1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 static cl::opt<bool> 47 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 48 cl::Hidden, 49 cl::desc("Convert noalias attributes to metadata during inlining.")); 50 51 static cl::opt<bool> 52 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 53 cl::init(true), cl::Hidden, 54 cl::desc("Convert align attributes to assumptions during inlining.")); 55 56 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 57 bool InsertLifetime) { 58 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 59 } 60 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 61 bool InsertLifetime) { 62 return InlineFunction(CallSite(II), IFI, InsertLifetime); 63 } 64 65 namespace { 66 /// A class for recording information about inlining through an invoke. 67 class InvokeInliningInfo { 68 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 69 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 70 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 71 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 72 SmallVector<Value*, 8> UnwindDestPHIValues; 73 74 public: 75 InvokeInliningInfo(InvokeInst *II) 76 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 77 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 78 // If there are PHI nodes in the unwind destination block, we need to keep 79 // track of which values came into them from the invoke before removing 80 // the edge from this block. 81 llvm::BasicBlock *InvokeBB = II->getParent(); 82 BasicBlock::iterator I = OuterResumeDest->begin(); 83 for (; isa<PHINode>(I); ++I) { 84 // Save the value to use for this edge. 85 PHINode *PHI = cast<PHINode>(I); 86 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 87 } 88 89 CallerLPad = cast<LandingPadInst>(I); 90 } 91 92 /// getOuterResumeDest - The outer unwind destination is the target of 93 /// unwind edges introduced for calls within the inlined function. 94 BasicBlock *getOuterResumeDest() const { 95 return OuterResumeDest; 96 } 97 98 BasicBlock *getInnerResumeDest(); 99 100 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 101 102 /// forwardResume - Forward the 'resume' instruction to the caller's landing 103 /// pad block. When the landing pad block has only one predecessor, this is 104 /// a simple branch. When there is more than one predecessor, we need to 105 /// split the landing pad block after the landingpad instruction and jump 106 /// to there. 107 void forwardResume(ResumeInst *RI, 108 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 109 110 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 111 /// destination block for the given basic block, using the values for the 112 /// original invoke's source block. 113 void addIncomingPHIValuesFor(BasicBlock *BB) const { 114 addIncomingPHIValuesForInto(BB, OuterResumeDest); 115 } 116 117 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 118 BasicBlock::iterator I = dest->begin(); 119 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 120 PHINode *phi = cast<PHINode>(I); 121 phi->addIncoming(UnwindDestPHIValues[i], src); 122 } 123 } 124 }; 125 } 126 127 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 128 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 129 if (InnerResumeDest) return InnerResumeDest; 130 131 // Split the landing pad. 132 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 133 InnerResumeDest = 134 OuterResumeDest->splitBasicBlock(SplitPoint, 135 OuterResumeDest->getName() + ".body"); 136 137 // The number of incoming edges we expect to the inner landing pad. 138 const unsigned PHICapacity = 2; 139 140 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 141 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 142 BasicBlock::iterator I = OuterResumeDest->begin(); 143 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 144 PHINode *OuterPHI = cast<PHINode>(I); 145 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 146 OuterPHI->getName() + ".lpad-body", 147 InsertPoint); 148 OuterPHI->replaceAllUsesWith(InnerPHI); 149 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 150 } 151 152 // Create a PHI for the exception values. 153 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 154 "eh.lpad-body", InsertPoint); 155 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 156 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 157 158 // All done. 159 return InnerResumeDest; 160 } 161 162 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 163 /// block. When the landing pad block has only one predecessor, this is a simple 164 /// branch. When there is more than one predecessor, we need to split the 165 /// landing pad block after the landingpad instruction and jump to there. 166 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 167 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 168 BasicBlock *Dest = getInnerResumeDest(); 169 BasicBlock *Src = RI->getParent(); 170 171 BranchInst::Create(Dest, Src); 172 173 // Update the PHIs in the destination. They were inserted in an order which 174 // makes this work. 175 addIncomingPHIValuesForInto(Src, Dest); 176 177 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 178 RI->eraseFromParent(); 179 } 180 181 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 182 /// an invoke, we have to turn all of the calls that can throw into 183 /// invokes. This function analyze BB to see if there are any calls, and if so, 184 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 185 /// nodes in that block with the values specified in InvokeDestPHIValues. 186 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 187 InvokeInliningInfo &Invoke) { 188 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 189 Instruction *I = BBI++; 190 191 // We only need to check for function calls: inlined invoke 192 // instructions require no special handling. 193 CallInst *CI = dyn_cast<CallInst>(I); 194 195 // If this call cannot unwind, don't convert it to an invoke. 196 // Inline asm calls cannot throw. 197 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 198 continue; 199 200 // Convert this function call into an invoke instruction. First, split the 201 // basic block. 202 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 203 204 // Delete the unconditional branch inserted by splitBasicBlock 205 BB->getInstList().pop_back(); 206 207 // Create the new invoke instruction. 208 ImmutableCallSite CS(CI); 209 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 210 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 211 Invoke.getOuterResumeDest(), 212 InvokeArgs, CI->getName(), BB); 213 II->setDebugLoc(CI->getDebugLoc()); 214 II->setCallingConv(CI->getCallingConv()); 215 II->setAttributes(CI->getAttributes()); 216 217 // Make sure that anything using the call now uses the invoke! This also 218 // updates the CallGraph if present, because it uses a WeakVH. 