1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining a landing pad. 67 class LandingPadInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 LandingPadInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// Forward the 'resume' instruction to the caller's landing pad block. 103 /// When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// Add incoming-PHI values to the unwind destination block for the given 111 /// basic block, using the values for the original invoke's source block. 112 void addIncomingPHIValuesFor(BasicBlock *BB) const { 113 addIncomingPHIValuesForInto(BB, OuterResumeDest); 114 } 115 116 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 117 BasicBlock::iterator I = dest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *phi = cast<PHINode>(I); 120 phi->addIncoming(UnwindDestPHIValues[i], src); 121 } 122 } 123 }; 124 } 125 126 /// Get or create a target for the branch from ResumeInsts. 127 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 128 if (InnerResumeDest) return InnerResumeDest; 129 130 // Split the landing pad. 131 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 132 InnerResumeDest = 133 OuterResumeDest->splitBasicBlock(SplitPoint, 134 OuterResumeDest->getName() + ".body"); 135 136 // The number of incoming edges we expect to the inner landing pad. 137 const unsigned PHICapacity = 2; 138 139 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 140 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 141 BasicBlock::iterator I = OuterResumeDest->begin(); 142 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 143 PHINode *OuterPHI = cast<PHINode>(I); 144 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 145 OuterPHI->getName() + ".lpad-body", 146 InsertPoint); 147 OuterPHI->replaceAllUsesWith(InnerPHI); 148 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 149 } 150 151 // Create a PHI for the exception values. 152 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 153 "eh.lpad-body", InsertPoint); 154 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 155 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 156 157 // All done. 158 return InnerResumeDest; 159 } 160 161 /// Forward the 'resume' instruction to the caller's landing pad block. 162 /// When the landing pad block has only one predecessor, this is a simple 163 /// branch. When there is more than one predecessor, we need to split the 164 /// landing pad block after the landingpad instruction and jump to there. 165 void LandingPadInliningInfo::forwardResume( 166 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 167 BasicBlock *Dest = getInnerResumeDest(); 168 BasicBlock *Src = RI->getParent(); 169 170 BranchInst::Create(Dest, Src); 171 172 // Update the PHIs in the destination. They were inserted in an order which 173 // makes this work. 174 addIncomingPHIValuesForInto(Src, Dest); 175 176 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 177 RI->eraseFromParent(); 178 } 179 180 /// When we inline a basic block into an invoke, 181 /// we have to turn all of the calls that can throw into invokes. 182 /// This function analyze BB to see if there are any calls, and if so, 183 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 184 /// nodes in that block with the values specified in InvokeDestPHIValues. 185 static BasicBlock * 186 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { 187 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 188 Instruction *I = BBI++; 189 190 // We only need to check for function calls: inlined invoke 191 // instructions require no special handling. 192 CallInst *CI = dyn_cast<CallInst>(I); 193 194 // If this call cannot unwind, don't convert it to an invoke. 195 // Inline asm calls cannot throw. 196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 210 InvokeArgs, CI->getName(), BB); 211 II->setDebugLoc(CI->getDebugLoc()); 212 II->setCallingConv(CI->getCallingConv()); 213 II->setAttributes(CI->getAttributes()); 214 215 // Make sure that anything using the call now uses the invoke! This also 216 // updates the CallGraph if present, because it uses a WeakVH. 217 CI->replaceAllUsesWith(II); 218 219 // Delete the original call 220 Split->getInstList().pop_front(); 221 return BB; 222 } 223 return nullptr; 224 } 225 226 /// If we inlined an invoke site, we need to convert calls 227 /// in the body of the inlined function into invokes. 228 /// 229 /// II is the invoke instruction being inlined. FirstNewBlock is the first 230 /// block of the inlined code (the last block is the end of the function), 231 /// and InlineCodeInfo is information about the code that got inlined. 232 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 233 ClonedCodeInfo &InlinedCodeInfo) { 234 BasicBlock *InvokeDest = II->getUnwindDest(); 235 236 Function *Caller = FirstNewBlock->getParent(); 237 238 // The inlined code is currently at the end of the function, scan from the 239 // start of the inlined code to its end, checking for stuff we need to 240 // rewrite. 241 LandingPadInliningInfo Invoke(II); 242 243 // Get all of the inlined landing pad instructions. 244 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 245 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 246 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 247 InlinedLPads.insert(II->getLandingPadInst()); 248 249 // Append the clauses from the outer landing pad instruction into the inlined 250 // landing pad instructions. 251 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 252 for (LandingPadInst *InlinedLPad : InlinedLPads) { 253 unsigned OuterNum = OuterLPad->getNumClauses(); 254 InlinedLPad->reserveClauses(OuterNum); 255 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 256 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 257 if (OuterLPad->isCleanup()) 258 InlinedLPad->setCleanup(true); 259 } 260 261 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 262 if (InlinedCodeInfo.ContainsCalls) 263 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 264 BB, Invoke.getOuterResumeDest())) 265 // Update any PHI nodes in the exceptional block to indicate that there 266 // is now a new entry in them. 267 Invoke.addIncomingPHIValuesFor(NewBB); 268 269 // Forward any resumes that are remaining here. 270 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 271 Invoke.forwardResume(RI, InlinedLPads); 272 } 273 274 // Now that everything is happy, we have one final detail. The PHI nodes in 275 // the exception destination block still have entries due to the original 276 // invoke instruction. Eliminate these entries (which might even delete the 277 // PHI node) now. 278 InvokeDest->removePredecessor(II->getParent()); 279 } 280 281 /// If we inlined an invoke site, we need to convert calls 282 /// in the body of the inlined function into invokes. 283 /// 284 /// II is the invoke instruction being inlined. FirstNewBlock is the first 285 /// block of the inlined code (the last block is the end of the function), 286 /// and InlineCodeInfo is information about the code that got inlined. 