1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Support/CommandLine.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 static cl::opt<bool> 46 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 47 cl::Hidden, 48 cl::desc("Convert noalias attributes to metadata during inlining.")); 49 50 static cl::opt<bool> 51 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 52 cl::init(true), cl::Hidden, 53 cl::desc("Convert align attributes to assumptions during inlining.")); 54 55 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 56 bool InsertLifetime) { 57 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 58 } 59 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 60 bool InsertLifetime) { 61 return InlineFunction(CallSite(II), IFI, InsertLifetime); 62 } 63 64 namespace { 65 /// A class for recording information about inlining through an invoke. 66 class InvokeInliningInfo { 67 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 68 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 69 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 70 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 71 SmallVector<Value*, 8> UnwindDestPHIValues; 72 73 public: 74 InvokeInliningInfo(InvokeInst *II) 75 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 76 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 77 // If there are PHI nodes in the unwind destination block, we need to keep 78 // track of which values came into them from the invoke before removing 79 // the edge from this block. 80 llvm::BasicBlock *InvokeBB = II->getParent(); 81 BasicBlock::iterator I = OuterResumeDest->begin(); 82 for (; isa<PHINode>(I); ++I) { 83 // Save the value to use for this edge. 84 PHINode *PHI = cast<PHINode>(I); 85 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 86 } 87 88 CallerLPad = cast<LandingPadInst>(I); 89 } 90 91 /// getOuterResumeDest - The outer unwind destination is the target of 92 /// unwind edges introduced for calls within the inlined function. 93 BasicBlock *getOuterResumeDest() const { 94 return OuterResumeDest; 95 } 96 97 BasicBlock *getInnerResumeDest(); 98 99 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 100 101 /// forwardResume - Forward the 'resume' instruction to the caller's landing 102 /// pad block. When the landing pad block has only one predecessor, this is 103 /// a simple branch. When there is more than one predecessor, we need to 104 /// split the landing pad block after the landingpad instruction and jump 105 /// to there. 106 void forwardResume(ResumeInst *RI, 107 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 108 109 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 110 /// destination block for the given basic block, using the values for the 111 /// original invoke's source block. 112 void addIncomingPHIValuesFor(BasicBlock *BB) const { 113 addIncomingPHIValuesForInto(BB, OuterResumeDest); 114 } 115 116 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 117 BasicBlock::iterator I = dest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *phi = cast<PHINode>(I); 120 phi->addIncoming(UnwindDestPHIValues[i], src); 121 } 122 } 123 }; 124 } 125 126 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 127 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 128 if (InnerResumeDest) return InnerResumeDest; 129 130 // Split the landing pad. 131 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 132 InnerResumeDest = 133 OuterResumeDest->splitBasicBlock(SplitPoint, 134 OuterResumeDest->getName() + ".body"); 135 136 // The number of incoming edges we expect to the inner landing pad. 137 const unsigned PHICapacity = 2; 138 139 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 140 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 141 BasicBlock::iterator I = OuterResumeDest->begin(); 142 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 143 PHINode *OuterPHI = cast<PHINode>(I); 144 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 145 OuterPHI->getName() + ".lpad-body", 146 InsertPoint); 147 OuterPHI->replaceAllUsesWith(InnerPHI); 148 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 149 } 150 151 // Create a PHI for the exception values. 152 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 153 "eh.lpad-body", InsertPoint); 154 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 155 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 156 157 // All done. 158 return InnerResumeDest; 159 } 160 161 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 162 /// block. When the landing pad block has only one predecessor, this is a simple 163 /// branch. When there is more than one predecessor, we need to split the 164 /// landing pad block after the landingpad instruction and jump to there. 165 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 166 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 167 BasicBlock *Dest = getInnerResumeDest(); 168 BasicBlock *Src = RI->getParent(); 169 170 BranchInst::Create(Dest, Src); 171 172 // Update the PHIs in the destination. They were inserted in an order which 173 // makes this work. 174 addIncomingPHIValuesForInto(Src, Dest); 175 176 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 177 RI->eraseFromParent(); 178 } 179 180 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 181 /// an invoke, we have to turn all of the calls that can throw into 182 /// invokes. This function analyze BB to see if there are any calls, and if so, 183 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 184 /// nodes in that block with the values specified in InvokeDestPHIValues. 185 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 186 InvokeInliningInfo &Invoke) { 187 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 188 Instruction *I = BBI++; 189 190 // We only need to check for function calls: inlined invoke 191 // instructions require no special handling. 192 CallInst *CI = dyn_cast<CallInst>(I); 193 194 // If this call cannot unwind, don't convert it to an invoke. 195 // Inline asm calls cannot throw. 196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 210 Invoke.getOuterResumeDest(), 211 InvokeArgs, CI->getName(), BB); 212 II->setDebugLoc(CI->getDebugLoc()); 213 II->setCallingConv(CI->getCallingConv()); 214 II->setAttributes(CI->getAttributes()); 215 216 // Make sure that anything using the call now uses the invoke! This also 217 // updates the CallGraph if present, because it uses a WeakVH. 218 CI->replaceAllUsesWith(II); 219 220 // Delete the original call 221 Split->getInstList().pop_front(); 222 223 // Update any PHI nodes in the exceptional block to indicate that there is 224 // now a new entry in them. 225 Invoke.addIncomingPHIValuesFor(BB); 226 return; 227 } 228 } 229 230 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 231 /// in the body of the inlined function into invokes. 