219 CI->replaceAllUsesWith(II); 220 221 // Delete the original call 222 Split->getInstList().pop_front(); 223 224 // Update any PHI nodes in the exceptional block to indicate that there is 225 // now a new entry in them. 226 Invoke.addIncomingPHIValuesFor(BB); 227 return; 228 } 229 } 230 231 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 232 /// in the body of the inlined function into invokes. 233 /// 234 /// II is the invoke instruction being inlined. FirstNewBlock is the first 235 /// block of the inlined code (the last block is the end of the function), 236 /// and InlineCodeInfo is information about the code that got inlined. 237 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 238 ClonedCodeInfo &InlinedCodeInfo) { 239 BasicBlock *InvokeDest = II->getUnwindDest(); 240 241 Function *Caller = FirstNewBlock->getParent(); 242 243 // The inlined code is currently at the end of the function, scan from the 244 // start of the inlined code to its end, checking for stuff we need to 245 // rewrite. 246 InvokeInliningInfo Invoke(II); 247 248 // Get all of the inlined landing pad instructions. 249 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 250 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 251 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 252 InlinedLPads.insert(II->getLandingPadInst()); 253 254 // Append the clauses from the outer landing pad instruction into the inlined 255 // landing pad instructions. 256 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 257 for (LandingPadInst *InlinedLPad : InlinedLPads) { 258 unsigned OuterNum = OuterLPad->getNumClauses(); 259 InlinedLPad->reserveClauses(OuterNum); 260 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 261 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 262 if (OuterLPad->isCleanup()) 263 InlinedLPad->setCleanup(true); 264 } 265 266 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 267 if (InlinedCodeInfo.ContainsCalls) 268 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 269 270 // Forward any resumes that are remaining here. 271 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 272 Invoke.forwardResume(RI, InlinedLPads); 273 } 274 275 // Now that everything is happy, we have one final detail. The PHI nodes in 276 // the exception destination block still have entries due to the original 277 // invoke instruction. Eliminate these entries (which might even delete the 278 // PHI node) now. 279 InvokeDest->removePredecessor(II->getParent()); 280 } 281 282 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 283 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 284 /// have different "unqiue scopes" at every call site. Were this not done, then 285 /// aliasing scopes from a function inlined into a caller multiple times could 286 /// not be differentiated (and this would lead to miscompiles because the 287 /// non-aliasing property communicated by the metadata could have 288 /// call-site-specific control dependencies). 289 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 290 const Function *CalledFunc = CS.getCalledFunction(); 291 SetVector<const MDNode *> MD; 292 293 // Note: We could only clone the metadata if it is already used in the 294 // caller. I'm omitting that check here because it might confuse 295 // inter-procedural alias analysis passes. We can revisit this if it becomes 296 // an efficiency or overhead problem. 297 298 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 299 I != IE; ++I) 300 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 301 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 302 MD.insert(M); 303 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 304 MD.insert(M); 305 } 306 307 if (MD.empty()) 308 return; 309 310 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 311 // the set. 312 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 313 while (!Queue.empty()) { 314 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 315 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 316 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 317 if (MD.insert(M1)) 318 Queue.push_back(M1); 319 } 320 321 // Now we have a complete set of all metadata in the chains used to specify 322 // the noalias scopes and the lists of those scopes. 323 SmallVector<TempMDTuple, 16> DummyNodes; 324 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 325 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 326 I != IE; ++I) { 327 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 328 MDMap[*I].reset(DummyNodes.back().get()); 329 } 330 331 // Create new metadata nodes to replace the dummy nodes, replacing old 332 // metadata references with either a dummy node or an already-created new 333 // node. 334 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 335 I != IE; ++I) { 336 SmallVector<Metadata *, 4> NewOps; 337 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 338 const Metadata *V = (*I)->getOperand(i); 339 if (const MDNode *M = dyn_cast<MDNode>(V)) 340 NewOps.push_back(MDMap[M]); 341 else 342 NewOps.push_back(const_cast<Metadata *>(V)); 343 } 344 345 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 346 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 347 assert(TempM->isTemporary() && "Expected temporary node"); 348 349 TempM->replaceAllUsesWith(NewM); 350 } 351 352 // Now replace the metadata in the new inlined instructions with the 353 // repacements from the map. 354 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 355 VMI != VMIE; ++VMI) { 356 if (!VMI->second) 357 continue; 358 359 Instruction *NI = dyn_cast<Instruction>(VMI->second); 360 if (!NI) 361 continue; 362 363 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 364 MDNode *NewMD = MDMap[M]; 365 // If the call site also had alias scope metadata (a list of scopes to 366 // which instructions inside it might belong), propagate those scopes to 367 // the inlined instructions. 368 if (MDNode *CSM = 369 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 370 NewMD = MDNode::concatenate(NewMD, CSM); 371 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 372 } else if (NI->mayReadOrWriteMemory()) { 373 if (MDNode *M = 374 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 375 NI->setMetadata(LLVMContext::MD_alias_scope, M); 376 } 377 378 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 379 MDNode *NewMD = MDMap[M]; 380 // If the call site also had noalias metadata (a list of scopes with 381 // which instructions inside it don't alias), propagate those scopes to 382 // the inlined instructions. 