1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining a landing pad. 67 class LandingPadInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 LandingPadInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// Forward the 'resume' instruction to the caller's landing pad block. 103 /// When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// Add incoming-PHI values to the unwind destination block for the given 111 /// basic block, using the values for the original invoke's source block. 112 void addIncomingPHIValuesFor(BasicBlock *BB) const { 113 addIncomingPHIValuesForInto(BB, OuterResumeDest); 114 } 115 116 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 117 BasicBlock::iterator I = dest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *phi = cast<PHINode>(I); 120 phi->addIncoming(UnwindDestPHIValues[i], src); 121 } 122 } 123 }; 124 } 125 126 /// Get or create a target for the branch from ResumeInsts. 127 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 128 if (InnerResumeDest) return InnerResumeDest; 129 130 // Split the landing pad. 131 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 132 InnerResumeDest = 133 OuterResumeDest->splitBasicBlock(SplitPoint, 134 OuterResumeDest->getName() + ".body"); 135 136 // The number of incoming edges we expect to the inner landing pad. 137 const unsigned PHICapacity = 2; 138 139 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 140 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 141 BasicBlock::iterator I = OuterResumeDest->begin(); 142 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 143 PHINode *OuterPHI = cast<PHINode>(I); 144 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 145 OuterPHI->getName() + ".lpad-body", 146 InsertPoint); 147 OuterPHI->replaceAllUsesWith(InnerPHI); 148 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 149 } 150 151 // Create a PHI for the exception values. 152 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 153 "eh.lpad-body", InsertPoint); 154 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 155 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 156 157 // All done. 158 return InnerResumeDest; 159 } 160 161 /// Forward the 'resume' instruction to the caller's landing pad block. 162 /// When the landing pad block has only one predecessor, this is a simple 163 /// branch. When there is more than one predecessor, we need to split the 164 /// landing pad block after the landingpad instruction and jump to there. 165 void LandingPadInliningInfo::forwardResume( 166 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 167 BasicBlock *Dest = getInnerResumeDest(); 168 BasicBlock *Src = RI->getParent(); 169 170 BranchInst::Create(Dest, Src); 171 172 // Update the PHIs in the destination. They were inserted in an order which 173 // makes this work. 174 addIncomingPHIValuesForInto(Src, Dest); 175 176 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 177 RI->eraseFromParent(); 178 } 179 180 /// When we inline a basic block into an invoke, 181 /// we have to turn all of the calls that can throw into invokes. 182 /// This function analyze BB to see if there are any calls, and if so, 183 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 184 /// nodes in that block with the values specified in InvokeDestPHIValues. 185 static BasicBlock * 186 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { 187 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 188 Instruction *I = BBI++; 189 190 // We only need to check for function calls: inlined invoke 191 // instructions require no special handling. 192 CallInst *CI = dyn_cast<CallInst>(I); 193 194 // If this call cannot unwind, don't convert it to an invoke. 195 // Inline asm calls cannot throw. 196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 210 InvokeArgs, CI->getName(), BB); 211 II->setDebugLoc(CI->getDebugLoc()); 212 II->setCallingConv(CI->getCallingConv()); 213 II->setAttributes(CI->getAttributes()); 214 215 // Make sure that anything using the call now uses the invoke! This also 216 // updates the CallGraph if present, because it uses a WeakVH. 217 CI->replaceAllUsesWith(II); 218 219 // Delete the original call 220 Split->getInstList().pop_front(); 221 return BB; 222 } 223 return nullptr; 224 } 225 226 /// If we inlined an invoke site, we need to convert calls 227 /// in the body of the inlined function into invokes. 228 /// 229 /// II is the invoke instruction being inlined. FirstNewBlock is the first 230 /// block of the inlined code (the last block is the end of the function), 231 /// and InlineCodeInfo is information about the code that got inlined. 232 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 233 ClonedCodeInfo &InlinedCodeInfo) { 234 BasicBlock *InvokeDest = II->getUnwindDest(); 235 236 Function *Caller = FirstNewBlock->getParent(); 237 238 // The inlined code is currently at the end of the function, scan from the 239 // start of the inlined code to its end, checking for stuff we need to 240 // rewrite. 241 LandingPadInliningInfo Invoke(II); 242 243 // Get all of the inlined landing pad instructions. 244 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 245 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 246 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 247 InlinedLPads.insert(II->getLandingPadInst()); 248 249 // Append the clauses from the outer landing pad instruction into the inlined 250 // landing pad instructions. 251 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 252 for (LandingPadInst *InlinedLPad : InlinedLPads) { 253 unsigned OuterNum = OuterLPad->getNumClauses(); 254 InlinedLPad->reserveClauses(OuterNum); 255 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 256 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 257 if (OuterLPad->isCleanup()) 258 InlinedLPad->setCleanup(true); 259 } 260 261 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 262 if (InlinedCodeInfo.ContainsCalls) 263 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 264 BB, Invoke.getOuterResumeDest())) 265 // Update any PHI nodes in the exceptional block to indicate that there 266 // is now a new entry in them. 267 Invoke.addIncomingPHIValuesFor(NewBB); 268 269 // Forward any resumes that are remaining here. 270 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 271 Invoke.forwardResume(RI, InlinedLPads); 272 } 273 274 // Now that everything is happy, we have one final detail. The PHI nodes in 275 // the exception destination block still have entries due to the original 276 // invoke instruction. Eliminate these entries (which might even delete the 277 // PHI node) now. 278 InvokeDest->removePredecessor(II->getParent()); 279 } 280 281 /// If we inlined an invoke site, we need to convert calls 282 /// in the body of the inlined function into invokes. 283 /// 284 /// II is the invoke instruction being inlined. FirstNewBlock is the first 285 /// block of the inlined code (the last block is the end of the function), 286 /// and InlineCodeInfo is information about the code that got inlined. 