1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining through an invoke. 67 class InvokeInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 InvokeInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// Forward the 'resume' instruction to the caller's landing pad block. 103 /// When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// Add incoming-PHI values to the unwind destination block for the given 111 /// basic block, using the values for the original invoke's source block. 112 void addIncomingPHIValuesFor(BasicBlock *BB) const { 113 addIncomingPHIValuesForInto(BB, OuterResumeDest); 114 } 115 116 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 117 BasicBlock::iterator I = dest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *phi = cast<PHINode>(I); 120 phi->addIncoming(UnwindDestPHIValues[i], src); 121 } 122 } 123 }; 124 } 125 126 /// Get or create a target for the branch from ResumeInsts. 127 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 128 if (InnerResumeDest) return InnerResumeDest; 129 130 // Split the landing pad. 131 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 132 InnerResumeDest = 133 OuterResumeDest->splitBasicBlock(SplitPoint, 134 OuterResumeDest->getName() + ".body"); 135 136 // The number of incoming edges we expect to the inner landing pad. 137 const unsigned PHICapacity = 2; 138 139 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 140 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 141 BasicBlock::iterator I = OuterResumeDest->begin(); 142 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 143 PHINode *OuterPHI = cast<PHINode>(I); 144 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 145 OuterPHI->getName() + ".lpad-body", 146 InsertPoint); 147 OuterPHI->replaceAllUsesWith(InnerPHI); 148 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 149 } 150 151 // Create a PHI for the exception values. 152 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 153 "eh.lpad-body", InsertPoint); 154 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 155 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 156 157 // All done. 158 return InnerResumeDest; 159 } 160 161 /// Forward the 'resume' instruction to the caller's landing pad block. 162 /// When the landing pad block has only one predecessor, this is a simple 163 /// branch. When there is more than one predecessor, we need to split the 164 /// landing pad block after the landingpad instruction and jump to there. 165 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 166 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 167 BasicBlock *Dest = getInnerResumeDest(); 168 BasicBlock *Src = RI->getParent(); 169 170 BranchInst::Create(Dest, Src); 171 172 // Update the PHIs in the destination. They were inserted in an order which 173 // makes this work. 174 addIncomingPHIValuesForInto(Src, Dest); 175 176 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 177 RI->eraseFromParent(); 178 } 179 180 /// When we inline a basic block into an invoke, 181 /// we have to turn all of the calls that can throw into invokes. 182 /// This function analyze BB to see if there are any calls, and if so, 183 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 184 /// nodes in that block with the values specified in InvokeDestPHIValues. 185 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 186 InvokeInliningInfo &Invoke) { 187 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 188 Instruction *I = BBI++; 189 190 // We only need to check for function calls: inlined invoke 191 // instructions require no special handling. 192 CallInst *CI = dyn_cast<CallInst>(I); 193 194 // If this call cannot unwind, don't convert it to an invoke. 195 // Inline asm calls cannot throw. 196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 210 Invoke.getOuterResumeDest(), 211 InvokeArgs, CI->getName(), BB); 212 II->setDebugLoc(CI->getDebugLoc()); 213 II->setCallingConv(CI->getCallingConv()); 214 II->setAttributes(CI->getAttributes()); 215 216 // Make sure that anything using the call now uses the invoke! This also 217 // updates the CallGraph if present, because it uses a WeakVH. 218 CI->replaceAllUsesWith(II); 219 220 // Delete the original call 221 Split->getInstList().pop_front(); 222 223 // Update any PHI nodes in the exceptional block to indicate that there is 224 // now a new entry in them. 225 Invoke.addIncomingPHIValuesFor(BB); 226 return; 227 } 228 } 229 230 /// If we inlined an invoke site, we need to convert calls 231 /// in the body of the inlined function into invokes. 232 /// 233 /// II is the invoke instruction being inlined. FirstNewBlock is the first 234 /// block of the inlined code (the last block is the end of the function), 235 /// and InlineCodeInfo is information about the code that got inlined. 236 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 237 ClonedCodeInfo &InlinedCodeInfo) { 238 BasicBlock *InvokeDest = II->getUnwindDest(); 239 240 Function *Caller = FirstNewBlock->getParent(); 241 242 // The inlined code is currently at the end of the function, scan from the 243 // start of the inlined code to its end, checking for stuff we need to 244 // rewrite. 245 InvokeInliningInfo Invoke(II); 246 247 // Get all of the inlined landing pad instructions. 248 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 249 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 250 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 251 InlinedLPads.insert(II->getLandingPadInst()); 252 253 // Append the clauses from the outer landing pad instruction into the inlined 254 // landing pad instructions. 255 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 256 for (LandingPadInst *InlinedLPad : InlinedLPads) { 257 unsigned OuterNum = OuterLPad->getNumClauses(); 258 InlinedLPad->reserveClauses(OuterNum); 259 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 260 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 261 if (OuterLPad->isCleanup()) 262 InlinedLPad->setCleanup(true); 263 } 264 265 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 266 if (InlinedCodeInfo.ContainsCalls) 267 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 268 269 // Forward any resumes that are remaining here. 270 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 271 Invoke.forwardResume(RI, InlinedLPads); 272 } 273 274 // Now that everything is happy, we have one final detail. The PHI nodes in 275 // the exception destination block still have entries due to the original 276 // invoke instruction. Eliminate these entries (which might even delete the 277 // PHI node) now. 278 InvokeDest->removePredecessor(II->getParent()); 279 } 280 281 /// When inlining a function that contains noalias scope metadata, 282 /// this metadata needs to be cloned so that the inlined blocks 283 /// have different "unqiue scopes" at every call site. Were this not done, then 284 /// aliasing scopes from a function inlined into a caller multiple times could 285 /// not be differentiated (and this would lead to miscompiles because the 286 /// non-aliasing property communicated by the metadata could have 287 /// call-site-specific control dependencies). 