383 if (MDNode *CSM = 384 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 385 NewMD = MDNode::concatenate(NewMD, CSM); 386 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 387 } else if (NI->mayReadOrWriteMemory()) { 388 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 389 NI->setMetadata(LLVMContext::MD_noalias, M); 390 } 391 } 392 } 393 394 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 395 /// add new alias scopes for each noalias argument, tag the mapped noalias 396 /// parameters with noalias metadata specifying the new scope, and tag all 397 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 398 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 399 const DataLayout *DL, AliasAnalysis *AA) { 400 if (!EnableNoAliasConversion) 401 return; 402 403 const Function *CalledFunc = CS.getCalledFunction(); 404 SmallVector<const Argument *, 4> NoAliasArgs; 405 406 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 407 E = CalledFunc->arg_end(); I != E; ++I) { 408 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 409 NoAliasArgs.push_back(I); 410 } 411 412 if (NoAliasArgs.empty()) 413 return; 414 415 // To do a good job, if a noalias variable is captured, we need to know if 416 // the capture point dominates the particular use we're considering. 417 DominatorTree DT; 418 DT.recalculate(const_cast<Function&>(*CalledFunc)); 419 420 // noalias indicates that pointer values based on the argument do not alias 421 // pointer values which are not based on it. So we add a new "scope" for each 422 // noalias function argument. Accesses using pointers based on that argument 423 // become part of that alias scope, accesses using pointers not based on that 424 // argument are tagged as noalias with that scope. 425 426 DenseMap<const Argument *, MDNode *> NewScopes; 427 MDBuilder MDB(CalledFunc->getContext()); 428 429 // Create a new scope domain for this function. 430 MDNode *NewDomain = 431 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 432 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 433 const Argument *A = NoAliasArgs[i]; 434 435 std::string Name = CalledFunc->getName(); 436 if (A->hasName()) { 437 Name += ": %"; 438 Name += A->getName(); 439 } else { 440 Name += ": argument "; 441 Name += utostr(i); 442 } 443 444 // Note: We always create a new anonymous root here. This is true regardless 445 // of the linkage of the callee because the aliasing "scope" is not just a 446 // property of the callee, but also all control dependencies in the caller. 447 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 448 NewScopes.insert(std::make_pair(A, NewScope)); 449 } 450 451 // Iterate over all new instructions in the map; for all memory-access 452 // instructions, add the alias scope metadata. 453 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 454 VMI != VMIE; ++VMI) { 455 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 456 if (!VMI->second) 457 continue; 458 459 Instruction *NI = dyn_cast<Instruction>(VMI->second); 460 if (!NI) 461 continue; 462 463 bool IsArgMemOnlyCall = false, IsFuncCall = false; 464 SmallVector<const Value *, 2> PtrArgs; 465 466 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 467 PtrArgs.push_back(LI->getPointerOperand()); 468 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 469 PtrArgs.push_back(SI->getPointerOperand()); 470 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 471 PtrArgs.push_back(VAAI->getPointerOperand()); 472 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 473 PtrArgs.push_back(CXI->getPointerOperand()); 474 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 475 PtrArgs.push_back(RMWI->getPointerOperand()); 476 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 477 // If we know that the call does not access memory, then we'll still 478 // know that about the inlined clone of this call site, and we don't 479 // need to add metadata. 480 if (ICS.doesNotAccessMemory()) 481 continue; 482 483 IsFuncCall = true; 484 if (AA) { 485 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); 486 if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || 487 MRB == AliasAnalysis::OnlyReadsArgumentPointees) 488 IsArgMemOnlyCall = true; 489 } 490 491 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 492 AE = ICS.arg_end(); AI != AE; ++AI) { 493 // We need to check the underlying objects of all arguments, not just 494 // the pointer arguments, because we might be passing pointers as 495 // integers, etc. 496 // However, if we know that the call only accesses pointer arguments, 497 // then we only need to check the pointer arguments. 498 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 499 continue; 500 501 PtrArgs.push_back(*AI); 502 } 503 } 504 505 // If we found no pointers, then this instruction is not suitable for 506 // pairing with an instruction to receive aliasing metadata. 507 // However, if this is a call, this we might just alias with none of the 508 // noalias arguments. 509 if (PtrArgs.empty() && !IsFuncCall) 510 continue; 511 512 // It is possible that there is only one underlying object, but you 513 // need to go through several PHIs to see it, and thus could be 514 // repeated in the Objects list. 515 SmallPtrSet<const Value *, 4> ObjSet; 516 SmallVector<Metadata *, 4> Scopes, NoAliases; 517 518 SmallSetVector<const Argument *, 4> NAPtrArgs; 519 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 520 SmallVector<Value *, 4> Objects; 521 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 522 Objects, DL, /* MaxLookup = */ 0); 523 524 for (Value *O : Objects) 525 ObjSet.insert(O); 526 } 527 528 // Figure out if we're derived from anything that is not a noalias 529 // argument. 530 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 531 for (const Value *V : ObjSet) { 532 // Is this value a constant that cannot be derived from any pointer 533 // value (we need to exclude constant expressions, for example, that 534 // are formed from arithmetic on global symbols). 535 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 536 isa<ConstantPointerNull>(V) || 537 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 538 if (IsNonPtrConst) 539 continue; 540 541 // If this is anything other than a noalias argument, then we cannot 542 // completely describe the aliasing properties using alias.scope 543 // metadata (and, thus, won't add any). 544 if (const Argument *A = dyn_cast<Argument>(V)) { 545 if (!A->hasNoAliasAttr()) 546 UsesAliasingPtr = true; 547 } else { 548 UsesAliasingPtr = true; 549 } 550 551 // If this is not some identified function-local object (which cannot 552 // directly alias a noalias argument), or some other argument (which, 553 // by definition, also cannot alias a noalias argument), then we could 554 // alias a noalias argument that has been captured). 555 if (!isa<Argument>(V) && 556 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 557 CanDeriveViaCapture = true; 558 } 559 560 // A function call can always get captured noalias pointers (via other 561 // parameters, globals, etc.). 562 if (IsFuncCall && !IsArgMemOnlyCall) 563 CanDeriveViaCapture = true; 564 565 // First, we want to figure out all of the sets with which we definitely 566 // don't alias. Iterate over all noalias set, and add those for which: 567 // 1. The noalias argument is not in the set of objects from which we 568 // definitely derive. 569 // 2. The noalias argument has not yet been captured. 