1239 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1240 ReturnInst *RI = Returns[i]; 1241 assert(RI->getReturnValue()->getType() == PHI->getType() && 1242 "Ret value not consistent in function!"); 1243 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1244 } 1245 } 1246 1247 1248 // Add a branch to the merge points and remove return instructions. 1249 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1250 ReturnInst *RI = Returns[i]; 1251 BranchInst::Create(AfterCallBB, RI); 1252 RI->eraseFromParent(); 1253 } 1254 } else if (!Returns.empty()) { 1255 // Otherwise, if there is exactly one return value, just replace anything 1256 // using the return value of the call with the computed value. 1257 if (!TheCall->use_empty()) { 1258 if (TheCall == Returns[0]->getReturnValue()) 1259 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1260 else 1261 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1262 } 1263 1264 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1265 BasicBlock *ReturnBB = Returns[0]->getParent(); 1266 ReturnBB->replaceAllUsesWith(AfterCallBB); 1267 1268 // Splice the code from the return block into the block that it will return 1269 // to, which contains the code that was after the call. 1270 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1271 ReturnBB->getInstList()); 1272 1273 // Delete the return instruction now and empty ReturnBB now. 1274 Returns[0]->eraseFromParent(); 1275 ReturnBB->eraseFromParent(); 1276 } else if (!TheCall->use_empty()) { 1277 // No returns, but something is using the return value of the call. Just 1278 // nuke the result. 1279 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1280 } 1281 1282 // Since we are now done with the Call/Invoke, we can delete it. 1283 TheCall->eraseFromParent(); 1284 1285 // We should always be able to fold the entry block of the function into the 1286 // single predecessor of the block... 1287 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1288 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1289 1290 // Splice the code entry block into calling block, right before the 1291 // unconditional branch. 1292 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1293 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1294 1295 // Remove the unconditional branch. 1296 OrigBB->getInstList().erase(Br); 1297 1298 // Now we can remove the CalleeEntry block, which is now empty. 1299 Caller->getBasicBlockList().erase(CalleeEntry); 1300 1301 // If we inserted a phi node, check to see if it has a single value (e.g. all 1302 // the entries are the same or undef). If so, remove the PHI so it doesn't 1303 // block other optimizations. 1304 if (PHI) 1305 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 1306 PHI->replaceAllUsesWith(V); 1307 PHI->eraseFromParent(); 1308 } 1309 1310 return true; 1311 } 1312