287 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 288 ClonedCodeInfo &InlinedCodeInfo) { 289 BasicBlock *UnwindDest = II->getUnwindDest(); 290 Function *Caller = FirstNewBlock->getParent(); 291 292 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 293 294 // If there are PHI nodes in the unwind destination block, we need to keep 295 // track of which values came into them from the invoke before removing the 296 // edge from this block. 297 SmallVector<Value *, 8> UnwindDestPHIValues; 298 llvm::BasicBlock *InvokeBB = II->getParent(); 299 for (Instruction &I : *UnwindDest) { 300 // Save the value to use for this edge. 301 PHINode *PHI = dyn_cast<PHINode>(&I); 302 if (!PHI) 303 break; 304 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 305 } 306 307 // Add incoming-PHI values to the unwind destination block for the given basic 308 // block, using the values for the original invoke's source block. 309 auto UpdatePHINodes = [&](BasicBlock *Src) { 310 BasicBlock::iterator I = UnwindDest->begin(); 311 for (Value *V : UnwindDestPHIValues) { 312 PHINode *PHI = cast<PHINode>(I); 313 PHI->addIncoming(V, Src); 314 ++I; 315 } 316 }; 317 318 // Forward EH terminator instructions to the caller's invoke destination. 319 // This is as simple as connect all the instructions which 'unwind to caller' 320 // to the invoke destination. 321 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 322 ++BB) { 323 Instruction *I = BB->getFirstNonPHI(); 324 if (I->isEHPad()) { 325 if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) { 326 if (CEPI->unwindsToCaller()) { 327 CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI); 328 CEPI->eraseFromParent(); 329 UpdatePHINodes(BB); 330 } 331 } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) { 332 if (TPI->unwindsToCaller()) { 333 SmallVector<Value *, 3> TerminatePadArgs; 334 for (Value *Operand : TPI->operands()) 335 TerminatePadArgs.push_back(Operand); 336 TerminatePadInst::Create(TPI->getContext(), UnwindDest, TPI); 337 TPI->eraseFromParent(); 338 UpdatePHINodes(BB); 339 } 340 } else { 341 assert(isa<CatchPadInst>(I) || isa<CleanupPadInst>(I)); 342 } 343 } 344 345 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 346 if (CRI->unwindsToCaller()) { 347 CleanupReturnInst::Create(CRI->getContext(), CRI->getReturnValue(), 348 UnwindDest, CRI); 349 CRI->eraseFromParent(); 350 UpdatePHINodes(BB); 351 } 352 } 353 } 354 355 if (InlinedCodeInfo.ContainsCalls) 356 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 357 ++BB) 358 if (BasicBlock *NewBB = 359 HandleCallsInBlockInlinedThroughInvoke(BB, UnwindDest)) 360 // Update any PHI nodes in the exceptional block to indicate that there 361 // is now a new entry in them. 362 UpdatePHINodes(NewBB); 363 364 // Now that everything is happy, we have one final detail. The PHI nodes in 365 // the exception destination block still have entries due to the original 366 // invoke instruction. Eliminate these entries (which might even delete the 367 // PHI node) now. 368 UnwindDest->removePredecessor(InvokeBB); 369 } 370 371 /// When inlining a function that contains noalias scope metadata, 372 /// this metadata needs to be cloned so that the inlined blocks 373 /// have different "unqiue scopes" at every call site. Were this not done, then 374 /// aliasing scopes from a function inlined into a caller multiple times could 375 /// not be differentiated (and this would lead to miscompiles because the 376 /// non-aliasing property communicated by the metadata could have 377 /// call-site-specific control dependencies). 378 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 379 const Function *CalledFunc = CS.getCalledFunction(); 380 SetVector<const MDNode *> MD; 381 382 // Note: We could only clone the metadata if it is already used in the 383 // caller. I'm omitting that check here because it might confuse 384 // inter-procedural alias analysis passes. We can revisit this if it becomes 385 // an efficiency or overhead problem. 386 387 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 388 I != IE; ++I) 389 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 390 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 391 MD.insert(M); 392 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 393 MD.insert(M); 394 } 395 396 if (MD.empty()) 397 return; 398 399 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 400 // the set. 401 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 402 while (!Queue.empty()) { 403 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 404 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 405 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 406 if (MD.insert(M1)) 407 Queue.push_back(M1); 408 } 409 410 // Now we have a complete set of all metadata in the chains used to specify 411 // the noalias scopes and the lists of those scopes. 412 SmallVector<TempMDTuple, 16> DummyNodes; 413 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 414 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 415 I != IE; ++I) { 416 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 417 MDMap[*I].reset(DummyNodes.back().get()); 418 } 419 420 // Create new metadata nodes to replace the dummy nodes, replacing old 421 // metadata references with either a dummy node or an already-created new 422 // node. 423 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 424 I != IE; ++I) { 425 SmallVector<Metadata *, 4> NewOps; 426 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 427 const Metadata *V = (*I)->getOperand(i); 428 if (const MDNode *M = dyn_cast<MDNode>(V)) 429 NewOps.push_back(MDMap[M]); 430 else 431 NewOps.push_back(const_cast<Metadata *>(V)); 432 } 433 434 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 435 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 436 assert(TempM->isTemporary() && "Expected temporary node"); 437 438 TempM->replaceAllUsesWith(NewM); 439 } 440 441 // Now replace the metadata in the new inlined instructions with the 442 // repacements from the map. 443 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 444 VMI != VMIE; ++VMI) { 445 if (!VMI->second) 446 continue; 447 448 Instruction *NI = dyn_cast<Instruction>(VMI->second); 449 if (!NI) 450 continue; 451 452 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 453 MDNode *NewMD = MDMap[M]; 454 // If the call site also had alias scope metadata (a list of scopes to 455 // which instructions inside it might belong), propagate those scopes to 456 // the inlined instructions. 457 if (MDNode *CSM = 458 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 459 NewMD = MDNode::concatenate(NewMD, CSM); 460 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 461 } else if (NI->mayReadOrWriteMemory()) { 462 if (MDNode *M = 463 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 464 NI->setMetadata(LLVMContext::MD_alias_scope, M); 465 } 466 467 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 468 MDNode *NewMD = MDMap[M]; 469 // If the call site also had noalias metadata (a list of scopes with 470 // which instructions inside it don't alias), propagate those scopes to 471 // the inlined instructions. 