570 // An arbitrary function that might load pointers could see captured 571 // noalias arguments via other noalias arguments or globals, and so we 572 // must always check for prior capture. 573 for (const Argument *A : NoAliasArgs) { 574 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 575 // It might be tempting to skip the 576 // PointerMayBeCapturedBefore check if 577 // A->hasNoCaptureAttr() is true, but this is 578 // incorrect because nocapture only guarantees 579 // that no copies outlive the function, not 580 // that the value cannot be locally captured. 581 !PointerMayBeCapturedBefore(A, 582 /* ReturnCaptures */ false, 583 /* StoreCaptures */ false, I, &DT))) 584 NoAliases.push_back(NewScopes[A]); 585 } 586 587 if (!NoAliases.empty()) 588 NI->setMetadata(LLVMContext::MD_noalias, 589 MDNode::concatenate( 590 NI->getMetadata(LLVMContext::MD_noalias), 591 MDNode::get(CalledFunc->getContext(), NoAliases))); 592 593 // Next, we want to figure out all of the sets to which we might belong. 594 // We might belong to a set if the noalias argument is in the set of 595 // underlying objects. If there is some non-noalias argument in our list 596 // of underlying objects, then we cannot add a scope because the fact 597 // that some access does not alias with any set of our noalias arguments 598 // cannot itself guarantee that it does not alias with this access 599 // (because there is some pointer of unknown origin involved and the 600 // other access might also depend on this pointer). We also cannot add 601 // scopes to arbitrary functions unless we know they don't access any 602 // non-parameter pointer-values. 603 bool CanAddScopes = !UsesAliasingPtr; 604 if (CanAddScopes && IsFuncCall) 605 CanAddScopes = IsArgMemOnlyCall; 606 607 if (CanAddScopes) 608 for (const Argument *A : NoAliasArgs) { 609 if (ObjSet.count(A)) 610 Scopes.push_back(NewScopes[A]); 611 } 612 613 if (!Scopes.empty()) 614 NI->setMetadata( 615 LLVMContext::MD_alias_scope, 616 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 617 MDNode::get(CalledFunc->getContext(), Scopes))); 618 } 619 } 620 } 621 622 /// If the inlined function has non-byval align arguments, then 623 /// add @llvm.assume-based alignment assumptions to preserve this information. 624 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 625 if (!PreserveAlignmentAssumptions || !IFI.DL) 626 return; 627 628 // To avoid inserting redundant assumptions, we should check for assumptions 629 // already in the caller. To do this, we might need a DT of the caller. 630 DominatorTree DT; 631 bool DTCalculated = false; 632 633 Function *CalledFunc = CS.getCalledFunction(); 634 for (Function::arg_iterator I = CalledFunc->arg_begin(), 635 E = CalledFunc->arg_end(); 636 I != E; ++I) { 637 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 638 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 639 if (!DTCalculated) { 640 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 641 ->getParent())); 642 DTCalculated = true; 643 } 644 645 // If we can already prove the asserted alignment in the context of the 646 // caller, then don't bother inserting the assumption. 647 Value *Arg = CS.getArgument(I->getArgNo()); 648 if (getKnownAlignment(Arg, IFI.DL, 649 &IFI.ACT->getAssumptionCache(*CalledFunc), 650 CS.getInstruction(), &DT) >= Align) 651 continue; 652 653 IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg, 654 Align); 655 } 656 } 657 } 658 659 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 660 /// into the caller, update the specified callgraph to reflect the changes we 661 /// made. Note that it's possible that not all code was copied over, so only 662 /// some edges of the callgraph may remain. 663 static void UpdateCallGraphAfterInlining(CallSite CS, 664 Function::iterator FirstNewBlock, 665 ValueToValueMapTy &VMap, 666 InlineFunctionInfo &IFI) { 667 CallGraph &CG = *IFI.CG; 668 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 669 const Function *Callee = CS.getCalledFunction(); 670 CallGraphNode *CalleeNode = CG[Callee]; 671 CallGraphNode *CallerNode = CG[Caller]; 672 673 // Since we inlined some uninlined call sites in the callee into the caller, 674 // add edges from the caller to all of the callees of the callee. 675 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 676 677 // Consider the case where CalleeNode == CallerNode. 678 CallGraphNode::CalledFunctionsVector CallCache; 679 if (CalleeNode == CallerNode) { 680 CallCache.assign(I, E); 681 I = CallCache.begin(); 682 E = CallCache.end(); 683 } 684 685 for (; I != E; ++I) { 686 const Value *OrigCall = I->first; 687 688 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 689 // Only copy the edge if the call was inlined! 690 if (VMI == VMap.end() || VMI->second == nullptr) 691 continue; 692 693 // If the call was inlined, but then constant folded, there is no edge to 694 // add. Check for this case. 695 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 696 if (!NewCall) continue; 697 698 // Remember that this call site got inlined for the client of 699 // InlineFunction. 700 IFI.InlinedCalls.push_back(NewCall); 701 702 // It's possible that inlining the callsite will cause it to go from an 703 // indirect to a direct call by resolving a function pointer. If this 704 // happens, set the callee of the new call site to a more precise 705 // destination. This can also happen if the call graph node of the caller 706 // was just unnecessarily imprecise. 707 if (!I->second->getFunction()) 708 if (Function *F = CallSite(NewCall).getCalledFunction()) { 709 // Indirect call site resolved to direct call. 710 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 711 712 continue; 713 } 714 715 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 716 } 717 718 // Update the call graph by deleting the edge from Callee to Caller. We must 719 // do this after the loop above in case Caller and Callee are the same. 720 CallerNode->removeCallEdgeFor(CS); 721 } 722 723 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 724 BasicBlock *InsertBlock, 725 InlineFunctionInfo &IFI) { 726 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 727 IRBuilder<> Builder(InsertBlock->begin()); 728 729 Value *Size; 730 if (IFI.DL == nullptr) 731 Size = ConstantExpr::getSizeOf(AggTy); 732 else 733 Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy)); 734 735 // Always generate a memcpy of alignment 1 here because we don't know 736 // the alignment of the src pointer. Other optimizations can infer 737 // better alignment. 738 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 739 } 740 741 /// HandleByValArgument - When inlining a call site that has a byval argument, 742 /// we have to make the implicit memcpy explicit by adding it. 743 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 744 const Function *CalledFunc, 745 InlineFunctionInfo &IFI, 746 unsigned ByValAlignment) { 747 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 748 Type *AggTy = ArgTy->getElementType(); 749 750 Function *Caller = TheCall->getParent()->getParent(); 751 752 // If the called function is readonly, then it could not mutate the caller's 753 // copy of the byval'd memory. In this case, it is safe to elide the copy and 754 // temporary. 