1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 // The code in this file for handling inlines through invoke 14 // instructions preserves semantics only under some assumptions about 15 // the behavior of unwinders which correspond to gcc-style libUnwind 16 // exception personality functions. Eventually the IR will be 17 // improved to make this unnecessary, but until then, this code is 18 // marked [LIBUNWIND]. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Module.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Attributes.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/CallSite.h" 38 #include "llvm/Support/IRBuilder.h" 39 using namespace llvm; 40 41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { 42 return InlineFunction(CallSite(CI), IFI); 43 } 44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { 45 return InlineFunction(CallSite(II), IFI); 46 } 47 48 // FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is 49 // turned on. 50 51 /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block. 52 static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) { 53 for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) { 54 EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i); 55 if (exn) return exn; 56 } 57 58 return 0; 59 } 60 61 /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for 62 /// the given llvm.eh.exception call. 63 static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) { 64 BasicBlock *exnBlock = exn->getParent(); 65 66 EHSelectorInst *outOfBlockSelector = 0; 67 for (Instruction::use_iterator 68 ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) { 69 EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui); 70 if (!sel) continue; 71 72 // Immediately accept an eh.selector in the same block as the 73 // excepton call. 74 if (sel->getParent() == exnBlock) return sel; 75 76 // Otherwise, use the first selector we see. 77 if (!outOfBlockSelector) outOfBlockSelector = sel; 78 } 79 80 return outOfBlockSelector; 81 } 82 83 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector 84 /// in the given landing pad. In principle, llvm.eh.exception is 85 /// required to be in the landing pad; in practice, SplitCriticalEdge 86 /// can break that invariant, and then inlining can break it further. 87 /// There's a real need for a reliable solution here, but until that 88 /// happens, we have some fragile workarounds here. 89 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) { 90 // Look for an exception call in the actual landing pad. 91 EHExceptionInst *exn = findExceptionInBlock(lpad); 92 if (exn) return findSelectorForException(exn); 93 94 // Okay, if that failed, look for one in an obvious successor. If 95 // we find one, we'll fix the IR by moving things back to the 96 // landing pad. 97 98 bool dominates = true; // does the lpad dominate the exn call 99 BasicBlock *nonDominated = 0; // if not, the first non-dominated block 100 BasicBlock *lastDominated = 0; // and the block which branched to it 101 102 BasicBlock *exnBlock = lpad; 103 104 // We need to protect against lpads that lead into infinite loops. 105 SmallPtrSet<BasicBlock*,4> visited; 106 visited.insert(exnBlock); 107 108 do { 109 // We're not going to apply this hack to anything more complicated 110 // than a series of unconditional branches, so if the block 111 // doesn't terminate in an unconditional branch, just fail. More 112 // complicated cases can arise when, say, sinking a call into a 113 // split unwind edge and then inlining it; but that can do almost 114 // *anything* to the CFG, including leaving the selector 115 // completely unreachable. The only way to fix that properly is 116 // to (1) prohibit transforms which move the exception or selector 117 // values away from the landing pad, e.g. by producing them with 118 // instructions that are pinned to an edge like a phi, or 119 // producing them with not-really-instructions, and (2) making 120 // transforms which split edges deal with that. 121 BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back()); 122 if (!branch || branch->isConditional()) return 0; 123 124 BasicBlock *successor = branch->getSuccessor(0); 125 126 // Fail if we found an infinite loop. 127 if (!visited.insert(successor)) return 0; 128 129 // If the successor isn't dominated by exnBlock: 130 if (!successor->getSinglePredecessor()) { 131 // We don't want to have to deal with threading the exception 132 // through multiple levels of phi, so give up if we've already 133 // followed a non-dominating edge. 134 if (!dominates) return 0; 135 136 // Otherwise, remember this as a non-dominating edge. 137 dominates = false; 138 nonDominated = successor; 139 lastDominated = exnBlock; 140 } 141 142 exnBlock = successor; 143 144 // Can we stop here? 145 exn = findExceptionInBlock(exnBlock); 146 } while (!exn); 147 148 // Look for a selector call for the exception we found. 149 EHSelectorInst *selector = findSelectorForException(exn); 150 if (!selector) return 0; 151 152 // The easy case is when the landing pad still dominates the 153 // exception call, in which case we can just move both calls back to 154 // the landing pad. 155 if (dominates) { 156 selector->moveBefore(lpad->getFirstNonPHI()); 157 exn->moveBefore(selector); 158 return selector; 159 } 160 161 // Otherwise, we have to split at the first non-dominating block. 162 // The CFG looks basically like this: 163 // lpad: 164 // phis_0 165 // insnsAndBranches_1 166 // br label %nonDominated 167 // nonDominated: 168 // phis_2 169 // insns_3 170 // %exn = call i8* @llvm.eh.exception() 171 // insnsAndBranches_4 172 // %selector = call @llvm.eh.selector(i8* %exn, ... 173 // We need to turn this into: 174 // lpad: 175 // phis_0 176 // %exn0 = call i8* @llvm.eh.exception() 177 // %selector0 = call @llvm.eh.selector(i8* %exn0, ... 178 // insnsAndBranches_1 179 // br label %split // from lastDominated 180 // nonDominated: 181 // phis_2 (without edge from lastDominated) 182 // %exn1 = call i8* @llvm.eh.exception() 183 // %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ... 