287 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 288 ClonedCodeInfo &InlinedCodeInfo) { 289 BasicBlock *UnwindDest = II->getUnwindDest(); 290 Function *Caller = FirstNewBlock->getParent(); 291 292 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 293 294 // If there are PHI nodes in the unwind destination block, we need to keep 295 // track of which values came into them from the invoke before removing the 296 // edge from this block. 297 SmallVector<Value *, 8> UnwindDestPHIValues; 298 llvm::BasicBlock *InvokeBB = II->getParent(); 299 for (Instruction &I : *UnwindDest) { 300 // Save the value to use for this edge. 301 PHINode *PHI = dyn_cast<PHINode>(&I); 302 if (!PHI) 303 break; 304 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 305 } 306 307 // Add incoming-PHI values to the unwind destination block for the given basic 308 // block, using the values for the original invoke's source block. 309 auto UpdatePHINodes = [&](BasicBlock *Src) { 310 BasicBlock::iterator I = UnwindDest->begin(); 311 for (Value *V : UnwindDestPHIValues) { 312 PHINode *PHI = cast<PHINode>(I); 313 PHI->addIncoming(V, Src); 314 ++I; 315 } 316 }; 317 318 // Forward EH terminator instructions to the caller's invoke destination. 319 // This is as simple as connect all the instructions which 'unwind to caller' 320 // to the invoke destination. 321 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 322 ++BB) { 323 Instruction *I = BB->getFirstNonPHI(); 324 if (I->isEHPad()) { 325 if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) { 326 if (CEPI->unwindsToCaller()) { 327 CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI); 328 CEPI->eraseFromParent(); 329 UpdatePHINodes(BB); 330 } 331 } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) { 332 if (TPI->unwindsToCaller()) { 333 SmallVector<Value *, 3> TerminatePadArgs; 334 for (Value *Operand : TPI->operands()) 335 TerminatePadArgs.push_back(Operand); 336 TerminatePadInst::Create(TPI->getContext(), UnwindDest, TPI); 337 TPI->eraseFromParent(); 338 UpdatePHINodes(BB); 339 } 340 } else if (auto *CPI = dyn_cast<CleanupPadInst>(I)) { 341 if (CPI->getNumOperands() == 0) { 342 CleanupPadInst::Create(CPI->getType(), {UnwindDest}, CPI->getName(), 343 CPI); 344 CPI->eraseFromParent(); 345 } 346 } else { 347 assert(isa<CatchPadInst>(I)); 348 } 349 } 350 351 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 352 if (CRI->unwindsToCaller()) { 353 CleanupReturnInst::Create(CRI->getContext(), CRI->getReturnValue(), 354 UnwindDest, CRI); 355 CRI->eraseFromParent(); 356 UpdatePHINodes(BB); 357 } 358 } 359 } 360 361 if (InlinedCodeInfo.ContainsCalls) 362 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 363 ++BB) 364 if (BasicBlock *NewBB = 365 HandleCallsInBlockInlinedThroughInvoke(BB, UnwindDest)) 366 // Update any PHI nodes in the exceptional block to indicate that there 367 // is now a new entry in them. 368 UpdatePHINodes(NewBB); 369 370 // Now that everything is happy, we have one final detail. The PHI nodes in 371 // the exception destination block still have entries due to the original 372 // invoke instruction. Eliminate these entries (which might even delete the 373 // PHI node) now. 374 UnwindDest->removePredecessor(InvokeBB); 375 } 376 377 /// When inlining a function that contains noalias scope metadata, 378 /// this metadata needs to be cloned so that the inlined blocks 379 /// have different "unqiue scopes" at every call site. Were this not done, then 380 /// aliasing scopes from a function inlined into a caller multiple times could 381 /// not be differentiated (and this would lead to miscompiles because the 382 /// non-aliasing property communicated by the metadata could have 383 /// call-site-specific control dependencies). 384 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 385 const Function *CalledFunc = CS.getCalledFunction(); 386 SetVector<const MDNode *> MD; 387 388 // Note: We could only clone the metadata if it is already used in the 389 // caller. I'm omitting that check here because it might confuse 390 // inter-procedural alias analysis passes. We can revisit this if it becomes 391 // an efficiency or overhead problem. 392 393 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 394 I != IE; ++I) 395 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 396 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 397 MD.insert(M); 398 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 399 MD.insert(M); 400 } 401 402 if (MD.empty()) 403 return; 404 405 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 406 // the set. 407 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 408 while (!Queue.empty()) { 409 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 410 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 411 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 412 if (MD.insert(M1)) 413 Queue.push_back(M1); 414 } 415 416 // Now we have a complete set of all metadata in the chains used to specify 417 // the noalias scopes and the lists of those scopes. 418 SmallVector<TempMDTuple, 16> DummyNodes; 419 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 420 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 421 I != IE; ++I) { 422 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 423 MDMap[*I].reset(DummyNodes.back().get()); 424 } 425 426 // Create new metadata nodes to replace the dummy nodes, replacing old 427 // metadata references with either a dummy node or an already-created new 428 // node. 429 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 430 I != IE; ++I) { 431 SmallVector<Metadata *, 4> NewOps; 432 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 433 const Metadata *V = (*I)->getOperand(i); 434 if (const MDNode *M = dyn_cast<MDNode>(V)) 435 NewOps.push_back(MDMap[M]); 436 else 437 NewOps.push_back(const_cast<Metadata *>(V)); 438 } 439 440 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 441 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 442 assert(TempM->isTemporary() && "Expected temporary node"); 443 444 TempM->replaceAllUsesWith(NewM); 445 } 446 447 // Now replace the metadata in the new inlined instructions with the 448 // repacements from the map. 449 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 450 VMI != VMIE; ++VMI) { 451 if (!VMI->second) 452 continue; 453 454 Instruction *NI = dyn_cast<Instruction>(VMI->second); 455 if (!NI) 456 continue; 457 458 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 459 MDNode *NewMD = MDMap[M]; 460 // If the call site also had alias scope metadata (a list of scopes to 461 // which instructions inside it might belong), propagate those scopes to 462 // the inlined instructions. 463 if (MDNode *CSM = 464 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 465 NewMD = MDNode::concatenate(NewMD, CSM); 466 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 467 } else if (NI->mayReadOrWriteMemory()) { 468 if (MDNode *M = 469 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 470 NI->setMetadata(LLVMContext::MD_alias_scope, M); 471 } 472 473 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 474 MDNode *NewMD = MDMap[M]; 475 // If the call site also had noalias metadata (a list of scopes with 476 // which instructions inside it don't alias), propagate those scopes to 477 // the inlined instructions. 