1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining through an invoke. 67 class InvokeInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 InvokeInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// getOuterResumeDest - The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// forwardResume - Forward the 'resume' instruction to the caller's landing 103 /// pad block. When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 111 /// destination block for the given basic block, using the values for the 112 /// original invoke's source block. 113 void addIncomingPHIValuesFor(BasicBlock *BB) const { 114 addIncomingPHIValuesForInto(BB, OuterResumeDest); 115 } 116 117 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 118 BasicBlock::iterator I = dest->begin(); 119 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 120 PHINode *phi = cast<PHINode>(I); 121 phi->addIncoming(UnwindDestPHIValues[i], src); 122 } 123 } 124 }; 125 } 126 127 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 128 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 129 if (InnerResumeDest) return InnerResumeDest; 130 131 // Split the landing pad. 132 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 133 InnerResumeDest = 134 OuterResumeDest->splitBasicBlock(SplitPoint, 135 OuterResumeDest->getName() + ".body"); 136 137 // The number of incoming edges we expect to the inner landing pad. 138 const unsigned PHICapacity = 2; 139 140 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 141 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 142 BasicBlock::iterator I = OuterResumeDest->begin(); 143 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 144 PHINode *OuterPHI = cast<PHINode>(I); 145 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 146 OuterPHI->getName() + ".lpad-body", 147 InsertPoint); 148 OuterPHI->replaceAllUsesWith(InnerPHI); 149 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 150 } 151 152 // Create a PHI for the exception values. 153 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 154 "eh.lpad-body", InsertPoint); 155 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 156 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 157 158 // All done. 159 return InnerResumeDest; 160 } 161 162 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 163 /// block. When the landing pad block has only one predecessor, this is a simple 164 /// branch. When there is more than one predecessor, we need to split the 165 /// landing pad block after the landingpad instruction and jump to there. 166 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 167 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 168 BasicBlock *Dest = getInnerResumeDest(); 169 BasicBlock *Src = RI->getParent(); 170 171 BranchInst::Create(Dest, Src); 172 173 // Update the PHIs in the destination. They were inserted in an order which 174 // makes this work. 175 addIncomingPHIValuesForInto(Src, Dest); 176 177 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 178 RI->eraseFromParent(); 179 } 180 181 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 182 /// an invoke, we have to turn all of the calls that can throw into 183 /// invokes. This function analyze BB to see if there are any calls, and if so, 184 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 185 /// nodes in that block with the values specified in InvokeDestPHIValues. 186 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 187 InvokeInliningInfo &Invoke) { 188 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 189 Instruction *I = BBI++; 190 191 // We only need to check for function calls: inlined invoke 192 // instructions require no special handling. 193 CallInst *CI = dyn_cast<CallInst>(I); 194 195 // If this call cannot unwind, don't convert it to an invoke. 196 // Inline asm calls cannot throw. 197 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 198 continue; 199 200 // Convert this function call into an invoke instruction. First, split the 201 // basic block. 202 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 203 204 // Delete the unconditional branch inserted by splitBasicBlock 205 BB->getInstList().pop_back(); 206 207 // Create the new invoke instruction. 208 ImmutableCallSite CS(CI); 209 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 210 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 211 Invoke.getOuterResumeDest(), 212 InvokeArgs, CI->getName(), BB); 213 II->setDebugLoc(CI->getDebugLoc()); 214 II->setCallingConv(CI->getCallingConv()); 215 II->setAttributes(CI->getAttributes()); 216 217 // Make sure that anything using the call now uses the invoke! This also 218 // updates the CallGraph if present, because it uses a WeakVH. 219 CI->replaceAllUsesWith(II); 220 221 // Delete the original call 222 Split->getInstList().pop_front(); 223 224 // Update any PHI nodes in the exceptional block to indicate that there is 225 // now a new entry in them. 226 Invoke.addIncomingPHIValuesFor(BB); 227 return; 228 } 229 } 230 231 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 232 /// in the body of the inlined function into invokes. 233 /// 234 /// II is the invoke instruction being inlined. FirstNewBlock is the first 235 /// block of the inlined code (the last block is the end of the function), 236 /// and InlineCodeInfo is information about the code that got inlined. 237 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 238 ClonedCodeInfo &InlinedCodeInfo) { 239 BasicBlock *InvokeDest = II->getUnwindDest(); 240 241 Function *Caller = FirstNewBlock->getParent(); 242 243 // The inlined code is currently at the end of the function, scan from the 244 // start of the inlined code to its end, checking for stuff we need to 245 // rewrite. 246 InvokeInliningInfo Invoke(II); 247 248 // Get all of the inlined landing pad instructions. 249 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 250 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 251 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 252 InlinedLPads.insert(II->getLandingPadInst()); 253 254 // Append the clauses from the outer landing pad instruction into the inlined 255 // landing pad instructions. 