1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining a landing pad. 67 class LandingPadInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 LandingPadInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// Forward the 'resume' instruction to the caller's landing pad block. 103 /// When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// Add incoming-PHI values to the unwind destination block for the given 111 /// basic block, using the values for the original invoke's source block. 112 void addIncomingPHIValuesFor(BasicBlock *BB) const { 113 addIncomingPHIValuesForInto(BB, OuterResumeDest); 114 } 115 116 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 117 BasicBlock::iterator I = dest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *phi = cast<PHINode>(I); 120 phi->addIncoming(UnwindDestPHIValues[i], src); 121 } 122 } 123 }; 124 } 125 126 /// Get or create a target for the branch from ResumeInsts. 127 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 128 if (InnerResumeDest) return InnerResumeDest; 129 130 // Split the landing pad. 131 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 132 InnerResumeDest = 133 OuterResumeDest->splitBasicBlock(SplitPoint, 134 OuterResumeDest->getName() + ".body"); 135 136 // The number of incoming edges we expect to the inner landing pad. 137 const unsigned PHICapacity = 2; 138 139 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 140 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 141 BasicBlock::iterator I = OuterResumeDest->begin(); 142 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 143 PHINode *OuterPHI = cast<PHINode>(I); 144 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 145 OuterPHI->getName() + ".lpad-body", 146 InsertPoint); 147 OuterPHI->replaceAllUsesWith(InnerPHI); 148 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 149 } 150 151 // Create a PHI for the exception values. 152 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 153 "eh.lpad-body", InsertPoint); 154 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 155 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 156 157 // All done. 158 return InnerResumeDest; 159 } 160 161 /// Forward the 'resume' instruction to the caller's landing pad block. 162 /// When the landing pad block has only one predecessor, this is a simple 163 /// branch. When there is more than one predecessor, we need to split the 164 /// landing pad block after the landingpad instruction and jump to there. 165 void LandingPadInliningInfo::forwardResume( 166 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 167 BasicBlock *Dest = getInnerResumeDest(); 168 BasicBlock *Src = RI->getParent(); 169 170 BranchInst::Create(Dest, Src); 171 172 // Update the PHIs in the destination. They were inserted in an order which 173 // makes this work. 174 addIncomingPHIValuesForInto(Src, Dest); 175 176 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 177 RI->eraseFromParent(); 178 } 179 180 /// When we inline a basic block into an invoke, 181 /// we have to turn all of the calls that can throw into invokes. 182 /// This function analyze BB to see if there are any calls, and if so, 183 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 184 /// nodes in that block with the values specified in InvokeDestPHIValues. 185 static BasicBlock * 186 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { 187 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 188 Instruction *I = BBI++; 189 190 // We only need to check for function calls: inlined invoke 191 // instructions require no special handling. 192 CallInst *CI = dyn_cast<CallInst>(I); 193 194 // If this call cannot unwind, don't convert it to an invoke. 195 // Inline asm calls cannot throw. 196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 210 InvokeArgs, CI->getName(), BB); 211 II->setDebugLoc(CI->getDebugLoc()); 212 II->setCallingConv(CI->getCallingConv()); 213 II->setAttributes(CI->getAttributes()); 214 215 // Make sure that anything using the call now uses the invoke! This also 216 // updates the CallGraph if present, because it uses a WeakVH. 217 CI->replaceAllUsesWith(II); 218 219 // Delete the original call 220 Split->getInstList().pop_front(); 221 return BB; 222 } 223 return nullptr; 224 } 225 226 /// If we inlined an invoke site, we need to convert calls 227 /// in the body of the inlined function into invokes. 228 /// 229 /// II is the invoke instruction being inlined. FirstNewBlock is the first 230 /// block of the inlined code (the last block is the end of the function), 231 /// and InlineCodeInfo is information about the code that got inlined. 232 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 233 ClonedCodeInfo &InlinedCodeInfo) { 234 BasicBlock *InvokeDest = II->getUnwindDest(); 235 236 Function *Caller = FirstNewBlock->getParent(); 237 238 // The inlined code is currently at the end of the function, scan from the 239 // start of the inlined code to its end, checking for stuff we need to 240 // rewrite. 241 LandingPadInliningInfo Invoke(II); 242 243 // Get all of the inlined landing pad instructions. 244 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 245 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 246 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 247 InlinedLPads.insert(II->getLandingPadInst()); 248 249 // Append the clauses from the outer landing pad instruction into the inlined 250 // landing pad instructions. 251 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 252 for (LandingPadInst *InlinedLPad : InlinedLPads) { 253 unsigned OuterNum = OuterLPad->getNumClauses(); 254 InlinedLPad->reserveClauses(OuterNum); 255 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 256 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 257 if (OuterLPad->isCleanup()) 258 InlinedLPad->setCleanup(true); 259 } 260 261 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 262 if (InlinedCodeInfo.ContainsCalls) 263 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 264 BB, Invoke.getOuterResumeDest())) 265 // Update any PHI nodes in the exceptional block to indicate that there 266 // is now a new entry in them. 267 Invoke.addIncomingPHIValuesFor(NewBB); 268 269 // Forward any resumes that are remaining here. 270 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 271 Invoke.forwardResume(RI, InlinedLPads); 272 } 273 274 // Now that everything is happy, we have one final detail. The PHI nodes in 275 // the exception destination block still have entries due to the original 276 // invoke instruction. Eliminate these entries (which might even delete the 277 // PHI node) now. 278 InvokeDest->removePredecessor(II->getParent()); 279 } 280 281 /// If we inlined an invoke site, we need to convert calls 282 /// in the body of the inlined function into invokes. 283 /// 284 /// II is the invoke instruction being inlined. FirstNewBlock is the first 285 /// block of the inlined code (the last block is the end of the function), 286 /// and InlineCodeInfo is information about the code that got inlined. 