478 if (MDNode *CSM = 479 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 480 NewMD = MDNode::concatenate(NewMD, CSM); 481 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 482 } else if (NI->mayReadOrWriteMemory()) { 483 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 484 NI->setMetadata(LLVMContext::MD_noalias, M); 485 } 486 } 487 } 488 489 /// If the inlined function has noalias arguments, 490 /// then add new alias scopes for each noalias argument, tag the mapped noalias 491 /// parameters with noalias metadata specifying the new scope, and tag all 492 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 493 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 494 const DataLayout &DL, AliasAnalysis *AA) { 495 if (!EnableNoAliasConversion) 496 return; 497 498 const Function *CalledFunc = CS.getCalledFunction(); 499 SmallVector<const Argument *, 4> NoAliasArgs; 500 501 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 502 E = CalledFunc->arg_end(); I != E; ++I) { 503 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 504 NoAliasArgs.push_back(I); 505 } 506 507 if (NoAliasArgs.empty()) 508 return; 509 510 // To do a good job, if a noalias variable is captured, we need to know if 511 // the capture point dominates the particular use we're considering. 512 DominatorTree DT; 513 DT.recalculate(const_cast<Function&>(*CalledFunc)); 514 515 // noalias indicates that pointer values based on the argument do not alias 516 // pointer values which are not based on it. So we add a new "scope" for each 517 // noalias function argument. Accesses using pointers based on that argument 518 // become part of that alias scope, accesses using pointers not based on that 519 // argument are tagged as noalias with that scope. 520 521 DenseMap<const Argument *, MDNode *> NewScopes; 522 MDBuilder MDB(CalledFunc->getContext()); 523 524 // Create a new scope domain for this function. 525 MDNode *NewDomain = 526 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 527 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 528 const Argument *A = NoAliasArgs[i]; 529 530 std::string Name = CalledFunc->getName(); 531 if (A->hasName()) { 532 Name += ": %"; 533 Name += A->getName(); 534 } else { 535 Name += ": argument "; 536 Name += utostr(i); 537 } 538 539 // Note: We always create a new anonymous root here. This is true regardless 540 // of the linkage of the callee because the aliasing "scope" is not just a 541 // property of the callee, but also all control dependencies in the caller. 542 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 543 NewScopes.insert(std::make_pair(A, NewScope)); 544 } 545 546 // Iterate over all new instructions in the map; for all memory-access 547 // instructions, add the alias scope metadata. 548 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 549 VMI != VMIE; ++VMI) { 550 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 551 if (!VMI->second) 552 continue; 553 554 Instruction *NI = dyn_cast<Instruction>(VMI->second); 555 if (!NI) 556 continue; 557 558 bool IsArgMemOnlyCall = false, IsFuncCall = false; 559 SmallVector<const Value *, 2> PtrArgs; 560 561 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 562 PtrArgs.push_back(LI->getPointerOperand()); 563 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 564 PtrArgs.push_back(SI->getPointerOperand()); 565 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 566 PtrArgs.push_back(VAAI->getPointerOperand()); 567 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 568 PtrArgs.push_back(CXI->getPointerOperand()); 569 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 570 PtrArgs.push_back(RMWI->getPointerOperand()); 571 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 572 // If we know that the call does not access memory, then we'll still 573 // know that about the inlined clone of this call site, and we don't 574 // need to add metadata. 575 if (ICS.doesNotAccessMemory()) 576 continue; 577 578 IsFuncCall = true; 579 if (AA) { 580 FunctionModRefBehavior MRB = AA->getModRefBehavior(ICS); 581 if (MRB == FMRB_OnlyAccessesArgumentPointees || 582 MRB == FMRB_OnlyReadsArgumentPointees) 583 IsArgMemOnlyCall = true; 584 } 585 586 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 587 AE = ICS.arg_end(); AI != AE; ++AI) { 588 // We need to check the underlying objects of all arguments, not just 589 // the pointer arguments, because we might be passing pointers as 590 // integers, etc. 591 // However, if we know that the call only accesses pointer arguments, 592 // then we only need to check the pointer arguments. 593 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 594 continue; 595 596 PtrArgs.push_back(*AI); 597 } 598 } 599 600 // If we found no pointers, then this instruction is not suitable for 601 // pairing with an instruction to receive aliasing metadata. 602 // However, if this is a call, this we might just alias with none of the 603 // noalias arguments. 604 if (PtrArgs.empty() && !IsFuncCall) 605 continue; 606 607 // It is possible that there is only one underlying object, but you 608 // need to go through several PHIs to see it, and thus could be 609 // repeated in the Objects list. 610 SmallPtrSet<const Value *, 4> ObjSet; 611 SmallVector<Metadata *, 4> Scopes, NoAliases; 612 613 SmallSetVector<const Argument *, 4> NAPtrArgs; 614 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 615 SmallVector<Value *, 4> Objects; 616 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 617 Objects, DL, /* MaxLookup = */ 0); 618 619 for (Value *O : Objects) 620 ObjSet.insert(O); 621 } 622 623 // Figure out if we're derived from anything that is not a noalias 624 // argument. 625 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 626 for (const Value *V : ObjSet) { 627 // Is this value a constant that cannot be derived from any pointer 628 // value (we need to exclude constant expressions, for example, that 629 // are formed from arithmetic on global symbols). 630 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 631 isa<ConstantPointerNull>(V) || 632 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 633 if (IsNonPtrConst) 634 continue; 635 636 // If this is anything other than a noalias argument, then we cannot 637 // completely describe the aliasing properties using alias.scope 638 // metadata (and, thus, won't add any). 639 if (const Argument *A = dyn_cast<Argument>(V)) { 640 if (!A->hasNoAliasAttr()) 641 UsesAliasingPtr = true; 642 } else { 643 UsesAliasingPtr = true; 644 } 645 646 // If this is not some identified function-local object (which cannot 647 // directly alias a noalias argument), or some other argument (which, 648 // by definition, also cannot alias a noalias argument), then we could 649 // alias a noalias argument that has been captured). 