184 // br label %split 185 // split: 186 // phis_2 (edge from lastDominated, edge from split) 187 // %exn = phi ... 188 // %selector = phi ... 189 // insns_3 190 // insnsAndBranches_4 191 192 assert(nonDominated); 193 assert(lastDominated); 194 195 // First, make clones of the intrinsics to go in lpad. 196 EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone()); 197 EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone()); 198 lpadSelector->setArgOperand(0, lpadExn); 199 lpadSelector->insertBefore(lpad->getFirstNonPHI()); 200 lpadExn->insertBefore(lpadSelector); 201 202 // Split the non-dominated block. 203 BasicBlock *split = 204 nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(), 205 nonDominated->getName() + ".lpad-fix"); 206 207 // Redirect the last dominated branch there. 208 cast<BranchInst>(lastDominated->back()).setSuccessor(0, split); 209 210 // Move the existing intrinsics to the end of the old block. 211 selector->moveBefore(&nonDominated->back()); 212 exn->moveBefore(selector); 213 214 Instruction *splitIP = &split->front(); 215 216 // For all the phis in nonDominated, make a new phi in split to join 217 // that phi with the edge from lastDominated. 218 for (BasicBlock::iterator 219 i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) { 220 PHINode *phi = dyn_cast<PHINode>(i); 221 if (!phi) break; 222 223 PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(), 224 splitIP); 225 phi->replaceAllUsesWith(splitPhi); 226 splitPhi->addIncoming(phi, nonDominated); 227 splitPhi->addIncoming(phi->removeIncomingValue(lastDominated), 228 lastDominated); 229 } 230 231 // Make new phis for the exception and selector. 232 PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP); 233 exn->replaceAllUsesWith(exnPhi); 234 selector->setArgOperand(0, exn); // except for this use 235 exnPhi->addIncoming(exn, nonDominated); 236 exnPhi->addIncoming(lpadExn, lastDominated); 237 238 PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP); 239 selector->replaceAllUsesWith(selectorPhi); 240 selectorPhi->addIncoming(selector, nonDominated); 241 selectorPhi->addIncoming(lpadSelector, lastDominated); 242 243 return lpadSelector; 244 } 245 246 namespace { 247 /// A class for recording information about inlining through an invoke. 248 class InvokeInliningInfo { 249 BasicBlock *OuterUnwindDest; 250 EHSelectorInst *OuterSelector; 251 BasicBlock *InnerUnwindDest; 252 PHINode *InnerExceptionPHI; 253 PHINode *InnerSelectorPHI; 254 SmallVector<Value*, 8> UnwindDestPHIValues; 255 256 // FIXME: New EH - These will replace the analogous ones above. 257 BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind. 258 BasicBlock *InnerResumeDest; //< Destination for the callee's resume. 259 LandingPadInst *CallerLPad; //< LandingPadInst associated with the invoke. 260 PHINode *InnerEHValuesPHI; //< PHI for EH values from landingpad insts. 261 262 public: 263 InvokeInliningInfo(InvokeInst *II) 264 : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0), 265 InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0), 266 OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 267 CallerLPad(0), InnerEHValuesPHI(0) { 268 // If there are PHI nodes in the unwind destination block, we need to keep 269 // track of which values came into them from the invoke before removing 270 // the edge from this block. 271 llvm::BasicBlock *InvokeBB = II->getParent(); 272 BasicBlock::iterator I = OuterUnwindDest->begin(); 273 for (; isa<PHINode>(I); ++I) { 274 // Save the value to use for this edge. 275 PHINode *PHI = cast<PHINode>(I); 276 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 277 } 278 279 CallerLPad = cast<LandingPadInst>(I); 280 } 281 282 /// The outer unwind destination is the target of unwind edges 283 /// introduced for calls within the inlined function. 284 BasicBlock *getOuterUnwindDest() const { 285 return OuterUnwindDest; 286 } 287 288 EHSelectorInst *getOuterSelector() { 289 if (!OuterSelector) 290 OuterSelector = findSelectorForLandingPad(OuterUnwindDest); 291 return OuterSelector; 292 } 293 294 BasicBlock *getInnerUnwindDest(); 295 296 // FIXME: New EH - Rename when new EH is turned on. 297 BasicBlock *getInnerUnwindDestNewEH(); 298 299 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 300 301 bool forwardEHResume(CallInst *call, BasicBlock *src); 302 303 /// forwardResume - Forward the 'resume' instruction to the caller's landing 304 /// pad block. When the landing pad block has only one predecessor, this is 305 /// a simple branch. When there is more than one predecessor, we need to 306 /// split the landing pad block after the landingpad instruction and jump 307 /// to there. 308 void forwardResume(ResumeInst *RI); 309 310 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 311 /// destination block for the given basic block, using the values for the 312 /// original invoke's source block. 313 void addIncomingPHIValuesFor(BasicBlock *BB) const { 314 addIncomingPHIValuesForInto(BB, OuterUnwindDest); 315 } 316 317 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 318 BasicBlock::iterator I = dest->begin(); 319 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 320 PHINode *phi = cast<PHINode>(I); 321 phi->addIncoming(UnwindDestPHIValues[i], src); 322 } 323 } 324 }; 325 } 326 327 /// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to 328 /// llvm.eh.resume. 329 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() { 330 if (InnerUnwindDest) return InnerUnwindDest; 331 332 // Find and hoist the llvm.eh.exception and llvm.eh.selector calls 333 // in the outer landing pad to immediately following the phis. 334 EHSelectorInst *selector = getOuterSelector(); 335 if (!selector) return 0; 336 337 // The call to llvm.eh.exception *must* be in the landing pad. 338 Instruction *exn = cast<Instruction>(selector->getArgOperand(0)); 339 assert(exn->getParent() == OuterUnwindDest); 340 341 // TODO: recognize when we've already done this, so that we don't 342 // get a linear number of these when inlining calls into lots of 343 // invokes with the same landing pad. 344 345 // Do the hoisting. 