1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <string> 45 #include <utility> 46 #include <vector> 47 48 using namespace llvm; 49 50 void llvm::DetatchDeadBlocks( 51 ArrayRef<BasicBlock *> BBs, 52 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 53 bool KeepOneInputPHIs) { 54 for (auto *BB : BBs) { 55 // Loop through all of our successors and make sure they know that one 56 // of their predecessors is going away. 57 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 58 for (BasicBlock *Succ : successors(BB)) { 59 Succ->removePredecessor(BB, KeepOneInputPHIs); 60 if (Updates && UniqueSuccessors.insert(Succ).second) 61 Updates->push_back({DominatorTree::Delete, BB, Succ}); 62 } 63 64 // Zap all the instructions in the block. 65 while (!BB->empty()) { 66 Instruction &I = BB->back(); 67 // If this instruction is used, replace uses with an arbitrary value. 68 // Because control flow can't get here, we don't care what we replace the 69 // value with. Note that since this block is unreachable, and all values 70 // contained within it must dominate their uses, that all uses will 71 // eventually be removed (they are themselves dead). 72 if (!I.use_empty()) 73 I.replaceAllUsesWith(UndefValue::get(I.getType())); 74 BB->getInstList().pop_back(); 75 } 76 new UnreachableInst(BB->getContext(), BB); 77 assert(BB->getInstList().size() == 1 && 78 isa<UnreachableInst>(BB->getTerminator()) && 79 "The successor list of BB isn't empty before " 80 "applying corresponding DTU updates."); 81 } 82 } 83 84 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 85 bool KeepOneInputPHIs) { 86 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 87 } 88 89 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 90 bool KeepOneInputPHIs) { 91 #ifndef NDEBUG 92 // Make sure that all predecessors of each dead block is also dead. 93 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 94 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 95 for (auto *BB : Dead) 96 for (BasicBlock *Pred : predecessors(BB)) 97 assert(Dead.count(Pred) && "All predecessors must be dead!"); 98 #endif 99 100 SmallVector<DominatorTree::UpdateType, 4> Updates; 101 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 102 103 if (DTU) 104 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 105 106 for (BasicBlock *BB : BBs) 107 if (DTU) 108 DTU->deleteBB(BB); 109 else 110 BB->eraseFromParent(); 111 } 112 113 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 114 MemoryDependenceResults *MemDep) { 115 if (!isa<PHINode>(BB->begin())) return; 116 117 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 118 if (PN->getIncomingValue(0) != PN) 119 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 120 else 121 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 122 123 if (MemDep) 124 MemDep->removeInstruction(PN); // Memdep updates AA itself. 125 126 PN->eraseFromParent(); 127 } 128 } 129 130 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 131 // Recursively deleting a PHI may cause multiple PHIs to be deleted 132 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 133 SmallVector<WeakTrackingVH, 8> PHIs; 134 for (PHINode &PN : BB->phis()) 135 PHIs.push_back(&PN); 136 137 bool Changed = false; 138 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 139 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 140 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 141 142 return Changed; 143 } 144 145 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 146 LoopInfo *LI, MemorySSAUpdater *MSSAU, 147 MemoryDependenceResults *MemDep) { 148 if (BB->hasAddressTaken()) 149 return false; 150 151 // Can't merge if there are multiple predecessors, or no predecessors. 152 BasicBlock *PredBB = BB->getUniquePredecessor(); 153 if (!PredBB) return false; 154 155 // Don't break self-loops. 156 if (PredBB == BB) return false; 157 // Don't break unwinding instructions. 158 if (PredBB->getTerminator()->isExceptionalTerminator()) 159 return false; 160 161 // Can't merge if there are multiple distinct successors. 