650 if (!isa<Argument>(V) && 651 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 652 CanDeriveViaCapture = true; 653 } 654 655 // A function call can always get captured noalias pointers (via other 656 // parameters, globals, etc.). 657 if (IsFuncCall && !IsArgMemOnlyCall) 658 CanDeriveViaCapture = true; 659 660 // First, we want to figure out all of the sets with which we definitely 661 // don't alias. Iterate over all noalias set, and add those for which: 662 // 1. The noalias argument is not in the set of objects from which we 663 // definitely derive. 664 // 2. The noalias argument has not yet been captured. 665 // An arbitrary function that might load pointers could see captured 666 // noalias arguments via other noalias arguments or globals, and so we 667 // must always check for prior capture. 668 for (const Argument *A : NoAliasArgs) { 669 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 670 // It might be tempting to skip the 671 // PointerMayBeCapturedBefore check if 672 // A->hasNoCaptureAttr() is true, but this is 673 // incorrect because nocapture only guarantees 674 // that no copies outlive the function, not 675 // that the value cannot be locally captured. 676 !PointerMayBeCapturedBefore(A, 677 /* ReturnCaptures */ false, 678 /* StoreCaptures */ false, I, &DT))) 679 NoAliases.push_back(NewScopes[A]); 680 } 681 682 if (!NoAliases.empty()) 683 NI->setMetadata(LLVMContext::MD_noalias, 684 MDNode::concatenate( 685 NI->getMetadata(LLVMContext::MD_noalias), 686 MDNode::get(CalledFunc->getContext(), NoAliases))); 687 688 // Next, we want to figure out all of the sets to which we might belong. 689 // We might belong to a set if the noalias argument is in the set of 690 // underlying objects. If there is some non-noalias argument in our list 691 // of underlying objects, then we cannot add a scope because the fact 692 // that some access does not alias with any set of our noalias arguments 693 // cannot itself guarantee that it does not alias with this access 694 // (because there is some pointer of unknown origin involved and the 695 // other access might also depend on this pointer). We also cannot add 696 // scopes to arbitrary functions unless we know they don't access any 697 // non-parameter pointer-values. 698 bool CanAddScopes = !UsesAliasingPtr; 699 if (CanAddScopes && IsFuncCall) 700 CanAddScopes = IsArgMemOnlyCall; 701 702 if (CanAddScopes) 703 for (const Argument *A : NoAliasArgs) { 704 if (ObjSet.count(A)) 705 Scopes.push_back(NewScopes[A]); 706 } 707 708 if (!Scopes.empty()) 709 NI->setMetadata( 710 LLVMContext::MD_alias_scope, 711 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 712 MDNode::get(CalledFunc->getContext(), Scopes))); 713 } 714 } 715 } 716 717 /// If the inlined function has non-byval align arguments, then 718 /// add @llvm.assume-based alignment assumptions to preserve this information. 719 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 720 if (!PreserveAlignmentAssumptions) 721 return; 722 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 723 724 // To avoid inserting redundant assumptions, we should check for assumptions 725 // already in the caller. To do this, we might need a DT of the caller. 726 DominatorTree DT; 727 bool DTCalculated = false; 728 729 Function *CalledFunc = CS.getCalledFunction(); 730 for (Function::arg_iterator I = CalledFunc->arg_begin(), 731 E = CalledFunc->arg_end(); 732 I != E; ++I) { 733 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 734 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 735 if (!DTCalculated) { 736 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 737 ->getParent())); 738 DTCalculated = true; 739 } 740 741 // If we can already prove the asserted alignment in the context of the 742 // caller, then don't bother inserting the assumption. 743 Value *Arg = CS.getArgument(I->getArgNo()); 744 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 745 &IFI.ACT->getAssumptionCache(*CalledFunc), 746 &DT) >= Align) 747 continue; 748 749 IRBuilder<>(CS.getInstruction()) 750 .CreateAlignmentAssumption(DL, Arg, Align); 751 } 752 } 753 } 754 755 /// Once we have cloned code over from a callee into the caller, 756 /// update the specified callgraph to reflect the changes we made. 757 /// Note that it's possible that not all code was copied over, so only 758 /// some edges of the callgraph may remain. 759 static void UpdateCallGraphAfterInlining(CallSite CS, 760 Function::iterator FirstNewBlock, 761 ValueToValueMapTy &VMap, 762 InlineFunctionInfo &IFI) { 763 CallGraph &CG = *IFI.CG; 764 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 765 const Function *Callee = CS.getCalledFunction(); 766 CallGraphNode *CalleeNode = CG[Callee]; 767 CallGraphNode *CallerNode = CG[Caller]; 768 769 // Since we inlined some uninlined call sites in the callee into the caller, 770 // add edges from the caller to all of the callees of the callee. 771 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 772 773 // Consider the case where CalleeNode == CallerNode. 774 CallGraphNode::CalledFunctionsVector CallCache; 775 if (CalleeNode == CallerNode) { 776 CallCache.assign(I, E); 777 I = CallCache.begin(); 778 E = CallCache.end(); 779 } 780 781 for (; I != E; ++I) { 782 const Value *OrigCall = I->first; 783 784 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 785 // Only copy the edge if the call was inlined! 786 if (VMI == VMap.end() || VMI->second == nullptr) 787 continue; 788 789 // If the call was inlined, but then constant folded, there is no edge to 790 // add. Check for this case. 791 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 792 if (!NewCall) 793 continue; 794 795 // We do not treat intrinsic calls like real function calls because we 796 // expect them to become inline code; do not add an edge for an intrinsic. 797 CallSite CS = CallSite(NewCall); 798 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 799 continue; 800 801 // Remember that this call site got inlined for the client of 802 // InlineFunction. 803 IFI.InlinedCalls.push_back(NewCall); 804 805 // It's possible that inlining the callsite will cause it to go from an 806 // indirect to a direct call by resolving a function pointer. If this 807 // happens, set the callee of the new call site to a more precise 808 // destination. This can also happen if the call graph node of the caller 809 // was just unnecessarily imprecise. 810 if (!I->second->getFunction()) 811 if (Function *F = CallSite(NewCall).getCalledFunction()) { 812 // Indirect call site resolved to direct call. 813 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 814 815 continue; 816 } 817 818 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 819 } 820 821 // Update the call graph by deleting the edge from Callee to Caller. We must 822 // do this after the loop above in case Caller and Callee are the same. 823 CallerNode->removeCallEdgeFor(CS); 824 } 825 826 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 827 BasicBlock *InsertBlock, 828 InlineFunctionInfo &IFI) { 829 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 830 IRBuilder<> Builder(InsertBlock->begin()); 831 832 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 833 834 // Always generate a memcpy of alignment 1 here because we don't know 835 // the alignment of the src pointer. Other optimizations can infer 836 // better alignment. 