346 Instruction *splitPoint = exn->getParent()->getFirstNonPHI(); 347 assert(splitPoint != selector && "selector-on-exception dominance broken!"); 348 if (splitPoint == exn) { 349 selector->removeFromParent(); 350 selector->insertAfter(exn); 351 splitPoint = selector->getNextNode(); 352 } else { 353 exn->moveBefore(splitPoint); 354 selector->moveBefore(splitPoint); 355 } 356 357 // Split the landing pad. 358 InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint, 359 OuterUnwindDest->getName() + ".body"); 360 361 // The number of incoming edges we expect to the inner landing pad. 362 const unsigned phiCapacity = 2; 363 364 // Create corresponding new phis for all the phis in the outer landing pad. 365 BasicBlock::iterator insertPoint = InnerUnwindDest->begin(); 366 BasicBlock::iterator I = OuterUnwindDest->begin(); 367 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 368 PHINode *outerPhi = cast<PHINode>(I); 369 PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity, 370 outerPhi->getName() + ".lpad-body", 371 insertPoint); 372 outerPhi->replaceAllUsesWith(innerPhi); 373 innerPhi->addIncoming(outerPhi, OuterUnwindDest); 374 } 375 376 // Create a phi for the exception value... 377 InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity, 378 "exn.lpad-body", insertPoint); 379 exn->replaceAllUsesWith(InnerExceptionPHI); 380 selector->setArgOperand(0, exn); // restore this use 381 InnerExceptionPHI->addIncoming(exn, OuterUnwindDest); 382 383 // ...and the selector. 384 InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity, 385 "selector.lpad-body", insertPoint); 386 selector->replaceAllUsesWith(InnerSelectorPHI); 387 InnerSelectorPHI->addIncoming(selector, OuterUnwindDest); 388 389 // All done. 390 return InnerUnwindDest; 391 } 392 393 /// [LIBUNWIND] Try to forward the given call, which logically occurs 394 /// at the end of the given block, as a branch to the inner unwind 395 /// block. Returns true if the call was forwarded. 396 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) { 397 // First, check whether this is a call to the intrinsic. 398 Function *fn = dyn_cast<Function>(call->getCalledValue()); 399 if (!fn || fn->getName() != "llvm.eh.resume") 400 return false; 401 402 // At this point, we need to return true on all paths, because 403 // otherwise we'll construct an invoke of the intrinsic, which is 404 // not well-formed. 405 406 // Try to find or make an inner unwind dest, which will fail if we 407 // can't find a selector call for the outer unwind dest. 408 BasicBlock *dest = getInnerUnwindDest(); 409 bool hasSelector = (dest != 0); 410 411 // If we failed, just use the outer unwind dest, dropping the 412 // exception and selector on the floor. 413 if (!hasSelector) 414 dest = OuterUnwindDest; 415 416 // Make a branch. 417 BranchInst::Create(dest, src); 418 419 // Update the phis in the destination. They were inserted in an 420 // order which makes this work. 421 addIncomingPHIValuesForInto(src, dest); 422 423 if (hasSelector) { 424 InnerExceptionPHI->addIncoming(call->getArgOperand(0), src); 425 InnerSelectorPHI->addIncoming(call->getArgOperand(1), src); 426 } 427 428 return true; 429 } 430 431 /// Get or create a target for the branch from ResumeInsts. 432 BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() { 433 // FIXME: New EH - rename this function when new EH is turned on. 434 if (InnerResumeDest) return InnerResumeDest; 435 436 // Split the landing pad. 437 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 438 InnerResumeDest = 439 OuterResumeDest->splitBasicBlock(SplitPoint, 440 OuterResumeDest->getName() + ".body"); 441 442 // The number of incoming edges we expect to the inner landing pad. 443 const unsigned PHICapacity = 2; 444 445 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 446 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 447 BasicBlock::iterator I = OuterResumeDest->begin(); 448 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 449 PHINode *OuterPHI = cast<PHINode>(I); 450 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 451 OuterPHI->getName() + ".lpad-body", 452 InsertPoint); 453 OuterPHI->replaceAllUsesWith(InnerPHI); 454 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 455 } 456 457 // Create a PHI for the exception values. 458 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 459 "eh.lpad-body", InsertPoint); 460 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 461 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 462 463 // All done. 464 return InnerResumeDest; 465 } 466 467 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 468 /// block. When the landing pad block has only one predecessor, this is a simple 469 /// branch. When there is more than one predecessor, we need to split the 470 /// landing pad block after the landingpad instruction and jump to there. 471 void InvokeInliningInfo::forwardResume(ResumeInst *RI) { 472 BasicBlock *Dest = getInnerUnwindDestNewEH(); 473 BasicBlock *Src = RI->getParent(); 474 475 BranchInst::Create(Dest, Src); 476 477 // Update the PHIs in the destination. They were inserted in an order which 478 // makes this work. 479 addIncomingPHIValuesForInto(Src, Dest); 480 481 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 482 RI->eraseFromParent(); 483 } 484 485 486 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 487 /// an invoke, we have to turn all of the calls that can throw into 488 /// invokes. This function analyze BB to see if there are any calls, and if so, 489 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 490 /// nodes in that block with the values specified in InvokeDestPHIValues. 491 /// 492 /// Returns true to indicate that the next block should be skipped. 