472 if (MDNode *CSM = 473 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 474 NewMD = MDNode::concatenate(NewMD, CSM); 475 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 476 } else if (NI->mayReadOrWriteMemory()) { 477 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 478 NI->setMetadata(LLVMContext::MD_noalias, M); 479 } 480 } 481 } 482 483 /// If the inlined function has noalias arguments, 484 /// then add new alias scopes for each noalias argument, tag the mapped noalias 485 /// parameters with noalias metadata specifying the new scope, and tag all 486 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 487 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 488 const DataLayout &DL, AliasAnalysis *AA) { 489 if (!EnableNoAliasConversion) 490 return; 491 492 const Function *CalledFunc = CS.getCalledFunction(); 493 SmallVector<const Argument *, 4> NoAliasArgs; 494 495 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 496 E = CalledFunc->arg_end(); I != E; ++I) { 497 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 498 NoAliasArgs.push_back(I); 499 } 500 501 if (NoAliasArgs.empty()) 502 return; 503 504 // To do a good job, if a noalias variable is captured, we need to know if 505 // the capture point dominates the particular use we're considering. 506 DominatorTree DT; 507 DT.recalculate(const_cast<Function&>(*CalledFunc)); 508 509 // noalias indicates that pointer values based on the argument do not alias 510 // pointer values which are not based on it. So we add a new "scope" for each 511 // noalias function argument. Accesses using pointers based on that argument 512 // become part of that alias scope, accesses using pointers not based on that 513 // argument are tagged as noalias with that scope. 514 515 DenseMap<const Argument *, MDNode *> NewScopes; 516 MDBuilder MDB(CalledFunc->getContext()); 517 518 // Create a new scope domain for this function. 519 MDNode *NewDomain = 520 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 521 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 522 const Argument *A = NoAliasArgs[i]; 523 524 std::string Name = CalledFunc->getName(); 525 if (A->hasName()) { 526 Name += ": %"; 527 Name += A->getName(); 528 } else { 529 Name += ": argument "; 530 Name += utostr(i); 531 } 532 533 // Note: We always create a new anonymous root here. This is true regardless 534 // of the linkage of the callee because the aliasing "scope" is not just a 535 // property of the callee, but also all control dependencies in the caller. 536 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 537 NewScopes.insert(std::make_pair(A, NewScope)); 538 } 539 540 // Iterate over all new instructions in the map; for all memory-access 541 // instructions, add the alias scope metadata. 542 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 543 VMI != VMIE; ++VMI) { 544 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 545 if (!VMI->second) 546 continue; 547 548 Instruction *NI = dyn_cast<Instruction>(VMI->second); 549 if (!NI) 550 continue; 551 552 bool IsArgMemOnlyCall = false, IsFuncCall = false; 553 SmallVector<const Value *, 2> PtrArgs; 554 555 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 556 PtrArgs.push_back(LI->getPointerOperand()); 557 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 558 PtrArgs.push_back(SI->getPointerOperand()); 559 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 560 PtrArgs.push_back(VAAI->getPointerOperand()); 561 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 562 PtrArgs.push_back(CXI->getPointerOperand()); 563 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 564 PtrArgs.push_back(RMWI->getPointerOperand()); 565 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 566 // If we know that the call does not access memory, then we'll still 567 // know that about the inlined clone of this call site, and we don't 568 // need to add metadata. 569 if (ICS.doesNotAccessMemory()) 570 continue; 571 572 IsFuncCall = true; 573 if (AA) { 574 FunctionModRefBehavior MRB = AA->getModRefBehavior(ICS); 575 if (MRB == FMRB_OnlyAccessesArgumentPointees || 576 MRB == FMRB_OnlyReadsArgumentPointees) 577 IsArgMemOnlyCall = true; 578 } 579 580 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 581 AE = ICS.arg_end(); AI != AE; ++AI) { 582 // We need to check the underlying objects of all arguments, not just 583 // the pointer arguments, because we might be passing pointers as 584 // integers, etc. 585 // However, if we know that the call only accesses pointer arguments, 586 // then we only need to check the pointer arguments. 587 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 588 continue; 589 590 PtrArgs.push_back(*AI); 591 } 592 } 593 594 // If we found no pointers, then this instruction is not suitable for 595 // pairing with an instruction to receive aliasing metadata. 596 // However, if this is a call, this we might just alias with none of the 597 // noalias arguments. 598 if (PtrArgs.empty() && !IsFuncCall) 599 continue; 600 601 // It is possible that there is only one underlying object, but you 602 // need to go through several PHIs to see it, and thus could be 603 // repeated in the Objects list. 604 SmallPtrSet<const Value *, 4> ObjSet; 605 SmallVector<Metadata *, 4> Scopes, NoAliases; 606 607 SmallSetVector<const Argument *, 4> NAPtrArgs; 608 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 609 SmallVector<Value *, 4> Objects; 610 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 611 Objects, DL, /* MaxLookup = */ 0); 612 613 for (Value *O : Objects) 614 ObjSet.insert(O); 615 } 616 617 // Figure out if we're derived from anything that is not a noalias 618 // argument. 619 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 620 for (const Value *V : ObjSet) { 621 // Is this value a constant that cannot be derived from any pointer 622 // value (we need to exclude constant expressions, for example, that 623 // are formed from arithmetic on global symbols). 624 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 625 isa<ConstantPointerNull>(V) || 626 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 627 if (IsNonPtrConst) 628 continue; 629 630 // If this is anything other than a noalias argument, then we cannot 631 // completely describe the aliasing properties using alias.scope 632 // metadata (and, thus, won't add any). 633 if (const Argument *A = dyn_cast<Argument>(V)) { 634 if (!A->hasNoAliasAttr()) 635 UsesAliasingPtr = true; 636 } else { 637 UsesAliasingPtr = true; 638 } 639 640 // If this is not some identified function-local object (which cannot 641 // directly alias a noalias argument), or some other argument (which, 642 // by definition, also cannot alias a noalias argument), then we could 643 // alias a noalias argument that has been captured). 