162 if (PredBB->getUniqueSuccessor() != BB) 163 return false; 164 165 // Can't merge if there is PHI loop. 166 for (PHINode &PN : BB->phis()) 167 for (Value *IncValue : PN.incoming_values()) 168 if (IncValue == &PN) 169 return false; 170 171 // Begin by getting rid of unneeded PHIs. 172 SmallVector<AssertingVH<Value>, 4> IncomingValues; 173 if (isa<PHINode>(BB->front())) { 174 for (PHINode &PN : BB->phis()) 175 if (!isa<PHINode>(PN.getIncomingValue(0)) || 176 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 177 IncomingValues.push_back(PN.getIncomingValue(0)); 178 FoldSingleEntryPHINodes(BB, MemDep); 179 } 180 181 // DTU update: Collect all the edges that exit BB. 182 // These dominator edges will be redirected from Pred. 183 std::vector<DominatorTree::UpdateType> Updates; 184 if (DTU) { 185 Updates.reserve(1 + (2 * succ_size(BB))); 186 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 187 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 188 Updates.push_back({DominatorTree::Delete, BB, *I}); 189 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 190 } 191 } 192 193 if (MSSAU) 194 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); 195 196 // Delete the unconditional branch from the predecessor... 197 PredBB->getInstList().pop_back(); 198 199 // Make all PHI nodes that referred to BB now refer to Pred as their 200 // source... 201 BB->replaceAllUsesWith(PredBB); 202 203 // Move all definitions in the successor to the predecessor... 204 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 205 new UnreachableInst(BB->getContext(), BB); 206 207 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 208 for (auto Incoming : IncomingValues) { 209 if (isa<Instruction>(*Incoming)) { 210 SmallVector<DbgValueInst *, 2> DbgValues; 211 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 212 DbgValueSet; 213 llvm::findDbgValues(DbgValues, Incoming); 214 for (auto &DVI : DbgValues) { 215 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 216 if (!R.second) 217 DVI->eraseFromParent(); 218 } 219 } 220 } 221 222 // Inherit predecessors name if it exists. 223 if (!PredBB->hasName()) 224 PredBB->takeName(BB); 225 226 if (LI) 227 LI->removeBlock(BB); 228 229 if (MemDep) 230 MemDep->invalidateCachedPredecessors(); 231 232 // Finally, erase the old block and update dominator info. 233 if (DTU) { 234 assert(BB->getInstList().size() == 1 && 235 isa<UnreachableInst>(BB->getTerminator()) && 236 "The successor list of BB isn't empty before " 237 "applying corresponding DTU updates."); 238 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 239 DTU->deleteBB(BB); 240 } 241 242 else { 243 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 244 } 245 return true; 246 } 247 248 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 249 BasicBlock::iterator &BI, Value *V) { 250 Instruction &I = *BI; 251 // Replaces all of the uses of the instruction with uses of the value 252 I.replaceAllUsesWith(V); 253 254 // Make sure to propagate a name if there is one already. 255 if (I.hasName() && !V->hasName()) 256 V->takeName(&I); 257 258 // Delete the unnecessary instruction now... 259 BI = BIL.erase(BI); 260 } 261 262 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 263 BasicBlock::iterator &BI, Instruction *I) { 264 assert(I->getParent() == nullptr && 265 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 266 267 // Copy debug location to newly added instruction, if it wasn't already set 268 // by the caller. 269 if (!I->getDebugLoc()) 270 I->setDebugLoc(BI->getDebugLoc()); 271 272 // Insert the new instruction into the basic block... 273 BasicBlock::iterator New = BIL.insert(BI, I); 274 275 // Replace all uses of the old instruction, and delete it. 276 ReplaceInstWithValue(BIL, BI, I); 277 278 // Move BI back to point to the newly inserted instruction 279 BI = New; 280 } 281 282 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 283 BasicBlock::iterator BI(From); 284 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 285 } 286 287 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 288 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 289 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 290 291 // If this is a critical edge, let SplitCriticalEdge do it. 292 Instruction *LatchTerm = BB->getTerminator(); 293 if (SplitCriticalEdge( 294 LatchTerm, SuccNum, 295 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 296 return LatchTerm->getSuccessor(SuccNum); 297 298 // If the edge isn't critical, then BB has a single successor or Succ has a 299 // single pred. Split the block. 