288 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 289 const Function *CalledFunc = CS.getCalledFunction(); 290 SetVector<const MDNode *> MD; 291 292 // Note: We could only clone the metadata if it is already used in the 293 // caller. I'm omitting that check here because it might confuse 294 // inter-procedural alias analysis passes. We can revisit this if it becomes 295 // an efficiency or overhead problem. 296 297 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 298 I != IE; ++I) 299 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 300 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 301 MD.insert(M); 302 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 303 MD.insert(M); 304 } 305 306 if (MD.empty()) 307 return; 308 309 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 310 // the set. 311 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 312 while (!Queue.empty()) { 313 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 314 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 315 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 316 if (MD.insert(M1)) 317 Queue.push_back(M1); 318 } 319 320 // Now we have a complete set of all metadata in the chains used to specify 321 // the noalias scopes and the lists of those scopes. 322 SmallVector<TempMDTuple, 16> DummyNodes; 323 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 324 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 325 I != IE; ++I) { 326 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 327 MDMap[*I].reset(DummyNodes.back().get()); 328 } 329 330 // Create new metadata nodes to replace the dummy nodes, replacing old 331 // metadata references with either a dummy node or an already-created new 332 // node. 333 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 334 I != IE; ++I) { 335 SmallVector<Metadata *, 4> NewOps; 336 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 337 const Metadata *V = (*I)->getOperand(i); 338 if (const MDNode *M = dyn_cast<MDNode>(V)) 339 NewOps.push_back(MDMap[M]); 340 else 341 NewOps.push_back(const_cast<Metadata *>(V)); 342 } 343 344 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 345 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 346 assert(TempM->isTemporary() && "Expected temporary node"); 347 348 TempM->replaceAllUsesWith(NewM); 349 } 350 351 // Now replace the metadata in the new inlined instructions with the 352 // repacements from the map. 353 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 354 VMI != VMIE; ++VMI) { 355 if (!VMI->second) 356 continue; 357 358 Instruction *NI = dyn_cast<Instruction>(VMI->second); 359 if (!NI) 360 continue; 361 362 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 363 MDNode *NewMD = MDMap[M]; 364 // If the call site also had alias scope metadata (a list of scopes to 365 // which instructions inside it might belong), propagate those scopes to 366 // the inlined instructions. 367 if (MDNode *CSM = 368 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 369 NewMD = MDNode::concatenate(NewMD, CSM); 370 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 371 } else if (NI->mayReadOrWriteMemory()) { 372 if (MDNode *M = 373 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 374 NI->setMetadata(LLVMContext::MD_alias_scope, M); 375 } 376 377 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 378 MDNode *NewMD = MDMap[M]; 379 // If the call site also had noalias metadata (a list of scopes with 380 // which instructions inside it don't alias), propagate those scopes to 381 // the inlined instructions. 382 if (MDNode *CSM = 383 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 384 NewMD = MDNode::concatenate(NewMD, CSM); 385 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 386 } else if (NI->mayReadOrWriteMemory()) { 387 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 388 NI->setMetadata(LLVMContext::MD_noalias, M); 389 } 390 } 391 } 392 393 /// If the inlined function has noalias arguments, 394 /// then add new alias scopes for each noalias argument, tag the mapped noalias 395 /// parameters with noalias metadata specifying the new scope, and tag all 396 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 397 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 398 const DataLayout &DL, AliasAnalysis *AA) { 399 if (!EnableNoAliasConversion) 400 return; 401 402 const Function *CalledFunc = CS.getCalledFunction(); 403 SmallVector<const Argument *, 4> NoAliasArgs; 404 405 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 406 E = CalledFunc->arg_end(); I != E; ++I) { 407 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 408 NoAliasArgs.push_back(I); 409 } 410 411 if (NoAliasArgs.empty()) 412 return; 413 414 // To do a good job, if a noalias variable is captured, we need to know if 415 // the capture point dominates the particular use we're considering. 416 DominatorTree DT; 417 DT.recalculate(const_cast<Function&>(*CalledFunc)); 418 419 // noalias indicates that pointer values based on the argument do not alias 420 // pointer values which are not based on it. So we add a new "scope" for each 421 // noalias function argument. Accesses using pointers based on that argument 422 // become part of that alias scope, accesses using pointers not based on that 423 // argument are tagged as noalias with that scope. 424 425 DenseMap<const Argument *, MDNode *> NewScopes; 426 MDBuilder MDB(CalledFunc->getContext()); 427 428 // Create a new scope domain for this function. 429 MDNode *NewDomain = 430 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 431 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 432 const Argument *A = NoAliasArgs[i]; 433 434 std::string Name = CalledFunc->getName(); 435 if (A->hasName()) { 436 Name += ": %"; 437 Name += A->getName(); 438 } else { 439 Name += ": argument "; 440 Name += utostr(i); 441 } 442 443 // Note: We always create a new anonymous root here. This is true regardless 444 // of the linkage of the callee because the aliasing "scope" is not just a 445 // property of the callee, but also all control dependencies in the caller. 