1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 STATISTIC(NumAggregateReconstructionsSimplified, 50 "Number of aggregate reconstructions turned into reuse of the " 51 "original aggregate"); 52 53 /// Return true if the value is cheaper to scalarize than it is to leave as a 54 /// vector operation. If the extract index \p EI is a constant integer then 55 /// some operations may be cheap to scalarize. 56 /// 57 /// FIXME: It's possible to create more instructions than previously existed. 58 static bool cheapToScalarize(Value *V, Value *EI) { 59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 60 61 // If we can pick a scalar constant value out of a vector, that is free. 62 if (auto *C = dyn_cast<Constant>(V)) 63 return CEI || C->getSplatValue(); 64 65 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 67 // Index needs to be lower than the minimum size of the vector, because 68 // for scalable vector, the vector size is known at run time. 69 return CEI->getValue().ult(EC.getKnownMinValue()); 70 } 71 72 // An insertelement to the same constant index as our extract will simplify 73 // to the scalar inserted element. An insertelement to a different constant 74 // index is irrelevant to our extract. 75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 76 return CEI; 77 78 if (match(V, m_OneUse(m_Load(m_Value())))) 79 return true; 80 81 if (match(V, m_OneUse(m_UnOp()))) 82 return true; 83 84 Value *V0, *V1; 85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 87 return true; 88 89 CmpInst::Predicate UnusedPred; 90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 92 return true; 93 94 return false; 95 } 96 97 // If we have a PHI node with a vector type that is only used to feed 98 // itself and be an operand of extractelement at a constant location, 99 // try to replace the PHI of the vector type with a PHI of a scalar type. 100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 101 PHINode *PN) { 102 SmallVector<Instruction *, 2> Extracts; 103 // The users we want the PHI to have are: 104 // 1) The EI ExtractElement (we already know this) 105 // 2) Possibly more ExtractElements with the same index. 106 // 3) Another operand, which will feed back into the PHI. 107 Instruction *PHIUser = nullptr; 108 for (auto *U : PN->users()) { 109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 110 if (EI.getIndexOperand() == EU->getIndexOperand()) 111 Extracts.push_back(EU); 112 else 113 return nullptr; 114 } else if (!PHIUser) { 115 PHIUser = cast<Instruction>(U); 116 } else { 117 return nullptr; 118 } 119 } 120 121 if (!PHIUser) 122 return nullptr; 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return nullptr. 127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || 129 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 130 return nullptr; 131 132 // Create a scalar PHI node that will replace the vector PHI node 133 // just before the current PHI node. 134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), PN->getIterator())); 136 // Scalarize each PHI operand. 137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 138 Value *PHIInVal = PN->getIncomingValue(i); 139 BasicBlock *inBB = PN->getIncomingBlock(i); 140 Value *Elt = EI.getIndexOperand(); 141 // If the operand is the PHI induction variable: 142 if (PHIInVal == PHIUser) { 143 // Scalarize the binary operation. Its first operand is the 144 // scalar PHI, and the second operand is extracted from the other 145 // vector operand. 146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 148 Value *Op = InsertNewInstWith( 149 ExtractElementInst::Create(B0->getOperand(opId), Elt, 150 B0->getOperand(opId)->getName() + ".Elt"), 151 B0->getIterator()); 152 Value *newPHIUser = InsertNewInstWith( 153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 154 scalarPHI, Op, B0), B0->getIterator()); 155 scalarPHI->addIncoming(newPHIUser, inBB); 156 } else { 157 // Scalarize PHI input: 158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 159 // Insert the new instruction into the predecessor basic block. 160 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 161 BasicBlock::iterator InsertPos; 162 if (pos && !isa<PHINode>(pos)) { 163 InsertPos = ++pos->getIterator(); 164 } else { 165 InsertPos = inBB->getFirstInsertionPt(); 166 } 167 168 InsertNewInstWith(newEI, InsertPos); 169 170 scalarPHI->addIncoming(newEI, inBB); 171 } 172 } 173 174 for (auto *E : Extracts) { 175 replaceInstUsesWith(*E, scalarPHI); 176 // Add old extract to worklist for DCE. 177 addToWorklist(E); 178 } 179 180 return &EI; 181 } 182 183 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 184 Value *X; 185 uint64_t ExtIndexC; 186 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 187 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 188 return nullptr; 189 190 ElementCount NumElts = 191 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 192 Type *DestTy = Ext.getType(); 193 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 194 bool IsBigEndian = DL.isBigEndian(); 195 196 // If we are casting an integer to vector and extracting a portion, that is 197 // a shift-right and truncate. 198 if (X->getType()->isIntegerTy()) { 199 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 200 "Expected fixed vector type for bitcast from scalar integer"); 201 202 // Big endian requires adjusting the extract index since MSB is at index 0. 203 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 204 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 205 if (IsBigEndian) 206 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 207 unsigned ShiftAmountC = ExtIndexC * DestWidth; 208 if (!ShiftAmountC || 209 (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) && 210 Ext.getVectorOperand()->hasOneUse())) { 211 if (ShiftAmountC) 212 X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 213 if (DestTy->isFloatingPointTy()) { 214 Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth); 215 Value *Trunc = Builder.CreateTrunc(X, DstIntTy); 216 return new BitCastInst(Trunc, DestTy); 217 } 218 return new TruncInst(X, DestTy); 219 } 220 } 221 222 if (!X->getType()->isVectorTy()) 223 return nullptr; 224 225 // If this extractelement is using a bitcast from a vector of the same number 226 // of elements, see if we can find the source element from the source vector: 227 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 228 auto *SrcTy = cast<VectorType>(X->getType()); 229 ElementCount NumSrcElts = SrcTy->getElementCount(); 230 if (NumSrcElts == NumElts) 231 if (Value *Elt = findScalarElement(X, ExtIndexC)) 232 return new BitCastInst(Elt, DestTy); 233 234 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 235 "Src and Dst must be the same sort of vector type"); 236 237 // If the source elements are wider than the destination, try to shift and 238 // truncate a subset of scalar bits of an insert op. 239 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 240 Value *Scalar; 241 Value *Vec; 242 uint64_t InsIndexC; 243 if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar), 244 m_ConstantInt(InsIndexC)))) 245 return nullptr; 246 247 // The extract must be from the subset of vector elements that we inserted 248 // into. Example: if we inserted element 1 of a <2 x i64> and we are 249 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 250 // of elements 4-7 of the bitcasted vector. 