1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/CallGraph.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/DebugInfo.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/CallSite.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 using namespace llvm; 33 34 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 35 bool InsertLifetime) { 36 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 37 } 38 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 39 bool InsertLifetime) { 40 return InlineFunction(CallSite(II), IFI, InsertLifetime); 41 } 42 43 namespace { 44 /// A class for recording information about inlining through an invoke. 45 class InvokeInliningInfo { 46 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 47 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 48 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 49 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 50 SmallVector<Value*, 8> UnwindDestPHIValues; 51 52 public: 53 InvokeInliningInfo(InvokeInst *II) 54 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 55 CallerLPad(0), InnerEHValuesPHI(0) { 56 // If there are PHI nodes in the unwind destination block, we need to keep 57 // track of which values came into them from the invoke before removing 58 // the edge from this block. 59 llvm::BasicBlock *InvokeBB = II->getParent(); 60 BasicBlock::iterator I = OuterResumeDest->begin(); 61 for (; isa<PHINode>(I); ++I) { 62 // Save the value to use for this edge. 63 PHINode *PHI = cast<PHINode>(I); 64 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 65 } 66 67 CallerLPad = cast<LandingPadInst>(I); 68 } 69 70 /// getOuterResumeDest - The outer unwind destination is the target of 71 /// unwind edges introduced for calls within the inlined function. 72 BasicBlock *getOuterResumeDest() const { 73 return OuterResumeDest; 74 } 75 76 BasicBlock *getInnerResumeDest(); 77 78 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 79 80 /// forwardResume - Forward the 'resume' instruction to the caller's landing 81 /// pad block. When the landing pad block has only one predecessor, this is 82 /// a simple branch. When there is more than one predecessor, we need to 83 /// split the landing pad block after the landingpad instruction and jump 84 /// to there. 85 void forwardResume(ResumeInst *RI, 86 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads); 87 88 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 89 /// destination block for the given basic block, using the values for the 90 /// original invoke's source block. 91 void addIncomingPHIValuesFor(BasicBlock *BB) const { 92 addIncomingPHIValuesForInto(BB, OuterResumeDest); 93 } 94 95 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 96 BasicBlock::iterator I = dest->begin(); 97 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 98 PHINode *phi = cast<PHINode>(I); 99 phi->addIncoming(UnwindDestPHIValues[i], src); 100 } 101 } 102 }; 103 } 104 105 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 106 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 107 if (InnerResumeDest) return InnerResumeDest; 108 109 // Split the landing pad. 110 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 111 InnerResumeDest = 112 OuterResumeDest->splitBasicBlock(SplitPoint, 113 OuterResumeDest->getName() + ".body"); 114 115 // The number of incoming edges we expect to the inner landing pad. 116 const unsigned PHICapacity = 2; 117 118 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 119 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 120 BasicBlock::iterator I = OuterResumeDest->begin(); 121 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 122 PHINode *OuterPHI = cast<PHINode>(I); 123 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 124 OuterPHI->getName() + ".lpad-body", 125 InsertPoint); 126 OuterPHI->replaceAllUsesWith(InnerPHI); 127 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 128 } 129 130 // Create a PHI for the exception values. 131 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 132 "eh.lpad-body", InsertPoint); 133 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 134 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 135 136 // All done. 137 return InnerResumeDest; 138 } 139 140 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 141 /// block. When the landing pad block has only one predecessor, this is a simple 142 /// branch. When there is more than one predecessor, we need to split the 143 /// landing pad block after the landingpad instruction and jump to there. 144 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 145 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) { 146 BasicBlock *Dest = getInnerResumeDest(); 147 LandingPadInst *OuterLPad = getLandingPadInst(); 148 BasicBlock *Src = RI->getParent(); 149 150 BranchInst::Create(Dest, Src); 151 152 // Update the PHIs in the destination. They were inserted in an order which 153 // makes this work. 154 addIncomingPHIValuesForInto(Src, Dest); 155 156 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 157 RI->eraseFromParent(); 158 159 // Append the clauses from the outer landing pad instruction into the inlined 160 // landing pad instructions. 