xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp (revision fbc798e4426b322ed0e03019c20d929f2eaade22)
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 using namespace llvm;
47 using namespace PatternMatch;
48 
49 STATISTIC(NumAggregateReconstructionsSimplified,
50           "Number of aggregate reconstructions turned into reuse of the "
51           "original aggregate");
52 
53 /// Return true if the value is cheaper to scalarize than it is to leave as a
54 /// vector operation. If the extract index \p EI is a constant integer then
55 /// some operations may be cheap to scalarize.
56 ///
57 /// FIXME: It's possible to create more instructions than previously existed.
58 static bool cheapToScalarize(Value *V, Value *EI) {
59   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
60 
61   // If we can pick a scalar constant value out of a vector, that is free.
62   if (auto *C = dyn_cast<Constant>(V))
63     return CEI || C->getSplatValue();
64 
65   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
66     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
67     // Index needs to be lower than the minimum size of the vector, because
68     // for scalable vector, the vector size is known at run time.
69     return CEI->getValue().ult(EC.getKnownMinValue());
70   }
71 
72   // An insertelement to the same constant index as our extract will simplify
73   // to the scalar inserted element. An insertelement to a different constant
74   // index is irrelevant to our extract.
75   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
76     return CEI;
77 
78   if (match(V, m_OneUse(m_Load(m_Value()))))
79     return true;
80 
81   if (match(V, m_OneUse(m_UnOp())))
82     return true;
83 
84   Value *V0, *V1;
85   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
86     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
87       return true;
88 
89   CmpInst::Predicate UnusedPred;
90   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
91     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
92       return true;
93 
94   return false;
95 }
96 
97 // If we have a PHI node with a vector type that is only used to feed
98 // itself and be an operand of extractelement at a constant location,
99 // try to replace the PHI of the vector type with a PHI of a scalar type.
100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
101                                             PHINode *PN) {
102   SmallVector<Instruction *, 2> Extracts;
103   // The users we want the PHI to have are:
104   // 1) The EI ExtractElement (we already know this)
105   // 2) Possibly more ExtractElements with the same index.
106   // 3) Another operand, which will feed back into the PHI.
107   Instruction *PHIUser = nullptr;
108   for (auto *U : PN->users()) {
109     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
110       if (EI.getIndexOperand() == EU->getIndexOperand())
111         Extracts.push_back(EU);
112       else
113         return nullptr;
114     } else if (!PHIUser) {
115       PHIUser = cast<Instruction>(U);
116     } else {
117       return nullptr;
118     }
119   }
120 
121   if (!PHIUser)
122     return nullptr;
123 
124   // Verify that this PHI user has one use, which is the PHI itself,
125   // and that it is a binary operation which is cheap to scalarize.
126   // otherwise return nullptr.
127   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
128       !(isa<BinaryOperator>(PHIUser)) ||
129       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
130     return nullptr;
131 
132   // Create a scalar PHI node that will replace the vector PHI node
133   // just before the current PHI node.
134   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
135       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), PN->getIterator()));
136   // Scalarize each PHI operand.
137   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
138     Value *PHIInVal = PN->getIncomingValue(i);
139     BasicBlock *inBB = PN->getIncomingBlock(i);
140     Value *Elt = EI.getIndexOperand();
141     // If the operand is the PHI induction variable:
142     if (PHIInVal == PHIUser) {
143       // Scalarize the binary operation. Its first operand is the
144       // scalar PHI, and the second operand is extracted from the other
145       // vector operand.
146       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
147       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
148       Value *Op = InsertNewInstWith(
149           ExtractElementInst::Create(B0->getOperand(opId), Elt,
150                                      B0->getOperand(opId)->getName() + ".Elt"),
151           B0->getIterator());
152       Value *newPHIUser = InsertNewInstWith(
153           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
154                                                 scalarPHI, Op, B0), B0->getIterator());
155       scalarPHI->addIncoming(newPHIUser, inBB);
156     } else {
157       // Scalarize PHI input:
158       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
159       // Insert the new instruction into the predecessor basic block.
160       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161       BasicBlock::iterator InsertPos;
162       if (pos && !isa<PHINode>(pos)) {
163         InsertPos = ++pos->getIterator();
164       } else {
165         InsertPos = inBB->getFirstInsertionPt();
166       }
167 
168       InsertNewInstWith(newEI, InsertPos);
169 
170       scalarPHI->addIncoming(newEI, inBB);
171     }
172   }
173 
174   for (auto *E : Extracts) {
175     replaceInstUsesWith(*E, scalarPHI);
176     // Add old extract to worklist for DCE.
177     addToWorklist(E);
178   }
179 
180   return &EI;
181 }
182 
183 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
184   Value *X;
185   uint64_t ExtIndexC;
186   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
187       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
188     return nullptr;
189 
190   ElementCount NumElts =
191       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
192   Type *DestTy = Ext.getType();
193   unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
194   bool IsBigEndian = DL.isBigEndian();
195 
196   // If we are casting an integer to vector and extracting a portion, that is
197   // a shift-right and truncate.
198   if (X->getType()->isIntegerTy()) {
199     assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
200            "Expected fixed vector type for bitcast from scalar integer");
201 
202     // Big endian requires adjusting the extract index since MSB is at index 0.
203     // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
204     // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
205     if (IsBigEndian)
206       ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
207     unsigned ShiftAmountC = ExtIndexC * DestWidth;
208     if (!ShiftAmountC ||
209         (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) &&
210         Ext.getVectorOperand()->hasOneUse())) {
211       if (ShiftAmountC)
212         X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
213       if (DestTy->isFloatingPointTy()) {
214         Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
215         Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
216         return new BitCastInst(Trunc, DestTy);
217       }
218       return new TruncInst(X, DestTy);
219     }
220   }
221 
222   if (!X->getType()->isVectorTy())
223     return nullptr;
224 
225   // If this extractelement is using a bitcast from a vector of the same number
226   // of elements, see if we can find the source element from the source vector:
227   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
228   auto *SrcTy = cast<VectorType>(X->getType());
229   ElementCount NumSrcElts = SrcTy->getElementCount();
230   if (NumSrcElts == NumElts)
231     if (Value *Elt = findScalarElement(X, ExtIndexC))
232       return new BitCastInst(Elt, DestTy);
233 
234   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
235          "Src and Dst must be the same sort of vector type");
236 
237   // If the source elements are wider than the destination, try to shift and
238   // truncate a subset of scalar bits of an insert op.
239   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
240     Value *Scalar;
241     Value *Vec;
242     uint64_t InsIndexC;
243     if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
244                               m_ConstantInt(InsIndexC))))
245       return nullptr;
246 
247     // The extract must be from the subset of vector elements that we inserted
248     // into. Example: if we inserted element 1 of a <2 x i64> and we are
249     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
250     // of elements 4-7 of the bitcasted vector.
251     unsigned NarrowingRatio =
252         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
253 
254     if (ExtIndexC / NarrowingRatio != InsIndexC) {
255       // Remove insertelement, if we don't use the inserted element.
256       // extractelement (bitcast (insertelement (Vec, b)), a) ->
257       // extractelement (bitcast (Vec), a)
258       // FIXME: this should be removed to SimplifyDemandedVectorElts,
259       // once scale vectors are supported.
260       if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
261         Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
262         return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
263       }
264       return nullptr;
265     }
266 
267     // We are extracting part of the original scalar. How that scalar is
268     // inserted into the vector depends on the endian-ness. Example:
269     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
270     //                                       +--+--+--+--+--+--+--+--+
271     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
272     // extelt <4 x i16> V', 3:               |                 |S2|S3|
273     //                                       +--+--+--+--+--+--+--+--+
274     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
275     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
276     // In this example, we must right-shift little-endian. Big-endian is just a
277     // truncate.
278     unsigned Chunk = ExtIndexC % NarrowingRatio;
279     if (IsBigEndian)
280       Chunk = NarrowingRatio - 1 - Chunk;
281 
282     // Bail out if this is an FP vector to FP vector sequence. That would take
283     // more instructions than we started with unless there is no shift, and it
284     // may not be handled as well in the backend.
285     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
286     bool NeedDestBitcast = DestTy->isFloatingPointTy();
287     if (NeedSrcBitcast && NeedDestBitcast)
288       return nullptr;
289 
290     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
291     unsigned ShAmt = Chunk * DestWidth;
292 
293     // TODO: This limitation is more strict than necessary. We could sum the
294     // number of new instructions and subtract the number eliminated to know if
295     // we can proceed.
296     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
297       if (NeedSrcBitcast || NeedDestBitcast)
298         return nullptr;
299 
300     if (NeedSrcBitcast) {
301       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
302       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
303     }
304 
305     if (ShAmt) {
306       // Bail out if we could end with more instructions than we started with.
307       if (!Ext.getVectorOperand()->hasOneUse())
308         return nullptr;
309       Scalar = Builder.CreateLShr(Scalar, ShAmt);
310     }
311 
312     if (NeedDestBitcast) {
313       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
314       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
315     }
316     return new TruncInst(Scalar, DestTy);
317   }
318 
319   return nullptr;
320 }
321 
322 /// Find elements of V demanded by UserInstr.
323 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
324   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
325 
326   // Conservatively assume that all elements are needed.
327   APInt UsedElts(APInt::getAllOnes(VWidth));
328 
329   switch (UserInstr->getOpcode()) {
330   case Instruction::ExtractElement: {
331     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
332     assert(EEI->getVectorOperand() == V);
333     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
334     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
335       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
336     }
337     break;
338   }
339   case Instruction::ShuffleVector: {
340     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
341     unsigned MaskNumElts =
342         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
343 
344     UsedElts = APInt(VWidth, 0);
345     for (unsigned i = 0; i < MaskNumElts; i++) {
346       unsigned MaskVal = Shuffle->getMaskValue(i);
347       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
348         continue;
349       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
350         UsedElts.setBit(MaskVal);
351       if (Shuffle->getOperand(1) == V &&
352           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
353         UsedElts.setBit(MaskVal - VWidth);
354     }
355     break;
356   }
357   default:
358     break;
359   }
360   return UsedElts;
361 }
362 
363 /// Find union of elements of V demanded by all its users.
364 /// If it is known by querying findDemandedEltsBySingleUser that
365 /// no user demands an element of V, then the corresponding bit
366 /// remains unset in the returned value.
367 static APInt findDemandedEltsByAllUsers(Value *V) {
368   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
369 
370   APInt UnionUsedElts(VWidth, 0);
371   for (const Use &U : V->uses()) {
372     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
373       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
374     } else {
375       UnionUsedElts = APInt::getAllOnes(VWidth);
376       break;
377     }
378 
379     if (UnionUsedElts.isAllOnes())
380       break;
381   }
382 
383   return UnionUsedElts;
384 }
385 
386 /// Given a constant index for a extractelement or insertelement instruction,
387 /// return it with the canonical type if it isn't already canonical.  We
388 /// arbitrarily pick 64 bit as our canonical type.  The actual bitwidth doesn't
389 /// matter, we just want a consistent type to simplify CSE.
390 static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
391   const unsigned IndexBW = IndexC->getBitWidth();
392   if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
393     return nullptr;
394   return ConstantInt::get(IndexC->getContext(),
395                           IndexC->getValue().zextOrTrunc(64));
396 }
397 
398 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
399   Value *SrcVec = EI.getVectorOperand();
400   Value *Index = EI.getIndexOperand();
401   if (Value *V = simplifyExtractElementInst(SrcVec, Index,
402                                             SQ.getWithInstruction(&EI)))
403     return replaceInstUsesWith(EI, V);
404 
405   // extractelt (select %x, %vec1, %vec2), %const ->
406   // select %x, %vec1[%const], %vec2[%const]
407   // TODO: Support constant folding of multiple select operands:
408   // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
409   // If the extractelement will for instance try to do out of bounds accesses
410   // because of the values of %c1 and/or %c2, the sequence could be optimized
411   // early. This is currently not possible because constant folding will reach
412   // an unreachable assertion if it doesn't find a constant operand.
413   if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
414     if (SI->getCondition()->getType()->isIntegerTy() &&
415         isa<Constant>(EI.getIndexOperand()))
416       if (Instruction *R = FoldOpIntoSelect(EI, SI))
417         return R;
418 
419   // If extracting a specified index from the vector, see if we can recursively
420   // find a previously computed scalar that was inserted into the vector.
421   auto *IndexC = dyn_cast<ConstantInt>(Index);
422   if (IndexC) {
423     // Canonicalize type of constant indices to i64 to simplify CSE
424     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
425       return replaceOperand(EI, 1, NewIdx);
426 
427     ElementCount EC = EI.getVectorOperandType()->getElementCount();
428     unsigned NumElts = EC.getKnownMinValue();
429 
430     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
431       Intrinsic::ID IID = II->getIntrinsicID();
432       // Index needs to be lower than the minimum size of the vector, because
433       // for scalable vector, the vector size is known at run time.
434       if (IID == Intrinsic::experimental_stepvector &&
435           IndexC->getValue().ult(NumElts)) {
436         Type *Ty = EI.getType();
437         unsigned BitWidth = Ty->getIntegerBitWidth();
438         Value *Idx;
439         // Return index when its value does not exceed the allowed limit
440         // for the element type of the vector, otherwise return undefined.
441         if (IndexC->getValue().getActiveBits() <= BitWidth)
442           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
443         else
444           Idx = PoisonValue::get(Ty);
445         return replaceInstUsesWith(EI, Idx);
446       }
447     }
448 
449     // InstSimplify should handle cases where the index is invalid.
450     // For fixed-length vector, it's invalid to extract out-of-range element.
451     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
452       return nullptr;
453 
454     if (Instruction *I = foldBitcastExtElt(EI))
455       return I;
456 
457     // If there's a vector PHI feeding a scalar use through this extractelement
458     // instruction, try to scalarize the PHI.