232 /// 233 /// II is the invoke instruction being inlined. FirstNewBlock is the first 234 /// block of the inlined code (the last block is the end of the function), 235 /// and InlineCodeInfo is information about the code that got inlined. 236 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 237 ClonedCodeInfo &InlinedCodeInfo) { 238 BasicBlock *InvokeDest = II->getUnwindDest(); 239 240 Function *Caller = FirstNewBlock->getParent(); 241 242 // The inlined code is currently at the end of the function, scan from the 243 // start of the inlined code to its end, checking for stuff we need to 244 // rewrite. 245 InvokeInliningInfo Invoke(II); 246 247 // Get all of the inlined landing pad instructions. 248 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 249 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 250 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 251 InlinedLPads.insert(II->getLandingPadInst()); 252 253 // Append the clauses from the outer landing pad instruction into the inlined 254 // landing pad instructions. 255 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 256 for (LandingPadInst *InlinedLPad : InlinedLPads) { 257 unsigned OuterNum = OuterLPad->getNumClauses(); 258 InlinedLPad->reserveClauses(OuterNum); 259 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 260 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 261 if (OuterLPad->isCleanup()) 262 InlinedLPad->setCleanup(true); 263 } 264 265 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 266 if (InlinedCodeInfo.ContainsCalls) 267 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 268 269 // Forward any resumes that are remaining here. 270 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 271 Invoke.forwardResume(RI, InlinedLPads); 272 } 273 274 // Now that everything is happy, we have one final detail. The PHI nodes in 275 // the exception destination block still have entries due to the original 276 // invoke instruction. Eliminate these entries (which might even delete the 277 // PHI node) now. 278 InvokeDest->removePredecessor(II->getParent()); 279 } 280 281 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 282 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 283 /// have different "unqiue scopes" at every call site. Were this not done, then 284 /// aliasing scopes from a function inlined into a caller multiple times could 285 /// not be differentiated (and this would lead to miscompiles because the 286 /// non-aliasing property communicated by the metadata could have 287 /// call-site-specific control dependencies). 288 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 289 const Function *CalledFunc = CS.getCalledFunction(); 290 SetVector<const MDNode *> MD; 291 292 // Note: We could only clone the metadata if it is already used in the 293 // caller. I'm omitting that check here because it might confuse 294 // inter-procedural alias analysis passes. We can revisit this if it becomes 295 // an efficiency or overhead problem. 296 297 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 298 I != IE; ++I) 299 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 300 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 301 MD.insert(M); 302 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 303 MD.insert(M); 304 } 305 306 if (MD.empty()) 307 return; 308 309 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 310 // the set. 311 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 312 while (!Queue.empty()) { 313 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 314 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 315 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 316 if (MD.insert(M1)) 317 Queue.push_back(M1); 318 } 319 320 // Now we have a complete set of all metadata in the chains used to specify 321 // the noalias scopes and the lists of those scopes. 322 SmallVector<TempMDTuple, 16> DummyNodes; 323 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 324 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 325 I != IE; ++I) { 326 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 327 MDMap[*I].reset(DummyNodes.back().get()); 328 } 329 330 // Create new metadata nodes to replace the dummy nodes, replacing old 331 // metadata references with either a dummy node or an already-created new 332 // node. 333 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 334 I != IE; ++I) { 335 SmallVector<Metadata *, 4> NewOps; 336 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 337 const Metadata *V = (*I)->getOperand(i); 338 if (const MDNode *M = dyn_cast<MDNode>(V)) 339 NewOps.push_back(MDMap[M]); 340 else 341 NewOps.push_back(const_cast<Metadata *>(V)); 342 } 343 344 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 345 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 346 assert(TempM->isTemporary() && "Expected temporary node"); 347 348 TempM->replaceAllUsesWith(NewM); 349 } 350 351 // Now replace the metadata in the new inlined instructions with the 352 // repacements from the map. 353 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 354 VMI != VMIE; ++VMI) { 355 if (!VMI->second) 356 continue; 357 358 Instruction *NI = dyn_cast<Instruction>(VMI->second); 359 if (!NI) 360 continue; 361 362 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 363 MDNode *NewMD = MDMap[M]; 364 // If the call site also had alias scope metadata (a list of scopes to 365 // which instructions inside it might belong), propagate those scopes to 366 // the inlined instructions. 367 if (MDNode *CSM = 368 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 369 NewMD = MDNode::concatenate(NewMD, CSM); 370 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 371 } else if (NI->mayReadOrWriteMemory()) { 372 if (MDNode *M = 373 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 374 NI->setMetadata(LLVMContext::MD_alias_scope, M); 375 } 376 377 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 378 MDNode *NewMD = MDMap[M]; 379 // If the call site also had noalias metadata (a list of scopes with 380 // which instructions inside it don't alias), propagate those scopes to 381 // the inlined instructions. 382 if (MDNode *CSM = 383 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 384 NewMD = MDNode::concatenate(NewMD, CSM); 385 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 386 } else if (NI->mayReadOrWriteMemory()) { 387 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 388 NI->setMetadata(LLVMContext::MD_noalias, M); 389 } 390 } 391 } 392 393 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 394 /// add new alias scopes for each noalias argument, tag the mapped noalias 395 /// parameters with noalias metadata specifying the new scope, and tag all 396 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 397 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 398 const DataLayout *DL, AliasAnalysis *AA) { 399 if (!EnableNoAliasConversion) 400 return; 401 402 const Function *CalledFunc = CS.getCalledFunction(); 403 SmallVector<const Argument *, 4> NoAliasArgs; 404 405 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 406 E = CalledFunc->arg_end(); I != E; ++I) { 407 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 408 NoAliasArgs.push_back(I); 409 } 410 411 if (NoAliasArgs.empty()) 412 return; 413 414 // To do a good job, if a noalias variable is captured, we need to know if 415 // the capture point dominates the particular use we're considering. 