256 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 257 for (LandingPadInst *InlinedLPad : InlinedLPads) { 258 unsigned OuterNum = OuterLPad->getNumClauses(); 259 InlinedLPad->reserveClauses(OuterNum); 260 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 261 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 262 if (OuterLPad->isCleanup()) 263 InlinedLPad->setCleanup(true); 264 } 265 266 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 267 if (InlinedCodeInfo.ContainsCalls) 268 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 269 270 // Forward any resumes that are remaining here. 271 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 272 Invoke.forwardResume(RI, InlinedLPads); 273 } 274 275 // Now that everything is happy, we have one final detail. The PHI nodes in 276 // the exception destination block still have entries due to the original 277 // invoke instruction. Eliminate these entries (which might even delete the 278 // PHI node) now. 279 InvokeDest->removePredecessor(II->getParent()); 280 } 281 282 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 283 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 284 /// have different "unqiue scopes" at every call site. Were this not done, then 285 /// aliasing scopes from a function inlined into a caller multiple times could 286 /// not be differentiated (and this would lead to miscompiles because the 287 /// non-aliasing property communicated by the metadata could have 288 /// call-site-specific control dependencies). 289 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 290 const Function *CalledFunc = CS.getCalledFunction(); 291 SetVector<const MDNode *> MD; 292 293 // Note: We could only clone the metadata if it is already used in the 294 // caller. I'm omitting that check here because it might confuse 295 // inter-procedural alias analysis passes. We can revisit this if it becomes 296 // an efficiency or overhead problem. 297 298 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 299 I != IE; ++I) 300 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 301 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 302 MD.insert(M); 303 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 304 MD.insert(M); 305 } 306 307 if (MD.empty()) 308 return; 309 310 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 311 // the set. 312 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 313 while (!Queue.empty()) { 314 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 315 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 316 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 317 if (MD.insert(M1)) 318 Queue.push_back(M1); 319 } 320 321 // Now we have a complete set of all metadata in the chains used to specify 322 // the noalias scopes and the lists of those scopes. 323 SmallVector<TempMDTuple, 16> DummyNodes; 324 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 325 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 326 I != IE; ++I) { 327 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 328 MDMap[*I].reset(DummyNodes.back().get()); 329 } 330 331 // Create new metadata nodes to replace the dummy nodes, replacing old 332 // metadata references with either a dummy node or an already-created new 333 // node. 334 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 335 I != IE; ++I) { 336 SmallVector<Metadata *, 4> NewOps; 337 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 338 const Metadata *V = (*I)->getOperand(i); 339 if (const MDNode *M = dyn_cast<MDNode>(V)) 340 NewOps.push_back(MDMap[M]); 341 else 342 NewOps.push_back(const_cast<Metadata *>(V)); 343 } 344 345 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 346 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 347 assert(TempM->isTemporary() && "Expected temporary node"); 348 349 TempM->replaceAllUsesWith(NewM); 350 } 351 352 // Now replace the metadata in the new inlined instructions with the 353 // repacements from the map. 354 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 355 VMI != VMIE; ++VMI) { 356 if (!VMI->second) 357 continue; 358 359 Instruction *NI = dyn_cast<Instruction>(VMI->second); 360 if (!NI) 361 continue; 362 363 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 364 MDNode *NewMD = MDMap[M]; 365 // If the call site also had alias scope metadata (a list of scopes to 366 // which instructions inside it might belong), propagate those scopes to 367 // the inlined instructions. 368 if (MDNode *CSM = 369 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 370 NewMD = MDNode::concatenate(NewMD, CSM); 371 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 372 } else if (NI->mayReadOrWriteMemory()) { 373 if (MDNode *M = 374 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 375 NI->setMetadata(LLVMContext::MD_alias_scope, M); 376 } 377 378 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 379 MDNode *NewMD = MDMap[M]; 380 // If the call site also had noalias metadata (a list of scopes with 381 // which instructions inside it don't alias), propagate those scopes to 382 // the inlined instructions. 383 if (MDNode *CSM = 384 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 385 NewMD = MDNode::concatenate(NewMD, CSM); 386 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 387 } else if (NI->mayReadOrWriteMemory()) { 388 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 389 NI->setMetadata(LLVMContext::MD_noalias, M); 390 } 391 } 392 } 393 394 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 395 /// add new alias scopes for each noalias argument, tag the mapped noalias 396 /// parameters with noalias metadata specifying the new scope, and tag all 397 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 398 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 399 const DataLayout *DL, AliasAnalysis *AA) { 400 if (!EnableNoAliasConversion) 401 return; 402 403 const Function *CalledFunc = CS.getCalledFunction(); 404 SmallVector<const Argument *, 4> NoAliasArgs; 405 406 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 407 E = CalledFunc->arg_end(); I != E; ++I) { 408 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 409 NoAliasArgs.push_back(I); 410 } 411 412 if (NoAliasArgs.empty()) 413 return; 414 415 // To do a good job, if a noalias variable is captured, we need to know if 416 // the capture point dominates the particular use we're considering. 417 DominatorTree DT; 418 DT.recalculate(const_cast<Function&>(*CalledFunc)); 419 420 // noalias indicates that pointer values based on the argument do not alias 421 // pointer values which are not based on it. So we add a new "scope" for each 422 // noalias function argument. Accesses using pointers based on that argument 423 // become part of that alias scope, accesses using pointers not based on that 424 // argument are tagged as noalias with that scope. 425 426 DenseMap<const Argument *, MDNode *> NewScopes; 427 MDBuilder MDB(CalledFunc->getContext()); 428 429 // Create a new scope domain for this function. 