287 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 288 ClonedCodeInfo &InlinedCodeInfo) { 289 BasicBlock *UnwindDest = II->getUnwindDest(); 290 Function *Caller = FirstNewBlock->getParent(); 291 292 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 293 294 // If there are PHI nodes in the unwind destination block, we need to keep 295 // track of which values came into them from the invoke before removing the 296 // edge from this block. 297 SmallVector<Value *, 8> UnwindDestPHIValues; 298 llvm::BasicBlock *InvokeBB = II->getParent(); 299 for (Instruction &I : *UnwindDest) { 300 // Save the value to use for this edge. 301 PHINode *PHI = dyn_cast<PHINode>(&I); 302 if (!PHI) 303 break; 304 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 305 } 306 307 // Add incoming-PHI values to the unwind destination block for the given basic 308 // block, using the values for the original invoke's source block. 309 auto UpdatePHINodes = [&](BasicBlock *Src) { 310 BasicBlock::iterator I = UnwindDest->begin(); 311 for (Value *V : UnwindDestPHIValues) { 312 PHINode *PHI = cast<PHINode>(I); 313 PHI->addIncoming(V, Src); 314 ++I; 315 } 316 }; 317 318 // Forward EH terminator instructions to the caller's invoke destination. 319 // This is as simple as connect all the instructions which 'unwind to caller' 320 // to the invoke destination. 321 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 322 ++BB) { 323 Instruction *I = BB->getFirstNonPHI(); 324 if (I->isEHPad()) { 325 if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) { 326 if (CEPI->unwindsToCaller()) { 327 CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI); 328 CEPI->eraseFromParent(); 329 UpdatePHINodes(BB); 330 } 331 } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) { 332 if (TPI->unwindsToCaller()) { 333 SmallVector<Value *, 3> TerminatePadArgs; 334 for (Value *Operand : TPI->operands()) 335 TerminatePadArgs.push_back(Operand); 336 TerminatePadInst::Create(TPI->getContext(), UnwindDest, TPI); 337 TPI->eraseFromParent(); 338 UpdatePHINodes(BB); 339 } 340 } else { 341 assert(isa<CatchPadInst>(I) || isa<CleanupPadInst>(I)); 342 } 343 } 344 345 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 346 if (CRI->unwindsToCaller()) { 347 CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI); 348 CRI->eraseFromParent(); 349 UpdatePHINodes(BB); 350 } 351 } 352 } 353 354 if (InlinedCodeInfo.ContainsCalls) 355 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 356 ++BB) 357 if (BasicBlock *NewBB = 358 HandleCallsInBlockInlinedThroughInvoke(BB, UnwindDest)) 359 // Update any PHI nodes in the exceptional block to indicate that there 360 // is now a new entry in them. 361 UpdatePHINodes(NewBB); 362 363 // Now that everything is happy, we have one final detail. The PHI nodes in 364 // the exception destination block still have entries due to the original 365 // invoke instruction. Eliminate these entries (which might even delete the 366 // PHI node) now. 367 UnwindDest->removePredecessor(InvokeBB); 368 } 369 370 /// When inlining a function that contains noalias scope metadata, 371 /// this metadata needs to be cloned so that the inlined blocks 372 /// have different "unqiue scopes" at every call site. Were this not done, then 373 /// aliasing scopes from a function inlined into a caller multiple times could 374 /// not be differentiated (and this would lead to miscompiles because the 375 /// non-aliasing property communicated by the metadata could have 376 /// call-site-specific control dependencies). 377 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 378 const Function *CalledFunc = CS.getCalledFunction(); 379 SetVector<const MDNode *> MD; 380 381 // Note: We could only clone the metadata if it is already used in the 382 // caller. I'm omitting that check here because it might confuse 383 // inter-procedural alias analysis passes. We can revisit this if it becomes 384 // an efficiency or overhead problem. 385 386 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 387 I != IE; ++I) 388 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 389 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 390 MD.insert(M); 391 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 392 MD.insert(M); 393 } 394 395 if (MD.empty()) 396 return; 397 398 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 399 // the set. 400 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 401 while (!Queue.empty()) { 402 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 403 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 404 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 405 if (MD.insert(M1)) 406 Queue.push_back(M1); 407 } 408 409 // Now we have a complete set of all metadata in the chains used to specify 410 // the noalias scopes and the lists of those scopes. 411 SmallVector<TempMDTuple, 16> DummyNodes; 412 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 413 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 414 I != IE; ++I) { 415 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 416 MDMap[*I].reset(DummyNodes.back().get()); 417 } 418 419 // Create new metadata nodes to replace the dummy nodes, replacing old 420 // metadata references with either a dummy node or an already-created new 421 // node. 422 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 423 I != IE; ++I) { 424 SmallVector<Metadata *, 4> NewOps; 425 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 426 const Metadata *V = (*I)->getOperand(i); 427 if (const MDNode *M = dyn_cast<MDNode>(V)) 428 NewOps.push_back(MDMap[M]); 429 else 430 NewOps.push_back(const_cast<Metadata *>(V)); 431 } 432 433 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 434 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 435 assert(TempM->isTemporary() && "Expected temporary node"); 436 437 TempM->replaceAllUsesWith(NewM); 438 } 439 440 // Now replace the metadata in the new inlined instructions with the 441 // repacements from the map. 442 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 443 VMI != VMIE; ++VMI) { 444 if (!VMI->second) 445 continue; 446 447 Instruction *NI = dyn_cast<Instruction>(VMI->second); 448 if (!NI) 449 continue; 450 451 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 452 MDNode *NewMD = MDMap[M]; 453 // If the call site also had alias scope metadata (a list of scopes to 454 // which instructions inside it might belong), propagate those scopes to 455 // the inlined instructions. 456 if (MDNode *CSM = 457 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 458 NewMD = MDNode::concatenate(NewMD, CSM); 459 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 460 } else if (NI->mayReadOrWriteMemory()) { 461 if (MDNode *M = 462 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 463 NI->setMetadata(LLVMContext::MD_alias_scope, M); 464 } 465 466 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 467 MDNode *NewMD = MDMap[M]; 468 // If the call site also had noalias metadata (a list of scopes with 469 // which instructions inside it don't alias), propagate those scopes to 470 // the inlined instructions. 