300 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 301 // If the successor only has a single pred, split the top of the successor 302 // block. 303 assert(SP == BB && "CFG broken"); 304 SP = nullptr; 305 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 306 } 307 308 // Otherwise, if BB has a single successor, split it at the bottom of the 309 // block. 310 assert(BB->getTerminator()->getNumSuccessors() == 1 && 311 "Should have a single succ!"); 312 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 313 } 314 315 unsigned 316 llvm::SplitAllCriticalEdges(Function &F, 317 const CriticalEdgeSplittingOptions &Options) { 318 unsigned NumBroken = 0; 319 for (BasicBlock &BB : F) { 320 Instruction *TI = BB.getTerminator(); 321 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 322 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 323 if (SplitCriticalEdge(TI, i, Options)) 324 ++NumBroken; 325 } 326 return NumBroken; 327 } 328 329 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 330 DominatorTree *DT, LoopInfo *LI, 331 MemorySSAUpdater *MSSAU) { 332 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 333 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 334 ++SplitIt; 335 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 336 337 // The new block lives in whichever loop the old one did. This preserves 338 // LCSSA as well, because we force the split point to be after any PHI nodes. 339 if (LI) 340 if (Loop *L = LI->getLoopFor(Old)) 341 L->addBasicBlockToLoop(New, *LI); 342 343 if (DT) 344 // Old dominates New. New node dominates all other nodes dominated by Old. 345 if (DomTreeNode *OldNode = DT->getNode(Old)) { 346 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 347 348 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 349 for (DomTreeNode *I : Children) 350 DT->changeImmediateDominator(I, NewNode); 351 } 352 353 // Move MemoryAccesses still tracked in Old, but part of New now. 354 // Update accesses in successor blocks accordingly. 355 if (MSSAU) 356 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 357 358 return New; 359 } 360 361 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 362 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 363 ArrayRef<BasicBlock *> Preds, 364 DominatorTree *DT, LoopInfo *LI, 365 MemorySSAUpdater *MSSAU, 366 bool PreserveLCSSA, bool &HasLoopExit) { 367 // Update dominator tree if available. 368 if (DT) { 369 if (OldBB == DT->getRootNode()->getBlock()) { 370 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 371 DT->setNewRoot(NewBB); 372 } else { 373 // Split block expects NewBB to have a non-empty set of predecessors. 374 DT->splitBlock(NewBB); 375 } 376 } 377 378 // Update MemoryPhis after split if MemorySSA is available 379 if (MSSAU) 380 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 381 382 // The rest of the logic is only relevant for updating the loop structures. 383 if (!LI) 384 return; 385 386 assert(DT && "DT should be available to update LoopInfo!"); 387 Loop *L = LI->getLoopFor(OldBB); 388 389 // If we need to preserve loop analyses, collect some information about how 390 // this split will affect loops. 391 bool IsLoopEntry = !!L; 392 bool SplitMakesNewLoopHeader = false; 393 for (BasicBlock *Pred : Preds) { 394 // Preds that are not reachable from entry should not be used to identify if 395 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 396 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 397 // as true and make the NewBB the header of some loop. This breaks LI. 398 if (!DT->isReachableFromEntry(Pred)) 399 continue; 400 // If we need to preserve LCSSA, determine if any of the preds is a loop 401 // exit. 402 if (PreserveLCSSA) 403 if (Loop *PL = LI->getLoopFor(Pred)) 404 if (!PL->contains(OldBB)) 405 HasLoopExit = true; 406 407 // If we need to preserve LoopInfo, note whether any of the preds crosses 408 // an interesting loop boundary. 409 if (!L) 410 continue; 411 if (L->contains(Pred)) 412 IsLoopEntry = false; 413 else 414 SplitMakesNewLoopHeader = true; 415 } 416 417 // Unless we have a loop for OldBB, nothing else to do here. 418 if (!L) 419 return; 420 421 if (IsLoopEntry) { 422 // Add the new block to the nearest enclosing loop (and not an adjacent 423 // loop). To find this, examine each of the predecessors and determine which 424 // loops enclose them, and select the most-nested loop which contains the 425 // loop containing the block being split. 