446 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 447 NewScopes.insert(std::make_pair(A, NewScope)); 448 } 449 450 // Iterate over all new instructions in the map; for all memory-access 451 // instructions, add the alias scope metadata. 452 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 453 VMI != VMIE; ++VMI) { 454 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 455 if (!VMI->second) 456 continue; 457 458 Instruction *NI = dyn_cast<Instruction>(VMI->second); 459 if (!NI) 460 continue; 461 462 bool IsArgMemOnlyCall = false, IsFuncCall = false; 463 SmallVector<const Value *, 2> PtrArgs; 464 465 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 466 PtrArgs.push_back(LI->getPointerOperand()); 467 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 468 PtrArgs.push_back(SI->getPointerOperand()); 469 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 470 PtrArgs.push_back(VAAI->getPointerOperand()); 471 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 472 PtrArgs.push_back(CXI->getPointerOperand()); 473 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 474 PtrArgs.push_back(RMWI->getPointerOperand()); 475 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 476 // If we know that the call does not access memory, then we'll still 477 // know that about the inlined clone of this call site, and we don't 478 // need to add metadata. 479 if (ICS.doesNotAccessMemory()) 480 continue; 481 482 IsFuncCall = true; 483 if (AA) { 484 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); 485 if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || 486 MRB == AliasAnalysis::OnlyReadsArgumentPointees) 487 IsArgMemOnlyCall = true; 488 } 489 490 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 491 AE = ICS.arg_end(); AI != AE; ++AI) { 492 // We need to check the underlying objects of all arguments, not just 493 // the pointer arguments, because we might be passing pointers as 494 // integers, etc. 495 // However, if we know that the call only accesses pointer arguments, 496 // then we only need to check the pointer arguments. 497 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 498 continue; 499 500 PtrArgs.push_back(*AI); 501 } 502 } 503 504 // If we found no pointers, then this instruction is not suitable for 505 // pairing with an instruction to receive aliasing metadata. 506 // However, if this is a call, this we might just alias with none of the 507 // noalias arguments. 508 if (PtrArgs.empty() && !IsFuncCall) 509 continue; 510 511 // It is possible that there is only one underlying object, but you 512 // need to go through several PHIs to see it, and thus could be 513 // repeated in the Objects list. 514 SmallPtrSet<const Value *, 4> ObjSet; 515 SmallVector<Metadata *, 4> Scopes, NoAliases; 516 517 SmallSetVector<const Argument *, 4> NAPtrArgs; 518 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 519 SmallVector<Value *, 4> Objects; 520 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 521 Objects, DL, /* MaxLookup = */ 0); 522 523 for (Value *O : Objects) 524 ObjSet.insert(O); 525 } 526 527 // Figure out if we're derived from anything that is not a noalias 528 // argument. 529 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 530 for (const Value *V : ObjSet) { 531 // Is this value a constant that cannot be derived from any pointer 532 // value (we need to exclude constant expressions, for example, that 533 // are formed from arithmetic on global symbols). 534 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 535 isa<ConstantPointerNull>(V) || 536 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 537 if (IsNonPtrConst) 538 continue; 539 540 // If this is anything other than a noalias argument, then we cannot 541 // completely describe the aliasing properties using alias.scope 542 // metadata (and, thus, won't add any). 543 if (const Argument *A = dyn_cast<Argument>(V)) { 544 if (!A->hasNoAliasAttr()) 545 UsesAliasingPtr = true; 546 } else { 547 UsesAliasingPtr = true; 548 } 549 550 // If this is not some identified function-local object (which cannot 551 // directly alias a noalias argument), or some other argument (which, 552 // by definition, also cannot alias a noalias argument), then we could 553 // alias a noalias argument that has been captured). 554 if (!isa<Argument>(V) && 555 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 556 CanDeriveViaCapture = true; 557 } 558 559 // A function call can always get captured noalias pointers (via other 560 // parameters, globals, etc.). 561 if (IsFuncCall && !IsArgMemOnlyCall) 562 CanDeriveViaCapture = true; 563 564 // First, we want to figure out all of the sets with which we definitely 565 // don't alias. Iterate over all noalias set, and add those for which: 566 // 1. The noalias argument is not in the set of objects from which we 567 // definitely derive. 568 // 2. The noalias argument has not yet been captured. 569 // An arbitrary function that might load pointers could see captured 570 // noalias arguments via other noalias arguments or globals, and so we 571 // must always check for prior capture. 572 for (const Argument *A : NoAliasArgs) { 573 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 574 // It might be tempting to skip the 575 // PointerMayBeCapturedBefore check if 576 // A->hasNoCaptureAttr() is true, but this is 577 // incorrect because nocapture only guarantees 578 // that no copies outlive the function, not 579 // that the value cannot be locally captured. 580 !PointerMayBeCapturedBefore(A, 581 /* ReturnCaptures */ false, 582 /* StoreCaptures */ false, I, &DT))) 583 NoAliases.push_back(NewScopes[A]); 584 } 585 586 if (!NoAliases.empty()) 587 NI->setMetadata(LLVMContext::MD_noalias, 588 MDNode::concatenate( 589 NI->getMetadata(LLVMContext::MD_noalias), 590 MDNode::get(CalledFunc->getContext(), NoAliases))); 591 592 // Next, we want to figure out all of the sets to which we might belong. 593 // We might belong to a set if the noalias argument is in the set of 594 // underlying objects. If there is some non-noalias argument in our list 595 // of underlying objects, then we cannot add a scope because the fact 596 // that some access does not alias with any set of our noalias arguments 597 // cannot itself guarantee that it does not alias with this access 598 // (because there is some pointer of unknown origin involved and the 599 // other access might also depend on this pointer). We also cannot add 600 // scopes to arbitrary functions unless we know they don't access any 601 // non-parameter pointer-values. 