471 if (MDNode *CSM = 472 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 473 NewMD = MDNode::concatenate(NewMD, CSM); 474 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 475 } else if (NI->mayReadOrWriteMemory()) { 476 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 477 NI->setMetadata(LLVMContext::MD_noalias, M); 478 } 479 } 480 } 481 482 /// If the inlined function has noalias arguments, 483 /// then add new alias scopes for each noalias argument, tag the mapped noalias 484 /// parameters with noalias metadata specifying the new scope, and tag all 485 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 486 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 487 const DataLayout &DL, AliasAnalysis *AA) { 488 if (!EnableNoAliasConversion) 489 return; 490 491 const Function *CalledFunc = CS.getCalledFunction(); 492 SmallVector<const Argument *, 4> NoAliasArgs; 493 494 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 495 E = CalledFunc->arg_end(); I != E; ++I) { 496 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 497 NoAliasArgs.push_back(I); 498 } 499 500 if (NoAliasArgs.empty()) 501 return; 502 503 // To do a good job, if a noalias variable is captured, we need to know if 504 // the capture point dominates the particular use we're considering. 505 DominatorTree DT; 506 DT.recalculate(const_cast<Function&>(*CalledFunc)); 507 508 // noalias indicates that pointer values based on the argument do not alias 509 // pointer values which are not based on it. So we add a new "scope" for each 510 // noalias function argument. Accesses using pointers based on that argument 511 // become part of that alias scope, accesses using pointers not based on that 512 // argument are tagged as noalias with that scope. 513 514 DenseMap<const Argument *, MDNode *> NewScopes; 515 MDBuilder MDB(CalledFunc->getContext()); 516 517 // Create a new scope domain for this function. 518 MDNode *NewDomain = 519 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 520 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 521 const Argument *A = NoAliasArgs[i]; 522 523 std::string Name = CalledFunc->getName(); 524 if (A->hasName()) { 525 Name += ": %"; 526 Name += A->getName(); 527 } else { 528 Name += ": argument "; 529 Name += utostr(i); 530 } 531 532 // Note: We always create a new anonymous root here. This is true regardless 533 // of the linkage of the callee because the aliasing "scope" is not just a 534 // property of the callee, but also all control dependencies in the caller. 535 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 536 NewScopes.insert(std::make_pair(A, NewScope)); 537 } 538 539 // Iterate over all new instructions in the map; for all memory-access 540 // instructions, add the alias scope metadata. 541 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 542 VMI != VMIE; ++VMI) { 543 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 544 if (!VMI->second) 545 continue; 546 547 Instruction *NI = dyn_cast<Instruction>(VMI->second); 548 if (!NI) 549 continue; 550 551 bool IsArgMemOnlyCall = false, IsFuncCall = false; 552 SmallVector<const Value *, 2> PtrArgs; 553 554 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 555 PtrArgs.push_back(LI->getPointerOperand()); 556 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 557 PtrArgs.push_back(SI->getPointerOperand()); 558 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 559 PtrArgs.push_back(VAAI->getPointerOperand()); 560 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 561 PtrArgs.push_back(CXI->getPointerOperand()); 562 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 563 PtrArgs.push_back(RMWI->getPointerOperand()); 564 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 565 // If we know that the call does not access memory, then we'll still 566 // know that about the inlined clone of this call site, and we don't 567 // need to add metadata. 568 if (ICS.doesNotAccessMemory()) 569 continue; 570 571 IsFuncCall = true; 572 if (AA) { 573 FunctionModRefBehavior MRB = AA->getModRefBehavior(ICS); 574 if (MRB == FMRB_OnlyAccessesArgumentPointees || 575 MRB == FMRB_OnlyReadsArgumentPointees) 576 IsArgMemOnlyCall = true; 577 } 578 579 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 580 AE = ICS.arg_end(); AI != AE; ++AI) { 581 // We need to check the underlying objects of all arguments, not just 582 // the pointer arguments, because we might be passing pointers as 583 // integers, etc. 584 // However, if we know that the call only accesses pointer arguments, 585 // then we only need to check the pointer arguments. 586 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 587 continue; 588 589 PtrArgs.push_back(*AI); 590 } 591 } 592 593 // If we found no pointers, then this instruction is not suitable for 594 // pairing with an instruction to receive aliasing metadata. 595 // However, if this is a call, this we might just alias with none of the 596 // noalias arguments. 597 if (PtrArgs.empty() && !IsFuncCall) 598 continue; 599 600 // It is possible that there is only one underlying object, but you 601 // need to go through several PHIs to see it, and thus could be 602 // repeated in the Objects list. 603 SmallPtrSet<const Value *, 4> ObjSet; 604 SmallVector<Metadata *, 4> Scopes, NoAliases; 605 606 SmallSetVector<const Argument *, 4> NAPtrArgs; 607 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 608 SmallVector<Value *, 4> Objects; 609 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 610 Objects, DL, /* MaxLookup = */ 0); 611 612 for (Value *O : Objects) 613 ObjSet.insert(O); 614 } 615 616 // Figure out if we're derived from anything that is not a noalias 617 // argument. 618 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 619 for (const Value *V : ObjSet) { 620 // Is this value a constant that cannot be derived from any pointer 621 // value (we need to exclude constant expressions, for example, that 622 // are formed from arithmetic on global symbols). 623 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 624 isa<ConstantPointerNull>(V) || 625 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 626 if (IsNonPtrConst) 627 continue; 628 629 // If this is anything other than a noalias argument, then we cannot 630 // completely describe the aliasing properties using alias.scope 631 // metadata (and, thus, won't add any). 632 if (const Argument *A = dyn_cast<Argument>(V)) { 633 if (!A->hasNoAliasAttr()) 634 UsesAliasingPtr = true; 635 } else { 636 UsesAliasingPtr = true; 637 } 638 639 // If this is not some identified function-local object (which cannot 640 // directly alias a noalias argument), or some other argument (which, 641 // by definition, also cannot alias a noalias argument), then we could 642 // alias a noalias argument that has been captured). 