430 MDNode *NewDomain = 431 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 432 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 433 const Argument *A = NoAliasArgs[i]; 434 435 std::string Name = CalledFunc->getName(); 436 if (A->hasName()) { 437 Name += ": %"; 438 Name += A->getName(); 439 } else { 440 Name += ": argument "; 441 Name += utostr(i); 442 } 443 444 // Note: We always create a new anonymous root here. This is true regardless 445 // of the linkage of the callee because the aliasing "scope" is not just a 446 // property of the callee, but also all control dependencies in the caller. 447 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 448 NewScopes.insert(std::make_pair(A, NewScope)); 449 } 450 451 // Iterate over all new instructions in the map; for all memory-access 452 // instructions, add the alias scope metadata. 453 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 454 VMI != VMIE; ++VMI) { 455 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 456 if (!VMI->second) 457 continue; 458 459 Instruction *NI = dyn_cast<Instruction>(VMI->second); 460 if (!NI) 461 continue; 462 463 bool IsArgMemOnlyCall = false, IsFuncCall = false; 464 SmallVector<const Value *, 2> PtrArgs; 465 466 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 467 PtrArgs.push_back(LI->getPointerOperand()); 468 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 469 PtrArgs.push_back(SI->getPointerOperand()); 470 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 471 PtrArgs.push_back(VAAI->getPointerOperand()); 472 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 473 PtrArgs.push_back(CXI->getPointerOperand()); 474 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 475 PtrArgs.push_back(RMWI->getPointerOperand()); 476 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 477 // If we know that the call does not access memory, then we'll still 478 // know that about the inlined clone of this call site, and we don't 479 // need to add metadata. 480 if (ICS.doesNotAccessMemory()) 481 continue; 482 483 IsFuncCall = true; 484 if (AA) { 485 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); 486 if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || 487 MRB == AliasAnalysis::OnlyReadsArgumentPointees) 488 IsArgMemOnlyCall = true; 489 } 490 491 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 492 AE = ICS.arg_end(); AI != AE; ++AI) { 493 // We need to check the underlying objects of all arguments, not just 494 // the pointer arguments, because we might be passing pointers as 495 // integers, etc. 496 // However, if we know that the call only accesses pointer arguments, 497 // then we only need to check the pointer arguments. 498 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 499 continue; 500 501 PtrArgs.push_back(*AI); 502 } 503 } 504 505 // If we found no pointers, then this instruction is not suitable for 506 // pairing with an instruction to receive aliasing metadata. 507 // However, if this is a call, this we might just alias with none of the 508 // noalias arguments. 509 if (PtrArgs.empty() && !IsFuncCall) 510 continue; 511 512 // It is possible that there is only one underlying object, but you 513 // need to go through several PHIs to see it, and thus could be 514 // repeated in the Objects list. 515 SmallPtrSet<const Value *, 4> ObjSet; 516 SmallVector<Metadata *, 4> Scopes, NoAliases; 517 518 SmallSetVector<const Argument *, 4> NAPtrArgs; 519 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 520 SmallVector<Value *, 4> Objects; 521 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 522 Objects, DL, /* MaxLookup = */ 0); 523 524 for (Value *O : Objects) 525 ObjSet.insert(O); 526 } 527 528 // Figure out if we're derived from anything that is not a noalias 529 // argument. 530 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 531 for (const Value *V : ObjSet) { 532 // Is this value a constant that cannot be derived from any pointer 533 // value (we need to exclude constant expressions, for example, that 534 // are formed from arithmetic on global symbols). 535 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 536 isa<ConstantPointerNull>(V) || 537 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 538 if (IsNonPtrConst) 539 continue; 540 541 // If this is anything other than a noalias argument, then we cannot 542 // completely describe the aliasing properties using alias.scope 543 // metadata (and, thus, won't add any). 544 if (const Argument *A = dyn_cast<Argument>(V)) { 545 if (!A->hasNoAliasAttr()) 546 UsesAliasingPtr = true; 547 } else { 548 UsesAliasingPtr = true; 549 } 550 551 // If this is not some identified function-local object (which cannot 552 // directly alias a noalias argument), or some other argument (which, 553 // by definition, also cannot alias a noalias argument), then we could 554 // alias a noalias argument that has been captured). 555 if (!isa<Argument>(V) && 556 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 557 CanDeriveViaCapture = true; 558 } 559 560 // A function call can always get captured noalias pointers (via other 561 // parameters, globals, etc.). 562 if (IsFuncCall && !IsArgMemOnlyCall) 563 CanDeriveViaCapture = true; 564 565 // First, we want to figure out all of the sets with which we definitely 566 // don't alias. Iterate over all noalias set, and add those for which: 567 // 1. The noalias argument is not in the set of objects from which we 568 // definitely derive. 569 // 2. The noalias argument has not yet been captured. 570 // An arbitrary function that might load pointers could see captured 571 // noalias arguments via other noalias arguments or globals, and so we 572 // must always check for prior capture. 573 for (const Argument *A : NoAliasArgs) { 574 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 575 // It might be tempting to skip the 576 // PointerMayBeCapturedBefore check if 577 // A->hasNoCaptureAttr() is true, but this is 578 // incorrect because nocapture only guarantees 579 // that no copies outlive the function, not 580 // that the value cannot be locally captured. 581 !PointerMayBeCapturedBefore(A, 582 /* ReturnCaptures */ false, 583 /* StoreCaptures */ false, I, &DT))) 584 NoAliases.push_back(NewScopes[A]); 585 } 586 587 if (!NoAliases.empty()) 588 NI->setMetadata(LLVMContext::MD_noalias, 589 MDNode::concatenate( 590 NI->getMetadata(LLVMContext::MD_noalias), 591 MDNode::get(CalledFunc->getContext(), NoAliases))); 592 593 // Next, we want to figure out all of the sets to which we might belong. 594 // We might belong to a set if the noalias argument is in the set of 595 // underlying objects. If there is some non-noalias argument in our list 596 // of underlying objects, then we cannot add a scope because the fact 597 // that some access does not alias with any set of our noalias arguments 598 // cannot itself guarantee that it does not alias with this access 599 // (because there is some pointer of unknown origin involved and the 600 // other access might also depend on this pointer). We also cannot add 601 // scopes to arbitrary functions unless we know they don't access any 602 // non-parameter pointer-values. 