602 bool CanAddScopes = !UsesAliasingPtr; 603 if (CanAddScopes && IsFuncCall) 604 CanAddScopes = IsArgMemOnlyCall; 605 606 if (CanAddScopes) 607 for (const Argument *A : NoAliasArgs) { 608 if (ObjSet.count(A)) 609 Scopes.push_back(NewScopes[A]); 610 } 611 612 if (!Scopes.empty()) 613 NI->setMetadata( 614 LLVMContext::MD_alias_scope, 615 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 616 MDNode::get(CalledFunc->getContext(), Scopes))); 617 } 618 } 619 } 620 621 /// If the inlined function has non-byval align arguments, then 622 /// add @llvm.assume-based alignment assumptions to preserve this information. 623 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 624 if (!PreserveAlignmentAssumptions) 625 return; 626 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 627 628 // To avoid inserting redundant assumptions, we should check for assumptions 629 // already in the caller. To do this, we might need a DT of the caller. 630 DominatorTree DT; 631 bool DTCalculated = false; 632 633 Function *CalledFunc = CS.getCalledFunction(); 634 for (Function::arg_iterator I = CalledFunc->arg_begin(), 635 E = CalledFunc->arg_end(); 636 I != E; ++I) { 637 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 638 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 639 if (!DTCalculated) { 640 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 641 ->getParent())); 642 DTCalculated = true; 643 } 644 645 // If we can already prove the asserted alignment in the context of the 646 // caller, then don't bother inserting the assumption. 647 Value *Arg = CS.getArgument(I->getArgNo()); 648 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 649 &IFI.ACT->getAssumptionCache(*CalledFunc), 650 &DT) >= Align) 651 continue; 652 653 IRBuilder<>(CS.getInstruction()) 654 .CreateAlignmentAssumption(DL, Arg, Align); 655 } 656 } 657 } 658 659 /// Once we have cloned code over from a callee into the caller, 660 /// update the specified callgraph to reflect the changes we made. 661 /// Note that it's possible that not all code was copied over, so only 662 /// some edges of the callgraph may remain. 663 static void UpdateCallGraphAfterInlining(CallSite CS, 664 Function::iterator FirstNewBlock, 665 ValueToValueMapTy &VMap, 666 InlineFunctionInfo &IFI) { 667 CallGraph &CG = *IFI.CG; 668 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 669 const Function *Callee = CS.getCalledFunction(); 670 CallGraphNode *CalleeNode = CG[Callee]; 671 CallGraphNode *CallerNode = CG[Caller]; 672 673 // Since we inlined some uninlined call sites in the callee into the caller, 674 // add edges from the caller to all of the callees of the callee. 675 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 676 677 // Consider the case where CalleeNode == CallerNode. 678 CallGraphNode::CalledFunctionsVector CallCache; 679 if (CalleeNode == CallerNode) { 680 CallCache.assign(I, E); 681 I = CallCache.begin(); 682 E = CallCache.end(); 683 } 684 685 for (; I != E; ++I) { 686 const Value *OrigCall = I->first; 687 688 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 689 // Only copy the edge if the call was inlined! 690 if (VMI == VMap.end() || VMI->second == nullptr) 691 continue; 692 693 // If the call was inlined, but then constant folded, there is no edge to 694 // add. Check for this case. 695 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 696 if (!NewCall) 697 continue; 698 699 // We do not treat intrinsic calls like real function calls because we 700 // expect them to become inline code; do not add an edge for an intrinsic. 701 CallSite CS = CallSite(NewCall); 702 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 703 continue; 704 705 // Remember that this call site got inlined for the client of 706 // InlineFunction. 707 IFI.InlinedCalls.push_back(NewCall); 708 709 // It's possible that inlining the callsite will cause it to go from an 710 // indirect to a direct call by resolving a function pointer. If this 711 // happens, set the callee of the new call site to a more precise 712 // destination. This can also happen if the call graph node of the caller 713 // was just unnecessarily imprecise. 714 if (!I->second->getFunction()) 715 if (Function *F = CallSite(NewCall).getCalledFunction()) { 716 // Indirect call site resolved to direct call. 717 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 718 719 continue; 720 } 721 722 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 723 } 724 725 // Update the call graph by deleting the edge from Callee to Caller. We must 726 // do this after the loop above in case Caller and Callee are the same. 727 CallerNode->removeCallEdgeFor(CS); 728 } 729 730 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 731 BasicBlock *InsertBlock, 732 InlineFunctionInfo &IFI) { 733 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 734 IRBuilder<> Builder(InsertBlock->begin()); 735 736 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 737 738 // Always generate a memcpy of alignment 1 here because we don't know 739 // the alignment of the src pointer. Other optimizations can infer 740 // better alignment. 741 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 742 } 743 744 /// When inlining a call site that has a byval argument, 745 /// we have to make the implicit memcpy explicit by adding it. 746 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 747 const Function *CalledFunc, 748 InlineFunctionInfo &IFI, 749 unsigned ByValAlignment) { 750 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 751 Type *AggTy = ArgTy->getElementType(); 752 753 Function *Caller = TheCall->getParent()->getParent(); 754 755 // If the called function is readonly, then it could not mutate the caller's 756 // copy of the byval'd memory. In this case, it is safe to elide the copy and 757 // temporary. 758 if (CalledFunc->onlyReadsMemory()) { 759 // If the byval argument has a specified alignment that is greater than the 760 // passed in pointer, then we either have to round up the input pointer or 761 // give up on this transformation. 762 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 763 return Arg; 764 765 const DataLayout &DL = Caller->getParent()->getDataLayout(); 766 767 // If the pointer is already known to be sufficiently aligned, or if we can 768 // round it up to a larger alignment, then we don't need a temporary. 