643 if (!isa<Argument>(V) && 644 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 645 CanDeriveViaCapture = true; 646 } 647 648 // A function call can always get captured noalias pointers (via other 649 // parameters, globals, etc.). 650 if (IsFuncCall && !IsArgMemOnlyCall) 651 CanDeriveViaCapture = true; 652 653 // First, we want to figure out all of the sets with which we definitely 654 // don't alias. Iterate over all noalias set, and add those for which: 655 // 1. The noalias argument is not in the set of objects from which we 656 // definitely derive. 657 // 2. The noalias argument has not yet been captured. 658 // An arbitrary function that might load pointers could see captured 659 // noalias arguments via other noalias arguments or globals, and so we 660 // must always check for prior capture. 661 for (const Argument *A : NoAliasArgs) { 662 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 663 // It might be tempting to skip the 664 // PointerMayBeCapturedBefore check if 665 // A->hasNoCaptureAttr() is true, but this is 666 // incorrect because nocapture only guarantees 667 // that no copies outlive the function, not 668 // that the value cannot be locally captured. 669 !PointerMayBeCapturedBefore(A, 670 /* ReturnCaptures */ false, 671 /* StoreCaptures */ false, I, &DT))) 672 NoAliases.push_back(NewScopes[A]); 673 } 674 675 if (!NoAliases.empty()) 676 NI->setMetadata(LLVMContext::MD_noalias, 677 MDNode::concatenate( 678 NI->getMetadata(LLVMContext::MD_noalias), 679 MDNode::get(CalledFunc->getContext(), NoAliases))); 680 681 // Next, we want to figure out all of the sets to which we might belong. 682 // We might belong to a set if the noalias argument is in the set of 683 // underlying objects. If there is some non-noalias argument in our list 684 // of underlying objects, then we cannot add a scope because the fact 685 // that some access does not alias with any set of our noalias arguments 686 // cannot itself guarantee that it does not alias with this access 687 // (because there is some pointer of unknown origin involved and the 688 // other access might also depend on this pointer). We also cannot add 689 // scopes to arbitrary functions unless we know they don't access any 690 // non-parameter pointer-values. 691 bool CanAddScopes = !UsesAliasingPtr; 692 if (CanAddScopes && IsFuncCall) 693 CanAddScopes = IsArgMemOnlyCall; 694 695 if (CanAddScopes) 696 for (const Argument *A : NoAliasArgs) { 697 if (ObjSet.count(A)) 698 Scopes.push_back(NewScopes[A]); 699 } 700 701 if (!Scopes.empty()) 702 NI->setMetadata( 703 LLVMContext::MD_alias_scope, 704 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 705 MDNode::get(CalledFunc->getContext(), Scopes))); 706 } 707 } 708 } 709 710 /// If the inlined function has non-byval align arguments, then 711 /// add @llvm.assume-based alignment assumptions to preserve this information. 712 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 713 if (!PreserveAlignmentAssumptions) 714 return; 715 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 716 717 // To avoid inserting redundant assumptions, we should check for assumptions 718 // already in the caller. To do this, we might need a DT of the caller. 719 DominatorTree DT; 720 bool DTCalculated = false; 721 722 Function *CalledFunc = CS.getCalledFunction(); 723 for (Function::arg_iterator I = CalledFunc->arg_begin(), 724 E = CalledFunc->arg_end(); 725 I != E; ++I) { 726 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 727 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 728 if (!DTCalculated) { 729 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 730 ->getParent())); 731 DTCalculated = true; 732 } 733 734 // If we can already prove the asserted alignment in the context of the 735 // caller, then don't bother inserting the assumption. 736 Value *Arg = CS.getArgument(I->getArgNo()); 737 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 738 &IFI.ACT->getAssumptionCache(*CalledFunc), 739 &DT) >= Align) 740 continue; 741 742 IRBuilder<>(CS.getInstruction()) 743 .CreateAlignmentAssumption(DL, Arg, Align); 744 } 745 } 746 } 747 748 /// Once we have cloned code over from a callee into the caller, 749 /// update the specified callgraph to reflect the changes we made. 750 /// Note that it's possible that not all code was copied over, so only 751 /// some edges of the callgraph may remain. 752 static void UpdateCallGraphAfterInlining(CallSite CS, 753 Function::iterator FirstNewBlock, 754 ValueToValueMapTy &VMap, 755 InlineFunctionInfo &IFI) { 756 CallGraph &CG = *IFI.CG; 757 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 758 const Function *Callee = CS.getCalledFunction(); 759 CallGraphNode *CalleeNode = CG[Callee]; 760 CallGraphNode *CallerNode = CG[Caller]; 761 762 // Since we inlined some uninlined call sites in the callee into the caller, 763 // add edges from the caller to all of the callees of the callee. 764 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 765 766 // Consider the case where CalleeNode == CallerNode. 767 CallGraphNode::CalledFunctionsVector CallCache; 768 if (CalleeNode == CallerNode) { 769 CallCache.assign(I, E); 770 I = CallCache.begin(); 771 E = CallCache.end(); 772 } 773 774 for (; I != E; ++I) { 775 const Value *OrigCall = I->first; 776 777 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 778 // Only copy the edge if the call was inlined! 779 if (VMI == VMap.end() || VMI->second == nullptr) 780 continue; 781 782 // If the call was inlined, but then constant folded, there is no edge to 783 // add. Check for this case. 784 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 785 if (!NewCall) 786 continue; 787 788 // We do not treat intrinsic calls like real function calls because we 789 // expect them to become inline code; do not add an edge for an intrinsic. 790 CallSite CS = CallSite(NewCall); 791 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 792 continue; 793 794 // Remember that this call site got inlined for the client of 795 // InlineFunction. 796 IFI.InlinedCalls.push_back(NewCall); 797 798 // It's possible that inlining the callsite will cause it to go from an 799 // indirect to a direct call by resolving a function pointer. If this 800 // happens, set the callee of the new call site to a more precise 801 // destination. This can also happen if the call graph node of the caller 802 // was just unnecessarily imprecise. 803 if (!I->second->getFunction()) 804 if (Function *F = CallSite(NewCall).getCalledFunction()) { 805 // Indirect call site resolved to direct call. 806 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 807 808 continue; 809 } 810 811 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 812 } 813 814 // Update the call graph by deleting the edge from Callee to Caller. We must 815 // do this after the loop above in case Caller and Callee are the same. 816 CallerNode->removeCallEdgeFor(CS); 817 } 818 819 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 820 BasicBlock *InsertBlock, 821 InlineFunctionInfo &IFI) { 822 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 823 IRBuilder<> Builder(InsertBlock->begin()); 824 825 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 826 827 // Always generate a memcpy of alignment 1 here because we don't know 828 // the alignment of the src pointer. Other optimizations can infer 829 // better alignment. 