251 unsigned NarrowingRatio = 252 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 253 254 if (ExtIndexC / NarrowingRatio != InsIndexC) { 255 // Remove insertelement, if we don't use the inserted element. 256 // extractelement (bitcast (insertelement (Vec, b)), a) -> 257 // extractelement (bitcast (Vec), a) 258 // FIXME: this should be removed to SimplifyDemandedVectorElts, 259 // once scale vectors are supported. 260 if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) { 261 Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType()); 262 return ExtractElementInst::Create(NewBC, Ext.getIndexOperand()); 263 } 264 return nullptr; 265 } 266 267 // We are extracting part of the original scalar. How that scalar is 268 // inserted into the vector depends on the endian-ness. Example: 269 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 270 // +--+--+--+--+--+--+--+--+ 271 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 272 // extelt <4 x i16> V', 3: | |S2|S3| 273 // +--+--+--+--+--+--+--+--+ 274 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 275 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 276 // In this example, we must right-shift little-endian. Big-endian is just a 277 // truncate. 278 unsigned Chunk = ExtIndexC % NarrowingRatio; 279 if (IsBigEndian) 280 Chunk = NarrowingRatio - 1 - Chunk; 281 282 // Bail out if this is an FP vector to FP vector sequence. That would take 283 // more instructions than we started with unless there is no shift, and it 284 // may not be handled as well in the backend. 285 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 286 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 287 if (NeedSrcBitcast && NeedDestBitcast) 288 return nullptr; 289 290 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 291 unsigned ShAmt = Chunk * DestWidth; 292 293 // TODO: This limitation is more strict than necessary. We could sum the 294 // number of new instructions and subtract the number eliminated to know if 295 // we can proceed. 296 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 297 if (NeedSrcBitcast || NeedDestBitcast) 298 return nullptr; 299 300 if (NeedSrcBitcast) { 301 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 302 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 303 } 304 305 if (ShAmt) { 306 // Bail out if we could end with more instructions than we started with. 307 if (!Ext.getVectorOperand()->hasOneUse()) 308 return nullptr; 309 Scalar = Builder.CreateLShr(Scalar, ShAmt); 310 } 311 312 if (NeedDestBitcast) { 313 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 314 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 315 } 316 return new TruncInst(Scalar, DestTy); 317 } 318 319 return nullptr; 320 } 321 322 /// Find elements of V demanded by UserInstr. 323 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 324 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 325 326 // Conservatively assume that all elements are needed. 327 APInt UsedElts(APInt::getAllOnes(VWidth)); 328 329 switch (UserInstr->getOpcode()) { 330 case Instruction::ExtractElement: { 331 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 332 assert(EEI->getVectorOperand() == V); 333 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 334 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 335 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 336 } 337 break; 338 } 339 case Instruction::ShuffleVector: { 340 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 341 unsigned MaskNumElts = 342 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 343 344 UsedElts = APInt(VWidth, 0); 345 for (unsigned i = 0; i < MaskNumElts; i++) { 346 unsigned MaskVal = Shuffle->getMaskValue(i); 347 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 348 continue; 349 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 350 UsedElts.setBit(MaskVal); 351 if (Shuffle->getOperand(1) == V && 352 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 353 UsedElts.setBit(MaskVal - VWidth); 354 } 355 break; 356 } 357 default: 358 break; 359 } 360 return UsedElts; 361 } 362 363 /// Find union of elements of V demanded by all its users. 364 /// If it is known by querying findDemandedEltsBySingleUser that 365 /// no user demands an element of V, then the corresponding bit 366 /// remains unset in the returned value. 367 static APInt findDemandedEltsByAllUsers(Value *V) { 368 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 369 370 APInt UnionUsedElts(VWidth, 0); 371 for (const Use &U : V->uses()) { 372 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 373 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 374 } else { 375 UnionUsedElts = APInt::getAllOnes(VWidth); 376 break; 377 } 378 379 if (UnionUsedElts.isAllOnes()) 380 break; 381 } 382 383 return UnionUsedElts; 384 } 385 386 /// Given a constant index for a extractelement or insertelement instruction, 387 /// return it with the canonical type if it isn't already canonical. We 388 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 389 /// matter, we just want a consistent type to simplify CSE. 390 static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 391 const unsigned IndexBW = IndexC->getBitWidth(); 392 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 393 return nullptr; 394 return ConstantInt::get(IndexC->getContext(), 395 IndexC->getValue().zextOrTrunc(64)); 396 } 397 398 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 399 Value *SrcVec = EI.getVectorOperand(); 400 Value *Index = EI.getIndexOperand(); 401 if (Value *V = simplifyExtractElementInst(SrcVec, Index, 402 SQ.getWithInstruction(&EI))) 403 return replaceInstUsesWith(EI, V); 404 405 // extractelt (select %x, %vec1, %vec2), %const -> 406 // select %x, %vec1[%const], %vec2[%const] 407 // TODO: Support constant folding of multiple select operands: 408 // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2) 409 // If the extractelement will for instance try to do out of bounds accesses 410 // because of the values of %c1 and/or %c2, the sequence could be optimized 411 // early. This is currently not possible because constant folding will reach 412 // an unreachable assertion if it doesn't find a constant operand. 