603 bool CanAddScopes = !UsesAliasingPtr; 604 if (CanAddScopes && IsFuncCall) 605 CanAddScopes = IsArgMemOnlyCall; 606 607 if (CanAddScopes) 608 for (const Argument *A : NoAliasArgs) { 609 if (ObjSet.count(A)) 610 Scopes.push_back(NewScopes[A]); 611 } 612 613 if (!Scopes.empty()) 614 NI->setMetadata( 615 LLVMContext::MD_alias_scope, 616 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 617 MDNode::get(CalledFunc->getContext(), Scopes))); 618 } 619 } 620 } 621 622 /// If the inlined function has non-byval align arguments, then 623 /// add @llvm.assume-based alignment assumptions to preserve this information. 624 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 625 if (!PreserveAlignmentAssumptions) 626 return; 627 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 628 629 // To avoid inserting redundant assumptions, we should check for assumptions 630 // already in the caller. To do this, we might need a DT of the caller. 631 DominatorTree DT; 632 bool DTCalculated = false; 633 634 Function *CalledFunc = CS.getCalledFunction(); 635 for (Function::arg_iterator I = CalledFunc->arg_begin(), 636 E = CalledFunc->arg_end(); 637 I != E; ++I) { 638 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 639 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 640 if (!DTCalculated) { 641 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 642 ->getParent())); 643 DTCalculated = true; 644 } 645 646 // If we can already prove the asserted alignment in the context of the 647 // caller, then don't bother inserting the assumption. 648 Value *Arg = CS.getArgument(I->getArgNo()); 649 if (getKnownAlignment(Arg, &DL, &IFI.ACT->getAssumptionCache(*CalledFunc), 650 CS.getInstruction(), &DT) >= Align) 651 continue; 652 653 IRBuilder<>(CS.getInstruction()) 654 .CreateAlignmentAssumption(DL, Arg, Align); 655 } 656 } 657 } 658 659 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 660 /// into the caller, update the specified callgraph to reflect the changes we 661 /// made. Note that it's possible that not all code was copied over, so only 662 /// some edges of the callgraph may remain. 663 static void UpdateCallGraphAfterInlining(CallSite CS, 664 Function::iterator FirstNewBlock, 665 ValueToValueMapTy &VMap, 666 InlineFunctionInfo &IFI) { 667 CallGraph &CG = *IFI.CG; 668 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 669 const Function *Callee = CS.getCalledFunction(); 670 CallGraphNode *CalleeNode = CG[Callee]; 671 CallGraphNode *CallerNode = CG[Caller]; 672 673 // Since we inlined some uninlined call sites in the callee into the caller, 674 // add edges from the caller to all of the callees of the callee. 675 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 676 677 // Consider the case where CalleeNode == CallerNode. 678 CallGraphNode::CalledFunctionsVector CallCache; 679 if (CalleeNode == CallerNode) { 680 CallCache.assign(I, E); 681 I = CallCache.begin(); 682 E = CallCache.end(); 683 } 684 685 for (; I != E; ++I) { 686 const Value *OrigCall = I->first; 687 688 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 689 // Only copy the edge if the call was inlined! 690 if (VMI == VMap.end() || VMI->second == nullptr) 691 continue; 692 693 // If the call was inlined, but then constant folded, there is no edge to 694 // add. Check for this case. 695 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 696 if (!NewCall) continue; 697 698 // Remember that this call site got inlined for the client of 699 // InlineFunction. 700 IFI.InlinedCalls.push_back(NewCall); 701 702 // It's possible that inlining the callsite will cause it to go from an 703 // indirect to a direct call by resolving a function pointer. If this 704 // happens, set the callee of the new call site to a more precise 705 // destination. This can also happen if the call graph node of the caller 706 // was just unnecessarily imprecise. 707 if (!I->second->getFunction()) 708 if (Function *F = CallSite(NewCall).getCalledFunction()) { 709 // Indirect call site resolved to direct call. 710 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 711 712 continue; 713 } 714 715 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 716 } 717 718 // Update the call graph by deleting the edge from Callee to Caller. We must 719 // do this after the loop above in case Caller and Callee are the same. 720 CallerNode->removeCallEdgeFor(CS); 721 } 722 723 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 724 BasicBlock *InsertBlock, 725 InlineFunctionInfo &IFI) { 726 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 727 IRBuilder<> Builder(InsertBlock->begin()); 728 729 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 730 731 // Always generate a memcpy of alignment 1 here because we don't know 732 // the alignment of the src pointer. Other optimizations can infer 733 // better alignment. 734 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 735 } 736 737 /// HandleByValArgument - When inlining a call site that has a byval argument, 738 /// we have to make the implicit memcpy explicit by adding it. 739 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 740 const Function *CalledFunc, 741 InlineFunctionInfo &IFI, 742 unsigned ByValAlignment) { 743 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 744 Type *AggTy = ArgTy->getElementType(); 745 746 Function *Caller = TheCall->getParent()->getParent(); 747 748 // If the called function is readonly, then it could not mutate the caller's 749 // copy of the byval'd memory. In this case, it is safe to elide the copy and 750 // temporary. 751 if (CalledFunc->onlyReadsMemory()) { 752 // If the byval argument has a specified alignment that is greater than the 753 // passed in pointer, then we either have to round up the input pointer or 754 // give up on this transformation. 755 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 756 return Arg; 757 758 // If the pointer is already known to be sufficiently aligned, or if we can 759 // round it up to a larger alignment, then we don't need a temporary. 760 auto &DL = Caller->getParent()->getDataLayout(); 761 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, &DL, 762 &IFI.ACT->getAssumptionCache(*Caller), 763 TheCall) >= ByValAlignment) 764 return Arg; 765 766 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 767 // for code quality, but rarely happens and is required for correctness. 768 } 769 770 // Create the alloca. If we have DataLayout, use nice alignment. 