830 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 831 } 832 833 /// When inlining a call site that has a byval argument, 834 /// we have to make the implicit memcpy explicit by adding it. 835 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 836 const Function *CalledFunc, 837 InlineFunctionInfo &IFI, 838 unsigned ByValAlignment) { 839 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 840 Type *AggTy = ArgTy->getElementType(); 841 842 Function *Caller = TheCall->getParent()->getParent(); 843 844 // If the called function is readonly, then it could not mutate the caller's 845 // copy of the byval'd memory. In this case, it is safe to elide the copy and 846 // temporary. 847 if (CalledFunc->onlyReadsMemory()) { 848 // If the byval argument has a specified alignment that is greater than the 849 // passed in pointer, then we either have to round up the input pointer or 850 // give up on this transformation. 851 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 852 return Arg; 853 854 const DataLayout &DL = Caller->getParent()->getDataLayout(); 855 856 // If the pointer is already known to be sufficiently aligned, or if we can 857 // round it up to a larger alignment, then we don't need a temporary. 858 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 859 &IFI.ACT->getAssumptionCache(*Caller)) >= 860 ByValAlignment) 861 return Arg; 862 863 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 864 // for code quality, but rarely happens and is required for correctness. 865 } 866 867 // Create the alloca. If we have DataLayout, use nice alignment. 868 unsigned Align = 869 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 870 871 // If the byval had an alignment specified, we *must* use at least that 872 // alignment, as it is required by the byval argument (and uses of the 873 // pointer inside the callee). 874 Align = std::max(Align, ByValAlignment); 875 876 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 877 &*Caller->begin()->begin()); 878 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 879 880 // Uses of the argument in the function should use our new alloca 881 // instead. 882 return NewAlloca; 883 } 884 885 // Check whether this Value is used by a lifetime intrinsic. 886 static bool isUsedByLifetimeMarker(Value *V) { 887 for (User *U : V->users()) { 888 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 889 switch (II->getIntrinsicID()) { 890 default: break; 891 case Intrinsic::lifetime_start: 892 case Intrinsic::lifetime_end: 893 return true; 894 } 895 } 896 } 897 return false; 898 } 899 900 // Check whether the given alloca already has 901 // lifetime.start or lifetime.end intrinsics. 902 static bool hasLifetimeMarkers(AllocaInst *AI) { 903 Type *Ty = AI->getType(); 904 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 905 Ty->getPointerAddressSpace()); 906 if (Ty == Int8PtrTy) 907 return isUsedByLifetimeMarker(AI); 908 909 // Do a scan to find all the casts to i8*. 910 for (User *U : AI->users()) { 911 if (U->getType() != Int8PtrTy) continue; 912 if (U->stripPointerCasts() != AI) continue; 913 if (isUsedByLifetimeMarker(U)) 914 return true; 915 } 916 return false; 917 } 918 919 /// Rebuild the entire inlined-at chain for this instruction so that the top of 920 /// the chain now is inlined-at the new call site. 921 static DebugLoc 922 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 923 DenseMap<const DILocation *, DILocation *> &IANodes) { 924 SmallVector<DILocation *, 3> InlinedAtLocations; 925 DILocation *Last = InlinedAtNode; 926 DILocation *CurInlinedAt = DL; 927 928 // Gather all the inlined-at nodes 929 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 930 // Skip any we've already built nodes for 931 if (DILocation *Found = IANodes[IA]) { 932 Last = Found; 933 break; 934 } 935 936 InlinedAtLocations.push_back(IA); 937 CurInlinedAt = IA; 938 } 939 940 // Starting from the top, rebuild the nodes to point to the new inlined-at 941 // location (then rebuilding the rest of the chain behind it) and update the 942 // map of already-constructed inlined-at nodes. 943 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 944 InlinedAtLocations.rend())) { 945 Last = IANodes[MD] = DILocation::getDistinct( 946 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 947 } 948 949 // And finally create the normal location for this instruction, referring to 950 // the new inlined-at chain. 951 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 952 } 953 954 /// Update inlined instructions' line numbers to 955 /// to encode location where these instructions are inlined. 956 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 957 Instruction *TheCall) { 958 DebugLoc TheCallDL = TheCall->getDebugLoc(); 959 if (!TheCallDL) 960 return; 961 962 auto &Ctx = Fn->getContext(); 963 DILocation *InlinedAtNode = TheCallDL; 964 965 // Create a unique call site, not to be confused with any other call from the 966 // same location. 967 InlinedAtNode = DILocation::getDistinct( 968 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 969 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 970 971 // Cache the inlined-at nodes as they're built so they are reused, without 972 // this every instruction's inlined-at chain would become distinct from each 973 // other. 974 DenseMap<const DILocation *, DILocation *> IANodes; 975 976 for (; FI != Fn->end(); ++FI) { 977 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 978 BI != BE; ++BI) { 979 DebugLoc DL = BI->getDebugLoc(); 980 if (!DL) { 981 // If the inlined instruction has no line number, make it look as if it 982 // originates from the call location. This is important for 983 // ((__always_inline__, __nodebug__)) functions which must use caller 984 // location for all instructions in their function body. 985 986 // Don't update static allocas, as they may get moved later. 987 if (auto *AI = dyn_cast<AllocaInst>(BI)) 988 if (isa<Constant>(AI->getArraySize())) 989 continue; 990 991 BI->setDebugLoc(TheCallDL); 992 } else { 993 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 994 } 995 } 996 } 997 } 998 999 /// This function inlines the called function into the basic block of the 1000 /// caller. This returns false if it is not possible to inline this call. 1001 /// The program is still in a well defined state if this occurs though. 1002 /// 1003 /// Note that this only does one level of inlining. For example, if the 1004 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1005 /// exists in the instruction stream. Similarly this will inline a recursive 1006 /// function by one level. 