413 if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand())) 414 if (SI->getCondition()->getType()->isIntegerTy() && 415 isa<Constant>(EI.getIndexOperand())) 416 if (Instruction *R = FoldOpIntoSelect(EI, SI)) 417 return R; 418 419 // If extracting a specified index from the vector, see if we can recursively 420 // find a previously computed scalar that was inserted into the vector. 421 auto *IndexC = dyn_cast<ConstantInt>(Index); 422 if (IndexC) { 423 // Canonicalize type of constant indices to i64 to simplify CSE 424 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 425 return replaceOperand(EI, 1, NewIdx); 426 427 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 428 unsigned NumElts = EC.getKnownMinValue(); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 431 Intrinsic::ID IID = II->getIntrinsicID(); 432 // Index needs to be lower than the minimum size of the vector, because 433 // for scalable vector, the vector size is known at run time. 434 if (IID == Intrinsic::experimental_stepvector && 435 IndexC->getValue().ult(NumElts)) { 436 Type *Ty = EI.getType(); 437 unsigned BitWidth = Ty->getIntegerBitWidth(); 438 Value *Idx; 439 // Return index when its value does not exceed the allowed limit 440 // for the element type of the vector, otherwise return undefined. 441 if (IndexC->getValue().getActiveBits() <= BitWidth) 442 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 443 else 444 Idx = PoisonValue::get(Ty); 445 return replaceInstUsesWith(EI, Idx); 446 } 447 } 448 449 // InstSimplify should handle cases where the index is invalid. 450 // For fixed-length vector, it's invalid to extract out-of-range element. 451 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 452 return nullptr; 453 454 if (Instruction *I = foldBitcastExtElt(EI)) 455 return I; 456 457 // If there's a vector PHI feeding a scalar use through this extractelement 458 // instruction, try to scalarize the PHI. 459 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 460 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 461 return ScalarPHI; 462 } 463 464 // TODO come up with a n-ary matcher that subsumes both unary and 465 // binary matchers. 466 UnaryOperator *UO; 467 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 468 // extelt (unop X), Index --> unop (extelt X, Index) 469 Value *X = UO->getOperand(0); 470 Value *E = Builder.CreateExtractElement(X, Index); 471 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 472 } 473 474 BinaryOperator *BO; 475 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 476 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 477 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 478 Value *E0 = Builder.CreateExtractElement(X, Index); 479 Value *E1 = Builder.CreateExtractElement(Y, Index); 480 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 481 } 482 483 Value *X, *Y; 484 CmpInst::Predicate Pred; 485 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 486 cheapToScalarize(SrcVec, Index)) { 487 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 488 Value *E0 = Builder.CreateExtractElement(X, Index); 489 Value *E1 = Builder.CreateExtractElement(Y, Index); 490 CmpInst *SrcCmpInst = cast<CmpInst>(SrcVec); 491 return CmpInst::CreateWithCopiedFlags(SrcCmpInst->getOpcode(), Pred, E0, E1, 492 SrcCmpInst); 493 } 494 495 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 496 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 497 // instsimplify already handled the case where the indices are constants 498 // and equal by value, if both are constants, they must not be the same 499 // value, extract from the pre-inserted value instead. 500 if (isa<Constant>(IE->getOperand(2)) && IndexC) 501 return replaceOperand(EI, 0, IE->getOperand(0)); 502 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 503 auto *VecType = cast<VectorType>(GEP->getType()); 504 ElementCount EC = VecType->getElementCount(); 505 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 506 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 507 // Find out why we have a vector result - these are a few examples: 508 // 1. We have a scalar pointer and a vector of indices, or 509 // 2. We have a vector of pointers and a scalar index, or 510 // 3. We have a vector of pointers and a vector of indices, etc. 511 // Here we only consider combining when there is exactly one vector 512 // operand, since the optimization is less obviously a win due to 513 // needing more than one extractelements. 514 515 unsigned VectorOps = 516 llvm::count_if(GEP->operands(), [](const Value *V) { 517 return isa<VectorType>(V->getType()); 518 }); 519 if (VectorOps == 1) { 520 Value *NewPtr = GEP->getPointerOperand(); 521 if (isa<VectorType>(NewPtr->getType())) 522 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 523 524 SmallVector<Value *> NewOps; 525 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 526 Value *Op = GEP->getOperand(I); 527 if (isa<VectorType>(Op->getType())) 528 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 529 else 530 NewOps.push_back(Op); 531 } 532 533 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 534 GEP->getSourceElementType(), NewPtr, NewOps); 535 NewGEP->setIsInBounds(GEP->isInBounds()); 536 return NewGEP; 537 } 538 } 539 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 540 // If this is extracting an element from a shufflevector, figure out where 541 // it came from and extract from the appropriate input element instead. 542 // Restrict the following transformation to fixed-length vector. 543 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 544 int SrcIdx = 545 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 546 Value *Src; 547 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 548 ->getNumElements(); 549 550 if (SrcIdx < 0) 551 return replaceInstUsesWith(EI, PoisonValue::get(EI.getType())); 552 if (SrcIdx < (int)LHSWidth) 553 Src = SVI->getOperand(0); 554 else { 555 SrcIdx -= LHSWidth; 556 Src = SVI->getOperand(1); 557 } 558 Type *Int64Ty = Type::getInt64Ty(EI.getContext()); 559 return ExtractElementInst::Create( 560 Src, ConstantInt::get(Int64Ty, SrcIdx, false)); 561 } 562 } else if (auto *CI = dyn_cast<CastInst>(I)) { 563 // Canonicalize extractelement(cast) -> cast(extractelement). 564 // Bitcasts can change the number of vector elements, and they cost 565 // nothing. 566 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 567 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 568 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 569 } 570 } 571 } 572 573 // Run demanded elements after other transforms as this can drop flags on 574 // binops. If there's two paths to the same final result, we prefer the 575 // one which doesn't force us to drop flags. 