837 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 838 } 839 840 /// When inlining a call site that has a byval argument, 841 /// we have to make the implicit memcpy explicit by adding it. 842 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 843 const Function *CalledFunc, 844 InlineFunctionInfo &IFI, 845 unsigned ByValAlignment) { 846 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 847 Type *AggTy = ArgTy->getElementType(); 848 849 Function *Caller = TheCall->getParent()->getParent(); 850 851 // If the called function is readonly, then it could not mutate the caller's 852 // copy of the byval'd memory. In this case, it is safe to elide the copy and 853 // temporary. 854 if (CalledFunc->onlyReadsMemory()) { 855 // If the byval argument has a specified alignment that is greater than the 856 // passed in pointer, then we either have to round up the input pointer or 857 // give up on this transformation. 858 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 859 return Arg; 860 861 const DataLayout &DL = Caller->getParent()->getDataLayout(); 862 863 // If the pointer is already known to be sufficiently aligned, or if we can 864 // round it up to a larger alignment, then we don't need a temporary. 865 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 866 &IFI.ACT->getAssumptionCache(*Caller)) >= 867 ByValAlignment) 868 return Arg; 869 870 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 871 // for code quality, but rarely happens and is required for correctness. 872 } 873 874 // Create the alloca. If we have DataLayout, use nice alignment. 875 unsigned Align = 876 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 877 878 // If the byval had an alignment specified, we *must* use at least that 879 // alignment, as it is required by the byval argument (and uses of the 880 // pointer inside the callee). 881 Align = std::max(Align, ByValAlignment); 882 883 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 884 &*Caller->begin()->begin()); 885 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 886 887 // Uses of the argument in the function should use our new alloca 888 // instead. 889 return NewAlloca; 890 } 891 892 // Check whether this Value is used by a lifetime intrinsic. 893 static bool isUsedByLifetimeMarker(Value *V) { 894 for (User *U : V->users()) { 895 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 896 switch (II->getIntrinsicID()) { 897 default: break; 898 case Intrinsic::lifetime_start: 899 case Intrinsic::lifetime_end: 900 return true; 901 } 902 } 903 } 904 return false; 905 } 906 907 // Check whether the given alloca already has 908 // lifetime.start or lifetime.end intrinsics. 909 static bool hasLifetimeMarkers(AllocaInst *AI) { 910 Type *Ty = AI->getType(); 911 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 912 Ty->getPointerAddressSpace()); 913 if (Ty == Int8PtrTy) 914 return isUsedByLifetimeMarker(AI); 915 916 // Do a scan to find all the casts to i8*. 917 for (User *U : AI->users()) { 918 if (U->getType() != Int8PtrTy) continue; 919 if (U->stripPointerCasts() != AI) continue; 920 if (isUsedByLifetimeMarker(U)) 921 return true; 922 } 923 return false; 924 } 925 926 /// Rebuild the entire inlined-at chain for this instruction so that the top of 927 /// the chain now is inlined-at the new call site. 928 static DebugLoc 929 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 930 DenseMap<const DILocation *, DILocation *> &IANodes) { 931 SmallVector<DILocation *, 3> InlinedAtLocations; 932 DILocation *Last = InlinedAtNode; 933 DILocation *CurInlinedAt = DL; 934 935 // Gather all the inlined-at nodes 936 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 937 // Skip any we've already built nodes for 938 if (DILocation *Found = IANodes[IA]) { 939 Last = Found; 940 break; 941 } 942 943 InlinedAtLocations.push_back(IA); 944 CurInlinedAt = IA; 945 } 946 947 // Starting from the top, rebuild the nodes to point to the new inlined-at 948 // location (then rebuilding the rest of the chain behind it) and update the 949 // map of already-constructed inlined-at nodes. 950 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 951 InlinedAtLocations.rend())) { 952 Last = IANodes[MD] = DILocation::getDistinct( 953 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 954 } 955 956 // And finally create the normal location for this instruction, referring to 957 // the new inlined-at chain. 958 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 959 } 960 961 /// Update inlined instructions' line numbers to 962 /// to encode location where these instructions are inlined. 963 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 964 Instruction *TheCall) { 965 DebugLoc TheCallDL = TheCall->getDebugLoc(); 966 if (!TheCallDL) 967 return; 968 969 auto &Ctx = Fn->getContext(); 970 DILocation *InlinedAtNode = TheCallDL; 971 972 // Create a unique call site, not to be confused with any other call from the 973 // same location. 974 InlinedAtNode = DILocation::getDistinct( 975 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 976 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 977 978 // Cache the inlined-at nodes as they're built so they are reused, without 979 // this every instruction's inlined-at chain would become distinct from each 980 // other. 981 DenseMap<const DILocation *, DILocation *> IANodes; 982 983 for (; FI != Fn->end(); ++FI) { 984 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 985 BI != BE; ++BI) { 986 DebugLoc DL = BI->getDebugLoc(); 987 if (!DL) { 988 // If the inlined instruction has no line number, make it look as if it 989 // originates from the call location. This is important for 990 // ((__always_inline__, __nodebug__)) functions which must use caller 991 // location for all instructions in their function body. 992 993 // Don't update static allocas, as they may get moved later. 994 if (auto *AI = dyn_cast<AllocaInst>(BI)) 995 if (isa<Constant>(AI->getArraySize())) 996 continue; 997 998 BI->setDebugLoc(TheCallDL); 999 } else { 1000 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1001 } 1002 } 1003 } 1004 } 1005 1006 /// This function inlines the called function into the basic block of the 1007 /// caller. This returns false if it is not possible to inline this call. 1008 /// The program is still in a well defined state if this occurs though. 1009 /// 1010 /// Note that this only does one level of inlining. For example, if the 1011 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1012 /// exists in the instruction stream. Similarly this will inline a recursive 1013 /// function by one level. 