644 if (!isa<Argument>(V) && 645 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 646 CanDeriveViaCapture = true; 647 } 648 649 // A function call can always get captured noalias pointers (via other 650 // parameters, globals, etc.). 651 if (IsFuncCall && !IsArgMemOnlyCall) 652 CanDeriveViaCapture = true; 653 654 // First, we want to figure out all of the sets with which we definitely 655 // don't alias. Iterate over all noalias set, and add those for which: 656 // 1. The noalias argument is not in the set of objects from which we 657 // definitely derive. 658 // 2. The noalias argument has not yet been captured. 659 // An arbitrary function that might load pointers could see captured 660 // noalias arguments via other noalias arguments or globals, and so we 661 // must always check for prior capture. 662 for (const Argument *A : NoAliasArgs) { 663 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 664 // It might be tempting to skip the 665 // PointerMayBeCapturedBefore check if 666 // A->hasNoCaptureAttr() is true, but this is 667 // incorrect because nocapture only guarantees 668 // that no copies outlive the function, not 669 // that the value cannot be locally captured. 670 !PointerMayBeCapturedBefore(A, 671 /* ReturnCaptures */ false, 672 /* StoreCaptures */ false, I, &DT))) 673 NoAliases.push_back(NewScopes[A]); 674 } 675 676 if (!NoAliases.empty()) 677 NI->setMetadata(LLVMContext::MD_noalias, 678 MDNode::concatenate( 679 NI->getMetadata(LLVMContext::MD_noalias), 680 MDNode::get(CalledFunc->getContext(), NoAliases))); 681 682 // Next, we want to figure out all of the sets to which we might belong. 683 // We might belong to a set if the noalias argument is in the set of 684 // underlying objects. If there is some non-noalias argument in our list 685 // of underlying objects, then we cannot add a scope because the fact 686 // that some access does not alias with any set of our noalias arguments 687 // cannot itself guarantee that it does not alias with this access 688 // (because there is some pointer of unknown origin involved and the 689 // other access might also depend on this pointer). We also cannot add 690 // scopes to arbitrary functions unless we know they don't access any 691 // non-parameter pointer-values. 692 bool CanAddScopes = !UsesAliasingPtr; 693 if (CanAddScopes && IsFuncCall) 694 CanAddScopes = IsArgMemOnlyCall; 695 696 if (CanAddScopes) 697 for (const Argument *A : NoAliasArgs) { 698 if (ObjSet.count(A)) 699 Scopes.push_back(NewScopes[A]); 700 } 701 702 if (!Scopes.empty()) 703 NI->setMetadata( 704 LLVMContext::MD_alias_scope, 705 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 706 MDNode::get(CalledFunc->getContext(), Scopes))); 707 } 708 } 709 } 710 711 /// If the inlined function has non-byval align arguments, then 712 /// add @llvm.assume-based alignment assumptions to preserve this information. 713 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 714 if (!PreserveAlignmentAssumptions) 715 return; 716 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 717 718 // To avoid inserting redundant assumptions, we should check for assumptions 719 // already in the caller. To do this, we might need a DT of the caller. 720 DominatorTree DT; 721 bool DTCalculated = false; 722 723 Function *CalledFunc = CS.getCalledFunction(); 724 for (Function::arg_iterator I = CalledFunc->arg_begin(), 725 E = CalledFunc->arg_end(); 726 I != E; ++I) { 727 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 728 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 729 if (!DTCalculated) { 730 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 731 ->getParent())); 732 DTCalculated = true; 733 } 734 735 // If we can already prove the asserted alignment in the context of the 736 // caller, then don't bother inserting the assumption. 737 Value *Arg = CS.getArgument(I->getArgNo()); 738 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 739 &IFI.ACT->getAssumptionCache(*CalledFunc), 740 &DT) >= Align) 741 continue; 742 743 IRBuilder<>(CS.getInstruction()) 744 .CreateAlignmentAssumption(DL, Arg, Align); 745 } 746 } 747 } 748 749 /// Once we have cloned code over from a callee into the caller, 750 /// update the specified callgraph to reflect the changes we made. 751 /// Note that it's possible that not all code was copied over, so only 752 /// some edges of the callgraph may remain. 753 static void UpdateCallGraphAfterInlining(CallSite CS, 754 Function::iterator FirstNewBlock, 755 ValueToValueMapTy &VMap, 756 InlineFunctionInfo &IFI) { 757 CallGraph &CG = *IFI.CG; 758 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 759 const Function *Callee = CS.getCalledFunction(); 760 CallGraphNode *CalleeNode = CG[Callee]; 761 CallGraphNode *CallerNode = CG[Caller]; 762 763 // Since we inlined some uninlined call sites in the callee into the caller, 764 // add edges from the caller to all of the callees of the callee. 765 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 766 767 // Consider the case where CalleeNode == CallerNode. 768 CallGraphNode::CalledFunctionsVector CallCache; 769 if (CalleeNode == CallerNode) { 770 CallCache.assign(I, E); 771 I = CallCache.begin(); 772 E = CallCache.end(); 773 } 774 775 for (; I != E; ++I) { 776 const Value *OrigCall = I->first; 777 778 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 779 // Only copy the edge if the call was inlined! 780 if (VMI == VMap.end() || VMI->second == nullptr) 781 continue; 782 783 // If the call was inlined, but then constant folded, there is no edge to 784 // add. Check for this case. 785 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 786 if (!NewCall) 787 continue; 788 789 // We do not treat intrinsic calls like real function calls because we 790 // expect them to become inline code; do not add an edge for an intrinsic. 791 CallSite CS = CallSite(NewCall); 792 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 793 continue; 794 795 // Remember that this call site got inlined for the client of 796 // InlineFunction. 797 IFI.InlinedCalls.push_back(NewCall); 798 799 // It's possible that inlining the callsite will cause it to go from an 800 // indirect to a direct call by resolving a function pointer. If this 801 // happens, set the callee of the new call site to a more precise 802 // destination. This can also happen if the call graph node of the caller 803 // was just unnecessarily imprecise. 804 if (!I->second->getFunction()) 805 if (Function *F = CallSite(NewCall).getCalledFunction()) { 806 // Indirect call site resolved to direct call. 807 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 808 809 continue; 810 } 811 812 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 813 } 814 815 // Update the call graph by deleting the edge from Callee to Caller. We must 816 // do this after the loop above in case Caller and Callee are the same. 817 CallerNode->removeCallEdgeFor(CS); 818 } 819 820 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 821 BasicBlock *InsertBlock, 822 InlineFunctionInfo &IFI) { 823 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 824 IRBuilder<> Builder(InsertBlock->begin()); 825 826 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 827 828 // Always generate a memcpy of alignment 1 here because we don't know 829 // the alignment of the src pointer. Other optimizations can infer 830 // better alignment. 