576 if (IndexC) { 577 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 578 unsigned NumElts = EC.getKnownMinValue(); 579 // This instruction only demands the single element from the input vector. 580 // Skip for scalable type, the number of elements is unknown at 581 // compile-time. 582 if (!EC.isScalable() && NumElts != 1) { 583 // If the input vector has a single use, simplify it based on this use 584 // property. 585 if (SrcVec->hasOneUse()) { 586 APInt PoisonElts(NumElts, 0); 587 APInt DemandedElts(NumElts, 0); 588 DemandedElts.setBit(IndexC->getZExtValue()); 589 if (Value *V = 590 SimplifyDemandedVectorElts(SrcVec, DemandedElts, PoisonElts)) 591 return replaceOperand(EI, 0, V); 592 } else { 593 // If the input vector has multiple uses, simplify it based on a union 594 // of all elements used. 595 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 596 if (!DemandedElts.isAllOnes()) { 597 APInt PoisonElts(NumElts, 0); 598 if (Value *V = SimplifyDemandedVectorElts( 599 SrcVec, DemandedElts, PoisonElts, 0 /* Depth */, 600 true /* AllowMultipleUsers */)) { 601 if (V != SrcVec) { 602 Worklist.addValue(SrcVec); 603 SrcVec->replaceAllUsesWith(V); 604 return &EI; 605 } 606 } 607 } 608 } 609 } 610 } 611 return nullptr; 612 } 613 614 /// If V is a shuffle of values that ONLY returns elements from either LHS or 615 /// RHS, return the shuffle mask and true. Otherwise, return false. 616 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 617 SmallVectorImpl<int> &Mask) { 618 assert(LHS->getType() == RHS->getType() && 619 "Invalid CollectSingleShuffleElements"); 620 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 621 622 if (match(V, m_Undef())) { 623 Mask.assign(NumElts, -1); 624 return true; 625 } 626 627 if (V == LHS) { 628 for (unsigned i = 0; i != NumElts; ++i) 629 Mask.push_back(i); 630 return true; 631 } 632 633 if (V == RHS) { 634 for (unsigned i = 0; i != NumElts; ++i) 635 Mask.push_back(i + NumElts); 636 return true; 637 } 638 639 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 640 // If this is an insert of an extract from some other vector, include it. 641 Value *VecOp = IEI->getOperand(0); 642 Value *ScalarOp = IEI->getOperand(1); 643 Value *IdxOp = IEI->getOperand(2); 644 645 if (!isa<ConstantInt>(IdxOp)) 646 return false; 647 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 648 649 if (isa<PoisonValue>(ScalarOp)) { // inserting poison into vector. 650 // We can handle this if the vector we are inserting into is 651 // transitively ok. 652 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 653 // If so, update the mask to reflect the inserted poison. 654 Mask[InsertedIdx] = -1; 655 return true; 656 } 657 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 658 if (isa<ConstantInt>(EI->getOperand(1))) { 659 unsigned ExtractedIdx = 660 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 661 unsigned NumLHSElts = 662 cast<FixedVectorType>(LHS->getType())->getNumElements(); 663 664 // This must be extracting from either LHS or RHS. 665 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 666 // We can handle this if the vector we are inserting into is 667 // transitively ok. 668 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 669 // If so, update the mask to reflect the inserted value. 670 if (EI->getOperand(0) == LHS) { 671 Mask[InsertedIdx % NumElts] = ExtractedIdx; 672 } else { 673 assert(EI->getOperand(0) == RHS); 674 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 675 } 676 return true; 677 } 678 } 679 } 680 } 681 } 682 683 return false; 684 } 685 686 /// If we have insertion into a vector that is wider than the vector that we 687 /// are extracting from, try to widen the source vector to allow a single 688 /// shufflevector to replace one or more insert/extract pairs. 689 static bool replaceExtractElements(InsertElementInst *InsElt, 690 ExtractElementInst *ExtElt, 691 InstCombinerImpl &IC) { 692 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 693 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 694 unsigned NumInsElts = InsVecType->getNumElements(); 695 unsigned NumExtElts = ExtVecType->getNumElements(); 696 697 // The inserted-to vector must be wider than the extracted-from vector. 698 if (InsVecType->getElementType() != ExtVecType->getElementType() || 699 NumExtElts >= NumInsElts) 700 return false; 701 702 // Create a shuffle mask to widen the extended-from vector using poison 703 // values. The mask selects all of the values of the original vector followed 704 // by as many poison values as needed to create a vector of the same length 705 // as the inserted-to vector. 706 SmallVector<int, 16> ExtendMask; 707 for (unsigned i = 0; i < NumExtElts; ++i) 708 ExtendMask.push_back(i); 709 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 710 ExtendMask.push_back(-1); 711 712 Value *ExtVecOp = ExtElt->getVectorOperand(); 713 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 714 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 715 ? ExtVecOpInst->getParent() 716 : ExtElt->getParent(); 717 718 // TODO: This restriction matches the basic block check below when creating 719 // new extractelement instructions. If that limitation is removed, this one 720 // could also be removed. But for now, we just bail out to ensure that we 721 // will replace the extractelement instruction that is feeding our 722 // insertelement instruction. This allows the insertelement to then be 723 // replaced by a shufflevector. If the insertelement is not replaced, we can 724 // induce infinite looping because there's an optimization for extractelement 725 // that will delete our widening shuffle. This would trigger another attempt 726 // here to create that shuffle, and we spin forever. 727 if (InsertionBlock != InsElt->getParent()) 728 return false; 729 730 // TODO: This restriction matches the check in visitInsertElementInst() and 731 // prevents an infinite loop caused by not turning the extract/insert pair 732 // into a shuffle. We really should not need either check, but we're lacking 733 // folds for shufflevectors because we're afraid to generate shuffle masks 734 // that the backend can't handle. 735 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 736 return false; 737 738 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 739 740 // Insert the new shuffle after the vector operand of the extract is defined 741 // (as long as it's not a PHI) or at the start of the basic block of the 742 // extract, so any subsequent extracts in the same basic block can use it. 743 // TODO: Insert before the earliest ExtractElementInst that is replaced. 