771 unsigned Align = 772 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 773 774 // If the byval had an alignment specified, we *must* use at least that 775 // alignment, as it is required by the byval argument (and uses of the 776 // pointer inside the callee). 777 Align = std::max(Align, ByValAlignment); 778 779 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 780 &*Caller->begin()->begin()); 781 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 782 783 // Uses of the argument in the function should use our new alloca 784 // instead. 785 return NewAlloca; 786 } 787 788 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 789 // intrinsic. 790 static bool isUsedByLifetimeMarker(Value *V) { 791 for (User *U : V->users()) { 792 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 793 switch (II->getIntrinsicID()) { 794 default: break; 795 case Intrinsic::lifetime_start: 796 case Intrinsic::lifetime_end: 797 return true; 798 } 799 } 800 } 801 return false; 802 } 803 804 // hasLifetimeMarkers - Check whether the given alloca already has 805 // lifetime.start or lifetime.end intrinsics. 806 static bool hasLifetimeMarkers(AllocaInst *AI) { 807 Type *Ty = AI->getType(); 808 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 809 Ty->getPointerAddressSpace()); 810 if (Ty == Int8PtrTy) 811 return isUsedByLifetimeMarker(AI); 812 813 // Do a scan to find all the casts to i8*. 814 for (User *U : AI->users()) { 815 if (U->getType() != Int8PtrTy) continue; 816 if (U->stripPointerCasts() != AI) continue; 817 if (isUsedByLifetimeMarker(U)) 818 return true; 819 } 820 return false; 821 } 822 823 /// Rebuild the entire inlined-at chain for this instruction so that the top of 824 /// the chain now is inlined-at the new call site. 825 static DebugLoc 826 updateInlinedAtInfo(DebugLoc DL, MDLocation *InlinedAtNode, 827 LLVMContext &Ctx, 828 DenseMap<const MDLocation *, MDLocation *> &IANodes) { 829 SmallVector<MDLocation*, 3> InlinedAtLocations; 830 MDLocation *Last = InlinedAtNode; 831 DebugLoc CurInlinedAt = DL; 832 833 // Gather all the inlined-at nodes 834 while (MDLocation *IA = 835 cast_or_null<MDLocation>(CurInlinedAt.getInlinedAt(Ctx))) { 836 // Skip any we've already built nodes for 837 if (MDLocation *Found = IANodes[IA]) { 838 Last = Found; 839 break; 840 } 841 842 InlinedAtLocations.push_back(IA); 843 CurInlinedAt = DebugLoc::getFromDILocation(IA); 844 } 845 846 // Starting from the top, rebuild the nodes to point to the new inlined-at 847 // location (then rebuilding the rest of the chain behind it) and update the 848 // map of already-constructed inlined-at nodes. 849 for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend(); 850 I != E; ++I) { 851 const MDLocation *MD = *I; 852 Last = IANodes[MD] = MDLocation::getDistinct( 853 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 854 } 855 856 // And finally create the normal location for this instruction, referring to 857 // the new inlined-at chain. 858 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), Last); 859 } 860 861 /// fixupLineNumbers - Update inlined instructions' line numbers to 862 /// to encode location where these instructions are inlined. 863 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 864 Instruction *TheCall) { 865 DebugLoc TheCallDL = TheCall->getDebugLoc(); 866 if (TheCallDL.isUnknown()) 867 return; 868 869 auto &Ctx = Fn->getContext(); 870 auto *InlinedAtNode = cast<MDLocation>(TheCallDL.getAsMDNode(Ctx)); 871 872 // Create a unique call site, not to be confused with any other call from the 873 // same location. 874 InlinedAtNode = MDLocation::getDistinct( 875 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 876 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 877 878 // Cache the inlined-at nodes as they're built so they are reused, without 879 // this every instruction's inlined-at chain would become distinct from each 880 // other. 881 DenseMap<const MDLocation *, MDLocation *> IANodes; 882 883 for (; FI != Fn->end(); ++FI) { 884 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 885 BI != BE; ++BI) { 886 DebugLoc DL = BI->getDebugLoc(); 887 if (DL.isUnknown()) { 888 // If the inlined instruction has no line number, make it look as if it 889 // originates from the call location. This is important for 890 // ((__always_inline__, __nodebug__)) functions which must use caller 891 // location for all instructions in their function body. 892 893 // Don't update static allocas, as they may get moved later. 894 if (auto *AI = dyn_cast<AllocaInst>(BI)) 895 if (isa<Constant>(AI->getArraySize())) 896 continue; 897 898 BI->setDebugLoc(TheCallDL); 899 } else { 900 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 901 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 902 LLVMContext &Ctx = BI->getContext(); 903 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 904 DVI->setOperand(2, MetadataAsValue::get( 905 Ctx, createInlinedVariable(DVI->getVariable(), 906 InlinedAt, Ctx))); 907 } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) { 908 LLVMContext &Ctx = BI->getContext(); 909 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 910 DDI->setOperand(1, MetadataAsValue::get( 911 Ctx, createInlinedVariable(DDI->getVariable(), 912 InlinedAt, Ctx))); 913 } 914 } 915 } 916 } 917 } 918 919 /// InlineFunction - This function inlines the called function into the basic 920 /// block of the caller. This returns false if it is not possible to inline 921 /// this call. The program is still in a well defined state if this occurs 922 /// though. 923 /// 924 /// Note that this only does one level of inlining. For example, if the 925 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 926 /// exists in the instruction stream. Similarly this will inline a recursive 927 /// function by one level. 928 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 929 bool InsertLifetime) { 930 Instruction *TheCall = CS.getInstruction(); 931 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 932 "Instruction not in function!"); 933 934 // If IFI has any state in it, zap it before we fill it in. 935 IFI.reset(); 936 937 const Function *CalledFunc = CS.getCalledFunction(); 938 if (!CalledFunc || // Can't inline external function or indirect 939 CalledFunc->isDeclaration() || // call, or call to a vararg function! 940 CalledFunc->getFunctionType()->isVarArg()) return false; 941 942 // If the call to the callee cannot throw, set the 'nounwind' flag on any 943 // calls that we inline. 944 bool MarkNoUnwind = CS.doesNotThrow(); 945 946 BasicBlock *OrigBB = TheCall->getParent(); 947 Function *Caller = OrigBB->getParent(); 948 949 // GC poses two hazards to inlining, which only occur when the callee has GC: 950 // 1. If the caller has no GC, then the callee's GC must be propagated to the 951 // caller. 