459     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
460       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
461         return ScalarPHI;
462   }
463 
464   // TODO come up with a n-ary matcher that subsumes both unary and
465   // binary matchers.
466   UnaryOperator *UO;
467   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
468     // extelt (unop X), Index --> unop (extelt X, Index)
469     Value *X = UO->getOperand(0);
470     Value *E = Builder.CreateExtractElement(X, Index);
471     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
472   }
473 
474   BinaryOperator *BO;
475   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
476     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
477     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
478     Value *E0 = Builder.CreateExtractElement(X, Index);
479     Value *E1 = Builder.CreateExtractElement(Y, Index);
480     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
481   }
482 
483   Value *X, *Y;
484   CmpInst::Predicate Pred;
485   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
486       cheapToScalarize(SrcVec, Index)) {
487     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
488     Value *E0 = Builder.CreateExtractElement(X, Index);
489     Value *E1 = Builder.CreateExtractElement(Y, Index);
490     CmpInst *SrcCmpInst = cast<CmpInst>(SrcVec);
491     return CmpInst::CreateWithCopiedFlags(SrcCmpInst->getOpcode(), Pred, E0, E1,
492                                           SrcCmpInst);
493   }
494 
495   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
496     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
497       // instsimplify already handled the case where the indices are constants
498       // and equal by value, if both are constants, they must not be the same
499       // value, extract from the pre-inserted value instead.
500       if (isa<Constant>(IE->getOperand(2)) && IndexC)
501         return replaceOperand(EI, 0, IE->getOperand(0));
502     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
503       auto *VecType = cast<VectorType>(GEP->getType());
504       ElementCount EC = VecType->getElementCount();
505       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
506       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
507         // Find out why we have a vector result - these are a few examples:
508         //  1. We have a scalar pointer and a vector of indices, or
509         //  2. We have a vector of pointers and a scalar index, or
510         //  3. We have a vector of pointers and a vector of indices, etc.
511         // Here we only consider combining when there is exactly one vector
512         // operand, since the optimization is less obviously a win due to
513         // needing more than one extractelements.
514 
515         unsigned VectorOps =
516             llvm::count_if(GEP->operands(), [](const Value *V) {
517               return isa<VectorType>(V->getType());
518             });
519         if (VectorOps == 1) {
520           Value *NewPtr = GEP->getPointerOperand();
521           if (isa<VectorType>(NewPtr->getType()))
522             NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
523 
524           SmallVector<Value *> NewOps;
525           for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
526             Value *Op = GEP->getOperand(I);
527             if (isa<VectorType>(Op->getType()))
528               NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
529             else
530               NewOps.push_back(Op);
531           }
532 
533           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
534               GEP->getSourceElementType(), NewPtr, NewOps);
535           NewGEP->setIsInBounds(GEP->isInBounds());
536           return NewGEP;
537         }
538       }
539     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
540       // If this is extracting an element from a shufflevector, figure out where
541       // it came from and extract from the appropriate input element instead.
542       // Restrict the following transformation to fixed-length vector.
543       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
544         int SrcIdx =
545             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
546         Value *Src;
547         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
548                                 ->getNumElements();
549 
550         if (SrcIdx < 0)
551           return replaceInstUsesWith(EI, PoisonValue::get(EI.getType()));
552         if (SrcIdx < (int)LHSWidth)
553           Src = SVI->getOperand(0);
554         else {
555           SrcIdx -= LHSWidth;
556           Src = SVI->getOperand(1);
557         }
558         Type *Int64Ty = Type::getInt64Ty(EI.getContext());
559         return ExtractElementInst::Create(
560             Src, ConstantInt::get(Int64Ty, SrcIdx, false));
561       }
562     } else if (auto *CI = dyn_cast<CastInst>(I)) {
563       // Canonicalize extractelement(cast) -> cast(extractelement).
564       // Bitcasts can change the number of vector elements, and they cost
565       // nothing.
566       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
567         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
568         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
569       }
570     }
571   }
572 
573   // Run demanded elements after other transforms as this can drop flags on
574   // binops.  If there's two paths to the same final result, we prefer the
575   // one which doesn't force us to drop flags.
576   if (IndexC) {
577     ElementCount EC = EI.getVectorOperandType()->getElementCount();
578     unsigned NumElts = EC.getKnownMinValue();
579     // This instruction only demands the single element from the input vector.
580     // Skip for scalable type, the number of elements is unknown at
581     // compile-time.
582     if (!EC.isScalable() && NumElts != 1) {
583       // If the input vector has a single use, simplify it based on this use
584       // property.
585       if (SrcVec->hasOneUse()) {
586         APInt PoisonElts(NumElts, 0);
587         APInt DemandedElts(NumElts, 0);
588         DemandedElts.setBit(IndexC->getZExtValue());
589         if (Value *V =
590                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, PoisonElts))
591           return replaceOperand(EI, 0, V);
592       } else {
593         // If the input vector has multiple uses, simplify it based on a union
594         // of all elements used.
595         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
596         if (!DemandedElts.isAllOnes()) {
597           APInt PoisonElts(NumElts, 0);
598           if (Value *V = SimplifyDemandedVectorElts(
599                   SrcVec, DemandedElts, PoisonElts, 0 /* Depth */,
600                   true /* AllowMultipleUsers */)) {
601             if (V != SrcVec) {
602               Worklist.addValue(SrcVec);
603               SrcVec->replaceAllUsesWith(V);
604               return &EI;
605             }
606           }
607         }
608       }
609     }
610   }
611   return nullptr;
612 }
613 
614 /// If V is a shuffle of values that ONLY returns elements from either LHS or
615 /// RHS, return the shuffle mask and true. Otherwise, return false.
616 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
617                                          SmallVectorImpl<int> &Mask) {
618   assert(LHS->getType() == RHS->getType() &&
619          "Invalid CollectSingleShuffleElements");
620   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
621 
622   if (match(V, m_Undef())) {
623     Mask.assign(NumElts, -1);
624     return true;
625   }
626 
627   if (V == LHS) {
628     for (unsigned i = 0; i != NumElts; ++i)
629       Mask.push_back(i);
630     return true;
631   }
632 
633   if (V == RHS) {
634     for (unsigned i = 0; i != NumElts; ++i)
635       Mask.push_back(i + NumElts);
636     return true;
637   }
638 
639   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
640     // If this is an insert of an extract from some other vector, include it.
641     Value *VecOp    = IEI->getOperand(0);
642     Value *ScalarOp = IEI->getOperand(1);
643     Value *IdxOp    = IEI->getOperand(2);
644 
645     if (!isa<ConstantInt>(IdxOp))
646       return false;
647     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
648 
649     if (isa<PoisonValue>(ScalarOp)) {  // inserting poison into vector.
650       // We can handle this if the vector we are inserting into is
651       // transitively ok.
652       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
653         // If so, update the mask to reflect the inserted poison.
654         Mask[InsertedIdx] = -1;
655         return true;
656       }
657     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
658       if (isa<ConstantInt>(EI->getOperand(1))) {
659         unsigned ExtractedIdx =
660         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
661         unsigned NumLHSElts =
662             cast<FixedVectorType>(LHS->getType())->getNumElements();
663 
664         // This must be extracting from either LHS or RHS.
665         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
666           // We can handle this if the vector we are inserting into is
667           // transitively ok.
668           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
669             // If so, update the mask to reflect the inserted value.
670             if (EI->getOperand(0) == LHS) {
671               Mask[InsertedIdx % NumElts] = ExtractedIdx;
672             } else {
673               assert(EI->getOperand(0) == RHS);
674               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
675             }
676             return true;
677           }
678         }
679       }
680     }
681   }
682 
683   return false;
684 }
685 
686 /// If we have insertion into a vector that is wider than the vector that we
687 /// are extracting from, try to widen the source vector to allow a single
688 /// shufflevector to replace one or more insert/extract pairs.
689 static bool replaceExtractElements(InsertElementInst *InsElt,
690                                    ExtractElementInst *ExtElt,
691                                    InstCombinerImpl &IC) {
692   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
693   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
694   unsigned NumInsElts = InsVecType->getNumElements();
695   unsigned NumExtElts = ExtVecType->getNumElements();
696 
697   // The inserted-to vector must be wider than the extracted-from vector.
698   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
699       NumExtElts >= NumInsElts)
700     return false;
701 
702   // Create a shuffle mask to widen the extended-from vector using poison
703   // values. The mask selects all of the values of the original vector followed
704   // by as many poison values as needed to create a vector of the same length
705   // as the inserted-to vector.
706   SmallVector<int, 16> ExtendMask;
707   for (unsigned i = 0; i < NumExtElts; ++i)
708     ExtendMask.push_back(i);
709   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
710     ExtendMask.push_back(-1);
711 
712   Value *ExtVecOp = ExtElt->getVectorOperand();
713   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
714   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
715                                    ? ExtVecOpInst->getParent()
716                                    : ExtElt->getParent();
717 
718   // TODO: This restriction matches the basic block check below when creating
719   // new extractelement instructions. If that limitation is removed, this one
720   // could also be removed. But for now, we just bail out to ensure that we
721   // will replace the extractelement instruction that is feeding our
722   // insertelement instruction. This allows the insertelement to then be
723   // replaced by a shufflevector. If the insertelement is not replaced, we can
724   // induce infinite looping because there's an optimization for extractelement
725   // that will delete our widening shuffle. This would trigger another attempt
726   // here to create that shuffle, and we spin forever.
727   if (InsertionBlock != InsElt->getParent())
728     return false;
729 
730   // TODO: This restriction matches the check in visitInsertElementInst() and
731   // prevents an infinite loop caused by not turning the extract/insert pair
732   // into a shuffle. We really should not need either check, but we're lacking
733   // folds for shufflevectors because we're afraid to generate shuffle masks
734   // that the backend can't handle.
735   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
736     return false;
737 
738   auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
739 
740   // Insert the new shuffle after the vector operand of the extract is defined
741   // (as long as it's not a PHI) or at the start of the basic block of the
742   // extract, so any subsequent extracts in the same basic block can use it.
743   // TODO: Insert before the earliest ExtractElementInst that is replaced.
744   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
745     WideVec->insertAfter(ExtVecOpInst);
746   else
747     IC.InsertNewInstWith(WideVec, ExtElt->getParent()->getFirstInsertionPt());
748 
749   // Replace extracts from the original narrow vector with extracts from the new
750   // wide vector.
751   for (User *U : ExtVecOp->users()) {
752     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
753     if (!OldExt || OldExt->getParent() != WideVec->getParent())
754       continue;
755     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
756     IC.InsertNewInstWith(NewExt, OldExt->getIterator());
757     IC.replaceInstUsesWith(*OldExt, NewExt);
758     // Add the old extracts to the worklist for DCE. We can't remove the
759     // extracts directly, because they may still be used by the calling code.
760     IC.addToWorklist(OldExt);
761   }
762 
763   return true;
764 }
765 
766 /// We are building a shuffle to create V, which is a sequence of insertelement,
767 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
768 /// not rely on the second vector source. Return a std::pair containing the
769 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
770 /// parameter as required.
771 ///
772 /// Note: we intentionally don't try to fold earlier shuffles since they have
773 /// often been chosen carefully to be efficiently implementable on the target.
774 using ShuffleOps = std::pair<Value *, Value *>;
775 
776 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
777                                          Value *PermittedRHS,
778                                          InstCombinerImpl &IC, bool &Rerun) {
779   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
780   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
781 
782   if (match(V, m_Poison())) {
783     Mask.assign(NumElts, -1);
784     return std::make_pair(
785         PermittedRHS ? PoisonValue::get(PermittedRHS->getType()) : V, nullptr);
786   }
787 
788   if (isa<ConstantAggregateZero>(V)) {
789     Mask.assign(NumElts, 0);
790     return std::make_pair(V, nullptr);
791   }
792 
793   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
794     // If this is an insert of an extract from some other vector, include it.
795     Value *VecOp    = IEI->getOperand(0);
796     Value *ScalarOp = IEI->getOperand(1);
797     Value *IdxOp    = IEI->getOperand(2);
798 
799     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
800       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
801         unsigned ExtractedIdx =
802           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
803         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
804 
805         // Either the extracted from or inserted into vector must be RHSVec,
806         // otherwise we'd end up with a shuffle of three inputs.
807         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
808           Value *RHS = EI->getOperand(0);
809           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun);
810           assert(LR.second == nullptr || LR.second == RHS);
811 
812           if (LR.first->getType() != RHS->getType()) {
813             // Although we are giving up for now, see if we can create extracts
814             // that match the inserts for another round of combining.
815             if (replaceExtractElements(IEI, EI, IC))
816               Rerun = true;
817 
818             // We tried our best, but we can't find anything compatible with RHS
819             // further up the chain. Return a trivial shuffle.
820             for (unsigned i = 0; i < NumElts; ++i)
821               Mask[i] = i;
822             return std::make_pair(V, nullptr);
823           }
824 
825           unsigned NumLHSElts =
826               cast<FixedVectorType>(RHS->getType())->getNumElements();
827           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
828           return std::make_pair(LR.first, RHS);
829         }
830 
831         if (VecOp == PermittedRHS) {
832           // We've gone as far as we can: anything on the other side of the
833           // extractelement will already have been converted into a shuffle.
834           unsigned NumLHSElts =
835               cast<FixedVectorType>(EI->getOperand(0)->getType())
836                   ->getNumElements();
837           for (unsigned i = 0; i != NumElts; ++i)
838             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
839           return std::make_pair(EI->getOperand(0), PermittedRHS);
840         }
841 
842         // If this insertelement is a chain that comes from exactly these two
843         // vectors, return the vector and the effective shuffle.