161 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(), 162 E = InlinedLPads.end(); I != E; ++I) { 163 LandingPadInst *InlinedLPad = *I; 164 for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses(); 165 OuterIdx != OuterNum; ++OuterIdx) 166 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 167 } 168 } 169 170 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 171 /// an invoke, we have to turn all of the calls that can throw into 172 /// invokes. This function analyze BB to see if there are any calls, and if so, 173 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 174 /// nodes in that block with the values specified in InvokeDestPHIValues. 175 /// 176 /// Returns true to indicate that the next block should be skipped. 177 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 178 InvokeInliningInfo &Invoke) { 179 LandingPadInst *LPI = Invoke.getLandingPadInst(); 180 181 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 182 Instruction *I = BBI++; 183 184 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 185 unsigned NumClauses = LPI->getNumClauses(); 186 L->reserveClauses(NumClauses); 187 for (unsigned i = 0; i != NumClauses; ++i) 188 L->addClause(LPI->getClause(i)); 189 } 190 191 // We only need to check for function calls: inlined invoke 192 // instructions require no special handling. 193 CallInst *CI = dyn_cast<CallInst>(I); 194 195 // If this call cannot unwind, don't convert it to an invoke. 196 if (!CI || CI->doesNotThrow()) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 210 Invoke.getOuterResumeDest(), 211 InvokeArgs, CI->getName(), BB); 212 II->setCallingConv(CI->getCallingConv()); 213 II->setAttributes(CI->getAttributes()); 214 215 // Make sure that anything using the call now uses the invoke! This also 216 // updates the CallGraph if present, because it uses a WeakVH. 217 CI->replaceAllUsesWith(II); 218 219 // Delete the original call 220 Split->getInstList().pop_front(); 221 222 // Update any PHI nodes in the exceptional block to indicate that there is 223 // now a new entry in them. 224 Invoke.addIncomingPHIValuesFor(BB); 225 return false; 226 } 227 228 return false; 229 } 230 231 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 232 /// in the body of the inlined function into invokes. 233 /// 234 /// II is the invoke instruction being inlined. FirstNewBlock is the first 235 /// block of the inlined code (the last block is the end of the function), 236 /// and InlineCodeInfo is information about the code that got inlined. 237 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 238 ClonedCodeInfo &InlinedCodeInfo) { 239 BasicBlock *InvokeDest = II->getUnwindDest(); 240 241 Function *Caller = FirstNewBlock->getParent(); 242 243 // The inlined code is currently at the end of the function, scan from the 244 // start of the inlined code to its end, checking for stuff we need to 245 // rewrite. 246 InvokeInliningInfo Invoke(II); 247 248 // Get all of the inlined landing pad instructions. 249 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 250 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 251 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 252 InlinedLPads.insert(II->getLandingPadInst()); 253 254 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 255 if (InlinedCodeInfo.ContainsCalls) 256 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 257 // Honor a request to skip the next block. 258 ++BB; 259 continue; 260 } 261 262 // Forward any resumes that are remaining here. 263 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 264 Invoke.forwardResume(RI, InlinedLPads); 265 } 266 267 // Now that everything is happy, we have one final detail. The PHI nodes in 268 // the exception destination block still have entries due to the original 269 // invoke instruction. Eliminate these entries (which might even delete the 270 // PHI node) now. 271 InvokeDest->removePredecessor(II->getParent()); 272 } 273 274 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 275 /// into the caller, update the specified callgraph to reflect the changes we 276 /// made. Note that it's possible that not all code was copied over, so only 277 /// some edges of the callgraph may remain. 278 static void UpdateCallGraphAfterInlining(CallSite CS, 279 Function::iterator FirstNewBlock, 280 ValueToValueMapTy &VMap, 281 InlineFunctionInfo &IFI) { 282 CallGraph &CG = *IFI.CG; 283 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 284 const Function *Callee = CS.getCalledFunction(); 285 CallGraphNode *CalleeNode = CG[Callee]; 286 CallGraphNode *CallerNode = CG[Caller]; 287 288 // Since we inlined some uninlined call sites in the callee into the caller, 289 // add edges from the caller to all of the callees of the callee. 