416 DominatorTree DT; 417 DT.recalculate(const_cast<Function&>(*CalledFunc)); 418 419 // noalias indicates that pointer values based on the argument do not alias 420 // pointer values which are not based on it. So we add a new "scope" for each 421 // noalias function argument. Accesses using pointers based on that argument 422 // become part of that alias scope, accesses using pointers not based on that 423 // argument are tagged as noalias with that scope. 424 425 DenseMap<const Argument *, MDNode *> NewScopes; 426 MDBuilder MDB(CalledFunc->getContext()); 427 428 // Create a new scope domain for this function. 429 MDNode *NewDomain = 430 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 431 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 432 const Argument *A = NoAliasArgs[i]; 433 434 std::string Name = CalledFunc->getName(); 435 if (A->hasName()) { 436 Name += ": %"; 437 Name += A->getName(); 438 } else { 439 Name += ": argument "; 440 Name += utostr(i); 441 } 442 443 // Note: We always create a new anonymous root here. This is true regardless 444 // of the linkage of the callee because the aliasing "scope" is not just a 445 // property of the callee, but also all control dependencies in the caller. 446 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 447 NewScopes.insert(std::make_pair(A, NewScope)); 448 } 449 450 // Iterate over all new instructions in the map; for all memory-access 451 // instructions, add the alias scope metadata. 452 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 453 VMI != VMIE; ++VMI) { 454 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 455 if (!VMI->second) 456 continue; 457 458 Instruction *NI = dyn_cast<Instruction>(VMI->second); 459 if (!NI) 460 continue; 461 462 bool IsArgMemOnlyCall = false, IsFuncCall = false; 463 SmallVector<const Value *, 2> PtrArgs; 464 465 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 466 PtrArgs.push_back(LI->getPointerOperand()); 467 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 468 PtrArgs.push_back(SI->getPointerOperand()); 469 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 470 PtrArgs.push_back(VAAI->getPointerOperand()); 471 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 472 PtrArgs.push_back(CXI->getPointerOperand()); 473 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 474 PtrArgs.push_back(RMWI->getPointerOperand()); 475 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 476 // If we know that the call does not access memory, then we'll still 477 // know that about the inlined clone of this call site, and we don't 478 // need to add metadata. 479 if (ICS.doesNotAccessMemory()) 480 continue; 481 482 IsFuncCall = true; 483 if (AA) { 484 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); 485 if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || 486 MRB == AliasAnalysis::OnlyReadsArgumentPointees) 487 IsArgMemOnlyCall = true; 488 } 489 490 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 491 AE = ICS.arg_end(); AI != AE; ++AI) { 492 // We need to check the underlying objects of all arguments, not just 493 // the pointer arguments, because we might be passing pointers as 494 // integers, etc. 495 // However, if we know that the call only accesses pointer arguments, 496 // then we only need to check the pointer arguments. 497 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 498 continue; 499 500 PtrArgs.push_back(*AI); 501 } 502 } 503 504 // If we found no pointers, then this instruction is not suitable for 505 // pairing with an instruction to receive aliasing metadata. 506 // However, if this is a call, this we might just alias with none of the 507 // noalias arguments. 508 if (PtrArgs.empty() && !IsFuncCall) 509 continue; 510 511 // It is possible that there is only one underlying object, but you 512 // need to go through several PHIs to see it, and thus could be 513 // repeated in the Objects list. 514 SmallPtrSet<const Value *, 4> ObjSet; 515 SmallVector<Metadata *, 4> Scopes, NoAliases; 516 517 SmallSetVector<const Argument *, 4> NAPtrArgs; 518 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 519 SmallVector<Value *, 4> Objects; 520 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 521 Objects, DL, /* MaxLookup = */ 0); 522 523 for (Value *O : Objects) 524 ObjSet.insert(O); 525 } 526 527 // Figure out if we're derived from anything that is not a noalias 528 // argument. 529 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 530 for (const Value *V : ObjSet) { 531 // Is this value a constant that cannot be derived from any pointer 532 // value (we need to exclude constant expressions, for example, that 533 // are formed from arithmetic on global symbols). 534 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 535 isa<ConstantPointerNull>(V) || 536 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 537 if (IsNonPtrConst) 538 continue; 539 540 // If this is anything other than a noalias argument, then we cannot 541 // completely describe the aliasing properties using alias.scope 542 // metadata (and, thus, won't add any). 543 if (const Argument *A = dyn_cast<Argument>(V)) { 544 if (!A->hasNoAliasAttr()) 545 UsesAliasingPtr = true; 546 } else { 547 UsesAliasingPtr = true; 548 } 549 550 // If this is not some identified function-local object (which cannot 551 // directly alias a noalias argument), or some other argument (which, 552 // by definition, also cannot alias a noalias argument), then we could 553 // alias a noalias argument that has been captured). 554 if (!isa<Argument>(V) && 555 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 556 CanDeriveViaCapture = true; 557 } 558 559 // A function call can always get captured noalias pointers (via other 560 // parameters, globals, etc.). 561 if (IsFuncCall && !IsArgMemOnlyCall) 562 CanDeriveViaCapture = true; 563 564 // First, we want to figure out all of the sets with which we definitely 565 // don't alias. Iterate over all noalias set, and add those for which: 566 // 1. The noalias argument is not in the set of objects from which we 567 // definitely derive. 568 // 2. The noalias argument has not yet been captured. 569 // An arbitrary function that might load pointers could see captured 570 // noalias arguments via other noalias arguments or globals, and so we 571 // must always check for prior capture. 