1014 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1015 bool InsertLifetime) { 1016 Instruction *TheCall = CS.getInstruction(); 1017 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1018 "Instruction not in function!"); 1019 1020 // If IFI has any state in it, zap it before we fill it in. 1021 IFI.reset(); 1022 1023 const Function *CalledFunc = CS.getCalledFunction(); 1024 if (!CalledFunc || // Can't inline external function or indirect 1025 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1026 CalledFunc->getFunctionType()->isVarArg()) return false; 1027 1028 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1029 // calls that we inline. 1030 bool MarkNoUnwind = CS.doesNotThrow(); 1031 1032 BasicBlock *OrigBB = TheCall->getParent(); 1033 Function *Caller = OrigBB->getParent(); 1034 1035 // GC poses two hazards to inlining, which only occur when the callee has GC: 1036 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1037 // caller. 1038 // 2. If the caller has a differing GC, it is invalid to inline. 1039 if (CalledFunc->hasGC()) { 1040 if (!Caller->hasGC()) 1041 Caller->setGC(CalledFunc->getGC()); 1042 else if (CalledFunc->getGC() != Caller->getGC()) 1043 return false; 1044 } 1045 1046 // Get the personality function from the callee if it contains a landing pad. 1047 Constant *CalledPersonality = 1048 CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn() : nullptr; 1049 1050 // Find the personality function used by the landing pads of the caller. If it 1051 // exists, then check to see that it matches the personality function used in 1052 // the callee. 1053 Constant *CallerPersonality = 1054 Caller->hasPersonalityFn() ? Caller->getPersonalityFn() : nullptr; 1055 if (CalledPersonality) { 1056 if (!CallerPersonality) 1057 Caller->setPersonalityFn(CalledPersonality); 1058 // If the personality functions match, then we can perform the 1059 // inlining. Otherwise, we can't inline. 1060 // TODO: This isn't 100% true. Some personality functions are proper 1061 // supersets of others and can be used in place of the other. 1062 else if (CalledPersonality != CallerPersonality) 1063 return false; 1064 } 1065 1066 // Get an iterator to the last basic block in the function, which will have 1067 // the new function inlined after it. 1068 Function::iterator LastBlock = &Caller->back(); 1069 1070 // Make sure to capture all of the return instructions from the cloned 1071 // function. 1072 SmallVector<ReturnInst*, 8> Returns; 1073 ClonedCodeInfo InlinedFunctionInfo; 1074 Function::iterator FirstNewBlock; 1075 1076 { // Scope to destroy VMap after cloning. 1077 ValueToValueMapTy VMap; 1078 // Keep a list of pair (dst, src) to emit byval initializations. 1079 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1080 1081 auto &DL = Caller->getParent()->getDataLayout(); 1082 1083 assert(CalledFunc->arg_size() == CS.arg_size() && 1084 "No varargs calls can be inlined!"); 1085 1086 // Calculate the vector of arguments to pass into the function cloner, which 1087 // matches up the formal to the actual argument values. 1088 CallSite::arg_iterator AI = CS.arg_begin(); 1089 unsigned ArgNo = 0; 1090 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1091 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1092 Value *ActualArg = *AI; 1093 1094 // When byval arguments actually inlined, we need to make the copy implied 1095 // by them explicit. However, we don't do this if the callee is readonly 1096 // or readnone, because the copy would be unneeded: the callee doesn't 1097 // modify the struct. 1098 if (CS.isByValArgument(ArgNo)) { 1099 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1100 CalledFunc->getParamAlignment(ArgNo+1)); 1101 if (ActualArg != *AI) 1102 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1103 } 1104 1105 VMap[I] = ActualArg; 1106 } 1107 1108 // Add alignment assumptions if necessary. We do this before the inlined 1109 // instructions are actually cloned into the caller so that we can easily 1110 // check what will be known at the start of the inlined code. 1111 AddAlignmentAssumptions(CS, IFI); 1112 1113 // We want the inliner to prune the code as it copies. We would LOVE to 1114 // have no dead or constant instructions leftover after inlining occurs 1115 // (which can happen, e.g., because an argument was constant), but we'll be 1116 // happy with whatever the cloner can do. 1117 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1118 /*ModuleLevelChanges=*/false, Returns, ".i", 1119 &InlinedFunctionInfo, TheCall); 1120 1121 // Remember the first block that is newly cloned over. 1122 FirstNewBlock = LastBlock; ++FirstNewBlock; 1123 1124 // Inject byval arguments initialization. 1125 for (std::pair<Value*, Value*> &Init : ByValInit) 1126 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1127 FirstNewBlock, IFI); 1128 1129 // Update the callgraph if requested. 1130 if (IFI.CG) 1131 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1132 1133 // Update inlined instructions' line number information. 1134 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1135 1136 // Clone existing noalias metadata if necessary. 1137 CloneAliasScopeMetadata(CS, VMap); 1138 1139 // Add noalias metadata if necessary. 1140 AddAliasScopeMetadata(CS, VMap, DL, IFI.AA); 1141 1142 // FIXME: We could register any cloned assumptions instead of clearing the 1143 // whole function's cache. 1144 if (IFI.ACT) 1145 IFI.ACT->getAssumptionCache(*Caller).clear(); 1146 } 1147 1148 // If there are any alloca instructions in the block that used to be the entry 1149 // block for the callee, move them to the entry block of the caller. First 1150 // calculate which instruction they should be inserted before. We insert the 1151 // instructions at the end of the current alloca list. 1152 { 1153 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1154 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1155 E = FirstNewBlock->end(); I != E; ) { 1156 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1157 if (!AI) continue; 1158 1159 // If the alloca is now dead, remove it. This often occurs due to code 1160 // specialization. 1161 if (AI->use_empty()) { 1162 AI->eraseFromParent(); 1163 continue; 1164 } 1165 1166 if (!isa<Constant>(AI->getArraySize())) 1167 continue; 1168 1169 // Keep track of the static allocas that we inline into the caller. 1170 IFI.StaticAllocas.push_back(AI); 1171 1172 // Scan for the block of allocas that we can move over, and move them 1173 // all at once. 1174 while (isa<AllocaInst>(I) && 1175 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1176 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1177 ++I; 1178 } 1179 1180 // Transfer all of the allocas over in a block. Using splice means 1181 // that the instructions aren't removed from the symbol table, then 1182 // reinserted. 1183 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1184 FirstNewBlock->getInstList(), 1185 AI, I); 1186 } 1187 // Move any dbg.declares describing the allocas into the entry basic block. 