844         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
845             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
846                                          Mask))
847           return std::make_pair(EI->getOperand(0), PermittedRHS);
848       }
849     }
850   }
851 
852   // Otherwise, we can't do anything fancy. Return an identity vector.
853   for (unsigned i = 0; i != NumElts; ++i)
854     Mask.push_back(i);
855   return std::make_pair(V, nullptr);
856 }
857 
858 /// Look for chain of insertvalue's that fully define an aggregate, and trace
859 /// back the values inserted, see if they are all were extractvalue'd from
860 /// the same source aggregate from the exact same element indexes.
861 /// If they were, just reuse the source aggregate.
862 /// This potentially deals with PHI indirections.
863 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
864     InsertValueInst &OrigIVI) {
865   Type *AggTy = OrigIVI.getType();
866   unsigned NumAggElts;
867   switch (AggTy->getTypeID()) {
868   case Type::StructTyID:
869     NumAggElts = AggTy->getStructNumElements();
870     break;
871   case Type::ArrayTyID:
872     NumAggElts = AggTy->getArrayNumElements();
873     break;
874   default:
875     llvm_unreachable("Unhandled aggregate type?");
876   }
877 
878   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
879   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
880   // FIXME: any interesting patterns to be caught with larger limit?
881   assert(NumAggElts > 0 && "Aggregate should have elements.");
882   if (NumAggElts > 2)
883     return nullptr;
884 
885   static constexpr auto NotFound = std::nullopt;
886   static constexpr auto FoundMismatch = nullptr;
887 
888   // Try to find a value of each element of an aggregate.
889   // FIXME: deal with more complex, not one-dimensional, aggregate types
890   SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
891 
892   // Do we know values for each element of the aggregate?
893   auto KnowAllElts = [&AggElts]() {
894     return !llvm::is_contained(AggElts, NotFound);
895   };
896 
897   int Depth = 0;
898 
899   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
900   // every element being overwritten twice, which should never happen.
901   static const int DepthLimit = 2 * NumAggElts;
902 
903   // Recurse up the chain of `insertvalue` aggregate operands until either we've
904   // reconstructed full initializer or can't visit any more `insertvalue`'s.
905   for (InsertValueInst *CurrIVI = &OrigIVI;
906        Depth < DepthLimit && CurrIVI && !KnowAllElts();
907        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
908                        ++Depth) {
909     auto *InsertedValue =
910         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
911     if (!InsertedValue)
912       return nullptr; // Inserted value must be produced by an instruction.
913 
914     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
915 
916     // Don't bother with more than single-level aggregates.
917     if (Indices.size() != 1)
918       return nullptr; // FIXME: deal with more complex aggregates?
919 
920     // Now, we may have already previously recorded the value for this element
921     // of an aggregate. If we did, that means the CurrIVI will later be
922     // overwritten with the already-recorded value. But if not, let's record it!
923     std::optional<Instruction *> &Elt = AggElts[Indices.front()];
924     Elt = Elt.value_or(InsertedValue);
925 
926     // FIXME: should we handle chain-terminating undef base operand?
927   }
928 
929   // Was that sufficient to deduce the full initializer for the aggregate?
930   if (!KnowAllElts())
931     return nullptr; // Give up then.
932 
933   // We now want to find the source[s] of the aggregate elements we've found.
934   // And with "source" we mean the original aggregate[s] from which
935   // the inserted elements were extracted. This may require PHI translation.
936 
937   enum class AggregateDescription {
938     /// When analyzing the value that was inserted into an aggregate, we did
939     /// not manage to find defining `extractvalue` instruction to analyze.
940     NotFound,
941     /// When analyzing the value that was inserted into an aggregate, we did
942     /// manage to find defining `extractvalue` instruction[s], and everything
943     /// matched perfectly - aggregate type, element insertion/extraction index.
944     Found,
945     /// When analyzing the value that was inserted into an aggregate, we did
946     /// manage to find defining `extractvalue` instruction, but there was
947     /// a mismatch: either the source type from which the extraction was didn't
948     /// match the aggregate type into which the insertion was,
949     /// or the extraction/insertion channels mismatched,
950     /// or different elements had different source aggregates.
951     FoundMismatch
952   };
953   auto Describe = [](std::optional<Value *> SourceAggregate) {
954     if (SourceAggregate == NotFound)
955       return AggregateDescription::NotFound;
956     if (*SourceAggregate == FoundMismatch)
957       return AggregateDescription::FoundMismatch;
958     return AggregateDescription::Found;
959   };
960 
961   // Given the value \p Elt that was being inserted into element \p EltIdx of an
962   // aggregate AggTy, see if \p Elt was originally defined by an
963   // appropriate extractvalue (same element index, same aggregate type).
964   // If found, return the source aggregate from which the extraction was.
965   // If \p PredBB is provided, does PHI translation of an \p Elt first.
966   auto FindSourceAggregate =
967       [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
968           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
969     // For now(?), only deal with, at most, a single level of PHI indirection.
970     if (UseBB && PredBB)
971       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
972     // FIXME: deal with multiple levels of PHI indirection?
973 
974     // Did we find an extraction?
975     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
976     if (!EVI)
977       return NotFound;
978 
979     Value *SourceAggregate = EVI->getAggregateOperand();
980 
981     // Is the extraction from the same type into which the insertion was?
982     if (SourceAggregate->getType() != AggTy)
983       return FoundMismatch;
984     // And the element index doesn't change between extraction and insertion?
985     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
986       return FoundMismatch;
987 
988     return SourceAggregate; // AggregateDescription::Found
989   };
990 
991   // Given elements AggElts that were constructing an aggregate OrigIVI,
992   // see if we can find appropriate source aggregate for each of the elements,
993   // and see it's the same aggregate for each element. If so, return it.
994   auto FindCommonSourceAggregate =
995       [&](std::optional<BasicBlock *> UseBB,
996           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
997     std::optional<Value *> SourceAggregate;
998 
999     for (auto I : enumerate(AggElts)) {
1000       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
1001              "We don't store nullptr in SourceAggregate!");
1002       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1003                  (I.index() != 0) &&
1004              "SourceAggregate should be valid after the first element,");
1005 
1006       // For this element, is there a plausible source aggregate?
1007       // FIXME: we could special-case undef element, IFF we know that in the
1008       //        source aggregate said element isn't poison.
1009       std::optional<Value *> SourceAggregateForElement =
1010           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
1011 
1012       // Okay, what have we found? Does that correlate with previous findings?
1013 
1014       // Regardless of whether or not we have previously found source
1015       // aggregate for previous elements (if any), if we didn't find one for
1016       // this element, passthrough whatever we have just found.
1017       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1018         return SourceAggregateForElement;
1019 
1020       // Okay, we have found source aggregate for this element.
1021       // Let's see what we already know from previous elements, if any.
1022       switch (Describe(SourceAggregate)) {
1023       case AggregateDescription::NotFound:
1024         // This is apparently the first element that we have examined.
1025         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
1026         continue; // Great, now look at next element.
1027       case AggregateDescription::Found:
1028         // We have previously already successfully examined other elements.
1029         // Is this the same source aggregate we've found for other elements?
1030         if (*SourceAggregateForElement != *SourceAggregate)
1031           return FoundMismatch;
1032         continue; // Still the same aggregate, look at next element.
1033       case AggregateDescription::FoundMismatch:
1034         llvm_unreachable("Can't happen. We would have early-exited then.");
1035       };
1036     }
1037 
1038     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1039            "Must be a valid Value");
1040     return *SourceAggregate;
1041   };
1042 
1043   std::optional<Value *> SourceAggregate;
1044 
1045   // Can we find the source aggregate without looking at predecessors?
1046   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
1047                                               /*PredBB=*/std::nullopt);
1048   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1049     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1050       return nullptr; // Conflicting source aggregates!
1051     ++NumAggregateReconstructionsSimplified;
1052     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1053   }
1054 
1055   // Okay, apparently we need to look at predecessors.
1056 
1057   // We should be smart about picking the "use" basic block, which will be the
1058   // merge point for aggregate, where we'll insert the final PHI that will be
1059   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1060   // We should look in which blocks each of the AggElts is being defined,
1061   // they all should be defined in the same basic block.
1062   BasicBlock *UseBB = nullptr;
1063 
1064   for (const std::optional<Instruction *> &I : AggElts) {
1065     BasicBlock *BB = (*I)->getParent();
1066     // If it's the first instruction we've encountered, record the basic block.
1067     if (!UseBB) {
1068       UseBB = BB;
1069       continue;
1070     }
1071     // Otherwise, this must be the same basic block we've seen previously.
1072     if (UseBB != BB)
1073       return nullptr;
1074   }
1075 
1076   // If *all* of the elements are basic-block-independent, meaning they are
1077   // either function arguments, or constant expressions, then if we didn't
1078   // handle them without predecessor-aware handling, we won't handle them now.
1079   if (!UseBB)
1080     return nullptr;
1081 
1082   // If we didn't manage to find source aggregate without looking at
1083   // predecessors, and there are no predecessors to look at, then we're done.
1084   if (pred_empty(UseBB))
1085     return nullptr;
1086 
1087   // Arbitrary predecessor count limit.
1088   static const int PredCountLimit = 64;
1089 
1090   // Cache the (non-uniqified!) list of predecessors in a vector,
1091   // checking the limit at the same time for efficiency.
1092   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1093   for (BasicBlock *Pred : predecessors(UseBB)) {
1094     // Don't bother if there are too many predecessors.
1095     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1096       return nullptr;
1097     Preds.emplace_back(Pred);
1098   }
1099 
1100   // For each predecessor, what is the source aggregate,
1101   // from which all the elements were originally extracted from?
1102   // Note that we want for the map to have stable iteration order!
1103   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1104   for (BasicBlock *Pred : Preds) {
1105     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1106         SourceAggregates.insert({Pred, nullptr});
1107     // Did we already evaluate this predecessor?
1108     if (!IV.second)
1109       continue;
1110 
1111     // Let's hope that when coming from predecessor Pred, all elements of the
1112     // aggregate produced by OrigIVI must have been originally extracted from
1113     // the same aggregate. Is that so? Can we find said original aggregate?
1114     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1115     if (Describe(SourceAggregate) != AggregateDescription::Found)
1116       return nullptr; // Give up.
1117     IV.first->second = *SourceAggregate;
1118   }
1119 
1120   // All good! Now we just need to thread the source aggregates here.
1121   // Note that we have to insert the new PHI here, ourselves, because we can't
1122   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1123   // Note that the same block can be a predecessor more than once,
1124   // and we need to preserve that invariant for the PHI node.
1125   BuilderTy::InsertPointGuard Guard(Builder);
1126   Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt());
1127   auto *PHI =
1128       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1129   for (BasicBlock *Pred : Preds)
1130     PHI->addIncoming(SourceAggregates[Pred], Pred);
1131 
1132   ++NumAggregateReconstructionsSimplified;
1133   return replaceInstUsesWith(OrigIVI, PHI);
1134 }
1135 
1136 /// Try to find redundant insertvalue instructions, like the following ones:
1137 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1138 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1139 /// Here the second instruction inserts values at the same indices, as the
1140 /// first one, making the first one redundant.
1141 /// It should be transformed to:
1142 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1143 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1144   if (Value *V = simplifyInsertValueInst(
1145           I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(),
1146           SQ.getWithInstruction(&I)))
1147     return replaceInstUsesWith(I, V);
1148 
1149   bool IsRedundant = false;
1150   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1151 
1152   // If there is a chain of insertvalue instructions (each of them except the
1153   // last one has only one use and it's another insertvalue insn from this
1154   // chain), check if any of the 'children' uses the same indices as the first
1155   // instruction. In this case, the first one is redundant.
1156   Value *V = &I;
1157   unsigned Depth = 0;
1158   while (V->hasOneUse() && Depth < 10) {
1159     User *U = V->user_back();
1160     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1161     if (!UserInsInst || U->getOperand(0) != V)
1162       break;
1163     if (UserInsInst->getIndices() == FirstIndices) {
1164       IsRedundant = true;
1165       break;
1166     }
1167     V = UserInsInst;
1168     Depth++;
1169   }
1170 
1171   if (IsRedundant)
1172     return replaceInstUsesWith(I, I.getOperand(0));
1173 
1174   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1175     return NewI;
1176 
1177   return nullptr;
1178 }
1179 
1180 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1181   // Can not analyze scalable type, the number of elements is not a compile-time
1182   // constant.
1183   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1184     return false;
1185 
1186   int MaskSize = Shuf.getShuffleMask().size();
1187   int VecSize =
1188       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1189 
1190   // A vector select does not change the size of the operands.
1191   if (MaskSize != VecSize)
1192     return false;
1193 
1194   // Each mask element must be undefined or choose a vector element from one of
1195   // the source operands without crossing vector lanes.
1196   for (int i = 0; i != MaskSize; ++i) {
1197     int Elt = Shuf.getMaskValue(i);
1198     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1199       return false;
1200   }
1201 
1202   return true;
1203 }
1204 
1205 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1206 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1207 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1208 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1209   // We are interested in the last insert in a chain. So if this insert has a
1210   // single user and that user is an insert, bail.
1211   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1212     return nullptr;
1213 
1214   VectorType *VecTy = InsElt.getType();
1215   // Can not handle scalable type, the number of elements is not a compile-time
1216   // constant.
1217   if (isa<ScalableVectorType>(VecTy))
1218     return nullptr;
1219   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1220 
1221   // Do not try to do this for a one-element vector, since that's a nop,
1222   // and will cause an inf-loop.