426 Loop *InnermostPredLoop = nullptr; 427 for (BasicBlock *Pred : Preds) { 428 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 429 // Seek a loop which actually contains the block being split (to avoid 430 // adjacent loops). 431 while (PredLoop && !PredLoop->contains(OldBB)) 432 PredLoop = PredLoop->getParentLoop(); 433 434 // Select the most-nested of these loops which contains the block. 435 if (PredLoop && PredLoop->contains(OldBB) && 436 (!InnermostPredLoop || 437 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 438 InnermostPredLoop = PredLoop; 439 } 440 } 441 442 if (InnermostPredLoop) 443 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 444 } else { 445 L->addBasicBlockToLoop(NewBB, *LI); 446 if (SplitMakesNewLoopHeader) 447 L->moveToHeader(NewBB); 448 } 449 } 450 451 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 452 /// This also updates AliasAnalysis, if available. 453 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 454 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 455 bool HasLoopExit) { 456 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 457 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 458 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 459 PHINode *PN = cast<PHINode>(I++); 460 461 // Check to see if all of the values coming in are the same. If so, we 462 // don't need to create a new PHI node, unless it's needed for LCSSA. 463 Value *InVal = nullptr; 464 if (!HasLoopExit) { 465 InVal = PN->getIncomingValueForBlock(Preds[0]); 466 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 467 if (!PredSet.count(PN->getIncomingBlock(i))) 468 continue; 469 if (!InVal) 470 InVal = PN->getIncomingValue(i); 471 else if (InVal != PN->getIncomingValue(i)) { 472 InVal = nullptr; 473 break; 474 } 475 } 476 } 477 478 if (InVal) { 479 // If all incoming values for the new PHI would be the same, just don't 480 // make a new PHI. Instead, just remove the incoming values from the old 481 // PHI. 482 483 // NOTE! This loop walks backwards for a reason! First off, this minimizes 484 // the cost of removal if we end up removing a large number of values, and 485 // second off, this ensures that the indices for the incoming values 486 // aren't invalidated when we remove one. 487 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 488 if (PredSet.count(PN->getIncomingBlock(i))) 489 PN->removeIncomingValue(i, false); 490 491 // Add an incoming value to the PHI node in the loop for the preheader 492 // edge. 493 PN->addIncoming(InVal, NewBB); 494 continue; 495 } 496 497 // If the values coming into the block are not the same, we need a new 498 // PHI. 499 // Create the new PHI node, insert it into NewBB at the end of the block 500 PHINode *NewPHI = 501 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 502 503 // NOTE! This loop walks backwards for a reason! First off, this minimizes 504 // the cost of removal if we end up removing a large number of values, and 505 // second off, this ensures that the indices for the incoming values aren't 506 // invalidated when we remove one. 507 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 508 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 509 if (PredSet.count(IncomingBB)) { 510 Value *V = PN->removeIncomingValue(i, false); 511 NewPHI->addIncoming(V, IncomingBB); 512 } 513 } 514 515 PN->addIncoming(NewPHI, NewBB); 516 } 517 } 518 519 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 520 ArrayRef<BasicBlock *> Preds, 521 const char *Suffix, DominatorTree *DT, 522 LoopInfo *LI, MemorySSAUpdater *MSSAU, 523 bool PreserveLCSSA) { 524 // Do not attempt to split that which cannot be split. 525 if (!BB->canSplitPredecessors()) 526 return nullptr; 527 528 // For the landingpads we need to act a bit differently. 529 // Delegate this work to the SplitLandingPadPredecessors. 530 if (BB->isLandingPad()) { 531 SmallVector<BasicBlock*, 2> NewBBs; 532 std::string NewName = std::string(Suffix) + ".split-lp"; 533 534 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 535 LI, MSSAU, PreserveLCSSA); 536 return NewBBs[0]; 537 } 538 539 // Create new basic block, insert right before the original block. 