1007 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1008 bool InsertLifetime) { 1009 Instruction *TheCall = CS.getInstruction(); 1010 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1011 "Instruction not in function!"); 1012 1013 // If IFI has any state in it, zap it before we fill it in. 1014 IFI.reset(); 1015 1016 const Function *CalledFunc = CS.getCalledFunction(); 1017 if (!CalledFunc || // Can't inline external function or indirect 1018 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1019 CalledFunc->getFunctionType()->isVarArg()) return false; 1020 1021 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1022 // calls that we inline. 1023 bool MarkNoUnwind = CS.doesNotThrow(); 1024 1025 BasicBlock *OrigBB = TheCall->getParent(); 1026 Function *Caller = OrigBB->getParent(); 1027 1028 // GC poses two hazards to inlining, which only occur when the callee has GC: 1029 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1030 // caller. 1031 // 2. If the caller has a differing GC, it is invalid to inline. 1032 if (CalledFunc->hasGC()) { 1033 if (!Caller->hasGC()) 1034 Caller->setGC(CalledFunc->getGC()); 1035 else if (CalledFunc->getGC() != Caller->getGC()) 1036 return false; 1037 } 1038 1039 // Get the personality function from the callee if it contains a landing pad. 1040 Constant *CalledPersonality = 1041 CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn() : nullptr; 1042 1043 // Find the personality function used by the landing pads of the caller. If it 1044 // exists, then check to see that it matches the personality function used in 1045 // the callee. 1046 Constant *CallerPersonality = 1047 Caller->hasPersonalityFn() ? Caller->getPersonalityFn() : nullptr; 1048 if (CalledPersonality) { 1049 if (!CallerPersonality) 1050 Caller->setPersonalityFn(CalledPersonality); 1051 // If the personality functions match, then we can perform the 1052 // inlining. Otherwise, we can't inline. 1053 // TODO: This isn't 100% true. Some personality functions are proper 1054 // supersets of others and can be used in place of the other. 1055 else if (CalledPersonality != CallerPersonality) 1056 return false; 1057 } 1058 1059 // Get an iterator to the last basic block in the function, which will have 1060 // the new function inlined after it. 1061 Function::iterator LastBlock = &Caller->back(); 1062 1063 // Make sure to capture all of the return instructions from the cloned 1064 // function. 1065 SmallVector<ReturnInst*, 8> Returns; 1066 ClonedCodeInfo InlinedFunctionInfo; 1067 Function::iterator FirstNewBlock; 1068 1069 { // Scope to destroy VMap after cloning. 1070 ValueToValueMapTy VMap; 1071 // Keep a list of pair (dst, src) to emit byval initializations. 1072 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1073 1074 auto &DL = Caller->getParent()->getDataLayout(); 1075 1076 assert(CalledFunc->arg_size() == CS.arg_size() && 1077 "No varargs calls can be inlined!"); 1078 1079 // Calculate the vector of arguments to pass into the function cloner, which 1080 // matches up the formal to the actual argument values. 1081 CallSite::arg_iterator AI = CS.arg_begin(); 1082 unsigned ArgNo = 0; 1083 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1084 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1085 Value *ActualArg = *AI; 1086 1087 // When byval arguments actually inlined, we need to make the copy implied 1088 // by them explicit. However, we don't do this if the callee is readonly 1089 // or readnone, because the copy would be unneeded: the callee doesn't 1090 // modify the struct. 1091 if (CS.isByValArgument(ArgNo)) { 1092 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1093 CalledFunc->getParamAlignment(ArgNo+1)); 1094 if (ActualArg != *AI) 1095 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1096 } 1097 1098 VMap[I] = ActualArg; 1099 } 1100 1101 // Add alignment assumptions if necessary. We do this before the inlined 1102 // instructions are actually cloned into the caller so that we can easily 1103 // check what will be known at the start of the inlined code. 1104 AddAlignmentAssumptions(CS, IFI); 1105 1106 // We want the inliner to prune the code as it copies. We would LOVE to 1107 // have no dead or constant instructions leftover after inlining occurs 1108 // (which can happen, e.g., because an argument was constant), but we'll be 1109 // happy with whatever the cloner can do. 1110 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1111 /*ModuleLevelChanges=*/false, Returns, ".i", 1112 &InlinedFunctionInfo, TheCall); 1113 1114 // Remember the first block that is newly cloned over. 1115 FirstNewBlock = LastBlock; ++FirstNewBlock; 1116 1117 // Inject byval arguments initialization. 1118 for (std::pair<Value*, Value*> &Init : ByValInit) 1119 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1120 FirstNewBlock, IFI); 1121 1122 // Update the callgraph if requested. 1123 if (IFI.CG) 1124 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1125 1126 // Update inlined instructions' line number information. 1127 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1128 1129 // Clone existing noalias metadata if necessary. 1130 CloneAliasScopeMetadata(CS, VMap); 1131 1132 // Add noalias metadata if necessary. 1133 AddAliasScopeMetadata(CS, VMap, DL, IFI.AA); 1134 1135 // FIXME: We could register any cloned assumptions instead of clearing the 1136 // whole function's cache. 1137 if (IFI.ACT) 1138 IFI.ACT->getAssumptionCache(*Caller).clear(); 1139 } 1140 1141 // If there are any alloca instructions in the block that used to be the entry 1142 // block for the callee, move them to the entry block of the caller. First 1143 // calculate which instruction they should be inserted before. We insert the 1144 // instructions at the end of the current alloca list. 1145 { 1146 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1147 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1148 E = FirstNewBlock->end(); I != E; ) { 1149 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1150 if (!AI) continue; 1151 1152 // If the alloca is now dead, remove it. This often occurs due to code 1153 // specialization. 1154 if (AI->use_empty()) { 1155 AI->eraseFromParent(); 1156 continue; 1157 } 1158 1159 if (!isa<Constant>(AI->getArraySize())) 1160 continue; 1161 1162 // Keep track of the static allocas that we inline into the caller. 1163 IFI.StaticAllocas.push_back(AI); 1164 1165 // Scan for the block of allocas that we can move over, and move them 1166 // all at once. 1167 while (isa<AllocaInst>(I) && 1168 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1169 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1170 ++I; 1171 } 1172 1173 // Transfer all of the allocas over in a block. Using splice means 1174 // that the instructions aren't removed from the symbol table, then 1175 // reinserted. 1176 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1177 FirstNewBlock->getInstList(), 1178 AI, I); 1179 } 1180 // Move any dbg.declares describing the allocas into the entry basic block. 