755 if (CalledFunc->onlyReadsMemory()) { 756 // If the byval argument has a specified alignment that is greater than the 757 // passed in pointer, then we either have to round up the input pointer or 758 // give up on this transformation. 759 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 760 return Arg; 761 762 // If the pointer is already known to be sufficiently aligned, or if we can 763 // round it up to a larger alignment, then we don't need a temporary. 764 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, IFI.DL, 765 &IFI.ACT->getAssumptionCache(*Caller), 766 TheCall) >= ByValAlignment) 767 return Arg; 768 769 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 770 // for code quality, but rarely happens and is required for correctness. 771 } 772 773 // Create the alloca. If we have DataLayout, use nice alignment. 774 unsigned Align = 1; 775 if (IFI.DL) 776 Align = IFI.DL->getPrefTypeAlignment(AggTy); 777 778 // If the byval had an alignment specified, we *must* use at least that 779 // alignment, as it is required by the byval argument (and uses of the 780 // pointer inside the callee). 781 Align = std::max(Align, ByValAlignment); 782 783 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 784 &*Caller->begin()->begin()); 785 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 786 787 // Uses of the argument in the function should use our new alloca 788 // instead. 789 return NewAlloca; 790 } 791 792 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 793 // intrinsic. 794 static bool isUsedByLifetimeMarker(Value *V) { 795 for (User *U : V->users()) { 796 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 797 switch (II->getIntrinsicID()) { 798 default: break; 799 case Intrinsic::lifetime_start: 800 case Intrinsic::lifetime_end: 801 return true; 802 } 803 } 804 } 805 return false; 806 } 807 808 // hasLifetimeMarkers - Check whether the given alloca already has 809 // lifetime.start or lifetime.end intrinsics. 810 static bool hasLifetimeMarkers(AllocaInst *AI) { 811 Type *Ty = AI->getType(); 812 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 813 Ty->getPointerAddressSpace()); 814 if (Ty == Int8PtrTy) 815 return isUsedByLifetimeMarker(AI); 816 817 // Do a scan to find all the casts to i8*. 818 for (User *U : AI->users()) { 819 if (U->getType() != Int8PtrTy) continue; 820 if (U->stripPointerCasts() != AI) continue; 821 if (isUsedByLifetimeMarker(U)) 822 return true; 823 } 824 return false; 825 } 826 827 /// Rebuild the entire inlined-at chain for this instruction so that the top of 828 /// the chain now is inlined-at the new call site. 829 static DebugLoc 830 updateInlinedAtInfo(DebugLoc DL, MDLocation *InlinedAtNode, 831 LLVMContext &Ctx, 832 DenseMap<const MDLocation *, MDLocation *> &IANodes) { 833 SmallVector<MDLocation*, 3> InlinedAtLocations; 834 MDLocation *Last = InlinedAtNode; 835 DebugLoc CurInlinedAt = DL; 836 837 // Gather all the inlined-at nodes 838 while (MDLocation *IA = 839 cast_or_null<MDLocation>(CurInlinedAt.getInlinedAt(Ctx))) { 840 // Skip any we've already built nodes for 841 if (MDLocation *Found = IANodes[IA]) { 842 Last = Found; 843 break; 844 } 845 846 InlinedAtLocations.push_back(IA); 847 CurInlinedAt = DebugLoc::getFromDILocation(IA); 848 } 849 850 // Starting from the top, rebuild the nodes to point to the new inlined-at 851 // location (then rebuilding the rest of the chain behind it) and update the 852 // map of already-constructed inlined-at nodes. 853 for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend(); 854 I != E; ++I) { 855 const MDLocation *MD = *I; 856 Last = IANodes[MD] = MDLocation::getDistinct( 857 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 858 } 859 860 // And finally create the normal location for this instruction, referring to 861 // the new inlined-at chain. 862 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), Last); 863 } 864 865 /// fixupLineNumbers - Update inlined instructions' line numbers to 866 /// to encode location where these instructions are inlined. 867 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 868 Instruction *TheCall) { 869 DebugLoc TheCallDL = TheCall->getDebugLoc(); 870 if (TheCallDL.isUnknown()) 871 return; 872 873 auto &Ctx = Fn->getContext(); 874 auto *InlinedAtNode = cast<MDLocation>(TheCallDL.getAsMDNode(Ctx)); 875 876 // Create a unique call site, not to be confused with any other call from the 877 // same location. 878 InlinedAtNode = MDLocation::getDistinct( 879 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 880 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 881 882 // Cache the inlined-at nodes as they're built so they are reused, without 883 // this every instruction's inlined-at chain would become distinct from each 884 // other. 885 DenseMap<const MDLocation *, MDLocation *> IANodes; 886 887 for (; FI != Fn->end(); ++FI) { 888 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 889 BI != BE; ++BI) { 890 DebugLoc DL = BI->getDebugLoc(); 891 if (DL.isUnknown()) { 892 // If the inlined instruction has no line number, make it look as if it 893 // originates from the call location. This is important for 894 // ((__always_inline__, __nodebug__)) functions which must use caller 895 // location for all instructions in their function body. 896 897 // Don't update static allocas, as they may get moved later. 898 if (auto *AI = dyn_cast<AllocaInst>(BI)) 899 if (isa<Constant>(AI->getArraySize())) 900 continue; 901 902 BI->setDebugLoc(TheCallDL); 903 } else { 904 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 905 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 906 LLVMContext &Ctx = BI->getContext(); 907 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 908 DVI->setOperand(2, MetadataAsValue::get( 909 Ctx, createInlinedVariable(DVI->getVariable(), 910 InlinedAt, Ctx))); 911 } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) { 912 LLVMContext &Ctx = BI->getContext(); 913 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 914 DDI->setOperand(1, MetadataAsValue::get( 915 Ctx, createInlinedVariable(DDI->getVariable(), 916 InlinedAt, Ctx))); 917 } 918 } 919 } 920 } 921 } 922 923 /// InlineFunction - This function inlines the called function into the basic 924 /// block of the caller. This returns false if it is not possible to inline 925 /// this call. The program is still in a well defined state if this occurs 926 /// though. 927 /// 928 /// Note that this only does one level of inlining. For example, if the 929 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 930 /// exists in the instruction stream. Similarly this will inline a recursive 931 /// function by one level. 