1223   if (NumElements == 1)
1224     return nullptr;
1225 
1226   Value *SplatVal = InsElt.getOperand(1);
1227   InsertElementInst *CurrIE = &InsElt;
1228   SmallBitVector ElementPresent(NumElements, false);
1229   InsertElementInst *FirstIE = nullptr;
1230 
1231   // Walk the chain backwards, keeping track of which indices we inserted into,
1232   // until we hit something that isn't an insert of the splatted value.
1233   while (CurrIE) {
1234     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1235     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1236       return nullptr;
1237 
1238     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1239     // Check none of the intermediate steps have any additional uses, except
1240     // for the root insertelement instruction, which can be re-used, if it
1241     // inserts at position 0.
1242     if (CurrIE != &InsElt &&
1243         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1244       return nullptr;
1245 
1246     ElementPresent[Idx->getZExtValue()] = true;
1247     FirstIE = CurrIE;
1248     CurrIE = NextIE;
1249   }
1250 
1251   // If this is just a single insertelement (not a sequence), we are done.
1252   if (FirstIE == &InsElt)
1253     return nullptr;
1254 
1255   // If we are not inserting into a poison vector, make sure we've seen an
1256   // insert into every element.
1257   // TODO: If the base vector is not undef, it might be better to create a splat
1258   //       and then a select-shuffle (blend) with the base vector.
1259   if (!match(FirstIE->getOperand(0), m_Poison()))
1260     if (!ElementPresent.all())
1261       return nullptr;
1262 
1263   // Create the insert + shuffle.
1264   Type *Int64Ty = Type::getInt64Ty(InsElt.getContext());
1265   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1266   Constant *Zero = ConstantInt::get(Int64Ty, 0);
1267   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1268     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "",
1269                                         InsElt.getIterator());
1270 
1271   // Splat from element 0, but replace absent elements with poison in the mask.
1272   SmallVector<int, 16> Mask(NumElements, 0);
1273   for (unsigned i = 0; i != NumElements; ++i)
1274     if (!ElementPresent[i])
1275       Mask[i] = -1;
1276 
1277   return new ShuffleVectorInst(FirstIE, Mask);
1278 }
1279 
1280 /// Try to fold an insert element into an existing splat shuffle by changing
1281 /// the shuffle's mask to include the index of this insert element.
1282 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1283   // Check if the vector operand of this insert is a canonical splat shuffle.
1284   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1285   if (!Shuf || !Shuf->isZeroEltSplat())
1286     return nullptr;
1287 
1288   // Bail out early if shuffle is scalable type. The number of elements in
1289   // shuffle mask is unknown at compile-time.
1290   if (isa<ScalableVectorType>(Shuf->getType()))
1291     return nullptr;
1292 
1293   // Check for a constant insertion index.
1294   uint64_t IdxC;
1295   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1296     return nullptr;
1297 
1298   // Check if the splat shuffle's input is the same as this insert's scalar op.
1299   Value *X = InsElt.getOperand(1);
1300   Value *Op0 = Shuf->getOperand(0);
1301   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1302     return nullptr;
1303 
1304   // Replace the shuffle mask element at the index of this insert with a zero.
1305   // For example:
1306   // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1307   //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1308   unsigned NumMaskElts =
1309       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1310   SmallVector<int, 16> NewMask(NumMaskElts);
1311   for (unsigned i = 0; i != NumMaskElts; ++i)
1312     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1313 
1314   return new ShuffleVectorInst(Op0, NewMask);
1315 }
1316 
1317 /// Try to fold an extract+insert element into an existing identity shuffle by
1318 /// changing the shuffle's mask to include the index of this insert element.
1319 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1320   // Check if the vector operand of this insert is an identity shuffle.
1321   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1322   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1323       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1324     return nullptr;
1325 
1326   // Bail out early if shuffle is scalable type. The number of elements in
1327   // shuffle mask is unknown at compile-time.
1328   if (isa<ScalableVectorType>(Shuf->getType()))
1329     return nullptr;
1330 
1331   // Check for a constant insertion index.
1332   uint64_t IdxC;
1333   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1334     return nullptr;
1335 
1336   // Check if this insert's scalar op is extracted from the identity shuffle's
1337   // input vector.
1338   Value *Scalar = InsElt.getOperand(1);
1339   Value *X = Shuf->getOperand(0);
1340   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1341     return nullptr;
1342 
1343   // Replace the shuffle mask element at the index of this extract+insert with
1344   // that same index value.
1345   // For example:
1346   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1347   unsigned NumMaskElts =
1348       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1349   SmallVector<int, 16> NewMask(NumMaskElts);
1350   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1351   for (unsigned i = 0; i != NumMaskElts; ++i) {
1352     if (i != IdxC) {
1353       // All mask elements besides the inserted element remain the same.
1354       NewMask[i] = OldMask[i];
1355     } else if (OldMask[i] == (int)IdxC) {
1356       // If the mask element was already set, there's nothing to do
1357       // (demanded elements analysis may unset it later).
1358       return nullptr;
1359     } else {
1360       assert(OldMask[i] == PoisonMaskElem &&
1361              "Unexpected shuffle mask element for identity shuffle");
1362       NewMask[i] = IdxC;
1363     }
1364   }
1365 
1366   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1367 }
1368 
1369 /// If we have an insertelement instruction feeding into another insertelement
1370 /// and the 2nd is inserting a constant into the vector, canonicalize that
1371 /// constant insertion before the insertion of a variable:
1372 ///
1373 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1374 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1375 ///
1376 /// This has the potential of eliminating the 2nd insertelement instruction
1377 /// via constant folding of the scalar constant into a vector constant.
1378 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1379                                      InstCombiner::BuilderTy &Builder) {
1380   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1381   if (!InsElt1 || !InsElt1->hasOneUse())
1382     return nullptr;
1383 
1384   Value *X, *Y;
1385   Constant *ScalarC;
1386   ConstantInt *IdxC1, *IdxC2;
1387   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1388       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1389       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1390       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1391       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1392     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1393     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1394   }
1395 
1396   return nullptr;
1397 }
1398 
1399 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1400 /// --> shufflevector X, CVec', Mask'
1401 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1402   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1403   // Bail out if the parent has more than one use. In that case, we'd be
1404   // replacing the insertelt with a shuffle, and that's not a clear win.
1405   if (!Inst || !Inst->hasOneUse())
1406     return nullptr;
1407   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1408     // The shuffle must have a constant vector operand. The insertelt must have
1409     // a constant scalar being inserted at a constant position in the vector.
1410     Constant *ShufConstVec, *InsEltScalar;
1411     uint64_t InsEltIndex;
1412     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1413         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1414         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1415       return nullptr;
1416 
1417     // Adding an element to an arbitrary shuffle could be expensive, but a
1418     // shuffle that selects elements from vectors without crossing lanes is
1419     // assumed cheap.
1420     // If we're just adding a constant into that shuffle, it will still be
1421     // cheap.
1422     if (!isShuffleEquivalentToSelect(*Shuf))
1423       return nullptr;
1424 
1425     // From the above 'select' check, we know that the mask has the same number
1426     // of elements as the vector input operands. We also know that each constant
1427     // input element is used in its lane and can not be used more than once by
1428     // the shuffle. Therefore, replace the constant in the shuffle's constant
1429     // vector with the insertelt constant. Replace the constant in the shuffle's
1430     // mask vector with the insertelt index plus the length of the vector
1431     // (because the constant vector operand of a shuffle is always the 2nd
1432     // operand).
1433     ArrayRef<int> Mask = Shuf->getShuffleMask();
1434     unsigned NumElts = Mask.size();
1435     SmallVector<Constant *, 16> NewShufElts(NumElts);
1436     SmallVector<int, 16> NewMaskElts(NumElts);
1437     for (unsigned I = 0; I != NumElts; ++I) {
1438       if (I == InsEltIndex) {
1439         NewShufElts[I] = InsEltScalar;
1440         NewMaskElts[I] = InsEltIndex + NumElts;
1441       } else {
1442         // Copy over the existing values.
1443         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1444         NewMaskElts[I] = Mask[I];
1445       }
1446 
1447       // Bail if we failed to find an element.
1448       if (!NewShufElts[I])
1449         return nullptr;
1450     }
1451 
1452     // Create new operands for a shuffle that includes the constant of the
1453     // original insertelt. The old shuffle will be dead now.
1454     return new ShuffleVectorInst(Shuf->getOperand(0),
1455                                  ConstantVector::get(NewShufElts), NewMaskElts);
1456   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1457     // Transform sequences of insertelements ops with constant data/indexes into
1458     // a single shuffle op.
1459     // Can not handle scalable type, the number of elements needed to create
1460     // shuffle mask is not a compile-time constant.
1461     if (isa<ScalableVectorType>(InsElt.getType()))
1462       return nullptr;
1463     unsigned NumElts =
1464         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1465 
1466     uint64_t InsertIdx[2];
1467     Constant *Val[2];
1468     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1469         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1470         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1471         !match(IEI->getOperand(1), m_Constant(Val[1])))
1472       return nullptr;
1473     SmallVector<Constant *, 16> Values(NumElts);
1474     SmallVector<int, 16> Mask(NumElts);
1475     auto ValI = std::begin(Val);
1476     // Generate new constant vector and mask.
1477     // We have 2 values/masks from the insertelements instructions. Insert them
1478     // into new value/mask vectors.
1479     for (uint64_t I : InsertIdx) {
1480       if (!Values[I]) {
1481         Values[I] = *ValI;
1482         Mask[I] = NumElts + I;
1483       }
1484       ++ValI;
1485     }
1486     // Remaining values are filled with 'poison' values.
1487     for (unsigned I = 0; I < NumElts; ++I) {
1488       if (!Values[I]) {
1489         Values[I] = PoisonValue::get(InsElt.getType()->getElementType());
1490         Mask[I] = I;
1491       }
1492     }
1493     // Create new operands for a shuffle that includes the constant of the
1494     // original insertelt.
1495     return new ShuffleVectorInst(IEI->getOperand(0),
1496                                  ConstantVector::get(Values), Mask);
1497   }
1498   return nullptr;
1499 }
1500 
1501 /// If both the base vector and the inserted element are extended from the same
1502 /// type, do the insert element in the narrow source type followed by extend.
1503 /// TODO: This can be extended to include other cast opcodes, but particularly
1504 ///       if we create a wider insertelement, make sure codegen is not harmed.
1505 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1506                                  InstCombiner::BuilderTy &Builder) {
1507   // We are creating a vector extend. If the original vector extend has another
1508   // use, that would mean we end up with 2 vector extends, so avoid that.
1509   // TODO: We could ease the use-clause to "if at least one op has one use"
1510   //       (assuming that the source types match - see next TODO comment).
1511   Value *Vec = InsElt.getOperand(0);
1512   if (!Vec->hasOneUse())
1513     return nullptr;
1514 
1515   Value *Scalar = InsElt.getOperand(1);
1516   Value *X, *Y;
1517   CastInst::CastOps CastOpcode;
1518   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1519     CastOpcode = Instruction::FPExt;
1520   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1521     CastOpcode = Instruction::SExt;
1522   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1523     CastOpcode = Instruction::ZExt;
1524   else
1525     return nullptr;
1526 
1527   // TODO: We can allow mismatched types by creating an intermediate cast.
1528   if (X->getType()->getScalarType() != Y->getType())
1529     return nullptr;
1530 
1531   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1532   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1533   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1534 }
1535 
1536 /// If we are inserting 2 halves of a value into adjacent elements of a vector,
1537 /// try to convert to a single insert with appropriate bitcasts.
1538 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
1539                                         bool IsBigEndian,
1540                                         InstCombiner::BuilderTy &Builder) {
1541   Value *VecOp    = InsElt.getOperand(0);
1542   Value *ScalarOp = InsElt.getOperand(1);
1543   Value *IndexOp  = InsElt.getOperand(2);
1544 
1545   // Pattern depends on endian because we expect lower index is inserted first.
1546   // Big endian:
1547   // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
1548   // Little endian:
1549   // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
1550   // Note: It is not safe to do this transform with an arbitrary base vector
1551   //       because the bitcast of that vector to fewer/larger elements could
1552   //       allow poison to spill into an element that was not poison before.
1553   // TODO: Detect smaller fractions of the scalar.
1554   // TODO: One-use checks are conservative.
1555   auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
1556   Value *Scalar0, *BaseVec;
1557   uint64_t Index0, Index1;
1558   if (!VTy || (VTy->getNumElements() & 1) ||
1559       !match(IndexOp, m_ConstantInt(Index1)) ||
1560       !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
1561                                 m_ConstantInt(Index0))) ||
1562       !match(BaseVec, m_Undef()))
1563     return nullptr;
1564 
1565   // The first insert must be to the index one less than this one, and
1566   // the first insert must be to an even index.
1567   if (Index0 + 1 != Index1 || Index0 & 1)
1568     return nullptr;
1569 
1570   // For big endian, the high half of the value should be inserted first.
1571   // For little endian, the low half of the value should be inserted first.
1572   Value *X;
1573   uint64_t ShAmt;
1574   if (IsBigEndian) {
1575     if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
1576         !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1577       return nullptr;
1578   } else {
1579     if (!match(Scalar0, m_Trunc(m_Value(X))) ||
1580         !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1581       return nullptr;
1582   }
1583 
1584   Type *SrcTy = X->getType();
1585   unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1586   unsigned VecEltWidth = VTy->getScalarSizeInBits();
1587   if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1588     return nullptr;
1589 
1590   // Bitcast the base vector to a vector type with the source element type.
1591   Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
1592   Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1593 
1594   // Scale the insert index for a vector with half as many elements.