831 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 832 } 833 834 /// When inlining a call site that has a byval argument, 835 /// we have to make the implicit memcpy explicit by adding it. 836 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 837 const Function *CalledFunc, 838 InlineFunctionInfo &IFI, 839 unsigned ByValAlignment) { 840 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 841 Type *AggTy = ArgTy->getElementType(); 842 843 Function *Caller = TheCall->getParent()->getParent(); 844 845 // If the called function is readonly, then it could not mutate the caller's 846 // copy of the byval'd memory. In this case, it is safe to elide the copy and 847 // temporary. 848 if (CalledFunc->onlyReadsMemory()) { 849 // If the byval argument has a specified alignment that is greater than the 850 // passed in pointer, then we either have to round up the input pointer or 851 // give up on this transformation. 852 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 853 return Arg; 854 855 const DataLayout &DL = Caller->getParent()->getDataLayout(); 856 857 // If the pointer is already known to be sufficiently aligned, or if we can 858 // round it up to a larger alignment, then we don't need a temporary. 859 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 860 &IFI.ACT->getAssumptionCache(*Caller)) >= 861 ByValAlignment) 862 return Arg; 863 864 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 865 // for code quality, but rarely happens and is required for correctness. 866 } 867 868 // Create the alloca. If we have DataLayout, use nice alignment. 869 unsigned Align = 870 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 871 872 // If the byval had an alignment specified, we *must* use at least that 873 // alignment, as it is required by the byval argument (and uses of the 874 // pointer inside the callee). 875 Align = std::max(Align, ByValAlignment); 876 877 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 878 &*Caller->begin()->begin()); 879 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 880 881 // Uses of the argument in the function should use our new alloca 882 // instead. 883 return NewAlloca; 884 } 885 886 // Check whether this Value is used by a lifetime intrinsic. 887 static bool isUsedByLifetimeMarker(Value *V) { 888 for (User *U : V->users()) { 889 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 890 switch (II->getIntrinsicID()) { 891 default: break; 892 case Intrinsic::lifetime_start: 893 case Intrinsic::lifetime_end: 894 return true; 895 } 896 } 897 } 898 return false; 899 } 900 901 // Check whether the given alloca already has 902 // lifetime.start or lifetime.end intrinsics. 903 static bool hasLifetimeMarkers(AllocaInst *AI) { 904 Type *Ty = AI->getType(); 905 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 906 Ty->getPointerAddressSpace()); 907 if (Ty == Int8PtrTy) 908 return isUsedByLifetimeMarker(AI); 909 910 // Do a scan to find all the casts to i8*. 911 for (User *U : AI->users()) { 912 if (U->getType() != Int8PtrTy) continue; 913 if (U->stripPointerCasts() != AI) continue; 914 if (isUsedByLifetimeMarker(U)) 915 return true; 916 } 917 return false; 918 } 919 920 /// Rebuild the entire inlined-at chain for this instruction so that the top of 921 /// the chain now is inlined-at the new call site. 922 static DebugLoc 923 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 924 DenseMap<const DILocation *, DILocation *> &IANodes) { 925 SmallVector<DILocation *, 3> InlinedAtLocations; 926 DILocation *Last = InlinedAtNode; 927 DILocation *CurInlinedAt = DL; 928 929 // Gather all the inlined-at nodes 930 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 931 // Skip any we've already built nodes for 932 if (DILocation *Found = IANodes[IA]) { 933 Last = Found; 934 break; 935 } 936 937 InlinedAtLocations.push_back(IA); 938 CurInlinedAt = IA; 939 } 940 941 // Starting from the top, rebuild the nodes to point to the new inlined-at 942 // location (then rebuilding the rest of the chain behind it) and update the 943 // map of already-constructed inlined-at nodes. 944 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 945 InlinedAtLocations.rend())) { 946 Last = IANodes[MD] = DILocation::getDistinct( 947 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 948 } 949 950 // And finally create the normal location for this instruction, referring to 951 // the new inlined-at chain. 952 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 953 } 954 955 /// Update inlined instructions' line numbers to 956 /// to encode location where these instructions are inlined. 957 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 958 Instruction *TheCall) { 959 DebugLoc TheCallDL = TheCall->getDebugLoc(); 960 if (!TheCallDL) 961 return; 962 963 auto &Ctx = Fn->getContext(); 964 DILocation *InlinedAtNode = TheCallDL; 965 966 // Create a unique call site, not to be confused with any other call from the 967 // same location. 968 InlinedAtNode = DILocation::getDistinct( 969 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 970 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 971 972 // Cache the inlined-at nodes as they're built so they are reused, without 973 // this every instruction's inlined-at chain would become distinct from each 974 // other. 975 DenseMap<const DILocation *, DILocation *> IANodes; 976 977 for (; FI != Fn->end(); ++FI) { 978 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 979 BI != BE; ++BI) { 980 DebugLoc DL = BI->getDebugLoc(); 981 if (!DL) { 982 // If the inlined instruction has no line number, make it look as if it 983 // originates from the call location. This is important for 984 // ((__always_inline__, __nodebug__)) functions which must use caller 985 // location for all instructions in their function body. 986 987 // Don't update static allocas, as they may get moved later. 988 if (auto *AI = dyn_cast<AllocaInst>(BI)) 989 if (isa<Constant>(AI->getArraySize())) 990 continue; 991 992 BI->setDebugLoc(TheCallDL); 993 } else { 994 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 995 } 996 } 997 } 998 } 999 1000 /// This function inlines the called function into the basic block of the 1001 /// caller. This returns false if it is not possible to inline this call. 1002 /// The program is still in a well defined state if this occurs though. 1003 /// 1004 /// Note that this only does one level of inlining. For example, if the 1005 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1006 /// exists in the instruction stream. Similarly this will inline a recursive 1007 /// function by one level. 