932 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 933 bool InsertLifetime) { 934 Instruction *TheCall = CS.getInstruction(); 935 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 936 "Instruction not in function!"); 937 938 // If IFI has any state in it, zap it before we fill it in. 939 IFI.reset(); 940 941 const Function *CalledFunc = CS.getCalledFunction(); 942 if (!CalledFunc || // Can't inline external function or indirect 943 CalledFunc->isDeclaration() || // call, or call to a vararg function! 944 CalledFunc->getFunctionType()->isVarArg()) return false; 945 946 // If the call to the callee cannot throw, set the 'nounwind' flag on any 947 // calls that we inline. 948 bool MarkNoUnwind = CS.doesNotThrow(); 949 950 BasicBlock *OrigBB = TheCall->getParent(); 951 Function *Caller = OrigBB->getParent(); 952 953 // GC poses two hazards to inlining, which only occur when the callee has GC: 954 // 1. If the caller has no GC, then the callee's GC must be propagated to the 955 // caller. 956 // 2. If the caller has a differing GC, it is invalid to inline. 957 if (CalledFunc->hasGC()) { 958 if (!Caller->hasGC()) 959 Caller->setGC(CalledFunc->getGC()); 960 else if (CalledFunc->getGC() != Caller->getGC()) 961 return false; 962 } 963 964 // Get the personality function from the callee if it contains a landing pad. 965 Value *CalleePersonality = nullptr; 966 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 967 I != E; ++I) 968 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 969 const BasicBlock *BB = II->getUnwindDest(); 970 const LandingPadInst *LP = BB->getLandingPadInst(); 971 CalleePersonality = LP->getPersonalityFn(); 972 break; 973 } 974 975 // Find the personality function used by the landing pads of the caller. If it 976 // exists, then check to see that it matches the personality function used in 977 // the callee. 978 if (CalleePersonality) { 979 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 980 I != E; ++I) 981 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 982 const BasicBlock *BB = II->getUnwindDest(); 983 const LandingPadInst *LP = BB->getLandingPadInst(); 984 985 // If the personality functions match, then we can perform the 986 // inlining. Otherwise, we can't inline. 987 // TODO: This isn't 100% true. Some personality functions are proper 988 // supersets of others and can be used in place of the other. 989 if (LP->getPersonalityFn() != CalleePersonality) 990 return false; 991 992 break; 993 } 994 } 995 996 // Get an iterator to the last basic block in the function, which will have 997 // the new function inlined after it. 998 Function::iterator LastBlock = &Caller->back(); 999 1000 // Make sure to capture all of the return instructions from the cloned 1001 // function. 1002 SmallVector<ReturnInst*, 8> Returns; 1003 ClonedCodeInfo InlinedFunctionInfo; 1004 Function::iterator FirstNewBlock; 1005 1006 { // Scope to destroy VMap after cloning. 1007 ValueToValueMapTy VMap; 1008 // Keep a list of pair (dst, src) to emit byval initializations. 1009 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1010 1011 assert(CalledFunc->arg_size() == CS.arg_size() && 1012 "No varargs calls can be inlined!"); 1013 1014 // Calculate the vector of arguments to pass into the function cloner, which 1015 // matches up the formal to the actual argument values. 1016 CallSite::arg_iterator AI = CS.arg_begin(); 1017 unsigned ArgNo = 0; 1018 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1019 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1020 Value *ActualArg = *AI; 1021 1022 // When byval arguments actually inlined, we need to make the copy implied 1023 // by them explicit. However, we don't do this if the callee is readonly 1024 // or readnone, because the copy would be unneeded: the callee doesn't 1025 // modify the struct. 1026 if (CS.isByValArgument(ArgNo)) { 1027 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1028 CalledFunc->getParamAlignment(ArgNo+1)); 1029 if (ActualArg != *AI) 1030 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1031 } 1032 1033 VMap[I] = ActualArg; 1034 } 1035 1036 // Add alignment assumptions if necessary. We do this before the inlined 1037 // instructions are actually cloned into the caller so that we can easily 1038 // check what will be known at the start of the inlined code. 1039 AddAlignmentAssumptions(CS, IFI); 1040 1041 // We want the inliner to prune the code as it copies. We would LOVE to 1042 // have no dead or constant instructions leftover after inlining occurs 1043 // (which can happen, e.g., because an argument was constant), but we'll be 1044 // happy with whatever the cloner can do. 1045 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1046 /*ModuleLevelChanges=*/false, Returns, ".i", 1047 &InlinedFunctionInfo, IFI.DL, TheCall); 1048 1049 // Remember the first block that is newly cloned over. 1050 FirstNewBlock = LastBlock; ++FirstNewBlock; 1051 1052 // Inject byval arguments initialization. 1053 for (std::pair<Value*, Value*> &Init : ByValInit) 1054 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1055 FirstNewBlock, IFI); 1056 1057 // Update the callgraph if requested. 1058 if (IFI.CG) 1059 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1060 1061 // Update inlined instructions' line number information. 1062 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1063 1064 // Clone existing noalias metadata if necessary. 1065 CloneAliasScopeMetadata(CS, VMap); 1066 1067 // Add noalias metadata if necessary. 1068 AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA); 1069 1070 // FIXME: We could register any cloned assumptions instead of clearing the 1071 // whole function's cache. 1072 if (IFI.ACT) 1073 IFI.ACT->getAssumptionCache(*Caller).clear(); 1074 } 1075 1076 // If there are any alloca instructions in the block that used to be the entry 1077 // block for the callee, move them to the entry block of the caller. First 1078 // calculate which instruction they should be inserted before. We insert the 1079 // instructions at the end of the current alloca list. 1080 { 1081 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1082 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1083 E = FirstNewBlock->end(); I != E; ) { 1084 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1085 if (!AI) continue; 1086 1087 // If the alloca is now dead, remove it. This often occurs due to code 1088 // specialization. 1089 if (AI->use_empty()) { 1090 AI->eraseFromParent(); 1091 continue; 1092 } 1093 1094 if (!isa<Constant>(AI->getArraySize())) 1095 continue; 1096 1097 // Keep track of the static allocas that we inline into the caller. 1098 IFI.StaticAllocas.push_back(AI); 1099 1100 // Scan for the block of allocas that we can move over, and move them 1101 // all at once. 1102 while (isa<AllocaInst>(I) && 1103 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1104 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1105 ++I; 1106 } 1107 1108 // Transfer all of the allocas over in a block. Using splice means 1109 // that the instructions aren't removed from the symbol table, then 1110 // reinserted. 