540 BasicBlock *NewBB = BasicBlock::Create( 541 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 542 543 // The new block unconditionally branches to the old block. 544 BranchInst *BI = BranchInst::Create(BB, NewBB); 545 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 546 547 // Move the edges from Preds to point to NewBB instead of BB. 548 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 549 // This is slightly more strict than necessary; the minimum requirement 550 // is that there be no more than one indirectbr branching to BB. And 551 // all BlockAddress uses would need to be updated. 552 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 553 "Cannot split an edge from an IndirectBrInst"); 554 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 555 "Cannot split an edge from a CallBrInst"); 556 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 557 } 558 559 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 560 // node becomes an incoming value for BB's phi node. However, if the Preds 561 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 562 // account for the newly created predecessor. 563 if (Preds.empty()) { 564 // Insert dummy values as the incoming value. 565 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 566 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 567 } 568 569 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 570 bool HasLoopExit = false; 571 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 572 HasLoopExit); 573 574 if (!Preds.empty()) { 575 // Update the PHI nodes in BB with the values coming from NewBB. 576 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 577 } 578 579 return NewBB; 580 } 581 582 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 583 ArrayRef<BasicBlock *> Preds, 584 const char *Suffix1, const char *Suffix2, 585 SmallVectorImpl<BasicBlock *> &NewBBs, 586 DominatorTree *DT, LoopInfo *LI, 587 MemorySSAUpdater *MSSAU, 588 bool PreserveLCSSA) { 589 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 590 591 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 592 // it right before the original block. 593 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 594 OrigBB->getName() + Suffix1, 595 OrigBB->getParent(), OrigBB); 596 NewBBs.push_back(NewBB1); 597 598 // The new block unconditionally branches to the old block. 599 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 600 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 601 602 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 603 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 604 // This is slightly more strict than necessary; the minimum requirement 605 // is that there be no more than one indirectbr branching to BB. And 606 // all BlockAddress uses would need to be updated. 607 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 608 "Cannot split an edge from an IndirectBrInst"); 609 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 610 } 611 612 bool HasLoopExit = false; 613 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 614 HasLoopExit); 615 616 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 617 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 618 619 // Move the remaining edges from OrigBB to point to NewBB2. 620 SmallVector<BasicBlock*, 8> NewBB2Preds; 621 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 622 i != e; ) { 623 BasicBlock *Pred = *i++; 624 if (Pred == NewBB1) continue; 625 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 626 "Cannot split an edge from an IndirectBrInst"); 627 NewBB2Preds.push_back(Pred); 628 e = pred_end(OrigBB); 629 } 630 631 BasicBlock *NewBB2 = nullptr; 632 if (!NewBB2Preds.empty()) { 633 // Create another basic block for the rest of OrigBB's predecessors. 634 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 635 OrigBB->getName() + Suffix2, 636 OrigBB->getParent(), OrigBB); 637 NewBBs.push_back(NewBB2); 638 639 // The new block unconditionally branches to the old block. 640 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 641 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 642 643 // Move the remaining edges from OrigBB to point to NewBB2. 