xref: /llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 73db5c137af2bceeb6f591fd8c7fe70675cbb75c)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 void llvm::DetatchDeadBlocks(
51     ArrayRef<BasicBlock *> BBs,
52     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
53     bool KeepOneInputPHIs) {
54   for (auto *BB : BBs) {
55     // Loop through all of our successors and make sure they know that one
56     // of their predecessors is going away.
57     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
58     for (BasicBlock *Succ : successors(BB)) {
59       Succ->removePredecessor(BB, KeepOneInputPHIs);
60       if (Updates && UniqueSuccessors.insert(Succ).second)
61         Updates->push_back({DominatorTree::Delete, BB, Succ});
62     }
63 
64     // Zap all the instructions in the block.
65     while (!BB->empty()) {
66       Instruction &I = BB->back();
67       // If this instruction is used, replace uses with an arbitrary value.
68       // Because control flow can't get here, we don't care what we replace the
69       // value with.  Note that since this block is unreachable, and all values
70       // contained within it must dominate their uses, that all uses will
71       // eventually be removed (they are themselves dead).
72       if (!I.use_empty())
73         I.replaceAllUsesWith(UndefValue::get(I.getType()));
74       BB->getInstList().pop_back();
75     }
76     new UnreachableInst(BB->getContext(), BB);
77     assert(BB->getInstList().size() == 1 &&
78            isa<UnreachableInst>(BB->getTerminator()) &&
79            "The successor list of BB isn't empty before "
80            "applying corresponding DTU updates.");
81   }
82 }
83 
84 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
85                            bool KeepOneInputPHIs) {
86   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
87 }
88 
89 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
90                             bool KeepOneInputPHIs) {
91 #ifndef NDEBUG
92   // Make sure that all predecessors of each dead block is also dead.
93   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
94   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
95   for (auto *BB : Dead)
96     for (BasicBlock *Pred : predecessors(BB))
97       assert(Dead.count(Pred) && "All predecessors must be dead!");
98 #endif
99 
100   SmallVector<DominatorTree::UpdateType, 4> Updates;
101   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
102 
103   if (DTU)
104     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
105 
106   for (BasicBlock *BB : BBs)
107     if (DTU)
108       DTU->deleteBB(BB);
109     else
110       BB->eraseFromParent();
111 }
112 
113 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
114                                    MemoryDependenceResults *MemDep) {
115   if (!isa<PHINode>(BB->begin())) return;
116 
117   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
118     if (PN->getIncomingValue(0) != PN)
119       PN->replaceAllUsesWith(PN->getIncomingValue(0));
120     else
121       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
122 
123     if (MemDep)
124       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
125 
126     PN->eraseFromParent();
127   }
128 }
129 
130 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
131   // Recursively deleting a PHI may cause multiple PHIs to be deleted
132   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
133   SmallVector<WeakTrackingVH, 8> PHIs;
134   for (PHINode &PN : BB->phis())
135     PHIs.push_back(&PN);
136 
137   bool Changed = false;
138   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
139     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
140       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
141 
142   return Changed;
143 }
144 
145 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
146                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
147                                      MemoryDependenceResults *MemDep) {
148   if (BB->hasAddressTaken())
149     return false;
150 
151   // Can't merge if there are multiple predecessors, or no predecessors.
152   BasicBlock *PredBB = BB->getUniquePredecessor();
153   if (!PredBB) return false;
154 
155   // Don't break self-loops.
156   if (PredBB == BB) return false;
157   // Don't break unwinding instructions.
158   if (PredBB->getTerminator()->isExceptionalTerminator())
159     return false;
160 
161   // Can't merge if there are multiple distinct successors.
162   if (PredBB->getUniqueSuccessor() != BB)
163     return false;
164 
165   // Can't merge if there is PHI loop.
166   for (PHINode &PN : BB->phis())
167     for (Value *IncValue : PN.incoming_values())
168       if (IncValue == &PN)
169         return false;
170 
171   // Begin by getting rid of unneeded PHIs.