769 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 770 &IFI.ACT->getAssumptionCache(*Caller)) >= 771 ByValAlignment) 772 return Arg; 773 774 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 775 // for code quality, but rarely happens and is required for correctness. 776 } 777 778 // Create the alloca. If we have DataLayout, use nice alignment. 779 unsigned Align = 780 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 781 782 // If the byval had an alignment specified, we *must* use at least that 783 // alignment, as it is required by the byval argument (and uses of the 784 // pointer inside the callee). 785 Align = std::max(Align, ByValAlignment); 786 787 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 788 &*Caller->begin()->begin()); 789 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 790 791 // Uses of the argument in the function should use our new alloca 792 // instead. 793 return NewAlloca; 794 } 795 796 // Check whether this Value is used by a lifetime intrinsic. 797 static bool isUsedByLifetimeMarker(Value *V) { 798 for (User *U : V->users()) { 799 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 800 switch (II->getIntrinsicID()) { 801 default: break; 802 case Intrinsic::lifetime_start: 803 case Intrinsic::lifetime_end: 804 return true; 805 } 806 } 807 } 808 return false; 809 } 810 811 // Check whether the given alloca already has 812 // lifetime.start or lifetime.end intrinsics. 813 static bool hasLifetimeMarkers(AllocaInst *AI) { 814 Type *Ty = AI->getType(); 815 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 816 Ty->getPointerAddressSpace()); 817 if (Ty == Int8PtrTy) 818 return isUsedByLifetimeMarker(AI); 819 820 // Do a scan to find all the casts to i8*. 821 for (User *U : AI->users()) { 822 if (U->getType() != Int8PtrTy) continue; 823 if (U->stripPointerCasts() != AI) continue; 824 if (isUsedByLifetimeMarker(U)) 825 return true; 826 } 827 return false; 828 } 829 830 /// Rebuild the entire inlined-at chain for this instruction so that the top of 831 /// the chain now is inlined-at the new call site. 832 static DebugLoc 833 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 834 DenseMap<const DILocation *, DILocation *> &IANodes) { 835 SmallVector<DILocation *, 3> InlinedAtLocations; 836 DILocation *Last = InlinedAtNode; 837 DILocation *CurInlinedAt = DL; 838 839 // Gather all the inlined-at nodes 840 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 841 // Skip any we've already built nodes for 842 if (DILocation *Found = IANodes[IA]) { 843 Last = Found; 844 break; 845 } 846 847 InlinedAtLocations.push_back(IA); 848 CurInlinedAt = IA; 849 } 850 851 // Starting from the top, rebuild the nodes to point to the new inlined-at 852 // location (then rebuilding the rest of the chain behind it) and update the 853 // map of already-constructed inlined-at nodes. 854 for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend(); 855 I != E; ++I) { 856 const DILocation *MD = *I; 857 Last = IANodes[MD] = DILocation::getDistinct( 858 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 859 } 860 861 // And finally create the normal location for this instruction, referring to 862 // the new inlined-at chain. 863 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 864 } 865 866 /// Update inlined instructions' line numbers to 867 /// to encode location where these instructions are inlined. 868 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 869 Instruction *TheCall) { 870 DebugLoc TheCallDL = TheCall->getDebugLoc(); 871 if (!TheCallDL) 872 return; 873 874 auto &Ctx = Fn->getContext(); 875 DILocation *InlinedAtNode = TheCallDL; 876 877 // Create a unique call site, not to be confused with any other call from the 878 // same location. 879 InlinedAtNode = DILocation::getDistinct( 880 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 881 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 882 883 // Cache the inlined-at nodes as they're built so they are reused, without 884 // this every instruction's inlined-at chain would become distinct from each 885 // other. 886 DenseMap<const DILocation *, DILocation *> IANodes; 887 888 for (; FI != Fn->end(); ++FI) { 889 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 890 BI != BE; ++BI) { 891 DebugLoc DL = BI->getDebugLoc(); 892 if (!DL) { 893 // If the inlined instruction has no line number, make it look as if it 894 // originates from the call location. This is important for 895 // ((__always_inline__, __nodebug__)) functions which must use caller 896 // location for all instructions in their function body. 897 898 // Don't update static allocas, as they may get moved later. 899 if (auto *AI = dyn_cast<AllocaInst>(BI)) 900 if (isa<Constant>(AI->getArraySize())) 901 continue; 902 903 BI->setDebugLoc(TheCallDL); 904 } else { 905 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 906 } 907 } 908 } 909 } 910 911 /// This function inlines the called function into the basic block of the 912 /// caller. This returns false if it is not possible to inline this call. 913 /// The program is still in a well defined state if this occurs though. 914 /// 915 /// Note that this only does one level of inlining. For example, if the 916 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 917 /// exists in the instruction stream. Similarly this will inline a recursive 918 /// function by one level. 919 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 920 bool InsertLifetime) { 921 Instruction *TheCall = CS.getInstruction(); 922 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 923 "Instruction not in function!"); 924 925 // If IFI has any state in it, zap it before we fill it in. 926 IFI.reset(); 927 928 const Function *CalledFunc = CS.getCalledFunction(); 929 if (!CalledFunc || // Can't inline external function or indirect 930 CalledFunc->isDeclaration() || // call, or call to a vararg function! 931 CalledFunc->getFunctionType()->isVarArg()) return false; 932 933 // If the call to the callee cannot throw, set the 'nounwind' flag on any 934 // calls that we inline. 935 bool MarkNoUnwind = CS.doesNotThrow(); 936 937 BasicBlock *OrigBB = TheCall->getParent(); 938 Function *Caller = OrigBB->getParent(); 939 940 // GC poses two hazards to inlining, which only occur when the callee has GC: 941 // 1. If the caller has no GC, then the callee's GC must be propagated to the 942 // caller. 943 // 2. If the caller has a differing GC, it is invalid to inline. 