1595   // bitcast (inselt (bitcast BaseVec), X, NewIndex)
1596   uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1597   Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
1598   return new BitCastInst(NewInsert, VTy);
1599 }
1600 
1601 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1602   Value *VecOp    = IE.getOperand(0);
1603   Value *ScalarOp = IE.getOperand(1);
1604   Value *IdxOp    = IE.getOperand(2);
1605 
1606   if (auto *V = simplifyInsertElementInst(
1607           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1608     return replaceInstUsesWith(IE, V);
1609 
1610   // Canonicalize type of constant indices to i64 to simplify CSE
1611   if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
1612     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1613       return replaceOperand(IE, 2, NewIdx);
1614 
1615     Value *BaseVec, *OtherScalar;
1616     uint64_t OtherIndexVal;
1617     if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
1618                                           m_Value(OtherScalar),
1619                                           m_ConstantInt(OtherIndexVal)))) &&
1620         !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1621       Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1622       return InsertElementInst::Create(NewIns, OtherScalar,
1623                                        Builder.getInt64(OtherIndexVal));
1624     }
1625   }
1626 
1627   // If the scalar is bitcast and inserted into undef, do the insert in the
1628   // source type followed by bitcast.
1629   // TODO: Generalize for insert into any constant, not just undef?
1630   Value *ScalarSrc;
1631   if (match(VecOp, m_Undef()) &&
1632       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1633       (ScalarSrc->getType()->isIntegerTy() ||
1634        ScalarSrc->getType()->isFloatingPointTy())) {
1635     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1636     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1637     Type *ScalarTy = ScalarSrc->getType();
1638     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1639     Constant *NewUndef = isa<PoisonValue>(VecOp) ? PoisonValue::get(VecTy)
1640                                                  : UndefValue::get(VecTy);
1641     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1642     return new BitCastInst(NewInsElt, IE.getType());
1643   }
1644 
1645   // If the vector and scalar are both bitcast from the same element type, do
1646   // the insert in that source type followed by bitcast.
1647   Value *VecSrc;
1648   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1649       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1650       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1651       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1652       cast<VectorType>(VecSrc->getType())->getElementType() ==
1653           ScalarSrc->getType()) {
1654     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1655     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1656     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1657     return new BitCastInst(NewInsElt, IE.getType());
1658   }
1659 
1660   // If the inserted element was extracted from some other fixed-length vector
1661   // and both indexes are valid constants, try to turn this into a shuffle.
1662   // Can not handle scalable vector type, the number of elements needed to
1663   // create shuffle mask is not a compile-time constant.
1664   uint64_t InsertedIdx, ExtractedIdx;
1665   Value *ExtVecOp;
1666   if (isa<FixedVectorType>(IE.getType()) &&
1667       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1668       match(ScalarOp,
1669             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1670       isa<FixedVectorType>(ExtVecOp->getType()) &&
1671       ExtractedIdx <
1672           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1673     // TODO: Looking at the user(s) to determine if this insert is a
1674     // fold-to-shuffle opportunity does not match the usual instcombine
1675     // constraints. We should decide if the transform is worthy based only
1676     // on this instruction and its operands, but that may not work currently.
1677     //
1678     // Here, we are trying to avoid creating shuffles before reaching
1679     // the end of a chain of extract-insert pairs. This is complicated because
1680     // we do not generally form arbitrary shuffle masks in instcombine
1681     // (because those may codegen poorly), but collectShuffleElements() does
1682     // exactly that.
1683     //
1684     // The rules for determining what is an acceptable target-independent
1685     // shuffle mask are fuzzy because they evolve based on the backend's
1686     // capabilities and real-world impact.
1687     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1688       if (!Insert.hasOneUse())
1689         return true;
1690       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1691       if (!InsertUser)
1692         return true;
1693       return false;
1694     };
1695 
1696     // Try to form a shuffle from a chain of extract-insert ops.
1697     if (isShuffleRootCandidate(IE)) {
1698       bool Rerun = true;
1699       while (Rerun) {
1700         Rerun = false;
1701 
1702         SmallVector<int, 16> Mask;
1703         ShuffleOps LR =
1704             collectShuffleElements(&IE, Mask, nullptr, *this, Rerun);
1705 
1706         // The proposed shuffle may be trivial, in which case we shouldn't
1707         // perform the combine.
1708         if (LR.first != &IE && LR.second != &IE) {
1709           // We now have a shuffle of LHS, RHS, Mask.
1710           if (LR.second == nullptr)
1711             LR.second = PoisonValue::get(LR.first->getType());
1712           return new ShuffleVectorInst(LR.first, LR.second, Mask);
1713         }
1714       }
1715     }
1716   }
1717 
1718   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1719     unsigned VWidth = VecTy->getNumElements();
1720     APInt PoisonElts(VWidth, 0);
1721     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1722     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask,
1723                                               PoisonElts)) {
1724       if (V != &IE)
1725         return replaceInstUsesWith(IE, V);
1726       return &IE;
1727     }
1728   }
1729 
1730   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1731     return Shuf;
1732 
1733   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1734     return NewInsElt;
1735 
1736   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1737     return Broadcast;
1738 
1739   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1740     return Splat;
1741 
1742   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1743     return IdentityShuf;
1744 
1745   if (Instruction *Ext = narrowInsElt(IE, Builder))
1746     return Ext;
1747 
1748   if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
1749     return Ext;
1750 
1751   return nullptr;
1752 }
1753 
1754 /// Return true if we can evaluate the specified expression tree if the vector
1755 /// elements were shuffled in a different order.
1756 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1757                                 unsigned Depth = 5) {
1758   // We can always reorder the elements of a constant.
1759   if (isa<Constant>(V))
1760     return true;
1761 
1762   // We won't reorder vector arguments. No IPO here.
1763   Instruction *I = dyn_cast<Instruction>(V);
1764   if (!I) return false;
1765 
1766   // Two users may expect different orders of the elements. Don't try it.
1767   if (!I->hasOneUse())
1768     return false;
1769 
1770   if (Depth == 0) return false;
1771 
1772   switch (I->getOpcode()) {
1773     case Instruction::UDiv:
1774     case Instruction::SDiv:
1775     case Instruction::URem:
1776     case Instruction::SRem:
1777       // Propagating an undefined shuffle mask element to integer div/rem is not
1778       // allowed because those opcodes can create immediate undefined behavior
1779       // from an undefined element in an operand.
1780       if (llvm::is_contained(Mask, -1))
1781         return false;
1782       [[fallthrough]];
1783     case Instruction::Add:
1784     case Instruction::FAdd:
1785     case Instruction::Sub:
1786     case Instruction::FSub:
1787     case Instruction::Mul:
1788     case Instruction::FMul:
1789     case Instruction::FDiv:
1790     case Instruction::FRem:
1791     case Instruction::Shl:
1792     case Instruction::LShr:
1793     case Instruction::AShr:
1794     case Instruction::And:
1795     case Instruction::Or:
1796     case Instruction::Xor:
1797     case Instruction::ICmp:
1798     case Instruction::FCmp:
1799     case Instruction::Trunc:
1800     case Instruction::ZExt:
1801     case Instruction::SExt:
1802     case Instruction::FPToUI:
1803     case Instruction::FPToSI:
1804     case Instruction::UIToFP:
1805     case Instruction::SIToFP:
1806     case Instruction::FPTrunc:
1807     case Instruction::FPExt:
1808     case Instruction::GetElementPtr: {
1809       // Bail out if we would create longer vector ops. We could allow creating
1810       // longer vector ops, but that may result in more expensive codegen.
1811       Type *ITy = I->getType();
1812       if (ITy->isVectorTy() &&
1813           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1814         return false;
1815       for (Value *Operand : I->operands()) {
1816         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1817           return false;
1818       }
1819       return true;
1820     }
1821     case Instruction::InsertElement: {
1822       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1823       if (!CI) return false;
1824       int ElementNumber = CI->getLimitedValue();
1825 
1826       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1827       // can't put an element into multiple indices.
1828       bool SeenOnce = false;
1829       for (int I : Mask) {
1830         if (I == ElementNumber) {
1831           if (SeenOnce)
1832             return false;
1833           SeenOnce = true;
1834         }
1835       }
1836       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1837     }
1838   }
1839   return false;
1840 }
1841 
1842 /// Rebuild a new instruction just like 'I' but with the new operands given.
1843 /// In the event of type mismatch, the type of the operands is correct.
1844 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps,
1845                        IRBuilderBase &Builder) {
1846   Builder.SetInsertPoint(I);
1847   switch (I->getOpcode()) {
1848     case Instruction::Add:
1849     case Instruction::FAdd:
1850     case Instruction::Sub:
1851     case Instruction::FSub:
1852     case Instruction::Mul:
1853     case Instruction::FMul:
1854     case Instruction::UDiv:
1855     case Instruction::SDiv:
1856     case Instruction::FDiv:
1857     case Instruction::URem:
1858     case Instruction::SRem:
1859     case Instruction::FRem:
1860     case Instruction::Shl:
1861     case Instruction::LShr:
1862     case Instruction::AShr:
1863     case Instruction::And:
1864     case Instruction::Or:
1865     case Instruction::Xor: {
1866       BinaryOperator *BO = cast<BinaryOperator>(I);
1867       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1868       Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(),
1869                                        NewOps[0], NewOps[1]);
1870       if (auto *NewI = dyn_cast<Instruction>(New)) {
1871         if (isa<OverflowingBinaryOperator>(BO)) {
1872           NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1873           NewI->setHasNoSignedWrap(BO->hasNoSignedWrap());
1874         }
1875         if (isa<PossiblyExactOperator>(BO)) {
1876           NewI->setIsExact(BO->isExact());
1877         }
1878         if (isa<FPMathOperator>(BO))
1879           NewI->copyFastMathFlags(I);
1880       }
1881       return New;
1882     }
1883     case Instruction::ICmp:
1884       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1885       return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
1886                                 NewOps[1]);
1887     case Instruction::FCmp:
1888       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1889       return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
1890                                 NewOps[1]);
1891     case Instruction::Trunc:
1892     case Instruction::ZExt:
1893     case Instruction::SExt:
1894     case Instruction::FPToUI:
1895     case Instruction::FPToSI:
1896     case Instruction::UIToFP:
1897     case Instruction::SIToFP:
1898     case Instruction::FPTrunc:
1899     case Instruction::FPExt: {
1900       // It's possible that the mask has a different number of elements from
1901       // the original cast. We recompute the destination type to match the mask.
1902       Type *DestTy = VectorType::get(
1903           I->getType()->getScalarType(),
1904           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1905       assert(NewOps.size() == 1 && "cast with #ops != 1");
1906       return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0],
1907                                 DestTy);
1908     }
1909     case Instruction::GetElementPtr: {
1910       Value *Ptr = NewOps[0];
1911       ArrayRef<Value*> Idx = NewOps.slice(1);
1912       return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(),
1913                                Ptr, Idx, "",
1914                                cast<GEPOperator>(I)->isInBounds());
1915     }
1916   }
1917   llvm_unreachable("failed to rebuild vector instructions");
1918 }
1919 
1920 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask,
1921                                               IRBuilderBase &Builder) {
1922   // Mask.size() does not need to be equal to the number of vector elements.
1923 
1924   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1925   Type *EltTy = V->getType()->getScalarType();
1926 
1927   if (isa<PoisonValue>(V))
1928     return PoisonValue::get(FixedVectorType::get(EltTy, Mask.size()));
1929 
1930   if (match(V, m_Undef()))
1931     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1932 
1933   if (isa<ConstantAggregateZero>(V))
1934     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1935 
1936   if (Constant *C = dyn_cast<Constant>(V))
1937     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1938                                           Mask);
1939 
1940   Instruction *I = cast<Instruction>(V);
1941   switch (I->getOpcode()) {
1942     case Instruction::Add:
1943     case Instruction::FAdd:
1944     case Instruction::Sub:
1945     case Instruction::FSub:
1946     case Instruction::Mul:
1947     case Instruction::FMul:
1948     case Instruction::UDiv:
1949     case Instruction::SDiv:
1950     case Instruction::FDiv:
1951     case Instruction::URem:
1952     case Instruction::SRem:
1953     case Instruction::FRem:
1954     case Instruction::Shl:
1955     case Instruction::LShr:
1956     case Instruction::AShr:
1957     case Instruction::And:
1958     case Instruction::Or:
1959     case Instruction::Xor:
1960     case Instruction::ICmp:
1961     case Instruction::FCmp:
1962     case Instruction::Trunc:
1963     case Instruction::ZExt:
1964     case Instruction::SExt:
1965     case Instruction::FPToUI:
1966     case Instruction::FPToSI:
1967     case Instruction::UIToFP:
1968     case Instruction::SIToFP:
1969     case Instruction::FPTrunc:
1970     case Instruction::FPExt:
1971     case Instruction::Select:
1972     case Instruction::GetElementPtr: {
1973       SmallVector<Value*, 8> NewOps;
1974       bool NeedsRebuild =
1975           (Mask.size() !=
1976            cast<FixedVectorType>(I->getType())->getNumElements());
1977       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1978         Value *V;
1979         // Recursively call evaluateInDifferentElementOrder on vector arguments
1980         // as well. E.g. GetElementPtr may have scalar operands even if the
1981         // return value is a vector, so we need to examine the operand type.
1982         if (I->getOperand(i)->getType()->isVectorTy())
1983           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder);
1984         else
1985           V = I->getOperand(i);
1986         NewOps.push_back(V);
1987         NeedsRebuild |= (V != I->getOperand(i));
1988       }
1989       if (NeedsRebuild)
1990         return buildNew(I, NewOps, Builder);
1991       return I;
1992     }
1993     case Instruction::InsertElement: {
1994       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1995 
1996       // The insertelement was inserting at Element. Figure out which element
1997       // that becomes after shuffling. The answer is guaranteed to be unique
1998       // by CanEvaluateShuffled.