744 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 745 WideVec->insertAfter(ExtVecOpInst); 746 else 747 IC.InsertNewInstWith(WideVec, ExtElt->getParent()->getFirstInsertionPt()); 748 749 // Replace extracts from the original narrow vector with extracts from the new 750 // wide vector. 751 for (User *U : ExtVecOp->users()) { 752 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 753 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 754 continue; 755 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 756 IC.InsertNewInstWith(NewExt, OldExt->getIterator()); 757 IC.replaceInstUsesWith(*OldExt, NewExt); 758 // Add the old extracts to the worklist for DCE. We can't remove the 759 // extracts directly, because they may still be used by the calling code. 760 IC.addToWorklist(OldExt); 761 } 762 763 return true; 764 } 765 766 /// We are building a shuffle to create V, which is a sequence of insertelement, 767 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 768 /// not rely on the second vector source. Return a std::pair containing the 769 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 770 /// parameter as required. 771 /// 772 /// Note: we intentionally don't try to fold earlier shuffles since they have 773 /// often been chosen carefully to be efficiently implementable on the target. 774 using ShuffleOps = std::pair<Value *, Value *>; 775 776 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 777 Value *PermittedRHS, 778 InstCombinerImpl &IC, bool &Rerun) { 779 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 780 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 781 782 if (match(V, m_Poison())) { 783 Mask.assign(NumElts, -1); 784 return std::make_pair( 785 PermittedRHS ? PoisonValue::get(PermittedRHS->getType()) : V, nullptr); 786 } 787 788 if (isa<ConstantAggregateZero>(V)) { 789 Mask.assign(NumElts, 0); 790 return std::make_pair(V, nullptr); 791 } 792 793 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 794 // If this is an insert of an extract from some other vector, include it. 795 Value *VecOp = IEI->getOperand(0); 796 Value *ScalarOp = IEI->getOperand(1); 797 Value *IdxOp = IEI->getOperand(2); 798 799 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 800 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 801 unsigned ExtractedIdx = 802 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 803 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 804 805 // Either the extracted from or inserted into vector must be RHSVec, 806 // otherwise we'd end up with a shuffle of three inputs. 807 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 808 Value *RHS = EI->getOperand(0); 809 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun); 810 assert(LR.second == nullptr || LR.second == RHS); 811 812 if (LR.first->getType() != RHS->getType()) { 813 // Although we are giving up for now, see if we can create extracts 814 // that match the inserts for another round of combining. 815 if (replaceExtractElements(IEI, EI, IC)) 816 Rerun = true; 817 818 // We tried our best, but we can't find anything compatible with RHS 819 // further up the chain. Return a trivial shuffle. 820 for (unsigned i = 0; i < NumElts; ++i) 821 Mask[i] = i; 822 return std::make_pair(V, nullptr); 823 } 824 825 unsigned NumLHSElts = 826 cast<FixedVectorType>(RHS->getType())->getNumElements(); 827 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 828 return std::make_pair(LR.first, RHS); 829 } 830 831 if (VecOp == PermittedRHS) { 832 // We've gone as far as we can: anything on the other side of the 833 // extractelement will already have been converted into a shuffle. 834 unsigned NumLHSElts = 835 cast<FixedVectorType>(EI->getOperand(0)->getType()) 836 ->getNumElements(); 837 for (unsigned i = 0; i != NumElts; ++i) 838 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 839 return std::make_pair(EI->getOperand(0), PermittedRHS); 840 } 841 842 // If this insertelement is a chain that comes from exactly these two 843 // vectors, return the vector and the effective shuffle. 844 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 845 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 846 Mask)) 847 return std::make_pair(EI->getOperand(0), PermittedRHS); 848 } 849 } 850 } 851 852 // Otherwise, we can't do anything fancy. Return an identity vector. 853 for (unsigned i = 0; i != NumElts; ++i) 854 Mask.push_back(i); 855 return std::make_pair(V, nullptr); 856 } 857 858 /// Look for chain of insertvalue's that fully define an aggregate, and trace 859 /// back the values inserted, see if they are all were extractvalue'd from 860 /// the same source aggregate from the exact same element indexes. 861 /// If they were, just reuse the source aggregate. 862 /// This potentially deals with PHI indirections. 863 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 864 InsertValueInst &OrigIVI) { 865 Type *AggTy = OrigIVI.getType(); 866 unsigned NumAggElts; 867 switch (AggTy->getTypeID()) { 868 case Type::StructTyID: 869 NumAggElts = AggTy->getStructNumElements(); 870 break; 871 case Type::ArrayTyID: 872 NumAggElts = AggTy->getArrayNumElements(); 873 break; 874 default: 875 llvm_unreachable("Unhandled aggregate type?"); 876 } 877 878 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 879 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 880 // FIXME: any interesting patterns to be caught with larger limit? 881 assert(NumAggElts > 0 && "Aggregate should have elements."); 882 if (NumAggElts > 2) 883 return nullptr; 884 885 static constexpr auto NotFound = std::nullopt; 886 static constexpr auto FoundMismatch = nullptr; 887 888 // Try to find a value of each element of an aggregate. 889 // FIXME: deal with more complex, not one-dimensional, aggregate types 890 SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 891 892 // Do we know values for each element of the aggregate? 893 auto KnowAllElts = [&AggElts]() { 894 return !llvm::is_contained(AggElts, NotFound); 895 }; 896 897 int Depth = 0; 898 899 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 900 // every element being overwritten twice, which should never happen. 901 static const int DepthLimit = 2 * NumAggElts; 902 903 // Recurse up the chain of `insertvalue` aggregate operands until either we've 904 // reconstructed full initializer or can't visit any more `insertvalue`'s. 905 for (InsertValueInst *CurrIVI = &OrigIVI; 906 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 907 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 908 ++Depth) { 909 auto *InsertedValue = 910 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 911 if (!InsertedValue) 912 return nullptr; // Inserted value must be produced by an instruction. 913 914 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 915 916 // Don't bother with more than single-level aggregates. 