172   SmallVector<AssertingVH<Value>, 4> IncomingValues;
173   if (isa<PHINode>(BB->front())) {
174     for (PHINode &PN : BB->phis())
175       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
176           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
177         IncomingValues.push_back(PN.getIncomingValue(0));
178     FoldSingleEntryPHINodes(BB, MemDep);
179   }
180 
181   // DTU update: Collect all the edges that exit BB.
182   // These dominator edges will be redirected from Pred.
183   std::vector<DominatorTree::UpdateType> Updates;
184   if (DTU) {
185     Updates.reserve(1 + (2 * succ_size(BB)));
186     Updates.push_back({DominatorTree::Delete, PredBB, BB});
187     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
188       Updates.push_back({DominatorTree::Delete, BB, *I});
189       Updates.push_back({DominatorTree::Insert, PredBB, *I});
190     }
191   }
192 
193   if (MSSAU)
194     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
195 
196   // Delete the unconditional branch from the predecessor...
197   PredBB->getInstList().pop_back();
198 
199   // Make all PHI nodes that referred to BB now refer to Pred as their
200   // source...
201   BB->replaceAllUsesWith(PredBB);
202 
203   // Move all definitions in the successor to the predecessor...
204   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
205   new UnreachableInst(BB->getContext(), BB);
206 
207   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
208   for (auto Incoming : IncomingValues) {
209     if (isa<Instruction>(*Incoming)) {
210       SmallVector<DbgValueInst *, 2> DbgValues;
211       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
212           DbgValueSet;
213       llvm::findDbgValues(DbgValues, Incoming);
214       for (auto &DVI : DbgValues) {
215         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
216         if (!R.second)
217           DVI->eraseFromParent();
218       }
219     }
220   }
221 
222   // Inherit predecessors name if it exists.
223   if (!PredBB->hasName())
224     PredBB->takeName(BB);
225 
226   if (LI)
227     LI->removeBlock(BB);
228 
229   if (MemDep)
230     MemDep->invalidateCachedPredecessors();
231 
232   // Finally, erase the old block and update dominator info.
233   if (DTU) {
234     assert(BB->getInstList().size() == 1 &&
235            isa<UnreachableInst>(BB->getTerminator()) &&
236            "The successor list of BB isn't empty before "
237            "applying corresponding DTU updates.");
238     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
239     DTU->deleteBB(BB);
240   }
241 
242   else {
243     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
244   }
245   return true;
246 }
247 
248 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
249                                 BasicBlock::iterator &BI, Value *V) {
250   Instruction &I = *BI;
251   // Replaces all of the uses of the instruction with uses of the value
252   I.replaceAllUsesWith(V);
253 
254   // Make sure to propagate a name if there is one already.
255   if (I.hasName() && !V->hasName())
256     V->takeName(&I);
257 
258   // Delete the unnecessary instruction now...
259   BI = BIL.erase(BI);
260 }
261 
262 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
263                                BasicBlock::iterator &BI, Instruction *I) {
264   assert(I->getParent() == nullptr &&
265          "ReplaceInstWithInst: Instruction already inserted into basic block!");
266 
267   // Copy debug location to newly added instruction, if it wasn't already set
268   // by the caller.
269   if (!I->getDebugLoc())
270     I->setDebugLoc(BI->getDebugLoc());
271 
272   // Insert the new instruction into the basic block...
273   BasicBlock::iterator New = BIL.insert(BI, I);
274 
275   // Replace all uses of the old instruction, and delete it.
276   ReplaceInstWithValue(BIL, BI, I);
277 
278   // Move BI back to point to the newly inserted instruction
279   BI = New;
280 }
281 
282 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
283   BasicBlock::iterator BI(From);
284   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
285 }
286 
287 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
288                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
289   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
290 
291   // If this is a critical edge, let SplitCriticalEdge do it.