1999       bool Found = false;
2000       int Index = 0;
2001       for (int e = Mask.size(); Index != e; ++Index) {
2002         if (Mask[Index] == Element) {
2003           Found = true;
2004           break;
2005         }
2006       }
2007 
2008       // If element is not in Mask, no need to handle the operand 1 (element to
2009       // be inserted). Just evaluate values in operand 0 according to Mask.
2010       if (!Found)
2011         return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder);
2012 
2013       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask,
2014                                                  Builder);
2015       Builder.SetInsertPoint(I);
2016       return Builder.CreateInsertElement(V, I->getOperand(1), Index);
2017     }
2018   }
2019   llvm_unreachable("failed to reorder elements of vector instruction!");
2020 }
2021 
2022 // Returns true if the shuffle is extracting a contiguous range of values from
2023 // LHS, for example:
2024 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2025 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
2026 //   Shuffles to:  |EE|FF|GG|HH|
2027 //                 +--+--+--+--+
2028 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
2029                                        ArrayRef<int> Mask) {
2030   unsigned LHSElems =
2031       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
2032   unsigned MaskElems = Mask.size();
2033   unsigned BegIdx = Mask.front();
2034   unsigned EndIdx = Mask.back();
2035   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2036     return false;
2037   for (unsigned I = 0; I != MaskElems; ++I)
2038     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
2039       return false;
2040   return true;
2041 }
2042 
2043 /// These are the ingredients in an alternate form binary operator as described
2044 /// below.
2045 struct BinopElts {
2046   BinaryOperator::BinaryOps Opcode;
2047   Value *Op0;
2048   Value *Op1;
2049   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
2050             Value *V0 = nullptr, Value *V1 = nullptr) :
2051       Opcode(Opc), Op0(V0), Op1(V1) {}
2052   operator bool() const { return Opcode != 0; }
2053 };
2054 
2055 /// Binops may be transformed into binops with different opcodes and operands.
2056 /// Reverse the usual canonicalization to enable folds with the non-canonical
2057 /// form of the binop. If a transform is possible, return the elements of the
2058 /// new binop. If not, return invalid elements.
2059 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
2060   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
2061   Type *Ty = BO->getType();
2062   switch (BO->getOpcode()) {
2063   case Instruction::Shl: {
2064     // shl X, C --> mul X, (1 << C)
2065     Constant *C;
2066     if (match(BO1, m_Constant(C))) {
2067       Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
2068       return {Instruction::Mul, BO0, ShlOne};
2069     }
2070     break;
2071   }
2072   case Instruction::Or: {
2073     // or X, C --> add X, C (when X and C have no common bits set)
2074     const APInt *C;
2075     if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
2076       return {Instruction::Add, BO0, BO1};
2077     break;
2078   }
2079   case Instruction::Sub:
2080     // sub 0, X --> mul X, -1
2081     if (match(BO0, m_ZeroInt()))
2082       return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
2083     break;
2084   default:
2085     break;
2086   }
2087   return {};
2088 }
2089 
2090 /// A select shuffle of a select shuffle with a shared operand can be reduced
2091 /// to a single select shuffle. This is an obvious improvement in IR, and the
2092 /// backend is expected to lower select shuffles efficiently.
2093 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
2094   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2095 
2096   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2097   SmallVector<int, 16> Mask;
2098   Shuf.getShuffleMask(Mask);
2099   unsigned NumElts = Mask.size();
2100 
2101   // Canonicalize a select shuffle with common operand as Op1.
2102   auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
2103   if (ShufOp && ShufOp->isSelect() &&
2104       (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2105     std::swap(Op0, Op1);
2106     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2107   }
2108 
2109   ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
2110   if (!ShufOp || !ShufOp->isSelect() ||
2111       (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2112     return nullptr;
2113 
2114   Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
2115   SmallVector<int, 16> Mask1;
2116   ShufOp->getShuffleMask(Mask1);
2117   assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");
2118 
2119   // Canonicalize common operand (Op0) as X (first operand of first shuffle).
2120   if (Y == Op0) {
2121     std::swap(X, Y);
2122     ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
2123   }
2124 
2125   // If the mask chooses from X (operand 0), it stays the same.
2126   // If the mask chooses from the earlier shuffle, the other mask value is
2127   // transferred to the combined select shuffle:
2128   // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
2129   SmallVector<int, 16> NewMask(NumElts);
2130   for (unsigned i = 0; i != NumElts; ++i)
2131     NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];
2132 
2133   // A select mask with undef elements might look like an identity mask.
2134   assert((ShuffleVectorInst::isSelectMask(NewMask, NumElts) ||
2135           ShuffleVectorInst::isIdentityMask(NewMask, NumElts)) &&
2136          "Unexpected shuffle mask");
2137   return new ShuffleVectorInst(X, Y, NewMask);
2138 }
2139 
2140 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf,
2141                                                 const SimplifyQuery &SQ) {
2142   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2143 
2144   // Are we shuffling together some value and that same value after it has been
2145   // modified by a binop with a constant?
2146   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2147   Constant *C;
2148   bool Op0IsBinop;
2149   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
2150     Op0IsBinop = true;
2151   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
2152     Op0IsBinop = false;
2153   else
2154     return nullptr;
2155 
2156   // The identity constant for a binop leaves a variable operand unchanged. For
2157   // a vector, this is a splat of something like 0, -1, or 1.
2158   // If there's no identity constant for this binop, we're done.
2159   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
2160   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
2161   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
2162   if (!IdC)
2163     return nullptr;
2164 
2165   Value *X = Op0IsBinop ? Op1 : Op0;
2166 
2167   // Prevent folding in the case the non-binop operand might have NaN values.
2168   // If X can have NaN elements then we have that the floating point math
2169   // operation in the transformed code may not preserve the exact NaN
2170   // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`.
2171   // This makes the transformation incorrect since the original program would
2172   // have preserved the exact NaN bit-pattern.
2173   // Avoid the folding if X can have NaN elements.
2174   if (Shuf.getType()->getElementType()->isFloatingPointTy() &&
2175       !isKnownNeverNaN(X, 0, SQ))
2176     return nullptr;
2177 
2178   // Shuffle identity constants into the lanes that return the original value.
2179   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
2180   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
2181   // The existing binop constant vector remains in the same operand position.
2182   ArrayRef<int> Mask = Shuf.getShuffleMask();
2183   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
2184                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
2185 
2186   bool MightCreatePoisonOrUB =
2187       is_contained(Mask, PoisonMaskElem) &&
2188       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
2189   if (MightCreatePoisonOrUB)
2190     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
2191 
2192   // shuf (bop X, C), X, M --> bop X, C'
2193   // shuf X, (bop X, C), M --> bop X, C'
2194   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
2195   NewBO->copyIRFlags(BO);
2196 
2197   // An undef shuffle mask element may propagate as an undef constant element in
2198   // the new binop. That would produce poison where the original code might not.
2199   // If we already made a safe constant, then there's no danger.
2200   if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2201     NewBO->dropPoisonGeneratingFlags();
2202   return NewBO;
2203 }
2204 
2205 /// If we have an insert of a scalar to a non-zero element of an undefined
2206 /// vector and then shuffle that value, that's the same as inserting to the zero
2207 /// element and shuffling. Splatting from the zero element is recognized as the
2208 /// canonical form of splat.
2209 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2210                                             InstCombiner::BuilderTy &Builder) {
2211   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2212   ArrayRef<int> Mask = Shuf.getShuffleMask();
2213   Value *X;
2214   uint64_t IndexC;
2215 
2216   // Match a shuffle that is a splat to a non-zero element.
2217   if (!match(Op0, m_OneUse(m_InsertElt(m_Poison(), m_Value(X),
2218                                        m_ConstantInt(IndexC)))) ||
2219       !match(Op1, m_Poison()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2220     return nullptr;
2221 
2222   // Insert into element 0 of a poison vector.
2223   PoisonValue *PoisonVec = PoisonValue::get(Shuf.getType());
2224   Value *NewIns = Builder.CreateInsertElement(PoisonVec, X, (uint64_t)0);
2225 
2226   // Splat from element 0. Any mask element that is poison remains poison.
2227   // For example:
2228   // shuf (inselt poison, X, 2), _, <2,2,undef>
2229   //   --> shuf (inselt poison, X, 0), poison, <0,0,undef>
2230   unsigned NumMaskElts =
2231       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2232   SmallVector<int, 16> NewMask(NumMaskElts, 0);
2233   for (unsigned i = 0; i != NumMaskElts; ++i)
2234     if (Mask[i] == PoisonMaskElem)
2235       NewMask[i] = Mask[i];
2236 
2237   return new ShuffleVectorInst(NewIns, NewMask);
2238 }
2239 
2240 /// Try to fold shuffles that are the equivalent of a vector select.
2241 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2242   if (!Shuf.isSelect())
2243     return nullptr;
2244 
2245   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2246   // Commuting undef to operand 0 conflicts with another canonicalization.
2247   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2248   if (!match(Shuf.getOperand(1), m_Undef()) &&
2249       Shuf.getMaskValue(0) >= (int)NumElts) {
2250     // TODO: Can we assert that both operands of a shuffle-select are not undef
2251     // (otherwise, it would have been folded by instsimplify?
2252     Shuf.commute();
2253     return &Shuf;
2254   }
2255 
2256   if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
2257     return I;
2258 
2259   if (Instruction *I = foldSelectShuffleWith1Binop(
2260           Shuf, getSimplifyQuery().getWithInstruction(&Shuf)))
2261     return I;
2262 
2263   BinaryOperator *B0, *B1;
2264   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2265       !match(Shuf.getOperand(1), m_BinOp(B1)))
2266     return nullptr;
2267 
2268   // If one operand is "0 - X", allow that to be viewed as "X * -1"
2269   // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2270   // with a multiply, we will exit because C0/C1 will not be set.
2271   Value *X, *Y;
2272   Constant *C0 = nullptr, *C1 = nullptr;
2273   bool ConstantsAreOp1;
2274   if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2275       match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2276     ConstantsAreOp1 = false;
2277   else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
2278                                  m_Neg(m_Value(X)))) &&
2279            match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
2280                                  m_Neg(m_Value(Y)))))
2281     ConstantsAreOp1 = true;
2282   else
2283     return nullptr;
2284 
2285   // We need matching binops to fold the lanes together.
2286   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2287   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2288   bool DropNSW = false;
2289   if (ConstantsAreOp1 && Opc0 != Opc1) {
2290     // TODO: We drop "nsw" if shift is converted into multiply because it may
2291     // not be correct when the shift amount is BitWidth - 1. We could examine
2292     // each vector element to determine if it is safe to keep that flag.
2293     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2294       DropNSW = true;
2295     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2296       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2297       Opc0 = AltB0.Opcode;
2298       C0 = cast<Constant>(AltB0.Op1);
2299     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2300       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2301       Opc1 = AltB1.Opcode;
2302       C1 = cast<Constant>(AltB1.Op1);
2303     }
2304   }
2305 
2306   if (Opc0 != Opc1 || !C0 || !C1)
2307     return nullptr;
2308 
2309   // The opcodes must be the same. Use a new name to make that clear.
2310   BinaryOperator::BinaryOps BOpc = Opc0;
2311 
2312   // Select the constant elements needed for the single binop.
2313   ArrayRef<int> Mask = Shuf.getShuffleMask();
2314   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2315 
2316   // We are moving a binop after a shuffle. When a shuffle has an undefined
2317   // mask element, the result is undefined, but it is not poison or undefined
2318   // behavior. That is not necessarily true for div/rem/shift.
2319   bool MightCreatePoisonOrUB =
2320       is_contained(Mask, PoisonMaskElem) &&
2321       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2322   if (MightCreatePoisonOrUB)
2323     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2324                                                        ConstantsAreOp1);
2325 
2326   Value *V;
2327   if (X == Y) {
2328     // Remove a binop and the shuffle by rearranging the constant:
2329     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2330     // shuffle (op C0, V), (op C1, V), M --> op C', V
2331     V = X;
2332   } else {
2333     // If there are 2 different variable operands, we must create a new shuffle
2334     // (select) first, so check uses to ensure that we don't end up with more
2335     // instructions than we started with.
2336     if (!B0->hasOneUse() && !B1->hasOneUse())
2337       return nullptr;
2338 
2339     // If we use the original shuffle mask and op1 is *variable*, we would be
2340     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2341     // poison. We do not have to guard against UB when *constants* are op1
2342     // because safe constants guarantee that we do not overflow sdiv/srem (and
2343     // there's no danger for other opcodes).
2344     // TODO: To allow this case, create a new shuffle mask with no undefs.
2345     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2346       return nullptr;
2347 
2348     // Note: In general, we do not create new shuffles in InstCombine because we
2349     // do not know if a target can lower an arbitrary shuffle optimally. In this
2350     // case, the shuffle uses the existing mask, so there is no additional risk.
2351 
2352     // Select the variable vectors first, then perform the binop:
2353     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2354     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2355     V = Builder.CreateShuffleVector(X, Y, Mask);
2356   }
2357 
2358   Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2359                                    Builder.CreateBinOp(BOpc, NewC, V);
2360 
2361   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2362   // 1. If we changed an opcode, poison conditions might have changed.
2363   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2364   //    where the original code did not. But if we already made a safe constant,
2365   //    then there's no danger.
2366   if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2367     NewI->copyIRFlags(B0);
2368     NewI->andIRFlags(B1);
2369     if (DropNSW)
2370       NewI->setHasNoSignedWrap(false);
2371     if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2372       NewI->dropPoisonGeneratingFlags();
2373   }
2374   return replaceInstUsesWith(Shuf, NewBO);
2375 }
2376 
2377 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2378 /// Example (little endian):
2379 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2380 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2381                                      bool IsBigEndian) {
2382   // This must be a bitcasted shuffle of 1 vector integer operand.