917 if (Indices.size() != 1) 918 return nullptr; // FIXME: deal with more complex aggregates? 919 920 // Now, we may have already previously recorded the value for this element 921 // of an aggregate. If we did, that means the CurrIVI will later be 922 // overwritten with the already-recorded value. But if not, let's record it! 923 std::optional<Instruction *> &Elt = AggElts[Indices.front()]; 924 Elt = Elt.value_or(InsertedValue); 925 926 // FIXME: should we handle chain-terminating undef base operand? 927 } 928 929 // Was that sufficient to deduce the full initializer for the aggregate? 930 if (!KnowAllElts()) 931 return nullptr; // Give up then. 932 933 // We now want to find the source[s] of the aggregate elements we've found. 934 // And with "source" we mean the original aggregate[s] from which 935 // the inserted elements were extracted. This may require PHI translation. 936 937 enum class AggregateDescription { 938 /// When analyzing the value that was inserted into an aggregate, we did 939 /// not manage to find defining `extractvalue` instruction to analyze. 940 NotFound, 941 /// When analyzing the value that was inserted into an aggregate, we did 942 /// manage to find defining `extractvalue` instruction[s], and everything 943 /// matched perfectly - aggregate type, element insertion/extraction index. 944 Found, 945 /// When analyzing the value that was inserted into an aggregate, we did 946 /// manage to find defining `extractvalue` instruction, but there was 947 /// a mismatch: either the source type from which the extraction was didn't 948 /// match the aggregate type into which the insertion was, 949 /// or the extraction/insertion channels mismatched, 950 /// or different elements had different source aggregates. 951 FoundMismatch 952 }; 953 auto Describe = [](std::optional<Value *> SourceAggregate) { 954 if (SourceAggregate == NotFound) 955 return AggregateDescription::NotFound; 956 if (*SourceAggregate == FoundMismatch) 957 return AggregateDescription::FoundMismatch; 958 return AggregateDescription::Found; 959 }; 960 961 // Given the value \p Elt that was being inserted into element \p EltIdx of an 962 // aggregate AggTy, see if \p Elt was originally defined by an 963 // appropriate extractvalue (same element index, same aggregate type). 964 // If found, return the source aggregate from which the extraction was. 965 // If \p PredBB is provided, does PHI translation of an \p Elt first. 966 auto FindSourceAggregate = 967 [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB, 968 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 969 // For now(?), only deal with, at most, a single level of PHI indirection. 970 if (UseBB && PredBB) 971 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 972 // FIXME: deal with multiple levels of PHI indirection? 973 974 // Did we find an extraction? 975 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 976 if (!EVI) 977 return NotFound; 978 979 Value *SourceAggregate = EVI->getAggregateOperand(); 980 981 // Is the extraction from the same type into which the insertion was? 982 if (SourceAggregate->getType() != AggTy) 983 return FoundMismatch; 984 // And the element index doesn't change between extraction and insertion? 985 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 986 return FoundMismatch; 987 988 return SourceAggregate; // AggregateDescription::Found 989 }; 990 991 // Given elements AggElts that were constructing an aggregate OrigIVI, 992 // see if we can find appropriate source aggregate for each of the elements, 993 // and see it's the same aggregate for each element. If so, return it. 994 auto FindCommonSourceAggregate = 995 [&](std::optional<BasicBlock *> UseBB, 996 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 997 std::optional<Value *> SourceAggregate; 998 999 for (auto I : enumerate(AggElts)) { 1000 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 1001 "We don't store nullptr in SourceAggregate!"); 1002 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 1003 (I.index() != 0) && 1004 "SourceAggregate should be valid after the first element,"); 1005 1006 // For this element, is there a plausible source aggregate? 1007 // FIXME: we could special-case undef element, IFF we know that in the 1008 // source aggregate said element isn't poison. 1009 std::optional<Value *> SourceAggregateForElement = 1010 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 1011 1012 // Okay, what have we found? Does that correlate with previous findings? 1013 1014 // Regardless of whether or not we have previously found source 1015 // aggregate for previous elements (if any), if we didn't find one for 1016 // this element, passthrough whatever we have just found. 1017 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 1018 return SourceAggregateForElement; 1019 1020 // Okay, we have found source aggregate for this element. 1021 // Let's see what we already know from previous elements, if any. 1022 switch (Describe(SourceAggregate)) { 1023 case AggregateDescription::NotFound: 1024 // This is apparently the first element that we have examined. 1025 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 1026 continue; // Great, now look at next element. 1027 case AggregateDescription::Found: 1028 // We have previously already successfully examined other elements. 1029 // Is this the same source aggregate we've found for other elements? 1030 if (*SourceAggregateForElement != *SourceAggregate) 1031 return FoundMismatch; 1032 continue; // Still the same aggregate, look at next element. 1033 case AggregateDescription::FoundMismatch: 1034 llvm_unreachable("Can't happen. We would have early-exited then."); 1035 }; 1036 } 1037 1038 assert(Describe(SourceAggregate) == AggregateDescription::Found && 1039 "Must be a valid Value"); 1040 return *SourceAggregate; 1041 }; 1042 1043 std::optional<Value *> SourceAggregate; 1044 1045 // Can we find the source aggregate without looking at predecessors? 1046 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt, 1047 /*PredBB=*/std::nullopt); 1048 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1049 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1050 return nullptr; // Conflicting source aggregates! 1051 ++NumAggregateReconstructionsSimplified; 1052 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1053 } 1054 1055 // Okay, apparently we need to look at predecessors. 1056 1057 // We should be smart about picking the "use" basic block, which will be the 1058 // merge point for aggregate, where we'll insert the final PHI that will be 1059 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1060 // We should look in which blocks each of the AggElts is being defined, 1061 // they all should be defined in the same basic block. 