1181 DIBuilder DIB(*Caller->getParent()); 1182 for (auto &AI : IFI.StaticAllocas) 1183 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1184 } 1185 1186 bool InlinedMustTailCalls = false; 1187 if (InlinedFunctionInfo.ContainsCalls) { 1188 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1189 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1190 CallSiteTailKind = CI->getTailCallKind(); 1191 1192 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1193 ++BB) { 1194 for (Instruction &I : *BB) { 1195 CallInst *CI = dyn_cast<CallInst>(&I); 1196 if (!CI) 1197 continue; 1198 1199 // We need to reduce the strength of any inlined tail calls. For 1200 // musttail, we have to avoid introducing potential unbounded stack 1201 // growth. For example, if functions 'f' and 'g' are mutually recursive 1202 // with musttail, we can inline 'g' into 'f' so long as we preserve 1203 // musttail on the cloned call to 'f'. If either the inlined call site 1204 // or the cloned call site is *not* musttail, the program already has 1205 // one frame of stack growth, so it's safe to remove musttail. Here is 1206 // a table of example transformations: 1207 // 1208 // f -> musttail g -> musttail f ==> f -> musttail f 1209 // f -> musttail g -> tail f ==> f -> tail f 1210 // f -> g -> musttail f ==> f -> f 1211 // f -> g -> tail f ==> f -> f 1212 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1213 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1214 CI->setTailCallKind(ChildTCK); 1215 InlinedMustTailCalls |= CI->isMustTailCall(); 1216 1217 // Calls inlined through a 'nounwind' call site should be marked 1218 // 'nounwind'. 1219 if (MarkNoUnwind) 1220 CI->setDoesNotThrow(); 1221 } 1222 } 1223 } 1224 1225 // Leave lifetime markers for the static alloca's, scoping them to the 1226 // function we just inlined. 1227 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1228 IRBuilder<> builder(FirstNewBlock->begin()); 1229 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1230 AllocaInst *AI = IFI.StaticAllocas[ai]; 1231 1232 // If the alloca is already scoped to something smaller than the whole 1233 // function then there's no need to add redundant, less accurate markers. 1234 if (hasLifetimeMarkers(AI)) 1235 continue; 1236 1237 // Try to determine the size of the allocation. 1238 ConstantInt *AllocaSize = nullptr; 1239 if (ConstantInt *AIArraySize = 1240 dyn_cast<ConstantInt>(AI->getArraySize())) { 1241 auto &DL = Caller->getParent()->getDataLayout(); 1242 Type *AllocaType = AI->getAllocatedType(); 1243 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1244 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1245 1246 // Don't add markers for zero-sized allocas. 1247 if (AllocaArraySize == 0) 1248 continue; 1249 1250 // Check that array size doesn't saturate uint64_t and doesn't 1251 // overflow when it's multiplied by type size. 1252 if (AllocaArraySize != ~0ULL && 1253 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1254 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1255 AllocaArraySize * AllocaTypeSize); 1256 } 1257 } 1258 1259 builder.CreateLifetimeStart(AI, AllocaSize); 1260 for (ReturnInst *RI : Returns) { 1261 // Don't insert llvm.lifetime.end calls between a musttail call and a 1262 // return. The return kills all local allocas. 1263 if (InlinedMustTailCalls && 1264 RI->getParent()->getTerminatingMustTailCall()) 1265 continue; 1266 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1267 } 1268 } 1269 } 1270 1271 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1272 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1273 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1274 Module *M = Caller->getParent(); 1275 // Get the two intrinsics we care about. 1276 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1277 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1278 1279 // Insert the llvm.stacksave. 1280 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1281 .CreateCall(StackSave, {}, "savedstack"); 1282 1283 // Insert a call to llvm.stackrestore before any return instructions in the 1284 // inlined function. 1285 for (ReturnInst *RI : Returns) { 1286 // Don't insert llvm.stackrestore calls between a musttail call and a 1287 // return. The return will restore the stack pointer. 1288 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1289 continue; 1290 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1291 } 1292 } 1293 1294 // If we are inlining for an invoke instruction, we must make sure to rewrite 1295 // any call instructions into invoke instructions. 1296 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1297 BasicBlock *UnwindDest = II->getUnwindDest(); 1298 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1299 if (isa<LandingPadInst>(FirstNonPHI)) { 1300 HandleInlinedLandingPad(II, FirstNewBlock, InlinedFunctionInfo); 1301 } else { 1302 HandleInlinedEHPad(II, FirstNewBlock, InlinedFunctionInfo); 1303 } 1304 } 1305 1306 // Handle any inlined musttail call sites. In order for a new call site to be 1307 // musttail, the source of the clone and the inlined call site must have been 1308 // musttail. Therefore it's safe to return without merging control into the 1309 // phi below. 1310 if (InlinedMustTailCalls) { 1311 // Check if we need to bitcast the result of any musttail calls. 1312 Type *NewRetTy = Caller->getReturnType(); 1313 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1314 1315 // Handle the returns preceded by musttail calls separately. 1316 SmallVector<ReturnInst *, 8> NormalReturns; 1317 for (ReturnInst *RI : Returns) { 1318 CallInst *ReturnedMustTail = 1319 RI->getParent()->getTerminatingMustTailCall(); 1320 if (!ReturnedMustTail) { 1321 NormalReturns.push_back(RI); 1322 continue; 1323 } 1324 if (!NeedBitCast) 1325 continue; 1326 1327 // Delete the old return and any preceding bitcast. 1328 BasicBlock *CurBB = RI->getParent(); 1329 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1330 RI->eraseFromParent(); 1331 if (OldCast) 1332 OldCast->eraseFromParent(); 1333 1334 // Insert a new bitcast and return with the right type. 1335 IRBuilder<> Builder(CurBB); 1336 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1337 } 1338 1339 // Leave behind the normal returns so we can merge control flow. 1340 std::swap(Returns, NormalReturns); 1341 } 1342 1343 // If we cloned in _exactly one_ basic block, and if that block ends in a 1344 // return instruction, we splice the body of the inlined callee directly into 1345 // the calling basic block. 1346 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1347 // Move all of the instructions right before the call. 1348 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1349 FirstNewBlock->begin(), FirstNewBlock->end()); 1350 // Remove the cloned basic block. 1351 Caller->getBasicBlockList().pop_back(); 1352 1353 // If the call site was an invoke instruction, add a branch to the normal 1354 // destination. 