952 // 2. If the caller has a differing GC, it is invalid to inline. 953 if (CalledFunc->hasGC()) { 954 if (!Caller->hasGC()) 955 Caller->setGC(CalledFunc->getGC()); 956 else if (CalledFunc->getGC() != Caller->getGC()) 957 return false; 958 } 959 960 // Get the personality function from the callee if it contains a landing pad. 961 Value *CalleePersonality = nullptr; 962 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 963 I != E; ++I) 964 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 965 const BasicBlock *BB = II->getUnwindDest(); 966 const LandingPadInst *LP = BB->getLandingPadInst(); 967 CalleePersonality = LP->getPersonalityFn(); 968 break; 969 } 970 971 // Find the personality function used by the landing pads of the caller. If it 972 // exists, then check to see that it matches the personality function used in 973 // the callee. 974 if (CalleePersonality) { 975 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 976 I != E; ++I) 977 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 978 const BasicBlock *BB = II->getUnwindDest(); 979 const LandingPadInst *LP = BB->getLandingPadInst(); 980 981 // If the personality functions match, then we can perform the 982 // inlining. Otherwise, we can't inline. 983 // TODO: This isn't 100% true. Some personality functions are proper 984 // supersets of others and can be used in place of the other. 985 if (LP->getPersonalityFn() != CalleePersonality) 986 return false; 987 988 break; 989 } 990 } 991 992 // Get an iterator to the last basic block in the function, which will have 993 // the new function inlined after it. 994 Function::iterator LastBlock = &Caller->back(); 995 996 // Make sure to capture all of the return instructions from the cloned 997 // function. 998 SmallVector<ReturnInst*, 8> Returns; 999 ClonedCodeInfo InlinedFunctionInfo; 1000 Function::iterator FirstNewBlock; 1001 1002 { // Scope to destroy VMap after cloning. 1003 ValueToValueMapTy VMap; 1004 // Keep a list of pair (dst, src) to emit byval initializations. 1005 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1006 1007 auto &DL = Caller->getParent()->getDataLayout(); 1008 1009 assert(CalledFunc->arg_size() == CS.arg_size() && 1010 "No varargs calls can be inlined!"); 1011 1012 // Calculate the vector of arguments to pass into the function cloner, which 1013 // matches up the formal to the actual argument values. 1014 CallSite::arg_iterator AI = CS.arg_begin(); 1015 unsigned ArgNo = 0; 1016 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1017 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1018 Value *ActualArg = *AI; 1019 1020 // When byval arguments actually inlined, we need to make the copy implied 1021 // by them explicit. However, we don't do this if the callee is readonly 1022 // or readnone, because the copy would be unneeded: the callee doesn't 1023 // modify the struct. 1024 if (CS.isByValArgument(ArgNo)) { 1025 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1026 CalledFunc->getParamAlignment(ArgNo+1)); 1027 if (ActualArg != *AI) 1028 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1029 } 1030 1031 VMap[I] = ActualArg; 1032 } 1033 1034 // Add alignment assumptions if necessary. We do this before the inlined 1035 // instructions are actually cloned into the caller so that we can easily 1036 // check what will be known at the start of the inlined code. 1037 AddAlignmentAssumptions(CS, IFI); 1038 1039 // We want the inliner to prune the code as it copies. We would LOVE to 1040 // have no dead or constant instructions leftover after inlining occurs 1041 // (which can happen, e.g., because an argument was constant), but we'll be 1042 // happy with whatever the cloner can do. 1043 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1044 /*ModuleLevelChanges=*/false, Returns, ".i", 1045 &InlinedFunctionInfo, &DL, TheCall); 1046 1047 // Remember the first block that is newly cloned over. 1048 FirstNewBlock = LastBlock; ++FirstNewBlock; 1049 1050 // Inject byval arguments initialization. 1051 for (std::pair<Value*, Value*> &Init : ByValInit) 1052 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1053 FirstNewBlock, IFI); 1054 1055 // Update the callgraph if requested. 1056 if (IFI.CG) 1057 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1058 1059 // Update inlined instructions' line number information. 1060 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1061 1062 // Clone existing noalias metadata if necessary. 1063 CloneAliasScopeMetadata(CS, VMap); 1064 1065 // Add noalias metadata if necessary. 1066 AddAliasScopeMetadata(CS, VMap, &DL, IFI.AA); 1067 1068 // FIXME: We could register any cloned assumptions instead of clearing the 1069 // whole function's cache. 1070 if (IFI.ACT) 1071 IFI.ACT->getAssumptionCache(*Caller).clear(); 1072 } 1073 1074 // If there are any alloca instructions in the block that used to be the entry 1075 // block for the callee, move them to the entry block of the caller. First 1076 // calculate which instruction they should be inserted before. We insert the 1077 // instructions at the end of the current alloca list. 1078 { 1079 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1080 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1081 E = FirstNewBlock->end(); I != E; ) { 1082 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1083 if (!AI) continue; 1084 1085 // If the alloca is now dead, remove it. This often occurs due to code 1086 // specialization. 1087 if (AI->use_empty()) { 1088 AI->eraseFromParent(); 1089 continue; 1090 } 1091 1092 if (!isa<Constant>(AI->getArraySize())) 1093 continue; 1094 1095 // Keep track of the static allocas that we inline into the caller. 1096 IFI.StaticAllocas.push_back(AI); 1097 1098 // Scan for the block of allocas that we can move over, and move them 1099 // all at once. 1100 while (isa<AllocaInst>(I) && 1101 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1102 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1103 ++I; 1104 } 1105 1106 // Transfer all of the allocas over in a block. Using splice means 1107 // that the instructions aren't removed from the symbol table, then 1108 // reinserted. 1109 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1110 FirstNewBlock->getInstList(), 1111 AI, I); 1112 } 1113 // Move any dbg.declares describing the allocas into the entry basic block. 