2383   Type *DestType = Shuf.getType();
2384   Value *X;
2385   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2386       !match(Shuf.getOperand(1), m_Poison()) || !DestType->isIntOrIntVectorTy())
2387     return nullptr;
2388 
2389   // The source type must have the same number of elements as the shuffle,
2390   // and the source element type must be larger than the shuffle element type.
2391   Type *SrcType = X->getType();
2392   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2393       cast<FixedVectorType>(SrcType)->getNumElements() !=
2394           cast<FixedVectorType>(DestType)->getNumElements() ||
2395       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2396     return nullptr;
2397 
2398   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2399          "Expected a shuffle that decreases length");
2400 
2401   // Last, check that the mask chooses the correct low bits for each narrow
2402   // element in the result.
2403   uint64_t TruncRatio =
2404       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2405   ArrayRef<int> Mask = Shuf.getShuffleMask();
2406   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2407     if (Mask[i] == PoisonMaskElem)
2408       continue;
2409     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2410     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2411     if (Mask[i] != (int)LSBIndex)
2412       return nullptr;
2413   }
2414 
2415   return new TruncInst(X, DestType);
2416 }
2417 
2418 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2419 /// narrowing (concatenating with undef and extracting back to the original
2420 /// length). This allows replacing the wide select with a narrow select.
2421 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2422                                        InstCombiner::BuilderTy &Builder) {
2423   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2424   // of the 1st vector operand of a shuffle.
2425   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2426     return nullptr;
2427 
2428   // The vector being shuffled must be a vector select that we can eliminate.
2429   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2430   Value *Cond, *X, *Y;
2431   if (!match(Shuf.getOperand(0),
2432              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2433     return nullptr;
2434 
2435   // We need a narrow condition value. It must be extended with undef elements
2436   // and have the same number of elements as this shuffle.
2437   unsigned NarrowNumElts =
2438       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2439   Value *NarrowCond;
2440   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2441       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2442           NarrowNumElts ||
2443       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2444     return nullptr;
2445 
2446   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2447   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2448   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2449   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2450   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2451 }
2452 
2453 /// Canonicalize FP negate/abs after shuffle.
2454 static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf,
2455                                           InstCombiner::BuilderTy &Builder) {
2456   auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0));
2457   Value *X;
2458   if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X)))))
2459     return nullptr;
2460 
2461   bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2462 
2463   // Match 1-input (unary) shuffle.
2464   // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask)
2465   if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Poison())) {
2466     Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2467     if (IsFNeg)
2468       return UnaryOperator::CreateFNegFMF(NewShuf, S0);
2469 
2470     Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(),
2471                                                Intrinsic::fabs, Shuf.getType());
2472     CallInst *NewF = CallInst::Create(FAbs, {NewShuf});
2473     NewF->setFastMathFlags(S0->getFastMathFlags());
2474     return NewF;
2475   }
2476 
2477   // Match 2-input (binary) shuffle.
2478   auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1));
2479   Value *Y;
2480   if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) ||
2481       S0->getOpcode() != S1->getOpcode() ||
2482       (!S0->hasOneUse() && !S1->hasOneUse()))
2483     return nullptr;
2484 
2485   // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask)
2486   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2487   Instruction *NewF;
2488   if (IsFNeg) {
2489     NewF = UnaryOperator::CreateFNeg(NewShuf);
2490   } else {
2491     Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(),
2492                                                Intrinsic::fabs, Shuf.getType());
2493     NewF = CallInst::Create(FAbs, {NewShuf});
2494   }
2495   NewF->copyIRFlags(S0);
2496   NewF->andIRFlags(S1);
2497   return NewF;
2498 }
2499 
2500 /// Canonicalize casts after shuffle.
2501 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
2502                                     InstCombiner::BuilderTy &Builder) {
2503   // Do we have 2 matching cast operands?
2504   auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
2505   auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
2506   if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2507       Cast0->getSrcTy() != Cast1->getSrcTy())
2508     return nullptr;
2509 
2510   // TODO: Allow other opcodes? That would require easing the type restrictions
2511   //       below here.
2512   CastInst::CastOps CastOpcode = Cast0->getOpcode();
2513   switch (CastOpcode) {
2514   case Instruction::FPToSI:
2515   case Instruction::FPToUI:
2516   case Instruction::SIToFP:
2517   case Instruction::UIToFP:
2518     break;
2519   default:
2520     return nullptr;
2521   }
2522 
2523   VectorType *ShufTy = Shuf.getType();
2524   VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
2525   VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
2526 
2527   // TODO: Allow length-increasing shuffles?
2528   if (ShufTy->getElementCount().getKnownMinValue() >
2529       ShufOpTy->getElementCount().getKnownMinValue())
2530     return nullptr;
2531 
2532   // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2533   assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
2534          "Expected fixed vector operands for casts and binary shuffle");
2535   if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2536     return nullptr;
2537 
2538   // At least one of the operands must have only one use (the shuffle).
2539   if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2540     return nullptr;
2541 
2542   // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2543   Value *X = Cast0->getOperand(0);
2544   Value *Y = Cast1->getOperand(0);
2545   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2546   return CastInst::Create(CastOpcode, NewShuf, ShufTy);
2547 }
2548 
2549 /// Try to fold an extract subvector operation.
2550 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2551   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2552   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Poison()))
2553     return nullptr;
2554 
2555   // Check if we are extracting all bits of an inserted scalar:
2556   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2557   Value *X;
2558   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2559       X->getType()->getPrimitiveSizeInBits() ==
2560           Shuf.getType()->getPrimitiveSizeInBits())
2561     return new BitCastInst(X, Shuf.getType());
2562 
2563   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2564   Value *Y;
2565   ArrayRef<int> Mask;
2566   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2567     return nullptr;
2568 
2569   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2570   // then combining may result in worse codegen.
2571   if (!Op0->hasOneUse())
2572     return nullptr;
2573 
2574   // We are extracting a subvector from a shuffle. Remove excess elements from
2575   // the 1st shuffle mask to eliminate the extract.
2576   //
2577   // This transform is conservatively limited to identity extracts because we do
2578   // not allow arbitrary shuffle mask creation as a target-independent transform
2579   // (because we can't guarantee that will lower efficiently).
2580   //
2581   // If the extracting shuffle has an poison mask element, it transfers to the
2582   // new shuffle mask. Otherwise, copy the original mask element. Example:
2583   //   shuf (shuf X, Y, <C0, C1, C2, poison, C4>), poison, <0, poison, 2, 3> -->
2584   //   shuf X, Y, <C0, poison, C2, poison>
2585   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2586   SmallVector<int, 16> NewMask(NumElts);
2587   assert(NumElts < Mask.size() &&
2588          "Identity with extract must have less elements than its inputs");
2589 
2590   for (unsigned i = 0; i != NumElts; ++i) {
2591     int ExtractMaskElt = Shuf.getMaskValue(i);
2592     int MaskElt = Mask[i];
2593     NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt;
2594   }
2595   return new ShuffleVectorInst(X, Y, NewMask);
2596 }
2597 
2598 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2599 /// operand with the operand of an insertelement.
2600 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2601                                           InstCombinerImpl &IC) {
2602   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2603   SmallVector<int, 16> Mask;
2604   Shuf.getShuffleMask(Mask);
2605 
2606   int NumElts = Mask.size();
2607   int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2608 
2609   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2610   // not be able to handle it there if the insertelement has >1 use.
2611   // If the shuffle has an insertelement operand but does not choose the
2612   // inserted scalar element from that value, then we can replace that shuffle
2613   // operand with the source vector of the insertelement.
2614   Value *X;
2615   uint64_t IdxC;
2616   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2617     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2618     if (!is_contained(Mask, (int)IdxC))
2619       return IC.replaceOperand(Shuf, 0, X);
2620   }
2621   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2622     // Offset the index constant by the vector width because we are checking for
2623     // accesses to the 2nd vector input of the shuffle.
2624     IdxC += InpNumElts;
2625     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2626     if (!is_contained(Mask, (int)IdxC))
2627       return IC.replaceOperand(Shuf, 1, X);
2628   }
2629   // For the rest of the transform, the shuffle must not change vector sizes.
2630   // TODO: This restriction could be removed if the insert has only one use
2631   //       (because the transform would require a new length-changing shuffle).
2632   if (NumElts != InpNumElts)
2633     return nullptr;
2634 
2635   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2636   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2637     // We need an insertelement with a constant index.
2638     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2639                                m_ConstantInt(IndexC))))
2640       return false;
2641 
2642     // Test the shuffle mask to see if it splices the inserted scalar into the
2643     // operand 1 vector of the shuffle.
2644     int NewInsIndex = -1;
2645     for (int i = 0; i != NumElts; ++i) {
2646       // Ignore undef mask elements.
2647       if (Mask[i] == -1)
2648         continue;
2649 
2650       // The shuffle takes elements of operand 1 without lane changes.
2651       if (Mask[i] == NumElts + i)
2652         continue;
2653 
2654       // The shuffle must choose the inserted scalar exactly once.
2655       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2656         return false;
2657 
2658       // The shuffle is placing the inserted scalar into element i.
2659       NewInsIndex = i;
2660     }
2661 
2662     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2663 
2664     // Index is updated to the potentially translated insertion lane.
2665     IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex);
2666     return true;
2667   };
2668 
2669   // If the shuffle is unnecessary, insert the scalar operand directly into
2670   // operand 1 of the shuffle. Example:
2671   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2672   Value *Scalar;
2673   ConstantInt *IndexC;
2674   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2675     return InsertElementInst::Create(V1, Scalar, IndexC);
2676 
2677   // Try again after commuting shuffle. Example:
2678   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2679   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2680   std::swap(V0, V1);
2681   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2682   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2683     return InsertElementInst::Create(V1, Scalar, IndexC);
2684 
2685   return nullptr;
2686 }
2687 
2688 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2689   // Match the operands as identity with padding (also known as concatenation
2690   // with undef) shuffles of the same source type. The backend is expected to
2691   // recreate these concatenations from a shuffle of narrow operands.
2692   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2693   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2694   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2695       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2696     return nullptr;
2697 
2698   // We limit this transform to power-of-2 types because we expect that the
2699   // backend can convert the simplified IR patterns to identical nodes as the
2700   // original IR.
2701   // TODO: If we can verify the same behavior for arbitrary types, the
2702   //       power-of-2 checks can be removed.
2703   Value *X = Shuffle0->getOperand(0);
2704   Value *Y = Shuffle1->getOperand(0);
2705   if (X->getType() != Y->getType() ||
2706       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2707       !isPowerOf2_32(
2708           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2709       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2710       match(X, m_Undef()) || match(Y, m_Undef()))
2711     return nullptr;
2712   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2713          match(Shuffle1->getOperand(1), m_Undef()) &&
2714          "Unexpected operand for identity shuffle");
2715 
2716   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2717   // operands directly by adjusting the shuffle mask to account for the narrower
2718   // types:
2719   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2720   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2721   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2722   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2723 
2724   ArrayRef<int> Mask = Shuf.getShuffleMask();
2725   SmallVector<int, 16> NewMask(Mask.size(), -1);
2726   for (int i = 0, e = Mask.size(); i != e; ++i) {
2727     if (Mask[i] == -1)
2728       continue;
2729 
2730     // If this shuffle is choosing an undef element from 1 of the sources, that
2731     // element is undef.
2732     if (Mask[i] < WideElts) {
2733       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2734         continue;
2735     } else {
2736       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2737         continue;
2738     }
2739 
2740     // If this shuffle is choosing from the 1st narrow op, the mask element is
2741     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2742     // element is offset down to adjust for the narrow vector widths.
2743     if (Mask[i] < WideElts) {
2744       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2745       NewMask[i] = Mask[i];
2746     } else {
2747       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2748       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2749     }
2750   }
2751   return new ShuffleVectorInst(X, Y, NewMask);
2752 }
2753 
2754 // Splatting the first element of the result of a BinOp, where any of the
2755 // BinOp's operands are the result of a first element splat can be simplified to
2756 // splatting the first element of the result of the BinOp
2757 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
2758   if (!match(SVI.getOperand(1), m_Poison()) ||
2759       !match(SVI.getShuffleMask(), m_ZeroMask()) ||
2760       !SVI.getOperand(0)->hasOneUse())
2761     return nullptr;
2762 
2763   Value *Op0 = SVI.getOperand(0);
2764   Value *X, *Y;
2765   if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Poison(), m_ZeroMask()),
2766                           m_Value(Y))) &&
2767       !match(Op0, m_BinOp(m_Value(X),
2768                           m_Shuffle(m_Value(Y), m_Poison(), m_ZeroMask()))))
2769     return nullptr;
2770   if (X->getType() != Y->getType())
2771     return nullptr;
2772 
2773   auto *BinOp = cast<BinaryOperator>(Op0);
2774   if (!isSafeToSpeculativelyExecute(BinOp))
2775     return nullptr;
2776 
2777   Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
2778   if (auto NewBOI = dyn_cast<Instruction>(NewBO))
2779     NewBOI->copyIRFlags(BinOp);
2780 
2781   return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
2782 }
2783 
2784 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2785   Value *LHS = SVI.getOperand(0);
2786   Value *RHS = SVI.getOperand(1);
2787   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2788   if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2789                                           SVI.getType(), ShufQuery))
2790     return replaceInstUsesWith(SVI, V);
2791 
2792   if (Instruction *I = simplifyBinOpSplats(SVI))
2793     return I;
2794 
2795   // Canonicalize splat shuffle to use poison RHS. Handle this explicitly in
2796   // order to support scalable vectors.