1111 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1112 FirstNewBlock->getInstList(), 1113 AI, I); 1114 } 1115 // Move any dbg.declares describing the allocas into the entry basic block. 1116 DIBuilder DIB(*Caller->getParent()); 1117 for (auto &I : IFI.StaticAllocas) 1118 if (auto AI = dyn_cast<AllocaInst>(I)) 1119 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1120 } 1121 1122 bool InlinedMustTailCalls = false; 1123 if (InlinedFunctionInfo.ContainsCalls) { 1124 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1125 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1126 CallSiteTailKind = CI->getTailCallKind(); 1127 1128 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1129 ++BB) { 1130 for (Instruction &I : *BB) { 1131 CallInst *CI = dyn_cast<CallInst>(&I); 1132 if (!CI) 1133 continue; 1134 1135 // We need to reduce the strength of any inlined tail calls. For 1136 // musttail, we have to avoid introducing potential unbounded stack 1137 // growth. For example, if functions 'f' and 'g' are mutually recursive 1138 // with musttail, we can inline 'g' into 'f' so long as we preserve 1139 // musttail on the cloned call to 'f'. If either the inlined call site 1140 // or the cloned call site is *not* musttail, the program already has 1141 // one frame of stack growth, so it's safe to remove musttail. Here is 1142 // a table of example transformations: 1143 // 1144 // f -> musttail g -> musttail f ==> f -> musttail f 1145 // f -> musttail g -> tail f ==> f -> tail f 1146 // f -> g -> musttail f ==> f -> f 1147 // f -> g -> tail f ==> f -> f 1148 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1149 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1150 CI->setTailCallKind(ChildTCK); 1151 InlinedMustTailCalls |= CI->isMustTailCall(); 1152 1153 // Calls inlined through a 'nounwind' call site should be marked 1154 // 'nounwind'. 1155 if (MarkNoUnwind) 1156 CI->setDoesNotThrow(); 1157 } 1158 } 1159 } 1160 1161 // Leave lifetime markers for the static alloca's, scoping them to the 1162 // function we just inlined. 1163 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1164 IRBuilder<> builder(FirstNewBlock->begin()); 1165 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1166 AllocaInst *AI = IFI.StaticAllocas[ai]; 1167 1168 // If the alloca is already scoped to something smaller than the whole 1169 // function then there's no need to add redundant, less accurate markers. 1170 if (hasLifetimeMarkers(AI)) 1171 continue; 1172 1173 // Try to determine the size of the allocation. 1174 ConstantInt *AllocaSize = nullptr; 1175 if (ConstantInt *AIArraySize = 1176 dyn_cast<ConstantInt>(AI->getArraySize())) { 1177 if (IFI.DL) { 1178 Type *AllocaType = AI->getAllocatedType(); 1179 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 1180 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1181 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 1182 // Check that array size doesn't saturate uint64_t and doesn't 1183 // overflow when it's multiplied by type size. 1184 if (AllocaArraySize != ~0ULL && 1185 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1186 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1187 AllocaArraySize * AllocaTypeSize); 1188 } 1189 } 1190 } 1191 1192 builder.CreateLifetimeStart(AI, AllocaSize); 1193 for (ReturnInst *RI : Returns) { 1194 // Don't insert llvm.lifetime.end calls between a musttail call and a 1195 // return. The return kills all local allocas. 1196 if (InlinedMustTailCalls && 1197 RI->getParent()->getTerminatingMustTailCall()) 1198 continue; 1199 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1200 } 1201 } 1202 } 1203 1204 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1205 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1206 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1207 Module *M = Caller->getParent(); 1208 // Get the two intrinsics we care about. 1209 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1210 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1211 1212 // Insert the llvm.stacksave. 1213 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1214 .CreateCall(StackSave, "savedstack"); 1215 1216 // Insert a call to llvm.stackrestore before any return instructions in the 1217 // inlined function. 1218 for (ReturnInst *RI : Returns) { 1219 // Don't insert llvm.stackrestore calls between a musttail call and a 1220 // return. The return will restore the stack pointer. 1221 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1222 continue; 1223 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1224 } 1225 } 1226 1227 // If we are inlining for an invoke instruction, we must make sure to rewrite 1228 // any call instructions into invoke instructions. 1229 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1230 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1231 1232 // Handle any inlined musttail call sites. In order for a new call site to be 1233 // musttail, the source of the clone and the inlined call site must have been 1234 // musttail. Therefore it's safe to return without merging control into the 1235 // phi below. 1236 if (InlinedMustTailCalls) { 1237 // Check if we need to bitcast the result of any musttail calls. 1238 Type *NewRetTy = Caller->getReturnType(); 1239 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1240 1241 // Handle the returns preceded by musttail calls separately. 1242 SmallVector<ReturnInst *, 8> NormalReturns; 1243 for (ReturnInst *RI : Returns) { 1244 CallInst *ReturnedMustTail = 1245 RI->getParent()->getTerminatingMustTailCall(); 1246 if (!ReturnedMustTail) { 1247 NormalReturns.push_back(RI); 1248 continue; 1249 } 1250 if (!NeedBitCast) 1251 continue; 1252 1253 // Delete the old return and any preceding bitcast. 1254 BasicBlock *CurBB = RI->getParent(); 1255 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1256 RI->eraseFromParent(); 1257 if (OldCast) 1258 OldCast->eraseFromParent(); 1259 1260 // Insert a new bitcast and return with the right type. 1261 IRBuilder<> Builder(CurBB); 1262 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1263 } 1264 1265 // Leave behind the normal returns so we can merge control flow. 1266 std::swap(Returns, NormalReturns); 1267 } 1268 1269 // If we cloned in _exactly one_ basic block, and if that block ends in a 1270 // return instruction, we splice the body of the inlined callee directly into 1271 // the calling basic block. 1272 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1273 // Move all of the instructions right before the call. 1274 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1275 FirstNewBlock->begin(), FirstNewBlock->end()); 1276 // Remove the cloned basic block. 1277 Caller->getBasicBlockList().pop_back(); 1278 1279 // If the call site was an invoke instruction, add a branch to the normal 1280 // destination. 