292   Instruction *LatchTerm = BB->getTerminator();
293   if (SplitCriticalEdge(
294           LatchTerm, SuccNum,
295           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
296     return LatchTerm->getSuccessor(SuccNum);
297 
298   // If the edge isn't critical, then BB has a single successor or Succ has a
299   // single pred.  Split the block.
300   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
301     // If the successor only has a single pred, split the top of the successor
302     // block.
303     assert(SP == BB && "CFG broken");
304     SP = nullptr;
305     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
306   }
307 
308   // Otherwise, if BB has a single successor, split it at the bottom of the
309   // block.
310   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
311          "Should have a single succ!");
312   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
313 }
314 
315 unsigned
316 llvm::SplitAllCriticalEdges(Function &F,
317                             const CriticalEdgeSplittingOptions &Options) {
318   unsigned NumBroken = 0;
319   for (BasicBlock &BB : F) {
320     Instruction *TI = BB.getTerminator();
321     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
322       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
323         if (SplitCriticalEdge(TI, i, Options))
324           ++NumBroken;
325   }
326   return NumBroken;
327 }
328 
329 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
330                              DominatorTree *DT, LoopInfo *LI,
331                              MemorySSAUpdater *MSSAU) {
332   BasicBlock::iterator SplitIt = SplitPt->getIterator();
333   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
334     ++SplitIt;
335   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
336 
337   // The new block lives in whichever loop the old one did. This preserves
338   // LCSSA as well, because we force the split point to be after any PHI nodes.
339   if (LI)
340     if (Loop *L = LI->getLoopFor(Old))
341       L->addBasicBlockToLoop(New, *LI);
342 
343   if (DT)
344     // Old dominates New. New node dominates all other nodes dominated by Old.
345     if (DomTreeNode *OldNode = DT->getNode(Old)) {
346       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
347 
348       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
349       for (DomTreeNode *I : Children)
350         DT->changeImmediateDominator(I, NewNode);
351     }
352 
353   // Move MemoryAccesses still tracked in Old, but part of New now.
354   // Update accesses in successor blocks accordingly.
355   if (MSSAU)
356     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
357 
358   return New;
359 }
360 
361 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
362 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
363                                       ArrayRef<BasicBlock *> Preds,
364                                       DominatorTree *DT, LoopInfo *LI,
365                                       MemorySSAUpdater *MSSAU,
366                                       bool PreserveLCSSA, bool &HasLoopExit) {
367   // Update dominator tree if available.
368   if (DT) {
369     if (OldBB == DT->getRootNode()->getBlock()) {
370       assert(NewBB == &NewBB->getParent()->getEntryBlock());
371       DT->setNewRoot(NewBB);
372     } else {
373       // Split block expects NewBB to have a non-empty set of predecessors.
374       DT->splitBlock(NewBB);
375     }
376   }
377 
378   // Update MemoryPhis after split if MemorySSA is available
379   if (MSSAU)
380     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
381 
382   // The rest of the logic is only relevant for updating the loop structures.
383   if (!LI)
384     return;
385 
386   assert(DT && "DT should be available to update LoopInfo!");
387   Loop *L = LI->getLoopFor(OldBB);
388 
389   // If we need to preserve loop analyses, collect some information about how
390   // this split will affect loops.
391   bool IsLoopEntry = !!L;
392   bool SplitMakesNewLoopHeader = false;
393   for (BasicBlock *Pred : Preds) {
394     // Preds that are not reachable from entry should not be used to identify if
395     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
396     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
397     // as true and make the NewBB the header of some loop. This breaks LI.
398     if (!DT->isReachableFromEntry(Pred))
399       continue;
400     // If we need to preserve LCSSA, determine if any of the preds is a loop
401     // exit.
402     if (PreserveLCSSA)
403       if (Loop *PL = LI->getLoopFor(Pred))
404         if (!PL->contains(OldBB))
405           HasLoopExit = true;
406 
407     // If we need to preserve LoopInfo, note whether any of the preds crosses
408     // an interesting loop boundary.