644 for (BasicBlock *NewBB2Pred : NewBB2Preds) 645 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 646 647 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 648 HasLoopExit = false; 649 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 650 PreserveLCSSA, HasLoopExit); 651 652 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 653 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 654 } 655 656 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 657 Instruction *Clone1 = LPad->clone(); 658 Clone1->setName(Twine("lpad") + Suffix1); 659 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 660 661 if (NewBB2) { 662 Instruction *Clone2 = LPad->clone(); 663 Clone2->setName(Twine("lpad") + Suffix2); 664 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 665 666 // Create a PHI node for the two cloned landingpad instructions only 667 // if the original landingpad instruction has some uses. 668 if (!LPad->use_empty()) { 669 assert(!LPad->getType()->isTokenTy() && 670 "Split cannot be applied if LPad is token type. Otherwise an " 671 "invalid PHINode of token type would be created."); 672 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 673 PN->addIncoming(Clone1, NewBB1); 674 PN->addIncoming(Clone2, NewBB2); 675 LPad->replaceAllUsesWith(PN); 676 } 677 LPad->eraseFromParent(); 678 } else { 679 // There is no second clone. Just replace the landing pad with the first 680 // clone. 681 LPad->replaceAllUsesWith(Clone1); 682 LPad->eraseFromParent(); 683 } 684 } 685 686 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 687 BasicBlock *Pred, 688 DomTreeUpdater *DTU) { 689 Instruction *UncondBranch = Pred->getTerminator(); 690 // Clone the return and add it to the end of the predecessor. 691 Instruction *NewRet = RI->clone(); 692 Pred->getInstList().push_back(NewRet); 693 694 // If the return instruction returns a value, and if the value was a 695 // PHI node in "BB", propagate the right value into the return. 696 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 697 i != e; ++i) { 698 Value *V = *i; 699 Instruction *NewBC = nullptr; 700 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 701 // Return value might be bitcasted. Clone and insert it before the 702 // return instruction. 703 V = BCI->getOperand(0); 704 NewBC = BCI->clone(); 705 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 706 *i = NewBC; 707 } 708 if (PHINode *PN = dyn_cast<PHINode>(V)) { 709 if (PN->getParent() == BB) { 710 if (NewBC) 711 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 712 else 713 *i = PN->getIncomingValueForBlock(Pred); 714 } 715 } 716 } 717 718 // Update any PHI nodes in the returning block to realize that we no 719 // longer branch to them. 720 BB->removePredecessor(Pred); 721 UncondBranch->eraseFromParent(); 722 723 if (DTU) 724 DTU->deleteEdge(Pred, BB); 725 726 return cast<ReturnInst>(NewRet); 727 } 728 729 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 730 Instruction *SplitBefore, 731 bool Unreachable, 732 MDNode *BranchWeights, 733 DominatorTree *DT, LoopInfo *LI, 734 BasicBlock *ThenBlock) { 735 BasicBlock *Head = SplitBefore->getParent(); 736 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 737 Instruction *HeadOldTerm = Head->getTerminator(); 738 LLVMContext &C = Head->getContext(); 739 Instruction *CheckTerm; 740 bool CreateThenBlock = (ThenBlock == nullptr); 741 if (CreateThenBlock) { 742 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 743 if (Unreachable) 744 CheckTerm = new UnreachableInst(C, ThenBlock); 745 else 746 CheckTerm = BranchInst::Create(Tail, ThenBlock); 747 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 748 } else 749 CheckTerm = ThenBlock->getTerminator(); 750 BranchInst *HeadNewTerm = 751 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 752 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 753 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 754 755 if (DT) { 756 if (DomTreeNode *OldNode = DT->getNode(Head)) { 757 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 758 759 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 760 for (DomTreeNode *Child : Children) 761 DT->changeImmediateDominator(Child, NewNode); 762 763 // Head dominates ThenBlock. 