1062 BasicBlock *UseBB = nullptr; 1063 1064 for (const std::optional<Instruction *> &I : AggElts) { 1065 BasicBlock *BB = (*I)->getParent(); 1066 // If it's the first instruction we've encountered, record the basic block. 1067 if (!UseBB) { 1068 UseBB = BB; 1069 continue; 1070 } 1071 // Otherwise, this must be the same basic block we've seen previously. 1072 if (UseBB != BB) 1073 return nullptr; 1074 } 1075 1076 // If *all* of the elements are basic-block-independent, meaning they are 1077 // either function arguments, or constant expressions, then if we didn't 1078 // handle them without predecessor-aware handling, we won't handle them now. 1079 if (!UseBB) 1080 return nullptr; 1081 1082 // If we didn't manage to find source aggregate without looking at 1083 // predecessors, and there are no predecessors to look at, then we're done. 1084 if (pred_empty(UseBB)) 1085 return nullptr; 1086 1087 // Arbitrary predecessor count limit. 1088 static const int PredCountLimit = 64; 1089 1090 // Cache the (non-uniqified!) list of predecessors in a vector, 1091 // checking the limit at the same time for efficiency. 1092 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1093 for (BasicBlock *Pred : predecessors(UseBB)) { 1094 // Don't bother if there are too many predecessors. 1095 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1096 return nullptr; 1097 Preds.emplace_back(Pred); 1098 } 1099 1100 // For each predecessor, what is the source aggregate, 1101 // from which all the elements were originally extracted from? 1102 // Note that we want for the map to have stable iteration order! 1103 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1104 for (BasicBlock *Pred : Preds) { 1105 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1106 SourceAggregates.insert({Pred, nullptr}); 1107 // Did we already evaluate this predecessor? 1108 if (!IV.second) 1109 continue; 1110 1111 // Let's hope that when coming from predecessor Pred, all elements of the 1112 // aggregate produced by OrigIVI must have been originally extracted from 1113 // the same aggregate. Is that so? Can we find said original aggregate? 1114 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1115 if (Describe(SourceAggregate) != AggregateDescription::Found) 1116 return nullptr; // Give up. 1117 IV.first->second = *SourceAggregate; 1118 } 1119 1120 // All good! Now we just need to thread the source aggregates here. 1121 // Note that we have to insert the new PHI here, ourselves, because we can't 1122 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1123 // Note that the same block can be a predecessor more than once, 1124 // and we need to preserve that invariant for the PHI node. 1125 BuilderTy::InsertPointGuard Guard(Builder); 1126 Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt()); 1127 auto *PHI = 1128 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1129 for (BasicBlock *Pred : Preds) 1130 PHI->addIncoming(SourceAggregates[Pred], Pred); 1131 1132 ++NumAggregateReconstructionsSimplified; 1133 return replaceInstUsesWith(OrigIVI, PHI); 1134 } 1135 1136 /// Try to find redundant insertvalue instructions, like the following ones: 1137 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1138 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1139 /// Here the second instruction inserts values at the same indices, as the 1140 /// first one, making the first one redundant. 1141 /// It should be transformed to: 1142 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1143 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1144 if (Value *V = simplifyInsertValueInst( 1145 I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(), 1146 SQ.getWithInstruction(&I))) 1147 return replaceInstUsesWith(I, V); 1148 1149 bool IsRedundant = false; 1150 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1151 1152 // If there is a chain of insertvalue instructions (each of them except the 1153 // last one has only one use and it's another insertvalue insn from this 1154 // chain), check if any of the 'children' uses the same indices as the first 1155 // instruction. In this case, the first one is redundant. 1156 Value *V = &I; 1157 unsigned Depth = 0; 1158 while (V->hasOneUse() && Depth < 10) { 1159 User *U = V->user_back(); 1160 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1161 if (!UserInsInst || U->getOperand(0) != V) 1162 break; 1163 if (UserInsInst->getIndices() == FirstIndices) { 1164 IsRedundant = true; 1165 break; 1166 } 1167 V = UserInsInst; 1168 Depth++; 1169 } 1170 1171 if (IsRedundant) 1172 return replaceInstUsesWith(I, I.getOperand(0)); 1173 1174 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1175 return NewI; 1176 1177 return nullptr; 1178 } 1179 1180 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1181 // Can not analyze scalable type, the number of elements is not a compile-time 1182 // constant. 1183 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1184 return false; 1185 1186 int MaskSize = Shuf.getShuffleMask().size(); 1187 int VecSize = 1188 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1189 1190 // A vector select does not change the size of the operands. 1191 if (MaskSize != VecSize) 1192 return false; 1193 1194 // Each mask element must be undefined or choose a vector element from one of 1195 // the source operands without crossing vector lanes. 1196 for (int i = 0; i != MaskSize; ++i) { 1197 int Elt = Shuf.getMaskValue(i); 1198 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1199 return false; 1200 } 1201 1202 return true; 1203 } 1204 1205 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1206 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1207 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1208 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1209 // We are interested in the last insert in a chain. So if this insert has a 1210 // single user and that user is an insert, bail. 1211 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1212 return nullptr; 1213 1214 VectorType *VecTy = InsElt.getType(); 1215 // Can not handle scalable type, the number of elements is not a compile-time 1216 // constant. 1217 if (isa<ScalableVectorType>(VecTy)) 1218 return nullptr; 1219 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1220 1221 // Do not try to do this for a one-element vector, since that's a nop, 1222 // and will cause an inf-loop. 1223 if (NumElements == 1) 1224 return nullptr; 1225 1226 Value *SplatVal = InsElt.getOperand(1); 1227 InsertElementInst *CurrIE = &InsElt; 1228 SmallBitVector ElementPresent(NumElements, false); 1229 InsertElementInst *FirstIE = nullptr; 1230 1231 // Walk the chain backwards, keeping track of which indices we inserted into, 1232 // until we hit something that isn't an insert of the splatted value. 