409     if (!L)
410       continue;
411     if (L->contains(Pred))
412       IsLoopEntry = false;
413     else
414       SplitMakesNewLoopHeader = true;
415   }
416 
417   // Unless we have a loop for OldBB, nothing else to do here.
418   if (!L)
419     return;
420 
421   if (IsLoopEntry) {
422     // Add the new block to the nearest enclosing loop (and not an adjacent
423     // loop). To find this, examine each of the predecessors and determine which
424     // loops enclose them, and select the most-nested loop which contains the
425     // loop containing the block being split.
426     Loop *InnermostPredLoop = nullptr;
427     for (BasicBlock *Pred : Preds) {
428       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
429         // Seek a loop which actually contains the block being split (to avoid
430         // adjacent loops).
431         while (PredLoop && !PredLoop->contains(OldBB))
432           PredLoop = PredLoop->getParentLoop();
433 
434         // Select the most-nested of these loops which contains the block.
435         if (PredLoop && PredLoop->contains(OldBB) &&
436             (!InnermostPredLoop ||
437              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
438           InnermostPredLoop = PredLoop;
439       }
440     }
441 
442     if (InnermostPredLoop)
443       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
444   } else {
445     L->addBasicBlockToLoop(NewBB, *LI);
446     if (SplitMakesNewLoopHeader)
447       L->moveToHeader(NewBB);
448   }
449 }
450 
451 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
452 /// This also updates AliasAnalysis, if available.
453 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
454                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
455                            bool HasLoopExit) {
456   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
457   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
458   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
459     PHINode *PN = cast<PHINode>(I++);
460 
461     // Check to see if all of the values coming in are the same.  If so, we
462     // don't need to create a new PHI node, unless it's needed for LCSSA.
463     Value *InVal = nullptr;
464     if (!HasLoopExit) {
465       InVal = PN->getIncomingValueForBlock(Preds[0]);
466       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
467         if (!PredSet.count(PN->getIncomingBlock(i)))
468           continue;
469         if (!InVal)
470           InVal = PN->getIncomingValue(i);
471         else if (InVal != PN->getIncomingValue(i)) {
472           InVal = nullptr;
473           break;
474         }
475       }
476     }
477 
478     if (InVal) {
479       // If all incoming values for the new PHI would be the same, just don't
480       // make a new PHI.  Instead, just remove the incoming values from the old
481       // PHI.
482 
483       // NOTE! This loop walks backwards for a reason! First off, this minimizes
484       // the cost of removal if we end up removing a large number of values, and
485       // second off, this ensures that the indices for the incoming values
486       // aren't invalidated when we remove one.
487       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
488         if (PredSet.count(PN->getIncomingBlock(i)))
489           PN->removeIncomingValue(i, false);
490 
491       // Add an incoming value to the PHI node in the loop for the preheader
492       // edge.
493       PN->addIncoming(InVal, NewBB);
494       continue;
495     }
496 
497     // If the values coming into the block are not the same, we need a new
498     // PHI.
499     // Create the new PHI node, insert it into NewBB at the end of the block
500     PHINode *NewPHI =
501         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
502 
503     // NOTE! This loop walks backwards for a reason! First off, this minimizes
504     // the cost of removal if we end up removing a large number of values, and
505     // second off, this ensures that the indices for the incoming values aren't
506     // invalidated when we remove one.
507     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
508       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
509       if (PredSet.count(IncomingBB)) {
510         Value *V = PN->removeIncomingValue(i, false);
511         NewPHI->addIncoming(V, IncomingBB);
512       }
513     }
514 
515     PN->addIncoming(NewPHI, NewBB);
516   }
517 }
518 
519 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
520                                          ArrayRef<BasicBlock *> Preds,
521                                          const char *Suffix, DominatorTree *DT,
522                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
523                                          bool PreserveLCSSA) {
524   // Do not attempt to split that which cannot be split.