764 if (CreateThenBlock) 765 DT->addNewBlock(ThenBlock, Head); 766 else 767 DT->changeImmediateDominator(ThenBlock, Head); 768 } 769 } 770 771 if (LI) { 772 if (Loop *L = LI->getLoopFor(Head)) { 773 L->addBasicBlockToLoop(ThenBlock, *LI); 774 L->addBasicBlockToLoop(Tail, *LI); 775 } 776 } 777 778 return CheckTerm; 779 } 780 781 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 782 Instruction **ThenTerm, 783 Instruction **ElseTerm, 784 MDNode *BranchWeights) { 785 BasicBlock *Head = SplitBefore->getParent(); 786 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 787 Instruction *HeadOldTerm = Head->getTerminator(); 788 LLVMContext &C = Head->getContext(); 789 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 790 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 791 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 792 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 793 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 794 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 795 BranchInst *HeadNewTerm = 796 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 797 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 798 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 799 } 800 801 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 802 BasicBlock *&IfFalse) { 803 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 804 BasicBlock *Pred1 = nullptr; 805 BasicBlock *Pred2 = nullptr; 806 807 if (SomePHI) { 808 if (SomePHI->getNumIncomingValues() != 2) 809 return nullptr; 810 Pred1 = SomePHI->getIncomingBlock(0); 811 Pred2 = SomePHI->getIncomingBlock(1); 812 } else { 813 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 814 if (PI == PE) // No predecessor 815 return nullptr; 816 Pred1 = *PI++; 817 if (PI == PE) // Only one predecessor 818 return nullptr; 819 Pred2 = *PI++; 820 if (PI != PE) // More than two predecessors 821 return nullptr; 822 } 823 824 // We can only handle branches. Other control flow will be lowered to 825 // branches if possible anyway. 826 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 827 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 828 if (!Pred1Br || !Pred2Br) 829 return nullptr; 830 831 // Eliminate code duplication by ensuring that Pred1Br is conditional if 832 // either are. 833 if (Pred2Br->isConditional()) { 834 // If both branches are conditional, we don't have an "if statement". In 835 // reality, we could transform this case, but since the condition will be 836 // required anyway, we stand no chance of eliminating it, so the xform is 837 // probably not profitable. 838 if (Pred1Br->isConditional()) 839 return nullptr; 840 841 std::swap(Pred1, Pred2); 842 std::swap(Pred1Br, Pred2Br); 843 } 844 845 if (Pred1Br->isConditional()) { 846 // The only thing we have to watch out for here is to make sure that Pred2 847 // doesn't have incoming edges from other blocks. If it does, the condition 848 // doesn't dominate BB. 849 if (!Pred2->getSinglePredecessor()) 850 return nullptr; 851 852 // If we found a conditional branch predecessor, make sure that it branches 853 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 854 if (Pred1Br->getSuccessor(0) == BB && 855 Pred1Br->getSuccessor(1) == Pred2) { 856 IfTrue = Pred1; 857 IfFalse = Pred2; 858 } else if (Pred1Br->getSuccessor(0) == Pred2 && 859 Pred1Br->getSuccessor(1) == BB) { 860 IfTrue = Pred2; 861 IfFalse = Pred1; 862 } else { 863 // We know that one arm of the conditional goes to BB, so the other must 864 // go somewhere unrelated, and this must not be an "if statement". 865 return nullptr; 866 } 867 868 return Pred1Br->getCondition(); 869 } 870 871 // Ok, if we got here, both predecessors end with an unconditional branch to 872 // BB. Don't panic! If both blocks only have a single (identical) 873 // predecessor, and THAT is a conditional branch, then we're all ok! 874 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 875 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 876 return nullptr; 877 878 // Otherwise, if this is a conditional branch, then we can use it! 879 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 880 if (!BI) return nullptr; 881 882 assert(BI->isConditional() && "Two successors but not conditional?"); 883 if (BI->getSuccessor(0) == Pred1) { 884 IfTrue = Pred1; 885 IfFalse = Pred2; 886 } else { 887 IfTrue = Pred2; 888 IfFalse = Pred1; 889 } 890 return BI->getCondition(); 891 } 892