1281 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1282 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1283 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1284 } 1285 1286 // If the return instruction returned a value, replace uses of the call with 1287 // uses of the returned value. 1288 if (!TheCall->use_empty()) { 1289 ReturnInst *R = Returns[0]; 1290 if (TheCall == R->getReturnValue()) 1291 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1292 else 1293 TheCall->replaceAllUsesWith(R->getReturnValue()); 1294 } 1295 // Since we are now done with the Call/Invoke, we can delete it. 1296 TheCall->eraseFromParent(); 1297 1298 // Since we are now done with the return instruction, delete it also. 1299 Returns[0]->eraseFromParent(); 1300 1301 // We are now done with the inlining. 1302 return true; 1303 } 1304 1305 // Otherwise, we have the normal case, of more than one block to inline or 1306 // multiple return sites. 1307 1308 // We want to clone the entire callee function into the hole between the 1309 // "starter" and "ender" blocks. How we accomplish this depends on whether 1310 // this is an invoke instruction or a call instruction. 1311 BasicBlock *AfterCallBB; 1312 BranchInst *CreatedBranchToNormalDest = nullptr; 1313 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1314 1315 // Add an unconditional branch to make this look like the CallInst case... 1316 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1317 1318 // Split the basic block. This guarantees that no PHI nodes will have to be 1319 // updated due to new incoming edges, and make the invoke case more 1320 // symmetric to the call case. 1321 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1322 CalledFunc->getName()+".exit"); 1323 1324 } else { // It's a call 1325 // If this is a call instruction, we need to split the basic block that 1326 // the call lives in. 1327 // 1328 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1329 CalledFunc->getName()+".exit"); 1330 } 1331 1332 // Change the branch that used to go to AfterCallBB to branch to the first 1333 // basic block of the inlined function. 1334 // 1335 TerminatorInst *Br = OrigBB->getTerminator(); 1336 assert(Br && Br->getOpcode() == Instruction::Br && 1337 "splitBasicBlock broken!"); 1338 Br->setOperand(0, FirstNewBlock); 1339 1340 1341 // Now that the function is correct, make it a little bit nicer. In 1342 // particular, move the basic blocks inserted from the end of the function 1343 // into the space made by splitting the source basic block. 1344 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1345 FirstNewBlock, Caller->end()); 1346 1347 // Handle all of the return instructions that we just cloned in, and eliminate 1348 // any users of the original call/invoke instruction. 1349 Type *RTy = CalledFunc->getReturnType(); 1350 1351 PHINode *PHI = nullptr; 1352 if (Returns.size() > 1) { 1353 // The PHI node should go at the front of the new basic block to merge all 1354 // possible incoming values. 1355 if (!TheCall->use_empty()) { 1356 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1357 AfterCallBB->begin()); 1358 // Anything that used the result of the function call should now use the 1359 // PHI node as their operand. 1360 TheCall->replaceAllUsesWith(PHI); 1361 } 1362 1363 // Loop over all of the return instructions adding entries to the PHI node 1364 // as appropriate. 1365 if (PHI) { 1366 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1367 ReturnInst *RI = Returns[i]; 1368 assert(RI->getReturnValue()->getType() == PHI->getType() && 1369 "Ret value not consistent in function!"); 1370 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1371 } 1372 } 1373 1374 1375 // Add a branch to the merge points and remove return instructions. 1376 DebugLoc Loc; 1377 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1378 ReturnInst *RI = Returns[i]; 1379 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1380 Loc = RI->getDebugLoc(); 1381 BI->setDebugLoc(Loc); 1382 RI->eraseFromParent(); 1383 } 1384 // We need to set the debug location to *somewhere* inside the 1385 // inlined function. The line number may be nonsensical, but the 1386 // instruction will at least be associated with the right 1387 // function. 1388 if (CreatedBranchToNormalDest) 1389 CreatedBranchToNormalDest->setDebugLoc(Loc); 1390 } else if (!Returns.empty()) { 1391 // Otherwise, if there is exactly one return value, just replace anything 1392 // using the return value of the call with the computed value. 1393 if (!TheCall->use_empty()) { 1394 if (TheCall == Returns[0]->getReturnValue()) 1395 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1396 else 1397 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1398 } 1399 1400 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1401 BasicBlock *ReturnBB = Returns[0]->getParent(); 1402 ReturnBB->replaceAllUsesWith(AfterCallBB); 1403 1404 // Splice the code from the return block into the block that it will return 1405 // to, which contains the code that was after the call. 1406 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1407 ReturnBB->getInstList()); 1408 1409 if (CreatedBranchToNormalDest) 1410 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1411 1412 // Delete the return instruction now and empty ReturnBB now. 1413 Returns[0]->eraseFromParent(); 1414 ReturnBB->eraseFromParent(); 1415 } else if (!TheCall->use_empty()) { 1416 // No returns, but something is using the return value of the call. Just 1417 // nuke the result. 1418 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1419 } 1420 1421 // Since we are now done with the Call/Invoke, we can delete it. 1422 TheCall->eraseFromParent(); 1423 1424 // If we inlined any musttail calls and the original return is now 1425 // unreachable, delete it. It can only contain a bitcast and ret. 1426 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1427 AfterCallBB->eraseFromParent(); 1428 1429 // We should always be able to fold the entry block of the function into the 1430 // single predecessor of the block... 1431 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1432 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1433 1434 // Splice the code entry block into calling block, right before the 1435 // unconditional branch. 1436 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1437 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1438 1439 // Remove the unconditional branch. 1440 OrigBB->getInstList().erase(Br); 1441 1442 // Now we can remove the CalleeEntry block, which is now empty. 1443 Caller->getBasicBlockList().erase(CalleeEntry); 1444 1445 // If we inserted a phi node, check to see if it has a single value (e.g. all 1446 // the entries are the same or undef). If so, remove the PHI so it doesn't 1447 // block other optimizations. 1448 if (PHI) { 1449 if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr, 1450 &IFI.ACT->getAssumptionCache(*Caller))) { 1451 PHI->replaceAllUsesWith(V); 1452 PHI->eraseFromParent(); 1453 } 1454 } 1455 1456 return true; 1457 } 1458