525   if (!BB->canSplitPredecessors())
526     return nullptr;
527 
528   // For the landingpads we need to act a bit differently.
529   // Delegate this work to the SplitLandingPadPredecessors.
530   if (BB->isLandingPad()) {
531     SmallVector<BasicBlock*, 2> NewBBs;
532     std::string NewName = std::string(Suffix) + ".split-lp";
533 
534     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
535                                 LI, MSSAU, PreserveLCSSA);
536     return NewBBs[0];
537   }
538 
539   // Create new basic block, insert right before the original block.
540   BasicBlock *NewBB = BasicBlock::Create(
541       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
542 
543   // The new block unconditionally branches to the old block.
544   BranchInst *BI = BranchInst::Create(BB, NewBB);
545   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
546 
547   // Move the edges from Preds to point to NewBB instead of BB.
548   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
549     // This is slightly more strict than necessary; the minimum requirement
550     // is that there be no more than one indirectbr branching to BB. And
551     // all BlockAddress uses would need to be updated.
552     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
553            "Cannot split an edge from an IndirectBrInst");
554     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
555            "Cannot split an edge from a CallBrInst");
556     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
557   }
558 
559   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
560   // node becomes an incoming value for BB's phi node.  However, if the Preds
561   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
562   // account for the newly created predecessor.
563   if (Preds.empty()) {
564     // Insert dummy values as the incoming value.
565     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
566       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
567   }
568 
569   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
570   bool HasLoopExit = false;
571   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
572                             HasLoopExit);
573 
574   if (!Preds.empty()) {
575     // Update the PHI nodes in BB with the values coming from NewBB.
576     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
577   }
578 
579   return NewBB;
580 }
581 
582 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
583                                        ArrayRef<BasicBlock *> Preds,
584                                        const char *Suffix1, const char *Suffix2,
585                                        SmallVectorImpl<BasicBlock *> &NewBBs,
586                                        DominatorTree *DT, LoopInfo *LI,
587                                        MemorySSAUpdater *MSSAU,
588                                        bool PreserveLCSSA) {
589   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
590 
591   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
592   // it right before the original block.
593   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
594                                           OrigBB->getName() + Suffix1,
595                                           OrigBB->getParent(), OrigBB);
596   NewBBs.push_back(NewBB1);
597 
598   // The new block unconditionally branches to the old block.
599   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
600   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
601 
602   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
603   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
604     // This is slightly more strict than necessary; the minimum requirement
605     // is that there be no more than one indirectbr branching to BB. And
606     // all BlockAddress uses would need to be updated.
607     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
608            "Cannot split an edge from an IndirectBrInst");
609     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
610   }
611 
612   bool HasLoopExit = false;
613   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
614                             HasLoopExit);
615 
616   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
617   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
618 
619   // Move the remaining edges from OrigBB to point to NewBB2.
620   SmallVector<BasicBlock*, 8> NewBB2Preds;
621   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
622        i != e; ) {
623     BasicBlock *Pred = *i++;
624     if (Pred == NewBB1) continue;
625     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
626            "Cannot split an edge from an IndirectBrInst");
627     NewBB2Preds.push_back(Pred);
628     e = pred_end(OrigBB);
629   }
630 
631   BasicBlock *NewBB2 = nullptr;
632   if (!NewBB2Preds.empty()) {
633     // Create another basic block for the rest of OrigBB's predecessors.
634     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
635                                 OrigBB->getName() + Suffix2,
636                                 OrigBB->getParent(), OrigBB);
637     NewBBs.push_back(NewBB2);
638 
639     // The new block unconditionally branches to the old block.
640     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
641     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
642 
643     // Move the remaining edges from OrigBB to point to NewBB2.