290 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 291 292 // Consider the case where CalleeNode == CallerNode. 293 CallGraphNode::CalledFunctionsVector CallCache; 294 if (CalleeNode == CallerNode) { 295 CallCache.assign(I, E); 296 I = CallCache.begin(); 297 E = CallCache.end(); 298 } 299 300 for (; I != E; ++I) { 301 const Value *OrigCall = I->first; 302 303 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 304 // Only copy the edge if the call was inlined! 305 if (VMI == VMap.end() || VMI->second == 0) 306 continue; 307 308 // If the call was inlined, but then constant folded, there is no edge to 309 // add. Check for this case. 310 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 311 if (NewCall == 0) continue; 312 313 // Remember that this call site got inlined for the client of 314 // InlineFunction. 315 IFI.InlinedCalls.push_back(NewCall); 316 317 // It's possible that inlining the callsite will cause it to go from an 318 // indirect to a direct call by resolving a function pointer. If this 319 // happens, set the callee of the new call site to a more precise 320 // destination. This can also happen if the call graph node of the caller 321 // was just unnecessarily imprecise. 322 if (I->second->getFunction() == 0) 323 if (Function *F = CallSite(NewCall).getCalledFunction()) { 324 // Indirect call site resolved to direct call. 325 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 326 327 continue; 328 } 329 330 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 331 } 332 333 // Update the call graph by deleting the edge from Callee to Caller. We must 334 // do this after the loop above in case Caller and Callee are the same. 335 CallerNode->removeCallEdgeFor(CS); 336 } 337 338 /// HandleByValArgument - When inlining a call site that has a byval argument, 339 /// we have to make the implicit memcpy explicit by adding it. 340 static Value *HandleByValArgument(Value *PassedValue, 341 const Argument *ArgumentSignature, 342 Instruction *TheCall, 343 const Function *CalledFunc, 344 InlineFunctionInfo &IFI, 345 unsigned ByValAlignment) { 346 Type *AggTy = cast<PointerType>(PassedValue->getType())->getElementType(); 347 348 // If the called function is readonly, then it could not mutate the caller's 349 // copy of the byval'd memory. In this case, it is safe to elide the copy and 350 // temporary. 351 if (CalledFunc->onlyReadsMemory() || ArgumentSignature->onlyReadsMemory()) { 352 // If the byval argument has a specified alignment that is greater than the 353 // passed in pointer, then we either have to round up the input pointer or 354 // give up on this transformation. 355 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 356 return PassedValue; 357 358 // If the pointer is already known to be sufficiently aligned, or if we can 359 // round it up to a larger alignment, then we don't need a temporary. 360 if (getOrEnforceKnownAlignment(PassedValue, ByValAlignment, 361 IFI.TD) >= ByValAlignment) 362 return PassedValue; 363 364 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 365 // for code quality, but rarely happens and is required for correctness. 366 } 367 368 LLVMContext &Context = PassedValue->getContext(); 369 370 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 371 372 // Create the alloca. If we have DataLayout, use nice alignment. 373 unsigned Align = 1; 374 if (IFI.TD) 375 Align = IFI.TD->getPrefTypeAlignment(AggTy); 376 377 // If the byval had an alignment specified, we *must* use at least that 378 // alignment, as it is required by the byval argument (and uses of the 379 // pointer inside the callee). 380 Align = std::max(Align, ByValAlignment); 381 382 Function *Caller = TheCall->getParent()->getParent(); 383 384 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, PassedValue->getName(), 385 &*Caller->begin()->begin()); 386 // Emit a memcpy. 387 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 388 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 389 Intrinsic::memcpy, 390 Tys); 391 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 392 Value *SrcCast = new BitCastInst(PassedValue, VoidPtrTy, "tmp", TheCall); 393 394 Value *Size; 395 if (IFI.TD == 0) 396 Size = ConstantExpr::getSizeOf(AggTy); 397 else 398 Size = ConstantInt::get(Type::getInt64Ty(Context), 399 IFI.TD->getTypeStoreSize(AggTy)); 400 401 // Always generate a memcpy of alignment 1 here because we don't know 402 // the alignment of the src pointer. Other optimizations can infer 403 // better alignment. 404 Value *CallArgs[] = { 405 DestCast, SrcCast, Size, 406 ConstantInt::get(Type::getInt32Ty(Context), 1), 407 ConstantInt::getFalse(Context) // isVolatile 408 }; 409 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 410 411 // Uses of the argument in the function should use our new alloca 412 // instead. 413 return NewAlloca; 414 } 415 416 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 417 // intrinsic. 