1008 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1009 bool InsertLifetime) { 1010 Instruction *TheCall = CS.getInstruction(); 1011 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1012 "Instruction not in function!"); 1013 1014 // If IFI has any state in it, zap it before we fill it in. 1015 IFI.reset(); 1016 1017 const Function *CalledFunc = CS.getCalledFunction(); 1018 if (!CalledFunc || // Can't inline external function or indirect 1019 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1020 CalledFunc->getFunctionType()->isVarArg()) return false; 1021 1022 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1023 // calls that we inline. 1024 bool MarkNoUnwind = CS.doesNotThrow(); 1025 1026 BasicBlock *OrigBB = TheCall->getParent(); 1027 Function *Caller = OrigBB->getParent(); 1028 1029 // GC poses two hazards to inlining, which only occur when the callee has GC: 1030 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1031 // caller. 1032 // 2. If the caller has a differing GC, it is invalid to inline. 1033 if (CalledFunc->hasGC()) { 1034 if (!Caller->hasGC()) 1035 Caller->setGC(CalledFunc->getGC()); 1036 else if (CalledFunc->getGC() != Caller->getGC()) 1037 return false; 1038 } 1039 1040 // Get the personality function from the callee if it contains a landing pad. 1041 Constant *CalledPersonality = 1042 CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn() : nullptr; 1043 1044 // Find the personality function used by the landing pads of the caller. If it 1045 // exists, then check to see that it matches the personality function used in 1046 // the callee. 1047 Constant *CallerPersonality = 1048 Caller->hasPersonalityFn() ? Caller->getPersonalityFn() : nullptr; 1049 if (CalledPersonality) { 1050 if (!CallerPersonality) 1051 Caller->setPersonalityFn(CalledPersonality); 1052 // If the personality functions match, then we can perform the 1053 // inlining. Otherwise, we can't inline. 1054 // TODO: This isn't 100% true. Some personality functions are proper 1055 // supersets of others and can be used in place of the other. 1056 else if (CalledPersonality != CallerPersonality) 1057 return false; 1058 } 1059 1060 // Get an iterator to the last basic block in the function, which will have 1061 // the new function inlined after it. 1062 Function::iterator LastBlock = &Caller->back(); 1063 1064 // Make sure to capture all of the return instructions from the cloned 1065 // function. 1066 SmallVector<ReturnInst*, 8> Returns; 1067 ClonedCodeInfo InlinedFunctionInfo; 1068 Function::iterator FirstNewBlock; 1069 1070 { // Scope to destroy VMap after cloning. 1071 ValueToValueMapTy VMap; 1072 // Keep a list of pair (dst, src) to emit byval initializations. 1073 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1074 1075 auto &DL = Caller->getParent()->getDataLayout(); 1076 1077 assert(CalledFunc->arg_size() == CS.arg_size() && 1078 "No varargs calls can be inlined!"); 1079 1080 // Calculate the vector of arguments to pass into the function cloner, which 1081 // matches up the formal to the actual argument values. 1082 CallSite::arg_iterator AI = CS.arg_begin(); 1083 unsigned ArgNo = 0; 1084 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1085 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1086 Value *ActualArg = *AI; 1087 1088 // When byval arguments actually inlined, we need to make the copy implied 1089 // by them explicit. However, we don't do this if the callee is readonly 1090 // or readnone, because the copy would be unneeded: the callee doesn't 1091 // modify the struct. 1092 if (CS.isByValArgument(ArgNo)) { 1093 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1094 CalledFunc->getParamAlignment(ArgNo+1)); 1095 if (ActualArg != *AI) 1096 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1097 } 1098 1099 VMap[I] = ActualArg; 1100 } 1101 1102 // Add alignment assumptions if necessary. We do this before the inlined 1103 // instructions are actually cloned into the caller so that we can easily 1104 // check what will be known at the start of the inlined code. 1105 AddAlignmentAssumptions(CS, IFI); 1106 1107 // We want the inliner to prune the code as it copies. We would LOVE to 1108 // have no dead or constant instructions leftover after inlining occurs 1109 // (which can happen, e.g., because an argument was constant), but we'll be 1110 // happy with whatever the cloner can do. 1111 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1112 /*ModuleLevelChanges=*/false, Returns, ".i", 1113 &InlinedFunctionInfo, TheCall); 1114 1115 // Remember the first block that is newly cloned over. 1116 FirstNewBlock = LastBlock; ++FirstNewBlock; 1117 1118 // Inject byval arguments initialization. 1119 for (std::pair<Value*, Value*> &Init : ByValInit) 1120 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1121 FirstNewBlock, IFI); 1122 1123 // Update the callgraph if requested. 1124 if (IFI.CG) 1125 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1126 1127 // Update inlined instructions' line number information. 1128 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1129 1130 // Clone existing noalias metadata if necessary. 1131 CloneAliasScopeMetadata(CS, VMap); 1132 1133 // Add noalias metadata if necessary. 1134 AddAliasScopeMetadata(CS, VMap, DL, IFI.AA); 1135 1136 // FIXME: We could register any cloned assumptions instead of clearing the 1137 // whole function's cache. 1138 if (IFI.ACT) 1139 IFI.ACT->getAssumptionCache(*Caller).clear(); 1140 } 1141 1142 // If there are any alloca instructions in the block that used to be the entry 1143 // block for the callee, move them to the entry block of the caller. First 1144 // calculate which instruction they should be inserted before. We insert the 1145 // instructions at the end of the current alloca list. 1146 { 1147 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1148 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1149 E = FirstNewBlock->end(); I != E; ) { 1150 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1151 if (!AI) continue; 1152 1153 // If the alloca is now dead, remove it. This often occurs due to code 1154 // specialization. 1155 if (AI->use_empty()) { 1156 AI->eraseFromParent(); 1157 continue; 1158 } 1159 1160 if (!isa<Constant>(AI->getArraySize())) 1161 continue; 1162 1163 // Keep track of the static allocas that we inline into the caller. 1164 IFI.StaticAllocas.push_back(AI); 1165 1166 // Scan for the block of allocas that we can move over, and move them 1167 // all at once. 1168 while (isa<AllocaInst>(I) && 1169 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1170 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1171 ++I; 1172 } 1173 1174 // Transfer all of the allocas over in a block. Using splice means 1175 // that the instructions aren't removed from the symbol table, then 1176 // reinserted. 1177 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1178 FirstNewBlock->getInstList(), 1179 AI, I); 1180 } 1181 // Move any dbg.declares describing the allocas into the entry basic block. 