572 for (const Argument *A : NoAliasArgs) { 573 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 574 // It might be tempting to skip the 575 // PointerMayBeCapturedBefore check if 576 // A->hasNoCaptureAttr() is true, but this is 577 // incorrect because nocapture only guarantees 578 // that no copies outlive the function, not 579 // that the value cannot be locally captured. 580 !PointerMayBeCapturedBefore(A, 581 /* ReturnCaptures */ false, 582 /* StoreCaptures */ false, I, &DT))) 583 NoAliases.push_back(NewScopes[A]); 584 } 585 586 if (!NoAliases.empty()) 587 NI->setMetadata(LLVMContext::MD_noalias, 588 MDNode::concatenate( 589 NI->getMetadata(LLVMContext::MD_noalias), 590 MDNode::get(CalledFunc->getContext(), NoAliases))); 591 592 // Next, we want to figure out all of the sets to which we might belong. 593 // We might belong to a set if the noalias argument is in the set of 594 // underlying objects. If there is some non-noalias argument in our list 595 // of underlying objects, then we cannot add a scope because the fact 596 // that some access does not alias with any set of our noalias arguments 597 // cannot itself guarantee that it does not alias with this access 598 // (because there is some pointer of unknown origin involved and the 599 // other access might also depend on this pointer). We also cannot add 600 // scopes to arbitrary functions unless we know they don't access any 601 // non-parameter pointer-values. 602 bool CanAddScopes = !UsesAliasingPtr; 603 if (CanAddScopes && IsFuncCall) 604 CanAddScopes = IsArgMemOnlyCall; 605 606 if (CanAddScopes) 607 for (const Argument *A : NoAliasArgs) { 608 if (ObjSet.count(A)) 609 Scopes.push_back(NewScopes[A]); 610 } 611 612 if (!Scopes.empty()) 613 NI->setMetadata( 614 LLVMContext::MD_alias_scope, 615 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 616 MDNode::get(CalledFunc->getContext(), Scopes))); 617 } 618 } 619 } 620 621 /// If the inlined function has non-byval align arguments, then 622 /// add @llvm.assume-based alignment assumptions to preserve this information. 623 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 624 if (!PreserveAlignmentAssumptions || !IFI.DL) 625 return; 626 627 // To avoid inserting redundant assumptions, we should check for assumptions 628 // already in the caller. To do this, we might need a DT of the caller. 629 DominatorTree DT; 630 bool DTCalculated = false; 631 632 Function *CalledFunc = CS.getCalledFunction(); 633 for (Function::arg_iterator I = CalledFunc->arg_begin(), 634 E = CalledFunc->arg_end(); 635 I != E; ++I) { 636 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 637 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 638 if (!DTCalculated) { 639 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 640 ->getParent())); 641 DTCalculated = true; 642 } 643 644 // If we can already prove the asserted alignment in the context of the 645 // caller, then don't bother inserting the assumption. 646 Value *Arg = CS.getArgument(I->getArgNo()); 647 if (getKnownAlignment(Arg, IFI.DL, 648 &IFI.ACT->getAssumptionCache(*CalledFunc), 649 CS.getInstruction(), &DT) >= Align) 650 continue; 651 652 IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg, 653 Align); 654 } 655 } 656 } 657 658 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 659 /// into the caller, update the specified callgraph to reflect the changes we 660 /// made. Note that it's possible that not all code was copied over, so only 661 /// some edges of the callgraph may remain. 662 static void UpdateCallGraphAfterInlining(CallSite CS, 663 Function::iterator FirstNewBlock, 664 ValueToValueMapTy &VMap, 665 InlineFunctionInfo &IFI) { 666 CallGraph &CG = *IFI.CG; 667 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 668 const Function *Callee = CS.getCalledFunction(); 669 CallGraphNode *CalleeNode = CG[Callee]; 670 CallGraphNode *CallerNode = CG[Caller]; 671 672 // Since we inlined some uninlined call sites in the callee into the caller, 673 // add edges from the caller to all of the callees of the callee. 674 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 675 676 // Consider the case where CalleeNode == CallerNode. 677 CallGraphNode::CalledFunctionsVector CallCache; 678 if (CalleeNode == CallerNode) { 679 CallCache.assign(I, E); 680 I = CallCache.begin(); 681 E = CallCache.end(); 682 } 683 684 for (; I != E; ++I) { 685 const Value *OrigCall = I->first; 686 687 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 688 // Only copy the edge if the call was inlined! 689 if (VMI == VMap.end() || VMI->second == nullptr) 690 continue; 691 692 // If the call was inlined, but then constant folded, there is no edge to 693 // add. Check for this case. 694 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 695 if (!NewCall) continue; 696 697 // Remember that this call site got inlined for the client of 698 // InlineFunction. 699 IFI.InlinedCalls.push_back(NewCall); 700 701 // It's possible that inlining the callsite will cause it to go from an 702 // indirect to a direct call by resolving a function pointer. If this 703 // happens, set the callee of the new call site to a more precise 704 // destination. This can also happen if the call graph node of the caller 705 // was just unnecessarily imprecise. 706 if (!I->second->getFunction()) 707 if (Function *F = CallSite(NewCall).getCalledFunction()) { 708 // Indirect call site resolved to direct call. 709 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 710 711 continue; 712 } 713 714 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 715 } 716 717 // Update the call graph by deleting the edge from Callee to Caller. We must 718 // do this after the loop above in case Caller and Callee are the same. 719 CallerNode->removeCallEdgeFor(CS); 720 } 721 722 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 723 BasicBlock *InsertBlock, 724 InlineFunctionInfo &IFI) { 725 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 726 IRBuilder<> Builder(InsertBlock->begin()); 727 728 Value *Size; 729 if (IFI.DL == nullptr) 730 Size = ConstantExpr::getSizeOf(AggTy); 731 else 732 Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy)); 733 734 // Always generate a memcpy of alignment 1 here because we don't know 735 // the alignment of the src pointer. Other optimizations can infer 736 // better alignment. 737 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 738 } 739 740 /// HandleByValArgument - When inlining a call site that has a byval argument, 741 /// we have to make the implicit memcpy explicit by adding it. 742 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 743 const Function *CalledFunc, 744 InlineFunctionInfo &IFI, 745 unsigned ByValAlignment) { 746 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 747 Type *AggTy = ArgTy->getElementType(); 748 749 Function *Caller = TheCall->getParent()->getParent(); 750 751 // If the called function is readonly, then it could not mutate the caller's 752 // copy of the byval'd memory. In this case, it is safe to elide the copy and 753 // temporary. 