944 if (CalledFunc->hasGC()) { 945 if (!Caller->hasGC()) 946 Caller->setGC(CalledFunc->getGC()); 947 else if (CalledFunc->getGC() != Caller->getGC()) 948 return false; 949 } 950 951 // Get the personality function from the callee if it contains a landing pad. 952 Constant *CalledPersonality = 953 CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn() : nullptr; 954 955 // Find the personality function used by the landing pads of the caller. If it 956 // exists, then check to see that it matches the personality function used in 957 // the callee. 958 Constant *CallerPersonality = 959 Caller->hasPersonalityFn() ? Caller->getPersonalityFn() : nullptr; 960 if (CalledPersonality) { 961 if (!CallerPersonality) 962 Caller->setPersonalityFn(CalledPersonality); 963 // If the personality functions match, then we can perform the 964 // inlining. Otherwise, we can't inline. 965 // TODO: This isn't 100% true. Some personality functions are proper 966 // supersets of others and can be used in place of the other. 967 else if (CalledPersonality != CallerPersonality) 968 return false; 969 } 970 971 // Get an iterator to the last basic block in the function, which will have 972 // the new function inlined after it. 973 Function::iterator LastBlock = &Caller->back(); 974 975 // Make sure to capture all of the return instructions from the cloned 976 // function. 977 SmallVector<ReturnInst*, 8> Returns; 978 ClonedCodeInfo InlinedFunctionInfo; 979 Function::iterator FirstNewBlock; 980 981 { // Scope to destroy VMap after cloning. 982 ValueToValueMapTy VMap; 983 // Keep a list of pair (dst, src) to emit byval initializations. 984 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 985 986 auto &DL = Caller->getParent()->getDataLayout(); 987 988 assert(CalledFunc->arg_size() == CS.arg_size() && 989 "No varargs calls can be inlined!"); 990 991 // Calculate the vector of arguments to pass into the function cloner, which 992 // matches up the formal to the actual argument values. 993 CallSite::arg_iterator AI = CS.arg_begin(); 994 unsigned ArgNo = 0; 995 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 996 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 997 Value *ActualArg = *AI; 998 999 // When byval arguments actually inlined, we need to make the copy implied 1000 // by them explicit. However, we don't do this if the callee is readonly 1001 // or readnone, because the copy would be unneeded: the callee doesn't 1002 // modify the struct. 1003 if (CS.isByValArgument(ArgNo)) { 1004 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1005 CalledFunc->getParamAlignment(ArgNo+1)); 1006 if (ActualArg != *AI) 1007 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1008 } 1009 1010 VMap[I] = ActualArg; 1011 } 1012 1013 // Add alignment assumptions if necessary. We do this before the inlined 1014 // instructions are actually cloned into the caller so that we can easily 1015 // check what will be known at the start of the inlined code. 1016 AddAlignmentAssumptions(CS, IFI); 1017 1018 // We want the inliner to prune the code as it copies. We would LOVE to 1019 // have no dead or constant instructions leftover after inlining occurs 1020 // (which can happen, e.g., because an argument was constant), but we'll be 1021 // happy with whatever the cloner can do. 1022 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1023 /*ModuleLevelChanges=*/false, Returns, ".i", 1024 &InlinedFunctionInfo, TheCall); 1025 1026 // Remember the first block that is newly cloned over. 1027 FirstNewBlock = LastBlock; ++FirstNewBlock; 1028 1029 // Inject byval arguments initialization. 1030 for (std::pair<Value*, Value*> &Init : ByValInit) 1031 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1032 FirstNewBlock, IFI); 1033 1034 // Update the callgraph if requested. 1035 if (IFI.CG) 1036 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1037 1038 // Update inlined instructions' line number information. 1039 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1040 1041 // Clone existing noalias metadata if necessary. 1042 CloneAliasScopeMetadata(CS, VMap); 1043 1044 // Add noalias metadata if necessary. 1045 AddAliasScopeMetadata(CS, VMap, DL, IFI.AA); 1046 1047 // FIXME: We could register any cloned assumptions instead of clearing the 1048 // whole function's cache. 1049 if (IFI.ACT) 1050 IFI.ACT->getAssumptionCache(*Caller).clear(); 1051 } 1052 1053 // If there are any alloca instructions in the block that used to be the entry 1054 // block for the callee, move them to the entry block of the caller. First 1055 // calculate which instruction they should be inserted before. We insert the 1056 // instructions at the end of the current alloca list. 1057 { 1058 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1059 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1060 E = FirstNewBlock->end(); I != E; ) { 1061 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1062 if (!AI) continue; 1063 1064 // If the alloca is now dead, remove it. This often occurs due to code 1065 // specialization. 1066 if (AI->use_empty()) { 1067 AI->eraseFromParent(); 1068 continue; 1069 } 1070 1071 if (!isa<Constant>(AI->getArraySize())) 1072 continue; 1073 1074 // Keep track of the static allocas that we inline into the caller. 1075 IFI.StaticAllocas.push_back(AI); 1076 1077 // Scan for the block of allocas that we can move over, and move them 1078 // all at once. 1079 while (isa<AllocaInst>(I) && 1080 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1081 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1082 ++I; 1083 } 1084 1085 // Transfer all of the allocas over in a block. Using splice means 1086 // that the instructions aren't removed from the symbol table, then 1087 // reinserted. 1088 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1089 FirstNewBlock->getInstList(), 1090 AI, I); 1091 } 1092 // Move any dbg.declares describing the allocas into the entry basic block. 