644     for (BasicBlock *NewBB2Pred : NewBB2Preds)
645       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
646 
647     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
648     HasLoopExit = false;
649     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
650                               PreserveLCSSA, HasLoopExit);
651 
652     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
653     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
654   }
655 
656   LandingPadInst *LPad = OrigBB->getLandingPadInst();
657   Instruction *Clone1 = LPad->clone();
658   Clone1->setName(Twine("lpad") + Suffix1);
659   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
660 
661   if (NewBB2) {
662     Instruction *Clone2 = LPad->clone();
663     Clone2->setName(Twine("lpad") + Suffix2);
664     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
665 
666     // Create a PHI node for the two cloned landingpad instructions only
667     // if the original landingpad instruction has some uses.
668     if (!LPad->use_empty()) {
669       assert(!LPad->getType()->isTokenTy() &&
670              "Split cannot be applied if LPad is token type. Otherwise an "
671              "invalid PHINode of token type would be created.");
672       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
673       PN->addIncoming(Clone1, NewBB1);
674       PN->addIncoming(Clone2, NewBB2);
675       LPad->replaceAllUsesWith(PN);
676     }
677     LPad->eraseFromParent();
678   } else {
679     // There is no second clone. Just replace the landing pad with the first
680     // clone.
681     LPad->replaceAllUsesWith(Clone1);
682     LPad->eraseFromParent();
683   }
684 }
685 
686 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
687                                              BasicBlock *Pred,
688                                              DomTreeUpdater *DTU) {
689   Instruction *UncondBranch = Pred->getTerminator();
690   // Clone the return and add it to the end of the predecessor.
691   Instruction *NewRet = RI->clone();
692   Pred->getInstList().push_back(NewRet);
693 
694   // If the return instruction returns a value, and if the value was a
695   // PHI node in "BB", propagate the right value into the return.
696   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
697        i != e; ++i) {
698     Value *V = *i;
699     Instruction *NewBC = nullptr;
700     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
701       // Return value might be bitcasted. Clone and insert it before the
702       // return instruction.
703       V = BCI->getOperand(0);
704       NewBC = BCI->clone();
705       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
706       *i = NewBC;
707     }
708     if (PHINode *PN = dyn_cast<PHINode>(V)) {
709       if (PN->getParent() == BB) {
710         if (NewBC)
711           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
712         else
713           *i = PN->getIncomingValueForBlock(Pred);
714       }
715     }
716   }
717 
718   // Update any PHI nodes in the returning block to realize that we no
719   // longer branch to them.
720   BB->removePredecessor(Pred);
721   UncondBranch->eraseFromParent();
722 
723   if (DTU)
724     DTU->deleteEdge(Pred, BB);
725 
726   return cast<ReturnInst>(NewRet);
727 }
728 
729 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
730                                              Instruction *SplitBefore,
731                                              bool Unreachable,
732                                              MDNode *BranchWeights,
733                                              DominatorTree *DT, LoopInfo *LI,
734                                              BasicBlock *ThenBlock) {
735   BasicBlock *Head = SplitBefore->getParent();
736   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
737   Instruction *HeadOldTerm = Head->getTerminator();
738   LLVMContext &C = Head->getContext();
739   Instruction *CheckTerm;
740   bool CreateThenBlock = (ThenBlock == nullptr);
741   if (CreateThenBlock) {
742     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
743     if (Unreachable)
744       CheckTerm = new UnreachableInst(C, ThenBlock);
745     else
746       CheckTerm = BranchInst::Create(Tail, ThenBlock);
747     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
748   } else
749     CheckTerm = ThenBlock->getTerminator();
750   BranchInst *HeadNewTerm =
751     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
752   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
753   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
754 
755   if (DT) {
756     if (DomTreeNode *OldNode = DT->getNode(Head)) {
757       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
758 
759       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
760       for (DomTreeNode *Child : Children)
761         DT->changeImmediateDominator(Child, NewNode);
762 
763       // Head dominates ThenBlock.