754 if (CalledFunc->onlyReadsMemory()) { 755 // If the byval argument has a specified alignment that is greater than the 756 // passed in pointer, then we either have to round up the input pointer or 757 // give up on this transformation. 758 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 759 return Arg; 760 761 // If the pointer is already known to be sufficiently aligned, or if we can 762 // round it up to a larger alignment, then we don't need a temporary. 763 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, IFI.DL, 764 &IFI.ACT->getAssumptionCache(*Caller), 765 TheCall) >= ByValAlignment) 766 return Arg; 767 768 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 769 // for code quality, but rarely happens and is required for correctness. 770 } 771 772 // Create the alloca. If we have DataLayout, use nice alignment. 773 unsigned Align = 1; 774 if (IFI.DL) 775 Align = IFI.DL->getPrefTypeAlignment(AggTy); 776 777 // If the byval had an alignment specified, we *must* use at least that 778 // alignment, as it is required by the byval argument (and uses of the 779 // pointer inside the callee). 780 Align = std::max(Align, ByValAlignment); 781 782 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 783 &*Caller->begin()->begin()); 784 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 785 786 // Uses of the argument in the function should use our new alloca 787 // instead. 788 return NewAlloca; 789 } 790 791 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 792 // intrinsic. 793 static bool isUsedByLifetimeMarker(Value *V) { 794 for (User *U : V->users()) { 795 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 796 switch (II->getIntrinsicID()) { 797 default: break; 798 case Intrinsic::lifetime_start: 799 case Intrinsic::lifetime_end: 800 return true; 801 } 802 } 803 } 804 return false; 805 } 806 807 // hasLifetimeMarkers - Check whether the given alloca already has 808 // lifetime.start or lifetime.end intrinsics. 809 static bool hasLifetimeMarkers(AllocaInst *AI) { 810 Type *Ty = AI->getType(); 811 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 812 Ty->getPointerAddressSpace()); 813 if (Ty == Int8PtrTy) 814 return isUsedByLifetimeMarker(AI); 815 816 // Do a scan to find all the casts to i8*. 817 for (User *U : AI->users()) { 818 if (U->getType() != Int8PtrTy) continue; 819 if (U->stripPointerCasts() != AI) continue; 820 if (isUsedByLifetimeMarker(U)) 821 return true; 822 } 823 return false; 824 } 825 826 /// Rebuild the entire inlined-at chain for this instruction so that the top of 827 /// the chain now is inlined-at the new call site. 828 static DebugLoc 829 updateInlinedAtInfo(DebugLoc DL, MDLocation *InlinedAtNode, 830 LLVMContext &Ctx, 831 DenseMap<const MDLocation *, MDLocation *> &IANodes) { 832 SmallVector<MDLocation*, 3> InlinedAtLocations; 833 MDLocation *Last = InlinedAtNode; 834 DebugLoc CurInlinedAt = DL; 835 836 // Gather all the inlined-at nodes 837 while (MDLocation *IA = 838 cast_or_null<MDLocation>(CurInlinedAt.getInlinedAt(Ctx))) { 839 // Skip any we've already built nodes for 840 if (MDLocation *Found = IANodes[IA]) { 841 Last = Found; 842 break; 843 } 844 845 InlinedAtLocations.push_back(IA); 846 CurInlinedAt = DebugLoc::getFromDILocation(IA); 847 } 848 849 // Starting from the top, rebuild the nodes to point to the new inlined-at 850 // location (then rebuilding the rest of the chain behind it) and update the 851 // map of already-constructed inlined-at nodes. 852 for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend(); 853 I != E; ++I) { 854 const MDLocation *MD = *I; 855 Last = IANodes[MD] = MDLocation::getDistinct( 856 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 857 } 858 859 // And finally create the normal location for this instruction, referring to 860 // the new inlined-at chain. 861 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), Last); 862 } 863 864 /// fixupLineNumbers - Update inlined instructions' line numbers to 865 /// to encode location where these instructions are inlined. 866 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 867 Instruction *TheCall) { 868 DebugLoc TheCallDL = TheCall->getDebugLoc(); 869 if (TheCallDL.isUnknown()) 870 return; 871 872 auto &Ctx = Fn->getContext(); 873 auto *InlinedAtNode = cast<MDLocation>(TheCallDL.getAsMDNode(Ctx)); 874 875 // Create a unique call site, not to be confused with any other call from the 876 // same location. 877 InlinedAtNode = MDLocation::getDistinct( 878 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 879 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 880 881 // Cache the inlined-at nodes as they're built so they are reused, without 882 // this every instruction's inlined-at chain would become distinct from each 883 // other. 884 DenseMap<const MDLocation *, MDLocation *> IANodes; 885 886 for (; FI != Fn->end(); ++FI) { 887 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 888 BI != BE; ++BI) { 889 DebugLoc DL = BI->getDebugLoc(); 890 if (DL.isUnknown()) { 891 // If the inlined instruction has no line number, make it look as if it 892 // originates from the call location. This is important for 893 // ((__always_inline__, __nodebug__)) functions which must use caller 894 // location for all instructions in their function body. 895 896 // Don't update static allocas, as they may get moved later. 897 if (auto *AI = dyn_cast<AllocaInst>(BI)) 898 if (isa<Constant>(AI->getArraySize())) 899 continue; 900 901 BI->setDebugLoc(TheCallDL); 902 } else { 903 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 904 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 905 LLVMContext &Ctx = BI->getContext(); 906 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 907 DVI->setOperand(2, MetadataAsValue::get( 908 Ctx, createInlinedVariable(DVI->getVariable(), 909 InlinedAt, Ctx))); 910 } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) { 911 LLVMContext &Ctx = BI->getContext(); 912 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 913 DDI->setOperand(1, MetadataAsValue::get( 914 Ctx, createInlinedVariable(DDI->getVariable(), 915 InlinedAt, Ctx))); 916 } 917 } 918 } 919 } 920 } 921 922 /// InlineFunction - This function inlines the called function into the basic 923 /// block of the caller. This returns false if it is not possible to inline 924 /// this call. The program is still in a well defined state if this occurs 925 /// though. 926 /// 927 /// Note that this only does one level of inlining. For example, if the 928 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 929 /// exists in the instruction stream. Similarly this will inline a recursive 930 /// function by one level. 931 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 932 bool InsertLifetime) { 933 Instruction *TheCall = CS.getInstruction(); 934 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 935 "Instruction not in function!"); 936 937 // If IFI has any state in it, zap it before we fill it in. 938 IFI.reset(); 939 940 const Function *CalledFunc = CS.getCalledFunction(); 941 if (!CalledFunc || // Can't inline external function or indirect 942 CalledFunc->isDeclaration() || // call, or call to a vararg function! 