493 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 494 InvokeInliningInfo &Invoke) { 495 LandingPadInst *LPI = Invoke.getLandingPadInst(); 496 497 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 498 Instruction *I = BBI++; 499 500 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 501 unsigned NumClauses = LPI->getNumClauses(); 502 L->reserveClauses(NumClauses); 503 for (unsigned i = 0; i != NumClauses; ++i) 504 L->addClause(LPI->getClause(i)); 505 } 506 507 // We only need to check for function calls: inlined invoke 508 // instructions require no special handling. 509 CallInst *CI = dyn_cast<CallInst>(I); 510 511 // If this call cannot unwind, don't convert it to an invoke. 512 if (!CI || CI->doesNotThrow()) 513 continue; 514 515 // Convert this function call into an invoke instruction. First, split the 516 // basic block. 517 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 518 519 // Delete the unconditional branch inserted by splitBasicBlock 520 BB->getInstList().pop_back(); 521 522 // Otherwise, create the new invoke instruction. 523 ImmutableCallSite CS(CI); 524 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 525 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 526 Invoke.getOuterUnwindDest(), 527 InvokeArgs, CI->getName(), BB); 528 II->setCallingConv(CI->getCallingConv()); 529 II->setAttributes(CI->getAttributes()); 530 531 // Make sure that anything using the call now uses the invoke! This also 532 // updates the CallGraph if present, because it uses a WeakVH. 533 CI->replaceAllUsesWith(II); 534 535 // Delete the original call 536 Split->getInstList().pop_front(); 537 538 // Update any PHI nodes in the exceptional block to indicate that there is 539 // now a new entry in them. 540 Invoke.addIncomingPHIValuesFor(BB); 541 return false; 542 } 543 544 return false; 545 } 546 547 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 548 /// in the body of the inlined function into invokes and turn unwind 549 /// instructions into branches to the invoke unwind dest. 550 /// 551 /// II is the invoke instruction being inlined. FirstNewBlock is the first 552 /// block of the inlined code (the last block is the end of the function), 553 /// and InlineCodeInfo is information about the code that got inlined. 554 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 555 ClonedCodeInfo &InlinedCodeInfo) { 556 BasicBlock *InvokeDest = II->getUnwindDest(); 557 558 Function *Caller = FirstNewBlock->getParent(); 559 560 // The inlined code is currently at the end of the function, scan from the 561 // start of the inlined code to its end, checking for stuff we need to 562 // rewrite. If the code doesn't have calls or unwinds, we know there is 563 // nothing to rewrite. 564 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { 565 // Now that everything is happy, we have one final detail. The PHI nodes in 566 // the exception destination block still have entries due to the original 567 // invoke instruction. Eliminate these entries (which might even delete the 568 // PHI node) now. 569 InvokeDest->removePredecessor(II->getParent()); 570 return; 571 } 572 573 InvokeInliningInfo Invoke(II); 574 575 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 576 if (InlinedCodeInfo.ContainsCalls) 577 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 578 // Honor a request to skip the next block. We don't need to 579 // consider UnwindInsts in this case either. 580 ++BB; 581 continue; 582 } 583 584 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 585 // An UnwindInst requires special handling when it gets inlined into an 586 // invoke site. Once this happens, we know that the unwind would cause 587 // a control transfer to the invoke exception destination, so we can 588 // transform it into a direct branch to the exception destination. 589 BranchInst::Create(InvokeDest, UI); 590 591 // Delete the unwind instruction! 592 UI->eraseFromParent(); 593 594 // Update any PHI nodes in the exceptional block to indicate that 595 // there is now a new entry in them. 596 Invoke.addIncomingPHIValuesFor(BB); 597 } 598 599 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 600 Invoke.forwardResume(RI); 601 } 602 } 603 604 // Now that everything is happy, we have one final detail. The PHI nodes in 605 // the exception destination block still have entries due to the original 606 // invoke instruction. Eliminate these entries (which might even delete the 607 // PHI node) now. 608 InvokeDest->removePredecessor(II->getParent()); 609 } 610 611 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 612 /// into the caller, update the specified callgraph to reflect the changes we 613 /// made. Note that it's possible that not all code was copied over, so only 614 /// some edges of the callgraph may remain. 615 static void UpdateCallGraphAfterInlining(CallSite CS, 616 Function::iterator FirstNewBlock, 617 ValueToValueMapTy &VMap, 618 InlineFunctionInfo &IFI) { 619 CallGraph &CG = *IFI.CG; 620 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 621 const Function *Callee = CS.getCalledFunction(); 622 CallGraphNode *CalleeNode = CG[Callee]; 623 CallGraphNode *CallerNode = CG[Caller]; 624 625 // Since we inlined some uninlined call sites in the callee into the caller, 626 // add edges from the caller to all of the callees of the callee. 627 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 628 629 // Consider the case where CalleeNode == CallerNode. 630 CallGraphNode::CalledFunctionsVector CallCache; 631 if (CalleeNode == CallerNode) { 632 CallCache.assign(I, E); 633 I = CallCache.begin(); 634 E = CallCache.end(); 635 } 636 637 for (; I != E; ++I) { 638 const Value *OrigCall = I->first; 639 640 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 641 // Only copy the edge if the call was inlined! 