418 static bool isUsedByLifetimeMarker(Value *V) { 419 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 420 ++UI) { 421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 422 switch (II->getIntrinsicID()) { 423 default: break; 424 case Intrinsic::lifetime_start: 425 case Intrinsic::lifetime_end: 426 return true; 427 } 428 } 429 } 430 return false; 431 } 432 433 // hasLifetimeMarkers - Check whether the given alloca already has 434 // lifetime.start or lifetime.end intrinsics. 435 static bool hasLifetimeMarkers(AllocaInst *AI) { 436 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 437 if (AI->getType() == Int8PtrTy) 438 return isUsedByLifetimeMarker(AI); 439 440 // Do a scan to find all the casts to i8*. 441 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 442 ++I) { 443 if (I->getType() != Int8PtrTy) continue; 444 if (I->stripPointerCasts() != AI) continue; 445 if (isUsedByLifetimeMarker(*I)) 446 return true; 447 } 448 return false; 449 } 450 451 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 452 /// recursively update InlinedAtEntry of a DebugLoc. 453 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 454 const DebugLoc &InlinedAtDL, 455 LLVMContext &Ctx) { 456 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 457 DebugLoc NewInlinedAtDL 458 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 459 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 460 NewInlinedAtDL.getAsMDNode(Ctx)); 461 } 462 463 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 464 InlinedAtDL.getAsMDNode(Ctx)); 465 } 466 467 /// fixupLineNumbers - Update inlined instructions' line numbers to 468 /// to encode location where these instructions are inlined. 469 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 470 Instruction *TheCall) { 471 DebugLoc TheCallDL = TheCall->getDebugLoc(); 472 if (TheCallDL.isUnknown()) 473 return; 474 475 for (; FI != Fn->end(); ++FI) { 476 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 477 BI != BE; ++BI) { 478 DebugLoc DL = BI->getDebugLoc(); 479 if (!DL.isUnknown()) { 480 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 481 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 482 LLVMContext &Ctx = BI->getContext(); 483 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 484 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 485 InlinedAt, Ctx)); 486 } 487 } 488 } 489 } 490 } 491 492 /// InlineFunction - This function inlines the called function into the basic 493 /// block of the caller. This returns false if it is not possible to inline 494 /// this call. The program is still in a well defined state if this occurs 495 /// though. 496 /// 497 /// Note that this only does one level of inlining. For example, if the 498 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 499 /// exists in the instruction stream. Similarly this will inline a recursive 500 /// function by one level. 501 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 502 bool InsertLifetime) { 503 Instruction *TheCall = CS.getInstruction(); 504 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 505 "Instruction not in function!"); 506 507 // If IFI has any state in it, zap it before we fill it in. 508 IFI.reset(); 509 510 const Function *CalledFunc = CS.getCalledFunction(); 511 if (CalledFunc == 0 || // Can't inline external function or indirect 512 CalledFunc->isDeclaration() || // call, or call to a vararg function! 513 CalledFunc->getFunctionType()->isVarArg()) return false; 514 515 // If the call to the callee is not a tail call, we must clear the 'tail' 516 // flags on any calls that we inline. 517 bool MustClearTailCallFlags = 518 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 519 520 // If the call to the callee cannot throw, set the 'nounwind' flag on any 521 // calls that we inline. 522 bool MarkNoUnwind = CS.doesNotThrow(); 523 524 BasicBlock *OrigBB = TheCall->getParent(); 525 Function *Caller = OrigBB->getParent(); 526 527 // GC poses two hazards to inlining, which only occur when the callee has GC: 528 // 1. If the caller has no GC, then the callee's GC must be propagated to the 529 // caller. 530 // 2. If the caller has a differing GC, it is invalid to inline. 531 if (CalledFunc->hasGC()) { 532 if (!Caller->hasGC()) 533 Caller->setGC(CalledFunc->getGC()); 534 else if (CalledFunc->getGC() != Caller->getGC()) 535 return false; 536 } 537 538 // Get the personality function from the callee if it contains a landing pad. 539 Value *CalleePersonality = 0; 540 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 541 I != E; ++I) 542 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 543 const BasicBlock *BB = II->getUnwindDest(); 544 const LandingPadInst *LP = BB->getLandingPadInst(); 545 CalleePersonality = LP->getPersonalityFn(); 546 break; 547 } 548 549 // Find the personality function used by the landing pads of the caller. If it 550 // exists, then check to see that it matches the personality function used in 551 // the callee. 