1182 DIBuilder DIB(*Caller->getParent()); 1183 for (auto &AI : IFI.StaticAllocas) 1184 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1185 } 1186 1187 bool InlinedMustTailCalls = false; 1188 if (InlinedFunctionInfo.ContainsCalls) { 1189 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1190 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1191 CallSiteTailKind = CI->getTailCallKind(); 1192 1193 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1194 ++BB) { 1195 for (Instruction &I : *BB) { 1196 CallInst *CI = dyn_cast<CallInst>(&I); 1197 if (!CI) 1198 continue; 1199 1200 // We need to reduce the strength of any inlined tail calls. For 1201 // musttail, we have to avoid introducing potential unbounded stack 1202 // growth. For example, if functions 'f' and 'g' are mutually recursive 1203 // with musttail, we can inline 'g' into 'f' so long as we preserve 1204 // musttail on the cloned call to 'f'. If either the inlined call site 1205 // or the cloned call site is *not* musttail, the program already has 1206 // one frame of stack growth, so it's safe to remove musttail. Here is 1207 // a table of example transformations: 1208 // 1209 // f -> musttail g -> musttail f ==> f -> musttail f 1210 // f -> musttail g -> tail f ==> f -> tail f 1211 // f -> g -> musttail f ==> f -> f 1212 // f -> g -> tail f ==> f -> f 1213 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1214 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1215 CI->setTailCallKind(ChildTCK); 1216 InlinedMustTailCalls |= CI->isMustTailCall(); 1217 1218 // Calls inlined through a 'nounwind' call site should be marked 1219 // 'nounwind'. 1220 if (MarkNoUnwind) 1221 CI->setDoesNotThrow(); 1222 } 1223 } 1224 } 1225 1226 // Leave lifetime markers for the static alloca's, scoping them to the 1227 // function we just inlined. 1228 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1229 IRBuilder<> builder(FirstNewBlock->begin()); 1230 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1231 AllocaInst *AI = IFI.StaticAllocas[ai]; 1232 1233 // If the alloca is already scoped to something smaller than the whole 1234 // function then there's no need to add redundant, less accurate markers. 1235 if (hasLifetimeMarkers(AI)) 1236 continue; 1237 1238 // Try to determine the size of the allocation. 1239 ConstantInt *AllocaSize = nullptr; 1240 if (ConstantInt *AIArraySize = 1241 dyn_cast<ConstantInt>(AI->getArraySize())) { 1242 auto &DL = Caller->getParent()->getDataLayout(); 1243 Type *AllocaType = AI->getAllocatedType(); 1244 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1245 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1246 1247 // Don't add markers for zero-sized allocas. 1248 if (AllocaArraySize == 0) 1249 continue; 1250 1251 // Check that array size doesn't saturate uint64_t and doesn't 1252 // overflow when it's multiplied by type size. 1253 if (AllocaArraySize != ~0ULL && 1254 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1255 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1256 AllocaArraySize * AllocaTypeSize); 1257 } 1258 } 1259 1260 builder.CreateLifetimeStart(AI, AllocaSize); 1261 for (ReturnInst *RI : Returns) { 1262 // Don't insert llvm.lifetime.end calls between a musttail call and a 1263 // return. The return kills all local allocas. 1264 if (InlinedMustTailCalls && 1265 RI->getParent()->getTerminatingMustTailCall()) 1266 continue; 1267 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1268 } 1269 } 1270 } 1271 1272 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1273 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1274 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1275 Module *M = Caller->getParent(); 1276 // Get the two intrinsics we care about. 1277 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1278 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1279 1280 // Insert the llvm.stacksave. 1281 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1282 .CreateCall(StackSave, {}, "savedstack"); 1283 1284 // Insert a call to llvm.stackrestore before any return instructions in the 1285 // inlined function. 1286 for (ReturnInst *RI : Returns) { 1287 // Don't insert llvm.stackrestore calls between a musttail call and a 1288 // return. The return will restore the stack pointer. 1289 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1290 continue; 1291 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1292 } 1293 } 1294 1295 // If we are inlining for an invoke instruction, we must make sure to rewrite 1296 // any call instructions into invoke instructions. 1297 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1298 BasicBlock *UnwindDest = II->getUnwindDest(); 1299 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1300 if (isa<LandingPadInst>(FirstNonPHI)) { 1301 HandleInlinedLandingPad(II, FirstNewBlock, InlinedFunctionInfo); 1302 } else { 1303 HandleInlinedEHPad(II, FirstNewBlock, InlinedFunctionInfo); 1304 } 1305 } 1306 1307 // Handle any inlined musttail call sites. In order for a new call site to be 1308 // musttail, the source of the clone and the inlined call site must have been 1309 // musttail. Therefore it's safe to return without merging control into the 1310 // phi below. 1311 if (InlinedMustTailCalls) { 1312 // Check if we need to bitcast the result of any musttail calls. 1313 Type *NewRetTy = Caller->getReturnType(); 1314 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1315 1316 // Handle the returns preceded by musttail calls separately. 1317 SmallVector<ReturnInst *, 8> NormalReturns; 1318 for (ReturnInst *RI : Returns) { 1319 CallInst *ReturnedMustTail = 1320 RI->getParent()->getTerminatingMustTailCall(); 1321 if (!ReturnedMustTail) { 1322 NormalReturns.push_back(RI); 1323 continue; 1324 } 1325 if (!NeedBitCast) 1326 continue; 1327 1328 // Delete the old return and any preceding bitcast. 1329 BasicBlock *CurBB = RI->getParent(); 1330 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1331 RI->eraseFromParent(); 1332 if (OldCast) 1333 OldCast->eraseFromParent(); 1334 1335 // Insert a new bitcast and return with the right type. 1336 IRBuilder<> Builder(CurBB); 1337 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1338 } 1339 1340 // Leave behind the normal returns so we can merge control flow. 1341 std::swap(Returns, NormalReturns); 1342 } 1343 1344 // If we cloned in _exactly one_ basic block, and if that block ends in a 1345 // return instruction, we splice the body of the inlined callee directly into 1346 // the calling basic block. 1347 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1348 // Move all of the instructions right before the call. 1349 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1350 FirstNewBlock->begin(), FirstNewBlock->end()); 1351 // Remove the cloned basic block. 1352 Caller->getBasicBlockList().pop_back(); 1353 1354 // If the call site was an invoke instruction, add a branch to the normal 1355 // destination. 