1188 DIBuilder DIB(*Caller->getParent()); 1189 for (auto &AI : IFI.StaticAllocas) 1190 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1191 } 1192 1193 bool InlinedMustTailCalls = false; 1194 if (InlinedFunctionInfo.ContainsCalls) { 1195 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1196 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1197 CallSiteTailKind = CI->getTailCallKind(); 1198 1199 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1200 ++BB) { 1201 for (Instruction &I : *BB) { 1202 CallInst *CI = dyn_cast<CallInst>(&I); 1203 if (!CI) 1204 continue; 1205 1206 // We need to reduce the strength of any inlined tail calls. For 1207 // musttail, we have to avoid introducing potential unbounded stack 1208 // growth. For example, if functions 'f' and 'g' are mutually recursive 1209 // with musttail, we can inline 'g' into 'f' so long as we preserve 1210 // musttail on the cloned call to 'f'. If either the inlined call site 1211 // or the cloned call site is *not* musttail, the program already has 1212 // one frame of stack growth, so it's safe to remove musttail. Here is 1213 // a table of example transformations: 1214 // 1215 // f -> musttail g -> musttail f ==> f -> musttail f 1216 // f -> musttail g -> tail f ==> f -> tail f 1217 // f -> g -> musttail f ==> f -> f 1218 // f -> g -> tail f ==> f -> f 1219 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1220 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1221 CI->setTailCallKind(ChildTCK); 1222 InlinedMustTailCalls |= CI->isMustTailCall(); 1223 1224 // Calls inlined through a 'nounwind' call site should be marked 1225 // 'nounwind'. 1226 if (MarkNoUnwind) 1227 CI->setDoesNotThrow(); 1228 } 1229 } 1230 } 1231 1232 // Leave lifetime markers for the static alloca's, scoping them to the 1233 // function we just inlined. 1234 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1235 IRBuilder<> builder(FirstNewBlock->begin()); 1236 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1237 AllocaInst *AI = IFI.StaticAllocas[ai]; 1238 1239 // If the alloca is already scoped to something smaller than the whole 1240 // function then there's no need to add redundant, less accurate markers. 1241 if (hasLifetimeMarkers(AI)) 1242 continue; 1243 1244 // Try to determine the size of the allocation. 1245 ConstantInt *AllocaSize = nullptr; 1246 if (ConstantInt *AIArraySize = 1247 dyn_cast<ConstantInt>(AI->getArraySize())) { 1248 auto &DL = Caller->getParent()->getDataLayout(); 1249 Type *AllocaType = AI->getAllocatedType(); 1250 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1251 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1252 1253 // Don't add markers for zero-sized allocas. 1254 if (AllocaArraySize == 0) 1255 continue; 1256 1257 // Check that array size doesn't saturate uint64_t and doesn't 1258 // overflow when it's multiplied by type size. 1259 if (AllocaArraySize != ~0ULL && 1260 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1261 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1262 AllocaArraySize * AllocaTypeSize); 1263 } 1264 } 1265 1266 builder.CreateLifetimeStart(AI, AllocaSize); 1267 for (ReturnInst *RI : Returns) { 1268 // Don't insert llvm.lifetime.end calls between a musttail call and a 1269 // return. The return kills all local allocas. 1270 if (InlinedMustTailCalls && 1271 RI->getParent()->getTerminatingMustTailCall()) 1272 continue; 1273 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1274 } 1275 } 1276 } 1277 1278 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1279 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1280 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1281 Module *M = Caller->getParent(); 1282 // Get the two intrinsics we care about. 1283 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1284 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1285 1286 // Insert the llvm.stacksave. 1287 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1288 .CreateCall(StackSave, {}, "savedstack"); 1289 1290 // Insert a call to llvm.stackrestore before any return instructions in the 1291 // inlined function. 1292 for (ReturnInst *RI : Returns) { 1293 // Don't insert llvm.stackrestore calls between a musttail call and a 1294 // return. The return will restore the stack pointer. 1295 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1296 continue; 1297 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1298 } 1299 } 1300 1301 // If we are inlining for an invoke instruction, we must make sure to rewrite 1302 // any call instructions into invoke instructions. 1303 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1304 BasicBlock *UnwindDest = II->getUnwindDest(); 1305 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1306 if (isa<LandingPadInst>(FirstNonPHI)) { 1307 HandleInlinedLandingPad(II, FirstNewBlock, InlinedFunctionInfo); 1308 } else { 1309 HandleInlinedEHPad(II, FirstNewBlock, InlinedFunctionInfo); 1310 } 1311 } 1312 1313 // Handle any inlined musttail call sites. In order for a new call site to be 1314 // musttail, the source of the clone and the inlined call site must have been 1315 // musttail. Therefore it's safe to return without merging control into the 1316 // phi below. 1317 if (InlinedMustTailCalls) { 1318 // Check if we need to bitcast the result of any musttail calls. 1319 Type *NewRetTy = Caller->getReturnType(); 1320 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1321 1322 // Handle the returns preceded by musttail calls separately. 1323 SmallVector<ReturnInst *, 8> NormalReturns; 1324 for (ReturnInst *RI : Returns) { 1325 CallInst *ReturnedMustTail = 1326 RI->getParent()->getTerminatingMustTailCall(); 1327 if (!ReturnedMustTail) { 1328 NormalReturns.push_back(RI); 1329 continue; 1330 } 1331 if (!NeedBitCast) 1332 continue; 1333 1334 // Delete the old return and any preceding bitcast. 1335 BasicBlock *CurBB = RI->getParent(); 1336 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1337 RI->eraseFromParent(); 1338 if (OldCast) 1339 OldCast->eraseFromParent(); 1340 1341 // Insert a new bitcast and return with the right type. 1342 IRBuilder<> Builder(CurBB); 1343 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1344 } 1345 1346 // Leave behind the normal returns so we can merge control flow. 1347 std::swap(Returns, NormalReturns); 1348 } 1349 1350 // If we cloned in _exactly one_ basic block, and if that block ends in a 1351 // return instruction, we splice the body of the inlined callee directly into 1352 // the calling basic block. 1353 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1354 // Move all of the instructions right before the call. 1355 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1356 FirstNewBlock->begin(), FirstNewBlock->end()); 1357 // Remove the cloned basic block. 1358 Caller->getBasicBlockList().pop_back(); 1359 1360 // If the call site was an invoke instruction, add a branch to the normal 1361 // destination. 