552 if (CalleePersonality) { 553 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 554 I != E; ++I) 555 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 556 const BasicBlock *BB = II->getUnwindDest(); 557 const LandingPadInst *LP = BB->getLandingPadInst(); 558 559 // If the personality functions match, then we can perform the 560 // inlining. Otherwise, we can't inline. 561 // TODO: This isn't 100% true. Some personality functions are proper 562 // supersets of others and can be used in place of the other. 563 if (LP->getPersonalityFn() != CalleePersonality) 564 return false; 565 566 break; 567 } 568 } 569 570 // Get an iterator to the last basic block in the function, which will have 571 // the new function inlined after it. 572 Function::iterator LastBlock = &Caller->back(); 573 574 // Make sure to capture all of the return instructions from the cloned 575 // function. 576 SmallVector<ReturnInst*, 8> Returns; 577 ClonedCodeInfo InlinedFunctionInfo; 578 Function::iterator FirstNewBlock; 579 580 { // Scope to destroy VMap after cloning. 581 ValueToValueMapTy VMap; 582 583 assert(CalledFunc->arg_size() == CS.arg_size() && 584 "No varargs calls can be inlined!"); 585 586 // Calculate the vector of arguments to pass into the function cloner, which 587 // matches up the formal to the actual argument values. 588 CallSite::arg_iterator AI = CS.arg_begin(); 589 unsigned ArgNo = 0; 590 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 591 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 592 Value *ActualArg = *AI; 593 const Argument *Arg = I; 594 595 // When byval arguments actually inlined, we need to make the copy implied 596 // by them explicit. However, we don't do this if the callee is readonly 597 // or readnone, because the copy would be unneeded: the callee doesn't 598 // modify the struct. 599 if (CS.isByValArgument(ArgNo)) { 600 ActualArg = HandleByValArgument(ActualArg, Arg, TheCall, CalledFunc, IFI, 601 CalledFunc->getParamAlignment(ArgNo+1)); 602 603 // Calls that we inline may use the new alloca, so we need to clear 604 // their 'tail' flags if HandleByValArgument introduced a new alloca and 605 // the callee has calls. 606 MustClearTailCallFlags |= ActualArg != *AI; 607 } 608 609 VMap[I] = ActualArg; 610 } 611 612 // We want the inliner to prune the code as it copies. We would LOVE to 613 // have no dead or constant instructions leftover after inlining occurs 614 // (which can happen, e.g., because an argument was constant), but we'll be 615 // happy with whatever the cloner can do. 616 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 617 /*ModuleLevelChanges=*/false, Returns, ".i", 618 &InlinedFunctionInfo, IFI.TD, TheCall); 619 620 // Remember the first block that is newly cloned over. 621 FirstNewBlock = LastBlock; ++FirstNewBlock; 622 623 // Update the callgraph if requested. 624 if (IFI.CG) 625 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 626 627 // Update inlined instructions' line number information. 628 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 629 } 630 631 // If there are any alloca instructions in the block that used to be the entry 632 // block for the callee, move them to the entry block of the caller. First 633 // calculate which instruction they should be inserted before. We insert the 634 // instructions at the end of the current alloca list. 635 { 636 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 637 for (BasicBlock::iterator I = FirstNewBlock->begin(), 638 E = FirstNewBlock->end(); I != E; ) { 639 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 640 if (AI == 0) continue; 641 642 // If the alloca is now dead, remove it. This often occurs due to code 643 // specialization. 644 if (AI->use_empty()) { 645 AI->eraseFromParent(); 646 continue; 647 } 648 649 if (!isa<Constant>(AI->getArraySize())) 650 continue; 651 652 // Keep track of the static allocas that we inline into the caller. 653 IFI.StaticAllocas.push_back(AI); 654 655 // Scan for the block of allocas that we can move over, and move them 656 // all at once. 657 while (isa<AllocaInst>(I) && 658 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 659 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 660 ++I; 661 } 662 663 // Transfer all of the allocas over in a block. Using splice means 664 // that the instructions aren't removed from the symbol table, then 665 // reinserted. 666 Caller->getEntryBlock().getInstList().splice(InsertPoint, 667 FirstNewBlock->getInstList(), 668 AI, I); 669 } 670 } 671 672 // Leave lifetime markers for the static alloca's, scoping them to the 673 // function we just inlined. 674 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 675 IRBuilder<> builder(FirstNewBlock->begin()); 676 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 677 AllocaInst *AI = IFI.StaticAllocas[ai]; 678 679 // If the alloca is already scoped to something smaller than the whole 680 // function then there's no need to add redundant, less accurate markers. 