943 CalledFunc->getFunctionType()->isVarArg()) return false; 944 945 // If the call to the callee cannot throw, set the 'nounwind' flag on any 946 // calls that we inline. 947 bool MarkNoUnwind = CS.doesNotThrow(); 948 949 BasicBlock *OrigBB = TheCall->getParent(); 950 Function *Caller = OrigBB->getParent(); 951 952 // GC poses two hazards to inlining, which only occur when the callee has GC: 953 // 1. If the caller has no GC, then the callee's GC must be propagated to the 954 // caller. 955 // 2. If the caller has a differing GC, it is invalid to inline. 956 if (CalledFunc->hasGC()) { 957 if (!Caller->hasGC()) 958 Caller->setGC(CalledFunc->getGC()); 959 else if (CalledFunc->getGC() != Caller->getGC()) 960 return false; 961 } 962 963 // Get the personality function from the callee if it contains a landing pad. 964 Value *CalleePersonality = nullptr; 965 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 966 I != E; ++I) 967 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 968 const BasicBlock *BB = II->getUnwindDest(); 969 const LandingPadInst *LP = BB->getLandingPadInst(); 970 CalleePersonality = LP->getPersonalityFn(); 971 break; 972 } 973 974 // Find the personality function used by the landing pads of the caller. If it 975 // exists, then check to see that it matches the personality function used in 976 // the callee. 977 if (CalleePersonality) { 978 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 979 I != E; ++I) 980 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 981 const BasicBlock *BB = II->getUnwindDest(); 982 const LandingPadInst *LP = BB->getLandingPadInst(); 983 984 // If the personality functions match, then we can perform the 985 // inlining. Otherwise, we can't inline. 986 // TODO: This isn't 100% true. Some personality functions are proper 987 // supersets of others and can be used in place of the other. 988 if (LP->getPersonalityFn() != CalleePersonality) 989 return false; 990 991 break; 992 } 993 } 994 995 // Get an iterator to the last basic block in the function, which will have 996 // the new function inlined after it. 997 Function::iterator LastBlock = &Caller->back(); 998 999 // Make sure to capture all of the return instructions from the cloned 1000 // function. 1001 SmallVector<ReturnInst*, 8> Returns; 1002 ClonedCodeInfo InlinedFunctionInfo; 1003 Function::iterator FirstNewBlock; 1004 1005 { // Scope to destroy VMap after cloning. 1006 ValueToValueMapTy VMap; 1007 // Keep a list of pair (dst, src) to emit byval initializations. 1008 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1009 1010 assert(CalledFunc->arg_size() == CS.arg_size() && 1011 "No varargs calls can be inlined!"); 1012 1013 // Calculate the vector of arguments to pass into the function cloner, which 1014 // matches up the formal to the actual argument values. 1015 CallSite::arg_iterator AI = CS.arg_begin(); 1016 unsigned ArgNo = 0; 1017 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1018 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1019 Value *ActualArg = *AI; 1020 1021 // When byval arguments actually inlined, we need to make the copy implied 1022 // by them explicit. However, we don't do this if the callee is readonly 1023 // or readnone, because the copy would be unneeded: the callee doesn't 1024 // modify the struct. 1025 if (CS.isByValArgument(ArgNo)) { 1026 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1027 CalledFunc->getParamAlignment(ArgNo+1)); 1028 if (ActualArg != *AI) 1029 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1030 } 1031 1032 VMap[I] = ActualArg; 1033 } 1034 1035 // Add alignment assumptions if necessary. We do this before the inlined 1036 // instructions are actually cloned into the caller so that we can easily 1037 // check what will be known at the start of the inlined code. 1038 AddAlignmentAssumptions(CS, IFI); 1039 1040 // We want the inliner to prune the code as it copies. We would LOVE to 1041 // have no dead or constant instructions leftover after inlining occurs 1042 // (which can happen, e.g., because an argument was constant), but we'll be 1043 // happy with whatever the cloner can do. 1044 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1045 /*ModuleLevelChanges=*/false, Returns, ".i", 1046 &InlinedFunctionInfo, IFI.DL, TheCall); 1047 1048 // Remember the first block that is newly cloned over. 1049 FirstNewBlock = LastBlock; ++FirstNewBlock; 1050 1051 // Inject byval arguments initialization. 1052 for (std::pair<Value*, Value*> &Init : ByValInit) 1053 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1054 FirstNewBlock, IFI); 1055 1056 // Update the callgraph if requested. 1057 if (IFI.CG) 1058 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1059 1060 // Update inlined instructions' line number information. 1061 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1062 1063 // Clone existing noalias metadata if necessary. 1064 CloneAliasScopeMetadata(CS, VMap); 1065 1066 // Add noalias metadata if necessary. 1067 AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA); 1068 1069 // FIXME: We could register any cloned assumptions instead of clearing the 1070 // whole function's cache. 1071 if (IFI.ACT) 1072 IFI.ACT->getAssumptionCache(*Caller).clear(); 1073 } 1074 1075 // If there are any alloca instructions in the block that used to be the entry 1076 // block for the callee, move them to the entry block of the caller. First 1077 // calculate which instruction they should be inserted before. We insert the 1078 // instructions at the end of the current alloca list. 1079 { 1080 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1081 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1082 E = FirstNewBlock->end(); I != E; ) { 1083 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1084 if (!AI) continue; 1085 1086 // If the alloca is now dead, remove it. This often occurs due to code 1087 // specialization. 1088 if (AI->use_empty()) { 1089 AI->eraseFromParent(); 1090 continue; 1091 } 1092 1093 if (!isa<Constant>(AI->getArraySize())) 1094 continue; 1095 1096 // Keep track of the static allocas that we inline into the caller. 1097 IFI.StaticAllocas.push_back(AI); 1098 1099 // Scan for the block of allocas that we can move over, and move them 1100 // all at once. 1101 while (isa<AllocaInst>(I) && 1102 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1103 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1104 ++I; 1105 } 1106 1107 // Transfer all of the allocas over in a block. Using splice means 1108 // that the instructions aren't removed from the symbol table, then 1109 // reinserted. 1110 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1111 FirstNewBlock->getInstList(), 1112 AI, I); 1113 } 1114 // Move any dbg.declares describing the allocas into the entry basic block. 