642 if (VMI == VMap.end() || VMI->second == 0) 643 continue; 644 645 // If the call was inlined, but then constant folded, there is no edge to 646 // add. Check for this case. 647 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 648 if (NewCall == 0) continue; 649 650 // Remember that this call site got inlined for the client of 651 // InlineFunction. 652 IFI.InlinedCalls.push_back(NewCall); 653 654 // It's possible that inlining the callsite will cause it to go from an 655 // indirect to a direct call by resolving a function pointer. If this 656 // happens, set the callee of the new call site to a more precise 657 // destination. This can also happen if the call graph node of the caller 658 // was just unnecessarily imprecise. 659 if (I->second->getFunction() == 0) 660 if (Function *F = CallSite(NewCall).getCalledFunction()) { 661 // Indirect call site resolved to direct call. 662 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 663 664 continue; 665 } 666 667 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 668 } 669 670 // Update the call graph by deleting the edge from Callee to Caller. We must 671 // do this after the loop above in case Caller and Callee are the same. 672 CallerNode->removeCallEdgeFor(CS); 673 } 674 675 /// HandleByValArgument - When inlining a call site that has a byval argument, 676 /// we have to make the implicit memcpy explicit by adding it. 677 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 678 const Function *CalledFunc, 679 InlineFunctionInfo &IFI, 680 unsigned ByValAlignment) { 681 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 682 683 // If the called function is readonly, then it could not mutate the caller's 684 // copy of the byval'd memory. In this case, it is safe to elide the copy and 685 // temporary. 686 if (CalledFunc->onlyReadsMemory()) { 687 // If the byval argument has a specified alignment that is greater than the 688 // passed in pointer, then we either have to round up the input pointer or 689 // give up on this transformation. 690 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 691 return Arg; 692 693 // If the pointer is already known to be sufficiently aligned, or if we can 694 // round it up to a larger alignment, then we don't need a temporary. 695 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 696 IFI.TD) >= ByValAlignment) 697 return Arg; 698 699 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 700 // for code quality, but rarely happens and is required for correctness. 701 } 702 703 LLVMContext &Context = Arg->getContext(); 704 705 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 706 707 // Create the alloca. If we have TargetData, use nice alignment. 708 unsigned Align = 1; 709 if (IFI.TD) 710 Align = IFI.TD->getPrefTypeAlignment(AggTy); 711 712 // If the byval had an alignment specified, we *must* use at least that 713 // alignment, as it is required by the byval argument (and uses of the 714 // pointer inside the callee). 715 Align = std::max(Align, ByValAlignment); 716 717 Function *Caller = TheCall->getParent()->getParent(); 718 719 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 720 &*Caller->begin()->begin()); 721 // Emit a memcpy. 722 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 723 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 724 Intrinsic::memcpy, 725 Tys); 726 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 727 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 728 729 Value *Size; 730 if (IFI.TD == 0) 731 Size = ConstantExpr::getSizeOf(AggTy); 732 else 733 Size = ConstantInt::get(Type::getInt64Ty(Context), 734 IFI.TD->getTypeStoreSize(AggTy)); 735 736 // Always generate a memcpy of alignment 1 here because we don't know 737 // the alignment of the src pointer. Other optimizations can infer 738 // better alignment. 739 Value *CallArgs[] = { 740 DestCast, SrcCast, Size, 741 ConstantInt::get(Type::getInt32Ty(Context), 1), 742 ConstantInt::getFalse(Context) // isVolatile 743 }; 744 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 745 746 // Uses of the argument in the function should use our new alloca 747 // instead. 748 return NewAlloca; 749 } 750 751 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 752 // intrinsic. 753 static bool isUsedByLifetimeMarker(Value *V) { 754 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 755 ++UI) { 756 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 757 switch (II->getIntrinsicID()) { 758 default: break; 759 case Intrinsic::lifetime_start: 760 case Intrinsic::lifetime_end: 761 return true; 762 } 763 } 764 } 765 return false; 766 } 767 768 // hasLifetimeMarkers - Check whether the given alloca already has 769 // lifetime.start or lifetime.end intrinsics. 770 static bool hasLifetimeMarkers(AllocaInst *AI) { 771 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 772 if (AI->getType() == Int8PtrTy) 773 return isUsedByLifetimeMarker(AI); 774 775 // Do a scan to find all the casts to i8*. 776 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 777 ++I) { 778 if (I->getType() != Int8PtrTy) continue; 779 if (I->stripPointerCasts() != AI) continue; 780 if (isUsedByLifetimeMarker(*I)) 781 return true; 782 } 783 return false; 784 } 785 786 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively 787 /// update InlinedAtEntry of a DebugLoc. 788 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 789 const DebugLoc &InlinedAtDL, 790 LLVMContext &Ctx) { 791 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 792 DebugLoc NewInlinedAtDL 793 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 794 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 795 NewInlinedAtDL.getAsMDNode(Ctx)); 796 } 797 798 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 799 InlinedAtDL.getAsMDNode(Ctx)); 800 } 801 802 803 /// fixupLineNumbers - Update inlined instructions' line numbers to 804 /// to encode location where these instructions are inlined. 