1356 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1357 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1358 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1359 } 1360 1361 // If the return instruction returned a value, replace uses of the call with 1362 // uses of the returned value. 1363 if (!TheCall->use_empty()) { 1364 ReturnInst *R = Returns[0]; 1365 if (TheCall == R->getReturnValue()) 1366 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1367 else 1368 TheCall->replaceAllUsesWith(R->getReturnValue()); 1369 } 1370 // Since we are now done with the Call/Invoke, we can delete it. 1371 TheCall->eraseFromParent(); 1372 1373 // Since we are now done with the return instruction, delete it also. 1374 Returns[0]->eraseFromParent(); 1375 1376 // We are now done with the inlining. 1377 return true; 1378 } 1379 1380 // Otherwise, we have the normal case, of more than one block to inline or 1381 // multiple return sites. 1382 1383 // We want to clone the entire callee function into the hole between the 1384 // "starter" and "ender" blocks. How we accomplish this depends on whether 1385 // this is an invoke instruction or a call instruction. 1386 BasicBlock *AfterCallBB; 1387 BranchInst *CreatedBranchToNormalDest = nullptr; 1388 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1389 1390 // Add an unconditional branch to make this look like the CallInst case... 1391 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1392 1393 // Split the basic block. This guarantees that no PHI nodes will have to be 1394 // updated due to new incoming edges, and make the invoke case more 1395 // symmetric to the call case. 1396 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1397 CalledFunc->getName()+".exit"); 1398 1399 } else { // It's a call 1400 // If this is a call instruction, we need to split the basic block that 1401 // the call lives in. 1402 // 1403 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1404 CalledFunc->getName()+".exit"); 1405 } 1406 1407 // Change the branch that used to go to AfterCallBB to branch to the first 1408 // basic block of the inlined function. 1409 // 1410 TerminatorInst *Br = OrigBB->getTerminator(); 1411 assert(Br && Br->getOpcode() == Instruction::Br && 1412 "splitBasicBlock broken!"); 1413 Br->setOperand(0, FirstNewBlock); 1414 1415 1416 // Now that the function is correct, make it a little bit nicer. In 1417 // particular, move the basic blocks inserted from the end of the function 1418 // into the space made by splitting the source basic block. 1419 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1420 FirstNewBlock, Caller->end()); 1421 1422 // Handle all of the return instructions that we just cloned in, and eliminate 1423 // any users of the original call/invoke instruction. 1424 Type *RTy = CalledFunc->getReturnType(); 1425 1426 PHINode *PHI = nullptr; 1427 if (Returns.size() > 1) { 1428 // The PHI node should go at the front of the new basic block to merge all 1429 // possible incoming values. 1430 if (!TheCall->use_empty()) { 1431 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1432 AfterCallBB->begin()); 1433 // Anything that used the result of the function call should now use the 1434 // PHI node as their operand. 1435 TheCall->replaceAllUsesWith(PHI); 1436 } 1437 1438 // Loop over all of the return instructions adding entries to the PHI node 1439 // as appropriate. 1440 if (PHI) { 1441 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1442 ReturnInst *RI = Returns[i]; 1443 assert(RI->getReturnValue()->getType() == PHI->getType() && 1444 "Ret value not consistent in function!"); 1445 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1446 } 1447 } 1448 1449 1450 // Add a branch to the merge points and remove return instructions. 1451 DebugLoc Loc; 1452 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1453 ReturnInst *RI = Returns[i]; 1454 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1455 Loc = RI->getDebugLoc(); 1456 BI->setDebugLoc(Loc); 1457 RI->eraseFromParent(); 1458 } 1459 // We need to set the debug location to *somewhere* inside the 1460 // inlined function. The line number may be nonsensical, but the 1461 // instruction will at least be associated with the right 1462 // function. 1463 if (CreatedBranchToNormalDest) 1464 CreatedBranchToNormalDest->setDebugLoc(Loc); 1465 } else if (!Returns.empty()) { 1466 // Otherwise, if there is exactly one return value, just replace anything 1467 // using the return value of the call with the computed value. 1468 if (!TheCall->use_empty()) { 1469 if (TheCall == Returns[0]->getReturnValue()) 1470 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1471 else 1472 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1473 } 1474 1475 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1476 BasicBlock *ReturnBB = Returns[0]->getParent(); 1477 ReturnBB->replaceAllUsesWith(AfterCallBB); 1478 1479 // Splice the code from the return block into the block that it will return 1480 // to, which contains the code that was after the call. 1481 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1482 ReturnBB->getInstList()); 1483 1484 if (CreatedBranchToNormalDest) 1485 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1486 1487 // Delete the return instruction now and empty ReturnBB now. 1488 Returns[0]->eraseFromParent(); 1489 ReturnBB->eraseFromParent(); 1490 } else if (!TheCall->use_empty()) { 1491 // No returns, but something is using the return value of the call. Just 1492 // nuke the result. 1493 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1494 } 1495 1496 // Since we are now done with the Call/Invoke, we can delete it. 1497 TheCall->eraseFromParent(); 1498 1499 // If we inlined any musttail calls and the original return is now 1500 // unreachable, delete it. It can only contain a bitcast and ret. 1501 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1502 AfterCallBB->eraseFromParent(); 1503 1504 // We should always be able to fold the entry block of the function into the 1505 // single predecessor of the block... 1506 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1507 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1508 1509 // Splice the code entry block into calling block, right before the 1510 // unconditional branch. 1511 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1512 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1513 1514 // Remove the unconditional branch. 1515 OrigBB->getInstList().erase(Br); 1516 1517 // Now we can remove the CalleeEntry block, which is now empty. 1518 Caller->getBasicBlockList().erase(CalleeEntry); 1519 1520 // If we inserted a phi node, check to see if it has a single value (e.g. all 1521 // the entries are the same or undef). If so, remove the PHI so it doesn't 1522 // block other optimizations. 1523 if (PHI) { 1524 auto &DL = Caller->getParent()->getDataLayout(); 1525 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1526 &IFI.ACT->getAssumptionCache(*Caller))) { 1527 PHI->replaceAllUsesWith(V); 1528 PHI->eraseFromParent(); 1529 } 1530 } 1531 1532 return true; 1533 } 1534