1355 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1356 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1357 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1358 } 1359 1360 // If the return instruction returned a value, replace uses of the call with 1361 // uses of the returned value. 1362 if (!TheCall->use_empty()) { 1363 ReturnInst *R = Returns[0]; 1364 if (TheCall == R->getReturnValue()) 1365 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1366 else 1367 TheCall->replaceAllUsesWith(R->getReturnValue()); 1368 } 1369 // Since we are now done with the Call/Invoke, we can delete it. 1370 TheCall->eraseFromParent(); 1371 1372 // Since we are now done with the return instruction, delete it also. 1373 Returns[0]->eraseFromParent(); 1374 1375 // We are now done with the inlining. 1376 return true; 1377 } 1378 1379 // Otherwise, we have the normal case, of more than one block to inline or 1380 // multiple return sites. 1381 1382 // We want to clone the entire callee function into the hole between the 1383 // "starter" and "ender" blocks. How we accomplish this depends on whether 1384 // this is an invoke instruction or a call instruction. 1385 BasicBlock *AfterCallBB; 1386 BranchInst *CreatedBranchToNormalDest = nullptr; 1387 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1388 1389 // Add an unconditional branch to make this look like the CallInst case... 1390 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1391 1392 // Split the basic block. This guarantees that no PHI nodes will have to be 1393 // updated due to new incoming edges, and make the invoke case more 1394 // symmetric to the call case. 1395 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1396 CalledFunc->getName()+".exit"); 1397 1398 } else { // It's a call 1399 // If this is a call instruction, we need to split the basic block that 1400 // the call lives in. 1401 // 1402 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1403 CalledFunc->getName()+".exit"); 1404 } 1405 1406 // Change the branch that used to go to AfterCallBB to branch to the first 1407 // basic block of the inlined function. 1408 // 1409 TerminatorInst *Br = OrigBB->getTerminator(); 1410 assert(Br && Br->getOpcode() == Instruction::Br && 1411 "splitBasicBlock broken!"); 1412 Br->setOperand(0, FirstNewBlock); 1413 1414 1415 // Now that the function is correct, make it a little bit nicer. In 1416 // particular, move the basic blocks inserted from the end of the function 1417 // into the space made by splitting the source basic block. 1418 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1419 FirstNewBlock, Caller->end()); 1420 1421 // Handle all of the return instructions that we just cloned in, and eliminate 1422 // any users of the original call/invoke instruction. 1423 Type *RTy = CalledFunc->getReturnType(); 1424 1425 PHINode *PHI = nullptr; 1426 if (Returns.size() > 1) { 1427 // The PHI node should go at the front of the new basic block to merge all 1428 // possible incoming values. 1429 if (!TheCall->use_empty()) { 1430 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1431 AfterCallBB->begin()); 1432 // Anything that used the result of the function call should now use the 1433 // PHI node as their operand. 1434 TheCall->replaceAllUsesWith(PHI); 1435 } 1436 1437 // Loop over all of the return instructions adding entries to the PHI node 1438 // as appropriate. 1439 if (PHI) { 1440 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1441 ReturnInst *RI = Returns[i]; 1442 assert(RI->getReturnValue()->getType() == PHI->getType() && 1443 "Ret value not consistent in function!"); 1444 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1445 } 1446 } 1447 1448 1449 // Add a branch to the merge points and remove return instructions. 1450 DebugLoc Loc; 1451 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1452 ReturnInst *RI = Returns[i]; 1453 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1454 Loc = RI->getDebugLoc(); 1455 BI->setDebugLoc(Loc); 1456 RI->eraseFromParent(); 1457 } 1458 // We need to set the debug location to *somewhere* inside the 1459 // inlined function. The line number may be nonsensical, but the 1460 // instruction will at least be associated with the right 1461 // function. 1462 if (CreatedBranchToNormalDest) 1463 CreatedBranchToNormalDest->setDebugLoc(Loc); 1464 } else if (!Returns.empty()) { 1465 // Otherwise, if there is exactly one return value, just replace anything 1466 // using the return value of the call with the computed value. 1467 if (!TheCall->use_empty()) { 1468 if (TheCall == Returns[0]->getReturnValue()) 1469 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1470 else 1471 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1472 } 1473 1474 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1475 BasicBlock *ReturnBB = Returns[0]->getParent(); 1476 ReturnBB->replaceAllUsesWith(AfterCallBB); 1477 1478 // Splice the code from the return block into the block that it will return 1479 // to, which contains the code that was after the call. 1480 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1481 ReturnBB->getInstList()); 1482 1483 if (CreatedBranchToNormalDest) 1484 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1485 1486 // Delete the return instruction now and empty ReturnBB now. 1487 Returns[0]->eraseFromParent(); 1488 ReturnBB->eraseFromParent(); 1489 } else if (!TheCall->use_empty()) { 1490 // No returns, but something is using the return value of the call. Just 1491 // nuke the result. 1492 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1493 } 1494 1495 // Since we are now done with the Call/Invoke, we can delete it. 1496 TheCall->eraseFromParent(); 1497 1498 // If we inlined any musttail calls and the original return is now 1499 // unreachable, delete it. It can only contain a bitcast and ret. 1500 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1501 AfterCallBB->eraseFromParent(); 1502 1503 // We should always be able to fold the entry block of the function into the 1504 // single predecessor of the block... 1505 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1506 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1507 1508 // Splice the code entry block into calling block, right before the 1509 // unconditional branch. 1510 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1511 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1512 1513 // Remove the unconditional branch. 1514 OrigBB->getInstList().erase(Br); 1515 1516 // Now we can remove the CalleeEntry block, which is now empty. 1517 Caller->getBasicBlockList().erase(CalleeEntry); 1518 1519 // If we inserted a phi node, check to see if it has a single value (e.g. all 1520 // the entries are the same or undef). If so, remove the PHI so it doesn't 1521 // block other optimizations. 1522 if (PHI) { 1523 auto &DL = Caller->getParent()->getDataLayout(); 1524 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1525 &IFI.ACT->getAssumptionCache(*Caller))) { 1526 PHI->replaceAllUsesWith(V); 1527 PHI->eraseFromParent(); 1528 } 1529 } 1530 1531 return true; 1532 } 1533