1362 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1363 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1364 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1365 } 1366 1367 // If the return instruction returned a value, replace uses of the call with 1368 // uses of the returned value. 1369 if (!TheCall->use_empty()) { 1370 ReturnInst *R = Returns[0]; 1371 if (TheCall == R->getReturnValue()) 1372 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1373 else 1374 TheCall->replaceAllUsesWith(R->getReturnValue()); 1375 } 1376 // Since we are now done with the Call/Invoke, we can delete it. 1377 TheCall->eraseFromParent(); 1378 1379 // Since we are now done with the return instruction, delete it also. 1380 Returns[0]->eraseFromParent(); 1381 1382 // We are now done with the inlining. 1383 return true; 1384 } 1385 1386 // Otherwise, we have the normal case, of more than one block to inline or 1387 // multiple return sites. 1388 1389 // We want to clone the entire callee function into the hole between the 1390 // "starter" and "ender" blocks. How we accomplish this depends on whether 1391 // this is an invoke instruction or a call instruction. 1392 BasicBlock *AfterCallBB; 1393 BranchInst *CreatedBranchToNormalDest = nullptr; 1394 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1395 1396 // Add an unconditional branch to make this look like the CallInst case... 1397 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1398 1399 // Split the basic block. This guarantees that no PHI nodes will have to be 1400 // updated due to new incoming edges, and make the invoke case more 1401 // symmetric to the call case. 1402 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1403 CalledFunc->getName()+".exit"); 1404 1405 } else { // It's a call 1406 // If this is a call instruction, we need to split the basic block that 1407 // the call lives in. 1408 // 1409 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1410 CalledFunc->getName()+".exit"); 1411 } 1412 1413 // Change the branch that used to go to AfterCallBB to branch to the first 1414 // basic block of the inlined function. 1415 // 1416 TerminatorInst *Br = OrigBB->getTerminator(); 1417 assert(Br && Br->getOpcode() == Instruction::Br && 1418 "splitBasicBlock broken!"); 1419 Br->setOperand(0, FirstNewBlock); 1420 1421 1422 // Now that the function is correct, make it a little bit nicer. In 1423 // particular, move the basic blocks inserted from the end of the function 1424 // into the space made by splitting the source basic block. 1425 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1426 FirstNewBlock, Caller->end()); 1427 1428 // Handle all of the return instructions that we just cloned in, and eliminate 1429 // any users of the original call/invoke instruction. 1430 Type *RTy = CalledFunc->getReturnType(); 1431 1432 PHINode *PHI = nullptr; 1433 if (Returns.size() > 1) { 1434 // The PHI node should go at the front of the new basic block to merge all 1435 // possible incoming values. 1436 if (!TheCall->use_empty()) { 1437 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1438 AfterCallBB->begin()); 1439 // Anything that used the result of the function call should now use the 1440 // PHI node as their operand. 1441 TheCall->replaceAllUsesWith(PHI); 1442 } 1443 1444 // Loop over all of the return instructions adding entries to the PHI node 1445 // as appropriate. 1446 if (PHI) { 1447 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1448 ReturnInst *RI = Returns[i]; 1449 assert(RI->getReturnValue()->getType() == PHI->getType() && 1450 "Ret value not consistent in function!"); 1451 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1452 } 1453 } 1454 1455 1456 // Add a branch to the merge points and remove return instructions. 1457 DebugLoc Loc; 1458 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1459 ReturnInst *RI = Returns[i]; 1460 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1461 Loc = RI->getDebugLoc(); 1462 BI->setDebugLoc(Loc); 1463 RI->eraseFromParent(); 1464 } 1465 // We need to set the debug location to *somewhere* inside the 1466 // inlined function. The line number may be nonsensical, but the 1467 // instruction will at least be associated with the right 1468 // function. 1469 if (CreatedBranchToNormalDest) 1470 CreatedBranchToNormalDest->setDebugLoc(Loc); 1471 } else if (!Returns.empty()) { 1472 // Otherwise, if there is exactly one return value, just replace anything 1473 // using the return value of the call with the computed value. 1474 if (!TheCall->use_empty()) { 1475 if (TheCall == Returns[0]->getReturnValue()) 1476 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1477 else 1478 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1479 } 1480 1481 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1482 BasicBlock *ReturnBB = Returns[0]->getParent(); 1483 ReturnBB->replaceAllUsesWith(AfterCallBB); 1484 1485 // Splice the code from the return block into the block that it will return 1486 // to, which contains the code that was after the call. 1487 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1488 ReturnBB->getInstList()); 1489 1490 if (CreatedBranchToNormalDest) 1491 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1492 1493 // Delete the return instruction now and empty ReturnBB now. 1494 Returns[0]->eraseFromParent(); 1495 ReturnBB->eraseFromParent(); 1496 } else if (!TheCall->use_empty()) { 1497 // No returns, but something is using the return value of the call. Just 1498 // nuke the result. 1499 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1500 } 1501 1502 // Since we are now done with the Call/Invoke, we can delete it. 1503 TheCall->eraseFromParent(); 1504 1505 // If we inlined any musttail calls and the original return is now 1506 // unreachable, delete it. It can only contain a bitcast and ret. 1507 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1508 AfterCallBB->eraseFromParent(); 1509 1510 // We should always be able to fold the entry block of the function into the 1511 // single predecessor of the block... 1512 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1513 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1514 1515 // Splice the code entry block into calling block, right before the 1516 // unconditional branch. 1517 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1518 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1519 1520 // Remove the unconditional branch. 1521 OrigBB->getInstList().erase(Br); 1522 1523 // Now we can remove the CalleeEntry block, which is now empty. 1524 Caller->getBasicBlockList().erase(CalleeEntry); 1525 1526 // If we inserted a phi node, check to see if it has a single value (e.g. all 1527 // the entries are the same or undef). If so, remove the PHI so it doesn't 1528 // block other optimizations. 1529 if (PHI) { 1530 auto &DL = Caller->getParent()->getDataLayout(); 1531 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1532 &IFI.ACT->getAssumptionCache(*Caller))) { 1533 PHI->replaceAllUsesWith(V); 1534 PHI->eraseFromParent(); 1535 } 1536 } 1537 1538 return true; 1539 } 1540