1114 DIBuilder DIB(*Caller->getParent()); 1115 for (auto &AI : IFI.StaticAllocas) 1116 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1117 } 1118 1119 bool InlinedMustTailCalls = false; 1120 if (InlinedFunctionInfo.ContainsCalls) { 1121 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1122 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1123 CallSiteTailKind = CI->getTailCallKind(); 1124 1125 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1126 ++BB) { 1127 for (Instruction &I : *BB) { 1128 CallInst *CI = dyn_cast<CallInst>(&I); 1129 if (!CI) 1130 continue; 1131 1132 // We need to reduce the strength of any inlined tail calls. For 1133 // musttail, we have to avoid introducing potential unbounded stack 1134 // growth. For example, if functions 'f' and 'g' are mutually recursive 1135 // with musttail, we can inline 'g' into 'f' so long as we preserve 1136 // musttail on the cloned call to 'f'. If either the inlined call site 1137 // or the cloned call site is *not* musttail, the program already has 1138 // one frame of stack growth, so it's safe to remove musttail. Here is 1139 // a table of example transformations: 1140 // 1141 // f -> musttail g -> musttail f ==> f -> musttail f 1142 // f -> musttail g -> tail f ==> f -> tail f 1143 // f -> g -> musttail f ==> f -> f 1144 // f -> g -> tail f ==> f -> f 1145 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1146 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1147 CI->setTailCallKind(ChildTCK); 1148 InlinedMustTailCalls |= CI->isMustTailCall(); 1149 1150 // Calls inlined through a 'nounwind' call site should be marked 1151 // 'nounwind'. 1152 if (MarkNoUnwind) 1153 CI->setDoesNotThrow(); 1154 } 1155 } 1156 } 1157 1158 // Leave lifetime markers for the static alloca's, scoping them to the 1159 // function we just inlined. 1160 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1161 IRBuilder<> builder(FirstNewBlock->begin()); 1162 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1163 AllocaInst *AI = IFI.StaticAllocas[ai]; 1164 1165 // If the alloca is already scoped to something smaller than the whole 1166 // function then there's no need to add redundant, less accurate markers. 1167 if (hasLifetimeMarkers(AI)) 1168 continue; 1169 1170 // Try to determine the size of the allocation. 1171 ConstantInt *AllocaSize = nullptr; 1172 if (ConstantInt *AIArraySize = 1173 dyn_cast<ConstantInt>(AI->getArraySize())) { 1174 auto &DL = Caller->getParent()->getDataLayout(); 1175 Type *AllocaType = AI->getAllocatedType(); 1176 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1177 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1178 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 1179 // Check that array size doesn't saturate uint64_t and doesn't 1180 // overflow when it's multiplied by type size. 1181 if (AllocaArraySize != ~0ULL && 1182 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1183 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1184 AllocaArraySize * AllocaTypeSize); 1185 } 1186 } 1187 1188 builder.CreateLifetimeStart(AI, AllocaSize); 1189 for (ReturnInst *RI : Returns) { 1190 // Don't insert llvm.lifetime.end calls between a musttail call and a 1191 // return. The return kills all local allocas. 1192 if (InlinedMustTailCalls && 1193 RI->getParent()->getTerminatingMustTailCall()) 1194 continue; 1195 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1196 } 1197 } 1198 } 1199 1200 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1201 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1202 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1203 Module *M = Caller->getParent(); 1204 // Get the two intrinsics we care about. 1205 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1206 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1207 1208 // Insert the llvm.stacksave. 1209 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1210 .CreateCall(StackSave, "savedstack"); 1211 1212 // Insert a call to llvm.stackrestore before any return instructions in the 1213 // inlined function. 1214 for (ReturnInst *RI : Returns) { 1215 // Don't insert llvm.stackrestore calls between a musttail call and a 1216 // return. The return will restore the stack pointer. 1217 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1218 continue; 1219 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1220 } 1221 } 1222 1223 // If we are inlining for an invoke instruction, we must make sure to rewrite 1224 // any call instructions into invoke instructions. 1225 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1226 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1227 1228 // Handle any inlined musttail call sites. In order for a new call site to be 1229 // musttail, the source of the clone and the inlined call site must have been 1230 // musttail. Therefore it's safe to return without merging control into the 1231 // phi below. 1232 if (InlinedMustTailCalls) { 1233 // Check if we need to bitcast the result of any musttail calls. 1234 Type *NewRetTy = Caller->getReturnType(); 1235 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1236 1237 // Handle the returns preceded by musttail calls separately. 1238 SmallVector<ReturnInst *, 8> NormalReturns; 1239 for (ReturnInst *RI : Returns) { 1240 CallInst *ReturnedMustTail = 1241 RI->getParent()->getTerminatingMustTailCall(); 1242 if (!ReturnedMustTail) { 1243 NormalReturns.push_back(RI); 1244 continue; 1245 } 1246 if (!NeedBitCast) 1247 continue; 1248 1249 // Delete the old return and any preceding bitcast. 1250 BasicBlock *CurBB = RI->getParent(); 1251 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1252 RI->eraseFromParent(); 1253 if (OldCast) 1254 OldCast->eraseFromParent(); 1255 1256 // Insert a new bitcast and return with the right type. 1257 IRBuilder<> Builder(CurBB); 1258 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1259 } 1260 1261 // Leave behind the normal returns so we can merge control flow. 1262 std::swap(Returns, NormalReturns); 1263 } 1264 1265 // If we cloned in _exactly one_ basic block, and if that block ends in a 1266 // return instruction, we splice the body of the inlined callee directly into 1267 // the calling basic block. 1268 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1269 // Move all of the instructions right before the call. 1270 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1271 FirstNewBlock->begin(), FirstNewBlock->end()); 1272 // Remove the cloned basic block. 1273 Caller->getBasicBlockList().pop_back(); 1274 1275 // If the call site was an invoke instruction, add a branch to the normal 1276 // destination. 1277 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1278 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1279 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1280 } 1281 1282 // If the return instruction returned a value, replace uses of the call with 1283 // uses of the returned value. 