1093 DIBuilder DIB(*Caller->getParent()); 1094 for (auto &AI : IFI.StaticAllocas) 1095 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1096 } 1097 1098 bool InlinedMustTailCalls = false; 1099 if (InlinedFunctionInfo.ContainsCalls) { 1100 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1101 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1102 CallSiteTailKind = CI->getTailCallKind(); 1103 1104 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1105 ++BB) { 1106 for (Instruction &I : *BB) { 1107 CallInst *CI = dyn_cast<CallInst>(&I); 1108 if (!CI) 1109 continue; 1110 1111 // We need to reduce the strength of any inlined tail calls. For 1112 // musttail, we have to avoid introducing potential unbounded stack 1113 // growth. For example, if functions 'f' and 'g' are mutually recursive 1114 // with musttail, we can inline 'g' into 'f' so long as we preserve 1115 // musttail on the cloned call to 'f'. If either the inlined call site 1116 // or the cloned call site is *not* musttail, the program already has 1117 // one frame of stack growth, so it's safe to remove musttail. Here is 1118 // a table of example transformations: 1119 // 1120 // f -> musttail g -> musttail f ==> f -> musttail f 1121 // f -> musttail g -> tail f ==> f -> tail f 1122 // f -> g -> musttail f ==> f -> f 1123 // f -> g -> tail f ==> f -> f 1124 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1125 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1126 CI->setTailCallKind(ChildTCK); 1127 InlinedMustTailCalls |= CI->isMustTailCall(); 1128 1129 // Calls inlined through a 'nounwind' call site should be marked 1130 // 'nounwind'. 1131 if (MarkNoUnwind) 1132 CI->setDoesNotThrow(); 1133 } 1134 } 1135 } 1136 1137 // Leave lifetime markers for the static alloca's, scoping them to the 1138 // function we just inlined. 1139 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1140 IRBuilder<> builder(FirstNewBlock->begin()); 1141 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1142 AllocaInst *AI = IFI.StaticAllocas[ai]; 1143 1144 // If the alloca is already scoped to something smaller than the whole 1145 // function then there's no need to add redundant, less accurate markers. 1146 if (hasLifetimeMarkers(AI)) 1147 continue; 1148 1149 // Try to determine the size of the allocation. 1150 ConstantInt *AllocaSize = nullptr; 1151 if (ConstantInt *AIArraySize = 1152 dyn_cast<ConstantInt>(AI->getArraySize())) { 1153 auto &DL = Caller->getParent()->getDataLayout(); 1154 Type *AllocaType = AI->getAllocatedType(); 1155 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1156 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1157 1158 // Don't add markers for zero-sized allocas. 1159 if (AllocaArraySize == 0) 1160 continue; 1161 1162 // Check that array size doesn't saturate uint64_t and doesn't 1163 // overflow when it's multiplied by type size. 1164 if (AllocaArraySize != ~0ULL && 1165 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1166 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1167 AllocaArraySize * AllocaTypeSize); 1168 } 1169 } 1170 1171 builder.CreateLifetimeStart(AI, AllocaSize); 1172 for (ReturnInst *RI : Returns) { 1173 // Don't insert llvm.lifetime.end calls between a musttail call and a 1174 // return. The return kills all local allocas. 1175 if (InlinedMustTailCalls && 1176 RI->getParent()->getTerminatingMustTailCall()) 1177 continue; 1178 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1179 } 1180 } 1181 } 1182 1183 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1184 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1185 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1186 Module *M = Caller->getParent(); 1187 // Get the two intrinsics we care about. 1188 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1189 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1190 1191 // Insert the llvm.stacksave. 1192 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1193 .CreateCall(StackSave, {}, "savedstack"); 1194 1195 // Insert a call to llvm.stackrestore before any return instructions in the 1196 // inlined function. 1197 for (ReturnInst *RI : Returns) { 1198 // Don't insert llvm.stackrestore calls between a musttail call and a 1199 // return. The return will restore the stack pointer. 1200 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1201 continue; 1202 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1203 } 1204 } 1205 1206 // If we are inlining for an invoke instruction, we must make sure to rewrite 1207 // any call instructions into invoke instructions. 1208 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1209 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1210 1211 // Handle any inlined musttail call sites. In order for a new call site to be 1212 // musttail, the source of the clone and the inlined call site must have been 1213 // musttail. Therefore it's safe to return without merging control into the 1214 // phi below. 1215 if (InlinedMustTailCalls) { 1216 // Check if we need to bitcast the result of any musttail calls. 1217 Type *NewRetTy = Caller->getReturnType(); 1218 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1219 1220 // Handle the returns preceded by musttail calls separately. 1221 SmallVector<ReturnInst *, 8> NormalReturns; 1222 for (ReturnInst *RI : Returns) { 1223 CallInst *ReturnedMustTail = 1224 RI->getParent()->getTerminatingMustTailCall(); 1225 if (!ReturnedMustTail) { 1226 NormalReturns.push_back(RI); 1227 continue; 1228 } 1229 if (!NeedBitCast) 1230 continue; 1231 1232 // Delete the old return and any preceding bitcast. 1233 BasicBlock *CurBB = RI->getParent(); 1234 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1235 RI->eraseFromParent(); 1236 if (OldCast) 1237 OldCast->eraseFromParent(); 1238 1239 // Insert a new bitcast and return with the right type. 1240 IRBuilder<> Builder(CurBB); 1241 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1242 } 1243 1244 // Leave behind the normal returns so we can merge control flow. 1245 std::swap(Returns, NormalReturns); 1246 } 1247 1248 // If we cloned in _exactly one_ basic block, and if that block ends in a 1249 // return instruction, we splice the body of the inlined callee directly into 1250 // the calling basic block. 1251 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1252 // Move all of the instructions right before the call. 1253 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1254 FirstNewBlock->begin(), FirstNewBlock->end()); 1255 // Remove the cloned basic block. 1256 Caller->getBasicBlockList().pop_back(); 1257 1258 // If the call site was an invoke instruction, add a branch to the normal 1259 // destination. 1260 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1261 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1262 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1263 } 1264 1265 // If the return instruction returned a value, replace uses of the call with 1266 // uses of the returned value. 1267 if (!TheCall->use_empty()) { 1268 ReturnInst *R = Returns[0]; 1269 if (TheCall == R->getReturnValue()) 1270 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1271 else 1272 TheCall->replaceAllUsesWith(R->getReturnValue()); 1273 } 1274 // Since we are now done with the Call/Invoke, we can delete it. 1275 TheCall->eraseFromParent(); 1276 1277 // Since we are now done with the return instruction, delete it also. 1278 Returns[0]->eraseFromParent(); 1279 1280 // We are now done with the inlining. 