805 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 806 Instruction *TheCall) { 807 DebugLoc TheCallDL = TheCall->getDebugLoc(); 808 if (TheCallDL.isUnknown()) 809 return; 810 811 for (; FI != Fn->end(); ++FI) { 812 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 813 BI != BE; ++BI) { 814 DebugLoc DL = BI->getDebugLoc(); 815 if (!DL.isUnknown()) { 816 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 817 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 818 LLVMContext &Ctx = BI->getContext(); 819 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 820 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 821 InlinedAt, Ctx)); 822 } 823 } 824 } 825 } 826 } 827 828 /// InlineFunction - This function inlines the called function into the basic 829 /// block of the caller. This returns false if it is not possible to inline 830 /// this call. The program is still in a well defined state if this occurs 831 /// though. 832 /// 833 /// Note that this only does one level of inlining. For example, if the 834 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 835 /// exists in the instruction stream. Similarly this will inline a recursive 836 /// function by one level. 837 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { 838 Instruction *TheCall = CS.getInstruction(); 839 LLVMContext &Context = TheCall->getContext(); 840 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 841 "Instruction not in function!"); 842 843 // If IFI has any state in it, zap it before we fill it in. 844 IFI.reset(); 845 846 const Function *CalledFunc = CS.getCalledFunction(); 847 if (CalledFunc == 0 || // Can't inline external function or indirect 848 CalledFunc->isDeclaration() || // call, or call to a vararg function! 849 CalledFunc->getFunctionType()->isVarArg()) return false; 850 851 // If the call to the callee is not a tail call, we must clear the 'tail' 852 // flags on any calls that we inline. 853 bool MustClearTailCallFlags = 854 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 855 856 // If the call to the callee cannot throw, set the 'nounwind' flag on any 857 // calls that we inline. 858 bool MarkNoUnwind = CS.doesNotThrow(); 859 860 BasicBlock *OrigBB = TheCall->getParent(); 861 Function *Caller = OrigBB->getParent(); 862 863 // GC poses two hazards to inlining, which only occur when the callee has GC: 864 // 1. If the caller has no GC, then the callee's GC must be propagated to the 865 // caller. 866 // 2. If the caller has a differing GC, it is invalid to inline. 867 if (CalledFunc->hasGC()) { 868 if (!Caller->hasGC()) 869 Caller->setGC(CalledFunc->getGC()); 870 else if (CalledFunc->getGC() != Caller->getGC()) 871 return false; 872 } 873 874 // Get the personality function from the callee if it contains a landing pad. 875 Value *CalleePersonality = 0; 876 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 877 I != E; ++I) 878 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 879 const BasicBlock *BB = II->getUnwindDest(); 880 const LandingPadInst *LP = BB->getLandingPadInst(); 881 CalleePersonality = LP->getPersonalityFn(); 882 break; 883 } 884 885 // Find the personality function used by the landing pads of the caller. If it 886 // exists, then check to see that it matches the personality function used in 887 // the callee. 888 if (CalleePersonality) { 889 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 890 I != E; ++I) 891 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 892 const BasicBlock *BB = II->getUnwindDest(); 893 const LandingPadInst *LP = BB->getLandingPadInst(); 894 895 // If the personality functions match, then we can perform the 896 // inlining. Otherwise, we can't inline. 897 // TODO: This isn't 100% true. Some personality functions are proper 898 // supersets of others and can be used in place of the other. 899 if (LP->getPersonalityFn() != CalleePersonality) 900 return false; 901 902 break; 903 } 904 } 905 906 // Get an iterator to the last basic block in the function, which will have 907 // the new function inlined after it. 908 // 909 Function::iterator LastBlock = &Caller->back(); 910 911 // Make sure to capture all of the return instructions from the cloned 912 // function. 913 SmallVector<ReturnInst*, 8> Returns; 914 ClonedCodeInfo InlinedFunctionInfo; 915 Function::iterator FirstNewBlock; 916 917 { // Scope to destroy VMap after cloning. 918 ValueToValueMapTy VMap; 919 920 assert(CalledFunc->arg_size() == CS.arg_size() && 921 "No varargs calls can be inlined!"); 922 923 // Calculate the vector of arguments to pass into the function cloner, which 924 // matches up the formal to the actual argument values. 925 CallSite::arg_iterator AI = CS.arg_begin(); 926 unsigned ArgNo = 0; 927 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 928 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 929 Value *ActualArg = *AI; 930 931 // When byval arguments actually inlined, we need to make the copy implied 932 // by them explicit. However, we don't do this if the callee is readonly 933 // or readnone, because the copy would be unneeded: the callee doesn't 934 // modify the struct. 935 if (CS.isByValArgument(ArgNo)) { 936 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 937 CalledFunc->getParamAlignment(ArgNo+1)); 938 939 // Calls that we inline may use the new alloca, so we need to clear 940 // their 'tail' flags if HandleByValArgument introduced a new alloca and 941 // the callee has calls. 942 MustClearTailCallFlags |= ActualArg != *AI; 943 } 944 945 VMap[I] = ActualArg; 946 } 947 948 // We want the inliner to prune the code as it copies. We would LOVE to 949 // have no dead or constant instructions leftover after inlining occurs 950 // (which can happen, e.g., because an argument was constant), but we'll be 951 // happy with whatever the cloner can do. 952 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 953 /*ModuleLevelChanges=*/false, Returns, ".i", 954 &InlinedFunctionInfo, IFI.TD, TheCall); 955 956 // Remember the first block that is newly cloned over. 957 FirstNewBlock = LastBlock; ++FirstNewBlock; 958 959 // Update the callgraph if requested. 