681 if (hasLifetimeMarkers(AI)) 682 continue; 683 684 // Try to determine the size of the allocation. 685 ConstantInt *AllocaSize = 0; 686 if (ConstantInt *AIArraySize = 687 dyn_cast<ConstantInt>(AI->getArraySize())) { 688 if (IFI.TD) { 689 Type *AllocaType = AI->getAllocatedType(); 690 uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType); 691 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 692 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 693 // Check that array size doesn't saturate uint64_t and doesn't 694 // overflow when it's multiplied by type size. 695 if (AllocaArraySize != ~0ULL && 696 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 697 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 698 AllocaArraySize * AllocaTypeSize); 699 } 700 } 701 } 702 703 builder.CreateLifetimeStart(AI, AllocaSize); 704 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 705 IRBuilder<> builder(Returns[ri]); 706 builder.CreateLifetimeEnd(AI, AllocaSize); 707 } 708 } 709 } 710 711 // If the inlined code contained dynamic alloca instructions, wrap the inlined 712 // code with llvm.stacksave/llvm.stackrestore intrinsics. 713 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 714 Module *M = Caller->getParent(); 715 // Get the two intrinsics we care about. 716 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 717 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 718 719 // Insert the llvm.stacksave. 720 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 721 .CreateCall(StackSave, "savedstack"); 722 723 // Insert a call to llvm.stackrestore before any return instructions in the 724 // inlined function. 725 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 726 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 727 } 728 } 729 730 // If we are inlining tail call instruction through a call site that isn't 731 // marked 'tail', we must remove the tail marker for any calls in the inlined 732 // code. Also, calls inlined through a 'nounwind' call site should be marked 733 // 'nounwind'. 734 if (InlinedFunctionInfo.ContainsCalls && 735 (MustClearTailCallFlags || MarkNoUnwind)) { 736 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 737 BB != E; ++BB) 738 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 739 if (CallInst *CI = dyn_cast<CallInst>(I)) { 740 if (MustClearTailCallFlags) 741 CI->setTailCall(false); 742 if (MarkNoUnwind) 743 CI->setDoesNotThrow(); 744 } 745 } 746 747 // If we are inlining for an invoke instruction, we must make sure to rewrite 748 // any call instructions into invoke instructions. 749 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 750 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 751 752 // If we cloned in _exactly one_ basic block, and if that block ends in a 753 // return instruction, we splice the body of the inlined callee directly into 754 // the calling basic block. 755 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 756 // Move all of the instructions right before the call. 757 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 758 FirstNewBlock->begin(), FirstNewBlock->end()); 759 // Remove the cloned basic block. 760 Caller->getBasicBlockList().pop_back(); 761 762 // If the call site was an invoke instruction, add a branch to the normal 763 // destination. 764 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 765 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 766 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 767 } 768 769 // If the return instruction returned a value, replace uses of the call with 770 // uses of the returned value. 771 if (!TheCall->use_empty()) { 772 ReturnInst *R = Returns[0]; 773 if (TheCall == R->getReturnValue()) 774 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 775 else 776 TheCall->replaceAllUsesWith(R->getReturnValue()); 777 } 778 // Since we are now done with the Call/Invoke, we can delete it. 779 TheCall->eraseFromParent(); 780 781 // Since we are now done with the return instruction, delete it also. 782 Returns[0]->eraseFromParent(); 783 784 // We are now done with the inlining. 785 return true; 786 } 787 788 // Otherwise, we have the normal case, of more than one block to inline or 789 // multiple return sites. 790 791 // We want to clone the entire callee function into the hole between the 792 // "starter" and "ender" blocks. How we accomplish this depends on whether 793 // this is an invoke instruction or a call instruction. 794 BasicBlock *AfterCallBB; 795 BranchInst *CreatedBranchToNormalDest = NULL; 796 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 797 798 // Add an unconditional branch to make this look like the CallInst case... 799 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 800 801 // Split the basic block. This guarantees that no PHI nodes will have to be 802 // updated due to new incoming edges, and make the invoke case more 803 // symmetric to the call case. 804 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 805 CalledFunc->getName()+".exit"); 806 807 } else { // It's a call 808 // If this is a call instruction, we need to split the basic block that 809 // the call lives in. 810 // 811 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 812 CalledFunc->getName()+".exit"); 813 } 814 815 // Change the branch that used to go to AfterCallBB to branch to the first 816 // basic block of the inlined function. 