764       if (CreateThenBlock)
765         DT->addNewBlock(ThenBlock, Head);
766       else
767         DT->changeImmediateDominator(ThenBlock, Head);
768     }
769   }
770 
771   if (LI) {
772     if (Loop *L = LI->getLoopFor(Head)) {
773       L->addBasicBlockToLoop(ThenBlock, *LI);
774       L->addBasicBlockToLoop(Tail, *LI);
775     }
776   }
777 
778   return CheckTerm;
779 }
780 
781 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
782                                          Instruction **ThenTerm,
783                                          Instruction **ElseTerm,
784                                          MDNode *BranchWeights) {
785   BasicBlock *Head = SplitBefore->getParent();
786   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
787   Instruction *HeadOldTerm = Head->getTerminator();
788   LLVMContext &C = Head->getContext();
789   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
790   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
791   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
792   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
793   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
794   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
795   BranchInst *HeadNewTerm =
796     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
797   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
798   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
799 }
800 
801 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
802                              BasicBlock *&IfFalse) {
803   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
804   BasicBlock *Pred1 = nullptr;
805   BasicBlock *Pred2 = nullptr;
806 
807   if (SomePHI) {
808     if (SomePHI->getNumIncomingValues() != 2)
809       return nullptr;
810     Pred1 = SomePHI->getIncomingBlock(0);
811     Pred2 = SomePHI->getIncomingBlock(1);
812   } else {
813     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
814     if (PI == PE) // No predecessor
815       return nullptr;
816     Pred1 = *PI++;
817     if (PI == PE) // Only one predecessor
818       return nullptr;
819     Pred2 = *PI++;
820     if (PI != PE) // More than two predecessors
821       return nullptr;
822   }
823 
824   // We can only handle branches.  Other control flow will be lowered to
825   // branches if possible anyway.
826   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
827   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
828   if (!Pred1Br || !Pred2Br)
829     return nullptr;
830 
831   // Eliminate code duplication by ensuring that Pred1Br is conditional if
832   // either are.
833   if (Pred2Br->isConditional()) {
834     // If both branches are conditional, we don't have an "if statement".  In
835     // reality, we could transform this case, but since the condition will be
836     // required anyway, we stand no chance of eliminating it, so the xform is
837     // probably not profitable.
838     if (Pred1Br->isConditional())
839       return nullptr;
840 
841     std::swap(Pred1, Pred2);
842     std::swap(Pred1Br, Pred2Br);
843   }
844 
845   if (Pred1Br->isConditional()) {
846     // The only thing we have to watch out for here is to make sure that Pred2
847     // doesn't have incoming edges from other blocks.  If it does, the condition
848     // doesn't dominate BB.
849     if (!Pred2->getSinglePredecessor())
850       return nullptr;
851 
852     // If we found a conditional branch predecessor, make sure that it branches
853     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
854     if (Pred1Br->getSuccessor(0) == BB &&
855         Pred1Br->getSuccessor(1) == Pred2) {
856       IfTrue = Pred1;
857       IfFalse = Pred2;
858     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
859                Pred1Br->getSuccessor(1) == BB) {
860       IfTrue = Pred2;
861       IfFalse = Pred1;
862     } else {
863       // We know that one arm of the conditional goes to BB, so the other must
864       // go somewhere unrelated, and this must not be an "if statement".
865       return nullptr;
866     }
867 
868     return Pred1Br->getCondition();
869   }
870 
871   // Ok, if we got here, both predecessors end with an unconditional branch to
872   // BB.  Don't panic!  If both blocks only have a single (identical)
873   // predecessor, and THAT is a conditional branch, then we're all ok!
874   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
875   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
876     return nullptr;
877 
878   // Otherwise, if this is a conditional branch, then we can use it!
879   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
880   if (!BI) return nullptr;
881 
882   assert(BI->isConditional() && "Two successors but not conditional?");
883   if (BI->getSuccessor(0) == Pred1) {
884     IfTrue = Pred1;
885     IfFalse = Pred2;
886   } else {
887     IfTrue = Pred2;
888     IfFalse = Pred1;
889   }
890   return BI->getCondition();
891 }
892