960 if (IFI.CG) 961 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 962 963 // Update inlined instructions' line number information. 964 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 965 } 966 967 // If there are any alloca instructions in the block that used to be the entry 968 // block for the callee, move them to the entry block of the caller. First 969 // calculate which instruction they should be inserted before. We insert the 970 // instructions at the end of the current alloca list. 971 { 972 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 973 for (BasicBlock::iterator I = FirstNewBlock->begin(), 974 E = FirstNewBlock->end(); I != E; ) { 975 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 976 if (AI == 0) continue; 977 978 // If the alloca is now dead, remove it. This often occurs due to code 979 // specialization. 980 if (AI->use_empty()) { 981 AI->eraseFromParent(); 982 continue; 983 } 984 985 if (!isa<Constant>(AI->getArraySize())) 986 continue; 987 988 // Keep track of the static allocas that we inline into the caller. 989 IFI.StaticAllocas.push_back(AI); 990 991 // Scan for the block of allocas that we can move over, and move them 992 // all at once. 993 while (isa<AllocaInst>(I) && 994 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 995 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 996 ++I; 997 } 998 999 // Transfer all of the allocas over in a block. Using splice means 1000 // that the instructions aren't removed from the symbol table, then 1001 // reinserted. 1002 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1003 FirstNewBlock->getInstList(), 1004 AI, I); 1005 } 1006 } 1007 1008 // Leave lifetime markers for the static alloca's, scoping them to the 1009 // function we just inlined. 1010 if (!IFI.StaticAllocas.empty()) { 1011 IRBuilder<> builder(FirstNewBlock->begin()); 1012 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1013 AllocaInst *AI = IFI.StaticAllocas[ai]; 1014 1015 // If the alloca is already scoped to something smaller than the whole 1016 // function then there's no need to add redundant, less accurate markers. 1017 if (hasLifetimeMarkers(AI)) 1018 continue; 1019 1020 builder.CreateLifetimeStart(AI); 1021 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 1022 IRBuilder<> builder(Returns[ri]); 1023 builder.CreateLifetimeEnd(AI); 1024 } 1025 } 1026 } 1027 1028 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1029 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1030 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1031 Module *M = Caller->getParent(); 1032 // Get the two intrinsics we care about. 1033 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1034 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1035 1036 // Insert the llvm.stacksave. 1037 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1038 .CreateCall(StackSave, "savedstack"); 1039 1040 // Insert a call to llvm.stackrestore before any return instructions in the 1041 // inlined function. 1042 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1043 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 1044 } 1045 1046 // Count the number of StackRestore calls we insert. 1047 unsigned NumStackRestores = Returns.size(); 1048 1049 // If we are inlining an invoke instruction, insert restores before each 1050 // unwind. These unwinds will be rewritten into branches later. 1051 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { 1052 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1053 BB != E; ++BB) 1054 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 1055 IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr); 1056 ++NumStackRestores; 1057 } 1058 } 1059 } 1060 1061 // If we are inlining tail call instruction through a call site that isn't 1062 // marked 'tail', we must remove the tail marker for any calls in the inlined 1063 // code. Also, calls inlined through a 'nounwind' call site should be marked 1064 // 'nounwind'. 1065 if (InlinedFunctionInfo.ContainsCalls && 1066 (MustClearTailCallFlags || MarkNoUnwind)) { 1067 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1068 BB != E; ++BB) 1069 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1070 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1071 if (MustClearTailCallFlags) 1072 CI->setTailCall(false); 1073 if (MarkNoUnwind) 1074 CI->setDoesNotThrow(); 1075 } 1076 } 1077 1078 // If we are inlining through a 'nounwind' call site then any inlined 'unwind' 1079 // instructions are unreachable. 1080 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) 1081 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1082 BB != E; ++BB) { 1083 TerminatorInst *Term = BB->getTerminator(); 1084 if (isa<UnwindInst>(Term)) { 1085 new UnreachableInst(Context, Term); 1086 BB->getInstList().erase(Term); 1087 } 1088 } 1089 1090 // If we are inlining for an invoke instruction, we must make sure to rewrite 1091 // any inlined 'unwind' instructions into branches to the invoke exception 1092 // destination, and call instructions into invoke instructions. 1093 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1094 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1095 1096 // If we cloned in _exactly one_ basic block, and if that block ends in a 1097 // return instruction, we splice the body of the inlined callee directly into 1098 // the calling basic block. 1099 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1100 // Move all of the instructions right before the call. 1101 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1102 FirstNewBlock->begin(), FirstNewBlock->end()); 1103 // Remove the cloned basic block. 1104 Caller->getBasicBlockList().pop_back(); 1105 1106 // If the call site was an invoke instruction, add a branch to the normal 1107 // destination. 1108 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1109 BranchInst::Create(II->getNormalDest(), TheCall); 1110 1111 // If the return instruction returned a value, replace uses of the call with 1112 // uses of the returned value. 