1115 for (auto &I : IFI.StaticAllocas) 1116 if (auto AI = dyn_cast<AllocaInst>(I)) 1117 if (auto *DDI = FindAllocaDbgDeclare(AI)) 1118 if (DDI->getParent() != Caller->begin()) 1119 Caller->getEntryBlock().getInstList() 1120 .splice(AI->getNextNode(), FirstNewBlock->getInstList(), 1121 DDI, DDI->getNextNode()); 1122 } 1123 1124 bool InlinedMustTailCalls = false; 1125 if (InlinedFunctionInfo.ContainsCalls) { 1126 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1127 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1128 CallSiteTailKind = CI->getTailCallKind(); 1129 1130 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1131 ++BB) { 1132 for (Instruction &I : *BB) { 1133 CallInst *CI = dyn_cast<CallInst>(&I); 1134 if (!CI) 1135 continue; 1136 1137 // We need to reduce the strength of any inlined tail calls. For 1138 // musttail, we have to avoid introducing potential unbounded stack 1139 // growth. For example, if functions 'f' and 'g' are mutually recursive 1140 // with musttail, we can inline 'g' into 'f' so long as we preserve 1141 // musttail on the cloned call to 'f'. If either the inlined call site 1142 // or the cloned call site is *not* musttail, the program already has 1143 // one frame of stack growth, so it's safe to remove musttail. Here is 1144 // a table of example transformations: 1145 // 1146 // f -> musttail g -> musttail f ==> f -> musttail f 1147 // f -> musttail g -> tail f ==> f -> tail f 1148 // f -> g -> musttail f ==> f -> f 1149 // f -> g -> tail f ==> f -> f 1150 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1151 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1152 CI->setTailCallKind(ChildTCK); 1153 InlinedMustTailCalls |= CI->isMustTailCall(); 1154 1155 // Calls inlined through a 'nounwind' call site should be marked 1156 // 'nounwind'. 1157 if (MarkNoUnwind) 1158 CI->setDoesNotThrow(); 1159 } 1160 } 1161 } 1162 1163 // Leave lifetime markers for the static alloca's, scoping them to the 1164 // function we just inlined. 1165 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1166 IRBuilder<> builder(FirstNewBlock->begin()); 1167 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1168 AllocaInst *AI = IFI.StaticAllocas[ai]; 1169 1170 // If the alloca is already scoped to something smaller than the whole 1171 // function then there's no need to add redundant, less accurate markers. 1172 if (hasLifetimeMarkers(AI)) 1173 continue; 1174 1175 // Try to determine the size of the allocation. 1176 ConstantInt *AllocaSize = nullptr; 1177 if (ConstantInt *AIArraySize = 1178 dyn_cast<ConstantInt>(AI->getArraySize())) { 1179 if (IFI.DL) { 1180 Type *AllocaType = AI->getAllocatedType(); 1181 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 1182 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1183 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 1184 // Check that array size doesn't saturate uint64_t and doesn't 1185 // overflow when it's multiplied by type size. 1186 if (AllocaArraySize != ~0ULL && 1187 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1188 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1189 AllocaArraySize * AllocaTypeSize); 1190 } 1191 } 1192 } 1193 1194 builder.CreateLifetimeStart(AI, AllocaSize); 1195 for (ReturnInst *RI : Returns) { 1196 // Don't insert llvm.lifetime.end calls between a musttail call and a 1197 // return. The return kills all local allocas. 1198 if (InlinedMustTailCalls && 1199 RI->getParent()->getTerminatingMustTailCall()) 1200 continue; 1201 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1202 } 1203 } 1204 } 1205 1206 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1207 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1208 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1209 Module *M = Caller->getParent(); 1210 // Get the two intrinsics we care about. 1211 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1212 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1213 1214 // Insert the llvm.stacksave. 1215 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1216 .CreateCall(StackSave, "savedstack"); 1217 1218 // Insert a call to llvm.stackrestore before any return instructions in the 1219 // inlined function. 1220 for (ReturnInst *RI : Returns) { 1221 // Don't insert llvm.stackrestore calls between a musttail call and a 1222 // return. The return will restore the stack pointer. 1223 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1224 continue; 1225 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1226 } 1227 } 1228 1229 // If we are inlining for an invoke instruction, we must make sure to rewrite 1230 // any call instructions into invoke instructions. 1231 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1232 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1233 1234 // Handle any inlined musttail call sites. In order for a new call site to be 1235 // musttail, the source of the clone and the inlined call site must have been 1236 // musttail. Therefore it's safe to return without merging control into the 1237 // phi below. 1238 if (InlinedMustTailCalls) { 1239 // Check if we need to bitcast the result of any musttail calls. 1240 Type *NewRetTy = Caller->getReturnType(); 1241 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1242 1243 // Handle the returns preceded by musttail calls separately. 1244 SmallVector<ReturnInst *, 8> NormalReturns; 1245 for (ReturnInst *RI : Returns) { 1246 CallInst *ReturnedMustTail = 1247 RI->getParent()->getTerminatingMustTailCall(); 1248 if (!ReturnedMustTail) { 1249 NormalReturns.push_back(RI); 1250 continue; 1251 } 1252 if (!NeedBitCast) 1253 continue; 1254 1255 // Delete the old return and any preceding bitcast. 1256 BasicBlock *CurBB = RI->getParent(); 1257 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1258 RI->eraseFromParent(); 1259 if (OldCast) 1260 OldCast->eraseFromParent(); 1261 1262 // Insert a new bitcast and return with the right type. 1263 IRBuilder<> Builder(CurBB); 1264 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1265 } 1266 1267 // Leave behind the normal returns so we can merge control flow. 1268 std::swap(Returns, NormalReturns); 1269 } 1270 1271 // If we cloned in _exactly one_ basic block, and if that block ends in a 1272 // return instruction, we splice the body of the inlined callee directly into 1273 // the calling basic block. 1274 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1275 // Move all of the instructions right before the call. 1276 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1277 FirstNewBlock->begin(), FirstNewBlock->end()); 1278 // Remove the cloned basic block. 1279 Caller->getBasicBlockList().pop_back(); 1280 1281 // If the call site was an invoke instruction, add a branch to the normal 1282 // destination. 