1281 return true; 1282 } 1283 1284 // Otherwise, we have the normal case, of more than one block to inline or 1285 // multiple return sites. 1286 1287 // We want to clone the entire callee function into the hole between the 1288 // "starter" and "ender" blocks. How we accomplish this depends on whether 1289 // this is an invoke instruction or a call instruction. 1290 BasicBlock *AfterCallBB; 1291 BranchInst *CreatedBranchToNormalDest = nullptr; 1292 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1293 1294 // Add an unconditional branch to make this look like the CallInst case... 1295 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1296 1297 // Split the basic block. This guarantees that no PHI nodes will have to be 1298 // updated due to new incoming edges, and make the invoke case more 1299 // symmetric to the call case. 1300 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1301 CalledFunc->getName()+".exit"); 1302 1303 } else { // It's a call 1304 // If this is a call instruction, we need to split the basic block that 1305 // the call lives in. 1306 // 1307 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1308 CalledFunc->getName()+".exit"); 1309 } 1310 1311 // Change the branch that used to go to AfterCallBB to branch to the first 1312 // basic block of the inlined function. 1313 // 1314 TerminatorInst *Br = OrigBB->getTerminator(); 1315 assert(Br && Br->getOpcode() == Instruction::Br && 1316 "splitBasicBlock broken!"); 1317 Br->setOperand(0, FirstNewBlock); 1318 1319 1320 // Now that the function is correct, make it a little bit nicer. In 1321 // particular, move the basic blocks inserted from the end of the function 1322 // into the space made by splitting the source basic block. 1323 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1324 FirstNewBlock, Caller->end()); 1325 1326 // Handle all of the return instructions that we just cloned in, and eliminate 1327 // any users of the original call/invoke instruction. 1328 Type *RTy = CalledFunc->getReturnType(); 1329 1330 PHINode *PHI = nullptr; 1331 if (Returns.size() > 1) { 1332 // The PHI node should go at the front of the new basic block to merge all 1333 // possible incoming values. 1334 if (!TheCall->use_empty()) { 1335 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1336 AfterCallBB->begin()); 1337 // Anything that used the result of the function call should now use the 1338 // PHI node as their operand. 1339 TheCall->replaceAllUsesWith(PHI); 1340 } 1341 1342 // Loop over all of the return instructions adding entries to the PHI node 1343 // as appropriate. 1344 if (PHI) { 1345 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1346 ReturnInst *RI = Returns[i]; 1347 assert(RI->getReturnValue()->getType() == PHI->getType() && 1348 "Ret value not consistent in function!"); 1349 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1350 } 1351 } 1352 1353 1354 // Add a branch to the merge points and remove return instructions. 1355 DebugLoc Loc; 1356 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1357 ReturnInst *RI = Returns[i]; 1358 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1359 Loc = RI->getDebugLoc(); 1360 BI->setDebugLoc(Loc); 1361 RI->eraseFromParent(); 1362 } 1363 // We need to set the debug location to *somewhere* inside the 1364 // inlined function. The line number may be nonsensical, but the 1365 // instruction will at least be associated with the right 1366 // function. 1367 if (CreatedBranchToNormalDest) 1368 CreatedBranchToNormalDest->setDebugLoc(Loc); 1369 } else if (!Returns.empty()) { 1370 // Otherwise, if there is exactly one return value, just replace anything 1371 // using the return value of the call with the computed value. 1372 if (!TheCall->use_empty()) { 1373 if (TheCall == Returns[0]->getReturnValue()) 1374 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1375 else 1376 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1377 } 1378 1379 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1380 BasicBlock *ReturnBB = Returns[0]->getParent(); 1381 ReturnBB->replaceAllUsesWith(AfterCallBB); 1382 1383 // Splice the code from the return block into the block that it will return 1384 // to, which contains the code that was after the call. 1385 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1386 ReturnBB->getInstList()); 1387 1388 if (CreatedBranchToNormalDest) 1389 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1390 1391 // Delete the return instruction now and empty ReturnBB now. 1392 Returns[0]->eraseFromParent(); 1393 ReturnBB->eraseFromParent(); 1394 } else if (!TheCall->use_empty()) { 1395 // No returns, but something is using the return value of the call. Just 1396 // nuke the result. 1397 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1398 } 1399 1400 // Since we are now done with the Call/Invoke, we can delete it. 1401 TheCall->eraseFromParent(); 1402 1403 // If we inlined any musttail calls and the original return is now 1404 // unreachable, delete it. It can only contain a bitcast and ret. 1405 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1406 AfterCallBB->eraseFromParent(); 1407 1408 // We should always be able to fold the entry block of the function into the 1409 // single predecessor of the block... 1410 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1411 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1412 1413 // Splice the code entry block into calling block, right before the 1414 // unconditional branch. 1415 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1416 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1417 1418 // Remove the unconditional branch. 1419 OrigBB->getInstList().erase(Br); 1420 1421 // Now we can remove the CalleeEntry block, which is now empty. 1422 Caller->getBasicBlockList().erase(CalleeEntry); 1423 1424 // If we inserted a phi node, check to see if it has a single value (e.g. all 1425 // the entries are the same or undef). If so, remove the PHI so it doesn't 1426 // block other optimizations. 1427 if (PHI) { 1428 auto &DL = Caller->getParent()->getDataLayout(); 1429 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1430 &IFI.ACT->getAssumptionCache(*Caller))) { 1431 PHI->replaceAllUsesWith(V); 1432 PHI->eraseFromParent(); 1433 } 1434 } 1435 1436 return true; 1437 } 1438