2797   if (match(SVI.getShuffleMask(), m_ZeroMask()) && !isa<PoisonValue>(RHS))
2798     return replaceOperand(SVI, 1, PoisonValue::get(RHS->getType()));
2799 
2800   if (isa<ScalableVectorType>(LHS->getType()))
2801     return nullptr;
2802 
2803   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2804   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2805 
2806   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2807   //
2808   // if X and Y are of the same (vector) type, and the element size is not
2809   // changed by the bitcasts, we can distribute the bitcasts through the
2810   // shuffle, hopefully reducing the number of instructions. We make sure that
2811   // at least one bitcast only has one use, so we don't *increase* the number of
2812   // instructions here.
2813   Value *X, *Y;
2814   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2815       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2816       X->getType()->getScalarSizeInBits() ==
2817           SVI.getType()->getScalarSizeInBits() &&
2818       (LHS->hasOneUse() || RHS->hasOneUse())) {
2819     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2820                                            SVI.getName() + ".uncasted");
2821     return new BitCastInst(V, SVI.getType());
2822   }
2823 
2824   ArrayRef<int> Mask = SVI.getShuffleMask();
2825 
2826   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2827   // simulated shuffle can simplify, then this shuffle is unnecessary:
2828   // shuf (bitcast X), undef, Mask --> bitcast X'
2829   // TODO: This could be extended to allow length-changing shuffles.
2830   //       The transform might also be obsoleted if we allowed canonicalization
2831   //       of bitcasted shuffles.
2832   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2833       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2834     // Try to create a scaled mask constant.
2835     auto *XType = cast<FixedVectorType>(X->getType());
2836     unsigned XNumElts = XType->getNumElements();
2837     SmallVector<int, 16> ScaledMask;
2838     if (XNumElts >= VWidth) {
2839       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2840       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2841     } else {
2842       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2843       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2844         ScaledMask.clear();
2845     }
2846     if (!ScaledMask.empty()) {
2847       // If the shuffled source vector simplifies, cast that value to this
2848       // shuffle's type.
2849       if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
2850                                               ScaledMask, XType, ShufQuery))
2851         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2852     }
2853   }
2854 
2855   // shuffle x, x, mask --> shuffle x, undef, mask'
2856   if (LHS == RHS) {
2857     assert(!match(RHS, m_Undef()) &&
2858            "Shuffle with 2 undef ops not simplified?");
2859     return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2860   }
2861 
2862   // shuffle undef, x, mask --> shuffle x, undef, mask'
2863   if (match(LHS, m_Undef())) {
2864     SVI.commute();
2865     return &SVI;
2866   }
2867 
2868   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2869     return I;
2870 
2871   if (Instruction *I = foldSelectShuffle(SVI))
2872     return I;
2873 
2874   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2875     return I;
2876 
2877   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2878     return I;
2879 
2880   if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder))
2881     return I;
2882 
2883   if (Instruction *I = foldCastShuffle(SVI, Builder))
2884     return I;
2885 
2886   APInt PoisonElts(VWidth, 0);
2887   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2888   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, PoisonElts)) {
2889     if (V != &SVI)
2890       return replaceInstUsesWith(SVI, V);
2891     return &SVI;
2892   }
2893 
2894   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2895     return I;
2896 
2897   // These transforms have the potential to lose undef knowledge, so they are
2898   // intentionally placed after SimplifyDemandedVectorElts().
2899   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2900     return I;
2901   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2902     return I;
2903 
2904   if (match(RHS, m_Poison()) && canEvaluateShuffled(LHS, Mask)) {
2905     Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder);
2906     return replaceInstUsesWith(SVI, V);
2907   }
2908 
2909   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2910   // a non-vector type. We can instead bitcast the original vector followed by
2911   // an extract of the desired element:
2912   //
2913   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2914   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2915   //   %1 = bitcast <4 x i8> %sroa to i32
2916   // Becomes:
2917   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2918   //   %ext = extractelement <4 x i32> %bc, i32 0
2919   //
2920   // If the shuffle is extracting a contiguous range of values from the input
2921   // vector then each use which is a bitcast of the extracted size can be
2922   // replaced. This will work if the vector types are compatible, and the begin
2923   // index is aligned to a value in the casted vector type. If the begin index
2924   // isn't aligned then we can shuffle the original vector (keeping the same
2925   // vector type) before extracting.
2926   //
2927   // This code will bail out if the target type is fundamentally incompatible
2928   // with vectors of the source type.
2929   //
2930   // Example of <16 x i8>, target type i32:
2931   // Index range [4,8):         v-----------v Will work.
2932   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2933   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2934   //     <4 x i32>: |           |           |           |           |
2935   //                +-----------+-----------+-----------+-----------+
2936   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2937   // Target type i40:           ^--------------^ Won't work, bail.
2938   bool MadeChange = false;
2939   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2940     Value *V = LHS;
2941     unsigned MaskElems = Mask.size();
2942     auto *SrcTy = cast<FixedVectorType>(V->getType());
2943     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
2944     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2945     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2946     unsigned SrcNumElems = SrcTy->getNumElements();
2947     SmallVector<BitCastInst *, 8> BCs;
2948     DenseMap<Type *, Value *> NewBCs;
2949     for (User *U : SVI.users())
2950       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2951         if (!BC->use_empty())
2952           // Only visit bitcasts that weren't previously handled.
2953           BCs.push_back(BC);
2954     for (BitCastInst *BC : BCs) {
2955       unsigned BegIdx = Mask.front();
2956       Type *TgtTy = BC->getDestTy();
2957       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2958       if (!TgtElemBitWidth)
2959         continue;
2960       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2961       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2962       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2963       if (!VecBitWidthsEqual)
2964         continue;
2965       if (!VectorType::isValidElementType(TgtTy))
2966         continue;
2967       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2968       if (!BegIsAligned) {
2969         // Shuffle the input so [0,NumElements) contains the output, and
2970         // [NumElems,SrcNumElems) is undef.
2971         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2972         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2973           ShuffleMask[I] = Idx;
2974         V = Builder.CreateShuffleVector(V, ShuffleMask,
2975                                         SVI.getName() + ".extract");
2976         BegIdx = 0;
2977       }
2978       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2979       assert(SrcElemsPerTgtElem);
2980       BegIdx /= SrcElemsPerTgtElem;
2981       bool BCAlreadyExists = NewBCs.contains(CastSrcTy);
2982       auto *NewBC =
2983           BCAlreadyExists
2984               ? NewBCs[CastSrcTy]
2985               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2986       if (!BCAlreadyExists)
2987         NewBCs[CastSrcTy] = NewBC;
2988       auto *Ext = Builder.CreateExtractElement(NewBC, BegIdx,
2989                                                SVI.getName() + ".extract");
2990       // The shufflevector isn't being replaced: the bitcast that used it
2991       // is. InstCombine will visit the newly-created instructions.
2992       replaceInstUsesWith(*BC, Ext);
2993       MadeChange = true;
2994     }
2995   }
2996 
2997   // If the LHS is a shufflevector itself, see if we can combine it with this
2998   // one without producing an unusual shuffle.
2999   // Cases that might be simplified:
3000   // 1.
3001   // x1=shuffle(v1,v2,mask1)
3002   //  x=shuffle(x1,undef,mask)
3003   //        ==>
3004   //  x=shuffle(v1,undef,newMask)
3005   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
3006   // 2.
3007   // x1=shuffle(v1,undef,mask1)
3008   //  x=shuffle(x1,x2,mask)
3009   // where v1.size() == mask1.size()
3010   //        ==>
3011   //  x=shuffle(v1,x2,newMask)
3012   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
3013   // 3.
3014   // x2=shuffle(v2,undef,mask2)
3015   //  x=shuffle(x1,x2,mask)
3016   // where v2.size() == mask2.size()
3017   //        ==>
3018   //  x=shuffle(x1,v2,newMask)
3019   // newMask[i] = (mask[i] < x1.size())
3020   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
3021   // 4.
3022   // x1=shuffle(v1,undef,mask1)
3023   // x2=shuffle(v2,undef,mask2)
3024   //  x=shuffle(x1,x2,mask)
3025   // where v1.size() == v2.size()
3026   //        ==>
3027   //  x=shuffle(v1,v2,newMask)
3028   // newMask[i] = (mask[i] < x1.size())
3029   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
3030   //
3031   // Here we are really conservative:
3032   // we are absolutely afraid of producing a shuffle mask not in the input
3033   // program, because the code gen may not be smart enough to turn a merged
3034   // shuffle into two specific shuffles: it may produce worse code.  As such,
3035   // we only merge two shuffles if the result is either a splat or one of the
3036   // input shuffle masks.  In this case, merging the shuffles just removes
3037   // one instruction, which we know is safe.  This is good for things like
3038   // turning: (splat(splat)) -> splat, or
3039   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
3040   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
3041   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
3042   if (LHSShuffle)
3043     if (!match(LHSShuffle->getOperand(1), m_Poison()) &&
3044         !match(RHS, m_Poison()))
3045       LHSShuffle = nullptr;
3046   if (RHSShuffle)
3047     if (!match(RHSShuffle->getOperand(1), m_Poison()))
3048       RHSShuffle = nullptr;
3049   if (!LHSShuffle && !RHSShuffle)
3050     return MadeChange ? &SVI : nullptr;
3051 
3052   Value* LHSOp0 = nullptr;
3053   Value* LHSOp1 = nullptr;
3054   Value* RHSOp0 = nullptr;
3055   unsigned LHSOp0Width = 0;
3056   unsigned RHSOp0Width = 0;
3057   if (LHSShuffle) {
3058     LHSOp0 = LHSShuffle->getOperand(0);
3059     LHSOp1 = LHSShuffle->getOperand(1);
3060     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
3061   }
3062   if (RHSShuffle) {
3063     RHSOp0 = RHSShuffle->getOperand(0);
3064     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
3065   }
3066   Value* newLHS = LHS;
3067   Value* newRHS = RHS;
3068   if (LHSShuffle) {
3069     // case 1
3070     if (match(RHS, m_Poison())) {
3071       newLHS = LHSOp0;
3072       newRHS = LHSOp1;
3073     }
3074     // case 2 or 4
3075     else if (LHSOp0Width == LHSWidth) {
3076       newLHS = LHSOp0;
3077     }
3078   }
3079   // case 3 or 4
3080   if (RHSShuffle && RHSOp0Width == LHSWidth) {
3081     newRHS = RHSOp0;
3082   }
3083   // case 4
3084   if (LHSOp0 == RHSOp0) {
3085     newLHS = LHSOp0;
3086     newRHS = nullptr;
3087   }
3088 
3089   if (newLHS == LHS && newRHS == RHS)
3090     return MadeChange ? &SVI : nullptr;
3091 
3092   ArrayRef<int> LHSMask;
3093   ArrayRef<int> RHSMask;
3094   if (newLHS != LHS)
3095     LHSMask = LHSShuffle->getShuffleMask();
3096   if (RHSShuffle && newRHS != RHS)
3097     RHSMask = RHSShuffle->getShuffleMask();
3098 
3099   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3100   SmallVector<int, 16> newMask;
3101   bool isSplat = true;
3102   int SplatElt = -1;
3103   // Create a new mask for the new ShuffleVectorInst so that the new
3104   // ShuffleVectorInst is equivalent to the original one.
3105   for (unsigned i = 0; i < VWidth; ++i) {
3106     int eltMask;
3107     if (Mask[i] < 0) {
3108       // This element is a poison value.
3109       eltMask = -1;
3110     } else if (Mask[i] < (int)LHSWidth) {
3111       // This element is from left hand side vector operand.
3112       //
3113       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
3114       // new mask value for the element.
3115       if (newLHS != LHS) {
3116         eltMask = LHSMask[Mask[i]];
3117         // If the value selected is an poison value, explicitly specify it
3118         // with a -1 mask value.
3119         if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1))
3120           eltMask = -1;
3121       } else
3122         eltMask = Mask[i];
3123     } else {
3124       // This element is from right hand side vector operand
3125       //
3126       // If the value selected is a poison value, explicitly specify it
3127       // with a -1 mask value. (case 1)
3128       if (match(RHS, m_Poison()))
3129         eltMask = -1;
3130       // If RHS is going to be replaced (case 3 or 4), calculate the
3131       // new mask value for the element.
3132       else if (newRHS != RHS) {
3133         eltMask = RHSMask[Mask[i]-LHSWidth];
3134         // If the value selected is an poison value, explicitly specify it
3135         // with a -1 mask value.
3136         if (eltMask >= (int)RHSOp0Width) {
3137           assert(match(RHSShuffle->getOperand(1), m_Poison()) &&
3138                  "should have been check above");
3139           eltMask = -1;
3140         }
3141       } else
3142         eltMask = Mask[i]-LHSWidth;
3143 
3144       // If LHS's width is changed, shift the mask value accordingly.
3145       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
3146       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
3147       // If newRHS == newLHS, we want to remap any references from newRHS to
3148       // newLHS so that we can properly identify splats that may occur due to
3149       // obfuscation across the two vectors.
3150       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
3151         eltMask += newLHSWidth;
3152     }
3153 
3154     // Check if this could still be a splat.
3155     if (eltMask >= 0) {
3156       if (SplatElt >= 0 && SplatElt != eltMask)
3157         isSplat = false;
3158       SplatElt = eltMask;
3159     }
3160 
3161     newMask.push_back(eltMask);
3162   }
3163 
3164   // If the result mask is equal to one of the original shuffle masks,
3165   // or is a splat, do the replacement.
3166   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3167     if (!newRHS)
3168       newRHS = PoisonValue::get(newLHS->getType());
3169     return new ShuffleVectorInst(newLHS, newRHS, newMask);
3170   }
3171 
3172   return MadeChange ? &SVI : nullptr;
3173 }
3174