1283 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1284 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1285 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1286 } 1287 1288 // If the return instruction returned a value, replace uses of the call with 1289 // uses of the returned value. 1290 if (!TheCall->use_empty()) { 1291 ReturnInst *R = Returns[0]; 1292 if (TheCall == R->getReturnValue()) 1293 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1294 else 1295 TheCall->replaceAllUsesWith(R->getReturnValue()); 1296 } 1297 // Since we are now done with the Call/Invoke, we can delete it. 1298 TheCall->eraseFromParent(); 1299 1300 // Since we are now done with the return instruction, delete it also. 1301 Returns[0]->eraseFromParent(); 1302 1303 // We are now done with the inlining. 1304 return true; 1305 } 1306 1307 // Otherwise, we have the normal case, of more than one block to inline or 1308 // multiple return sites. 1309 1310 // We want to clone the entire callee function into the hole between the 1311 // "starter" and "ender" blocks. How we accomplish this depends on whether 1312 // this is an invoke instruction or a call instruction. 1313 BasicBlock *AfterCallBB; 1314 BranchInst *CreatedBranchToNormalDest = nullptr; 1315 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1316 1317 // Add an unconditional branch to make this look like the CallInst case... 1318 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1319 1320 // Split the basic block. This guarantees that no PHI nodes will have to be 1321 // updated due to new incoming edges, and make the invoke case more 1322 // symmetric to the call case. 1323 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1324 CalledFunc->getName()+".exit"); 1325 1326 } else { // It's a call 1327 // If this is a call instruction, we need to split the basic block that 1328 // the call lives in. 1329 // 1330 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1331 CalledFunc->getName()+".exit"); 1332 } 1333 1334 // Change the branch that used to go to AfterCallBB to branch to the first 1335 // basic block of the inlined function. 1336 // 1337 TerminatorInst *Br = OrigBB->getTerminator(); 1338 assert(Br && Br->getOpcode() == Instruction::Br && 1339 "splitBasicBlock broken!"); 1340 Br->setOperand(0, FirstNewBlock); 1341 1342 1343 // Now that the function is correct, make it a little bit nicer. In 1344 // particular, move the basic blocks inserted from the end of the function 1345 // into the space made by splitting the source basic block. 1346 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1347 FirstNewBlock, Caller->end()); 1348 1349 // Handle all of the return instructions that we just cloned in, and eliminate 1350 // any users of the original call/invoke instruction. 1351 Type *RTy = CalledFunc->getReturnType(); 1352 1353 PHINode *PHI = nullptr; 1354 if (Returns.size() > 1) { 1355 // The PHI node should go at the front of the new basic block to merge all 1356 // possible incoming values. 1357 if (!TheCall->use_empty()) { 1358 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1359 AfterCallBB->begin()); 1360 // Anything that used the result of the function call should now use the 1361 // PHI node as their operand. 1362 TheCall->replaceAllUsesWith(PHI); 1363 } 1364 1365 // Loop over all of the return instructions adding entries to the PHI node 1366 // as appropriate. 1367 if (PHI) { 1368 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1369 ReturnInst *RI = Returns[i]; 1370 assert(RI->getReturnValue()->getType() == PHI->getType() && 1371 "Ret value not consistent in function!"); 1372 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1373 } 1374 } 1375 1376 1377 // Add a branch to the merge points and remove return instructions. 1378 DebugLoc Loc; 1379 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1380 ReturnInst *RI = Returns[i]; 1381 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1382 Loc = RI->getDebugLoc(); 1383 BI->setDebugLoc(Loc); 1384 RI->eraseFromParent(); 1385 } 1386 // We need to set the debug location to *somewhere* inside the 1387 // inlined function. The line number may be nonsensical, but the 1388 // instruction will at least be associated with the right 1389 // function. 1390 if (CreatedBranchToNormalDest) 1391 CreatedBranchToNormalDest->setDebugLoc(Loc); 1392 } else if (!Returns.empty()) { 1393 // Otherwise, if there is exactly one return value, just replace anything 1394 // using the return value of the call with the computed value. 1395 if (!TheCall->use_empty()) { 1396 if (TheCall == Returns[0]->getReturnValue()) 1397 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1398 else 1399 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1400 } 1401 1402 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1403 BasicBlock *ReturnBB = Returns[0]->getParent(); 1404 ReturnBB->replaceAllUsesWith(AfterCallBB); 1405 1406 // Splice the code from the return block into the block that it will return 1407 // to, which contains the code that was after the call. 1408 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1409 ReturnBB->getInstList()); 1410 1411 if (CreatedBranchToNormalDest) 1412 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1413 1414 // Delete the return instruction now and empty ReturnBB now. 1415 Returns[0]->eraseFromParent(); 1416 ReturnBB->eraseFromParent(); 1417 } else if (!TheCall->use_empty()) { 1418 // No returns, but something is using the return value of the call. Just 1419 // nuke the result. 1420 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1421 } 1422 1423 // Since we are now done with the Call/Invoke, we can delete it. 1424 TheCall->eraseFromParent(); 1425 1426 // If we inlined any musttail calls and the original return is now 1427 // unreachable, delete it. It can only contain a bitcast and ret. 1428 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1429 AfterCallBB->eraseFromParent(); 1430 1431 // We should always be able to fold the entry block of the function into the 1432 // single predecessor of the block... 1433 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1434 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1435 1436 // Splice the code entry block into calling block, right before the 1437 // unconditional branch. 1438 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1439 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1440 1441 // Remove the unconditional branch. 1442 OrigBB->getInstList().erase(Br); 1443 1444 // Now we can remove the CalleeEntry block, which is now empty. 1445 Caller->getBasicBlockList().erase(CalleeEntry); 1446 1447 // If we inserted a phi node, check to see if it has a single value (e.g. all 1448 // the entries are the same or undef). If so, remove the PHI so it doesn't 1449 // block other optimizations. 1450 if (PHI) { 1451 if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr, 1452 &IFI.ACT->getAssumptionCache(*Caller))) { 1453 PHI->replaceAllUsesWith(V); 1454 PHI->eraseFromParent(); 1455 } 1456 } 1457 1458 return true; 1459 } 1460