1284 if (!TheCall->use_empty()) { 1285 ReturnInst *R = Returns[0]; 1286 if (TheCall == R->getReturnValue()) 1287 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1288 else 1289 TheCall->replaceAllUsesWith(R->getReturnValue()); 1290 } 1291 // Since we are now done with the Call/Invoke, we can delete it. 1292 TheCall->eraseFromParent(); 1293 1294 // Since we are now done with the return instruction, delete it also. 1295 Returns[0]->eraseFromParent(); 1296 1297 // We are now done with the inlining. 1298 return true; 1299 } 1300 1301 // Otherwise, we have the normal case, of more than one block to inline or 1302 // multiple return sites. 1303 1304 // We want to clone the entire callee function into the hole between the 1305 // "starter" and "ender" blocks. How we accomplish this depends on whether 1306 // this is an invoke instruction or a call instruction. 1307 BasicBlock *AfterCallBB; 1308 BranchInst *CreatedBranchToNormalDest = nullptr; 1309 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1310 1311 // Add an unconditional branch to make this look like the CallInst case... 1312 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1313 1314 // Split the basic block. This guarantees that no PHI nodes will have to be 1315 // updated due to new incoming edges, and make the invoke case more 1316 // symmetric to the call case. 1317 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1318 CalledFunc->getName()+".exit"); 1319 1320 } else { // It's a call 1321 // If this is a call instruction, we need to split the basic block that 1322 // the call lives in. 1323 // 1324 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1325 CalledFunc->getName()+".exit"); 1326 } 1327 1328 // Change the branch that used to go to AfterCallBB to branch to the first 1329 // basic block of the inlined function. 1330 // 1331 TerminatorInst *Br = OrigBB->getTerminator(); 1332 assert(Br && Br->getOpcode() == Instruction::Br && 1333 "splitBasicBlock broken!"); 1334 Br->setOperand(0, FirstNewBlock); 1335 1336 1337 // Now that the function is correct, make it a little bit nicer. In 1338 // particular, move the basic blocks inserted from the end of the function 1339 // into the space made by splitting the source basic block. 1340 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1341 FirstNewBlock, Caller->end()); 1342 1343 // Handle all of the return instructions that we just cloned in, and eliminate 1344 // any users of the original call/invoke instruction. 1345 Type *RTy = CalledFunc->getReturnType(); 1346 1347 PHINode *PHI = nullptr; 1348 if (Returns.size() > 1) { 1349 // The PHI node should go at the front of the new basic block to merge all 1350 // possible incoming values. 1351 if (!TheCall->use_empty()) { 1352 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1353 AfterCallBB->begin()); 1354 // Anything that used the result of the function call should now use the 1355 // PHI node as their operand. 1356 TheCall->replaceAllUsesWith(PHI); 1357 } 1358 1359 // Loop over all of the return instructions adding entries to the PHI node 1360 // as appropriate. 1361 if (PHI) { 1362 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1363 ReturnInst *RI = Returns[i]; 1364 assert(RI->getReturnValue()->getType() == PHI->getType() && 1365 "Ret value not consistent in function!"); 1366 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1367 } 1368 } 1369 1370 1371 // Add a branch to the merge points and remove return instructions. 1372 DebugLoc Loc; 1373 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1374 ReturnInst *RI = Returns[i]; 1375 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1376 Loc = RI->getDebugLoc(); 1377 BI->setDebugLoc(Loc); 1378 RI->eraseFromParent(); 1379 } 1380 // We need to set the debug location to *somewhere* inside the 1381 // inlined function. The line number may be nonsensical, but the 1382 // instruction will at least be associated with the right 1383 // function. 1384 if (CreatedBranchToNormalDest) 1385 CreatedBranchToNormalDest->setDebugLoc(Loc); 1386 } else if (!Returns.empty()) { 1387 // Otherwise, if there is exactly one return value, just replace anything 1388 // using the return value of the call with the computed value. 1389 if (!TheCall->use_empty()) { 1390 if (TheCall == Returns[0]->getReturnValue()) 1391 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1392 else 1393 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1394 } 1395 1396 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1397 BasicBlock *ReturnBB = Returns[0]->getParent(); 1398 ReturnBB->replaceAllUsesWith(AfterCallBB); 1399 1400 // Splice the code from the return block into the block that it will return 1401 // to, which contains the code that was after the call. 1402 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1403 ReturnBB->getInstList()); 1404 1405 if (CreatedBranchToNormalDest) 1406 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1407 1408 // Delete the return instruction now and empty ReturnBB now. 1409 Returns[0]->eraseFromParent(); 1410 ReturnBB->eraseFromParent(); 1411 } else if (!TheCall->use_empty()) { 1412 // No returns, but something is using the return value of the call. Just 1413 // nuke the result. 1414 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1415 } 1416 1417 // Since we are now done with the Call/Invoke, we can delete it. 1418 TheCall->eraseFromParent(); 1419 1420 // If we inlined any musttail calls and the original return is now 1421 // unreachable, delete it. It can only contain a bitcast and ret. 1422 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1423 AfterCallBB->eraseFromParent(); 1424 1425 // We should always be able to fold the entry block of the function into the 1426 // single predecessor of the block... 1427 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1428 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1429 1430 // Splice the code entry block into calling block, right before the 1431 // unconditional branch. 1432 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1433 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1434 1435 // Remove the unconditional branch. 1436 OrigBB->getInstList().erase(Br); 1437 1438 // Now we can remove the CalleeEntry block, which is now empty. 1439 Caller->getBasicBlockList().erase(CalleeEntry); 1440 1441 // If we inserted a phi node, check to see if it has a single value (e.g. all 1442 // the entries are the same or undef). If so, remove the PHI so it doesn't 1443 // block other optimizations. 1444 if (PHI) { 1445 auto &DL = Caller->getParent()->getDataLayout(); 1446 if (Value *V = SimplifyInstruction(PHI, &DL, nullptr, nullptr, 1447 &IFI.ACT->getAssumptionCache(*Caller))) { 1448 PHI->replaceAllUsesWith(V); 1449 PHI->eraseFromParent(); 1450 } 1451 } 1452 1453 return true; 1454 } 1455