817 // 818 TerminatorInst *Br = OrigBB->getTerminator(); 819 assert(Br && Br->getOpcode() == Instruction::Br && 820 "splitBasicBlock broken!"); 821 Br->setOperand(0, FirstNewBlock); 822 823 824 // Now that the function is correct, make it a little bit nicer. In 825 // particular, move the basic blocks inserted from the end of the function 826 // into the space made by splitting the source basic block. 827 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 828 FirstNewBlock, Caller->end()); 829 830 // Handle all of the return instructions that we just cloned in, and eliminate 831 // any users of the original call/invoke instruction. 832 Type *RTy = CalledFunc->getReturnType(); 833 834 PHINode *PHI = 0; 835 if (Returns.size() > 1) { 836 // The PHI node should go at the front of the new basic block to merge all 837 // possible incoming values. 838 if (!TheCall->use_empty()) { 839 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 840 AfterCallBB->begin()); 841 // Anything that used the result of the function call should now use the 842 // PHI node as their operand. 843 TheCall->replaceAllUsesWith(PHI); 844 } 845 846 // Loop over all of the return instructions adding entries to the PHI node 847 // as appropriate. 848 if (PHI) { 849 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 850 ReturnInst *RI = Returns[i]; 851 assert(RI->getReturnValue()->getType() == PHI->getType() && 852 "Ret value not consistent in function!"); 853 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 854 } 855 } 856 857 858 // Add a branch to the merge points and remove return instructions. 859 DebugLoc Loc; 860 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 861 ReturnInst *RI = Returns[i]; 862 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 863 Loc = RI->getDebugLoc(); 864 BI->setDebugLoc(Loc); 865 RI->eraseFromParent(); 866 } 867 // We need to set the debug location to *somewhere* inside the 868 // inlined function. The line number may be nonsensical, but the 869 // instruction will at least be associated with the right 870 // function. 871 if (CreatedBranchToNormalDest) 872 CreatedBranchToNormalDest->setDebugLoc(Loc); 873 } else if (!Returns.empty()) { 874 // Otherwise, if there is exactly one return value, just replace anything 875 // using the return value of the call with the computed value. 876 if (!TheCall->use_empty()) { 877 if (TheCall == Returns[0]->getReturnValue()) 878 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 879 else 880 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 881 } 882 883 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 884 BasicBlock *ReturnBB = Returns[0]->getParent(); 885 ReturnBB->replaceAllUsesWith(AfterCallBB); 886 887 // Splice the code from the return block into the block that it will return 888 // to, which contains the code that was after the call. 889 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 890 ReturnBB->getInstList()); 891 892 if (CreatedBranchToNormalDest) 893 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 894 895 // Delete the return instruction now and empty ReturnBB now. 896 Returns[0]->eraseFromParent(); 897 ReturnBB->eraseFromParent(); 898 } else if (!TheCall->use_empty()) { 899 // No returns, but something is using the return value of the call. Just 900 // nuke the result. 901 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 902 } 903 904 // Since we are now done with the Call/Invoke, we can delete it. 905 TheCall->eraseFromParent(); 906 907 // We should always be able to fold the entry block of the function into the 908 // single predecessor of the block... 909 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 910 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 911 912 // Splice the code entry block into calling block, right before the 913 // unconditional branch. 914 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 915 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 916 917 // Remove the unconditional branch. 918 OrigBB->getInstList().erase(Br); 919 920 // Now we can remove the CalleeEntry block, which is now empty. 921 Caller->getBasicBlockList().erase(CalleeEntry); 922 923 // If we inserted a phi node, check to see if it has a single value (e.g. all 924 // the entries are the same or undef). If so, remove the PHI so it doesn't 925 // block other optimizations. 926 if (PHI) { 927 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 928 PHI->replaceAllUsesWith(V); 929 PHI->eraseFromParent(); 930 } 931 } 932 933 return true; 934 } 935