1113 if (!TheCall->use_empty()) { 1114 ReturnInst *R = Returns[0]; 1115 if (TheCall == R->getReturnValue()) 1116 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1117 else 1118 TheCall->replaceAllUsesWith(R->getReturnValue()); 1119 } 1120 // Since we are now done with the Call/Invoke, we can delete it. 1121 TheCall->eraseFromParent(); 1122 1123 // Since we are now done with the return instruction, delete it also. 1124 Returns[0]->eraseFromParent(); 1125 1126 // We are now done with the inlining. 1127 return true; 1128 } 1129 1130 // Otherwise, we have the normal case, of more than one block to inline or 1131 // multiple return sites. 1132 1133 // We want to clone the entire callee function into the hole between the 1134 // "starter" and "ender" blocks. How we accomplish this depends on whether 1135 // this is an invoke instruction or a call instruction. 1136 BasicBlock *AfterCallBB; 1137 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1138 1139 // Add an unconditional branch to make this look like the CallInst case... 1140 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1141 1142 // Split the basic block. This guarantees that no PHI nodes will have to be 1143 // updated due to new incoming edges, and make the invoke case more 1144 // symmetric to the call case. 1145 AfterCallBB = OrigBB->splitBasicBlock(NewBr, 1146 CalledFunc->getName()+".exit"); 1147 1148 } else { // It's a call 1149 // If this is a call instruction, we need to split the basic block that 1150 // the call lives in. 1151 // 1152 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1153 CalledFunc->getName()+".exit"); 1154 } 1155 1156 // Change the branch that used to go to AfterCallBB to branch to the first 1157 // basic block of the inlined function. 1158 // 1159 TerminatorInst *Br = OrigBB->getTerminator(); 1160 assert(Br && Br->getOpcode() == Instruction::Br && 1161 "splitBasicBlock broken!"); 1162 Br->setOperand(0, FirstNewBlock); 1163 1164 1165 // Now that the function is correct, make it a little bit nicer. In 1166 // particular, move the basic blocks inserted from the end of the function 1167 // into the space made by splitting the source basic block. 1168 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1169 FirstNewBlock, Caller->end()); 1170 1171 // Handle all of the return instructions that we just cloned in, and eliminate 1172 // any users of the original call/invoke instruction. 1173 Type *RTy = CalledFunc->getReturnType(); 1174 1175 PHINode *PHI = 0; 1176 if (Returns.size() > 1) { 1177 // The PHI node should go at the front of the new basic block to merge all 1178 // possible incoming values. 1179 if (!TheCall->use_empty()) { 1180 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1181 AfterCallBB->begin()); 1182 // Anything that used the result of the function call should now use the 1183 // PHI node as their operand. 1184 TheCall->replaceAllUsesWith(PHI); 1185 } 1186 1187 // Loop over all of the return instructions adding entries to the PHI node 1188 // as appropriate. 1189 if (PHI) { 1190 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1191 ReturnInst *RI = Returns[i]; 1192 assert(RI->getReturnValue()->getType() == PHI->getType() && 1193 "Ret value not consistent in function!"); 1194 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1195 } 1196 } 1197 1198 1199 // Add a branch to the merge points and remove return instructions. 1200 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1201 ReturnInst *RI = Returns[i]; 1202 BranchInst::Create(AfterCallBB, RI); 1203 RI->eraseFromParent(); 1204 } 1205 } else if (!Returns.empty()) { 1206 // Otherwise, if there is exactly one return value, just replace anything 1207 // using the return value of the call with the computed value. 1208 if (!TheCall->use_empty()) { 1209 if (TheCall == Returns[0]->getReturnValue()) 1210 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1211 else 1212 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1213 } 1214 1215 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1216 BasicBlock *ReturnBB = Returns[0]->getParent(); 1217 ReturnBB->replaceAllUsesWith(AfterCallBB); 1218 1219 // Splice the code from the return block into the block that it will return 1220 // to, which contains the code that was after the call. 1221 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1222 ReturnBB->getInstList()); 1223 1224 // Delete the return instruction now and empty ReturnBB now. 1225 Returns[0]->eraseFromParent(); 1226 ReturnBB->eraseFromParent(); 1227 } else if (!TheCall->use_empty()) { 1228 // No returns, but something is using the return value of the call. Just 1229 // nuke the result. 1230 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1231 } 1232 1233 // Since we are now done with the Call/Invoke, we can delete it. 1234 TheCall->eraseFromParent(); 1235 1236 // We should always be able to fold the entry block of the function into the 1237 // single predecessor of the block... 1238 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1239 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1240 1241 // Splice the code entry block into calling block, right before the 1242 // unconditional branch. 1243 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1244 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1245 1246 // Remove the unconditional branch. 1247 OrigBB->getInstList().erase(Br); 1248 1249 // Now we can remove the CalleeEntry block, which is now empty. 1250 Caller->getBasicBlockList().erase(CalleeEntry); 1251 1252 // If we inserted a phi node, check to see if it has a single value (e.g. all 1253 // the entries are the same or undef). If so, remove the PHI so it doesn't 1254 // block other optimizations. 1255 if (PHI) { 1256 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 1257 PHI->replaceAllUsesWith(V); 1258 PHI->eraseFromParent(); 1259 } 1260 } 1261 1262 return true; 1263 } 1264