1233 while (CurrIE) { 1234 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1235 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1236 return nullptr; 1237 1238 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1239 // Check none of the intermediate steps have any additional uses, except 1240 // for the root insertelement instruction, which can be re-used, if it 1241 // inserts at position 0. 1242 if (CurrIE != &InsElt && 1243 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1244 return nullptr; 1245 1246 ElementPresent[Idx->getZExtValue()] = true; 1247 FirstIE = CurrIE; 1248 CurrIE = NextIE; 1249 } 1250 1251 // If this is just a single insertelement (not a sequence), we are done. 1252 if (FirstIE == &InsElt) 1253 return nullptr; 1254 1255 // If we are not inserting into a poison vector, make sure we've seen an 1256 // insert into every element. 1257 // TODO: If the base vector is not undef, it might be better to create a splat 1258 // and then a select-shuffle (blend) with the base vector. 1259 if (!match(FirstIE->getOperand(0), m_Poison())) 1260 if (!ElementPresent.all()) 1261 return nullptr; 1262 1263 // Create the insert + shuffle. 1264 Type *Int64Ty = Type::getInt64Ty(InsElt.getContext()); 1265 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1266 Constant *Zero = ConstantInt::get(Int64Ty, 0); 1267 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1268 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", 1269 InsElt.getIterator()); 1270 1271 // Splat from element 0, but replace absent elements with poison in the mask. 1272 SmallVector<int, 16> Mask(NumElements, 0); 1273 for (unsigned i = 0; i != NumElements; ++i) 1274 if (!ElementPresent[i]) 1275 Mask[i] = -1; 1276 1277 return new ShuffleVectorInst(FirstIE, Mask); 1278 } 1279 1280 /// Try to fold an insert element into an existing splat shuffle by changing 1281 /// the shuffle's mask to include the index of this insert element. 1282 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1283 // Check if the vector operand of this insert is a canonical splat shuffle. 1284 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1285 if (!Shuf || !Shuf->isZeroEltSplat()) 1286 return nullptr; 1287 1288 // Bail out early if shuffle is scalable type. The number of elements in 1289 // shuffle mask is unknown at compile-time. 1290 if (isa<ScalableVectorType>(Shuf->getType())) 1291 return nullptr; 1292 1293 // Check for a constant insertion index. 1294 uint64_t IdxC; 1295 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1296 return nullptr; 1297 1298 // Check if the splat shuffle's input is the same as this insert's scalar op. 1299 Value *X = InsElt.getOperand(1); 1300 Value *Op0 = Shuf->getOperand(0); 1301 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1302 return nullptr; 1303 1304 // Replace the shuffle mask element at the index of this insert with a zero. 1305 // For example: 1306 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1307 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1308 unsigned NumMaskElts = 1309 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1310 SmallVector<int, 16> NewMask(NumMaskElts); 1311 for (unsigned i = 0; i != NumMaskElts; ++i) 1312 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1313 1314 return new ShuffleVectorInst(Op0, NewMask); 1315 } 1316 1317 /// Try to fold an extract+insert element into an existing identity shuffle by 1318 /// changing the shuffle's mask to include the index of this insert element. 1319 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1320 // Check if the vector operand of this insert is an identity shuffle. 1321 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1322 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1323 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1324 return nullptr; 1325 1326 // Bail out early if shuffle is scalable type. The number of elements in 1327 // shuffle mask is unknown at compile-time. 1328 if (isa<ScalableVectorType>(Shuf->getType())) 1329 return nullptr; 1330 1331 // Check for a constant insertion index. 1332 uint64_t IdxC; 1333 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1334 return nullptr; 1335 1336 // Check if this insert's scalar op is extracted from the identity shuffle's 1337 // input vector. 1338 Value *Scalar = InsElt.getOperand(1); 1339 Value *X = Shuf->getOperand(0); 1340 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1341 return nullptr; 1342 1343 // Replace the shuffle mask element at the index of this extract+insert with 1344 // that same index value. 1345 // For example: 1346 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1347 unsigned NumMaskElts = 1348 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1349 SmallVector<int, 16> NewMask(NumMaskElts); 1350 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1351 for (unsigned i = 0; i != NumMaskElts; ++i) { 1352 if (i != IdxC) { 1353 // All mask elements besides the inserted element remain the same. 1354 NewMask[i] = OldMask[i]; 1355 } else if (OldMask[i] == (int)IdxC) { 1356 // If the mask element was already set, there's nothing to do 1357 // (demanded elements analysis may unset it later). 1358 return nullptr; 1359 } else { 1360 assert(OldMask[i] == PoisonMaskElem && 1361 "Unexpected shuffle mask element for identity shuffle"); 1362 NewMask[i] = IdxC; 1363 } 1364 } 1365 1366 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1367 } 1368 1369 /// If we have an insertelement instruction feeding into another insertelement 1370 /// and the 2nd is inserting a constant into the vector, canonicalize that 1371 /// constant insertion before the insertion of a variable: 1372 /// 1373 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1374 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1375 /// 1376 /// This has the potential of eliminating the 2nd insertelement instruction 1377 /// via constant folding of the scalar constant into a vector constant. 1378 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1379 InstCombiner::BuilderTy &Builder) { 1380 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1381 if (!InsElt1 || !InsElt1->hasOneUse()) 1382 return nullptr; 1383 1384 Value *X, *Y; 1385 Constant *ScalarC; 1386 ConstantInt *IdxC1, *IdxC2; 1387 if (match(InsElt1->getOperand(0), m_Value(X)) && 1388 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1389 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1390 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1391 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1392 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1393 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1394 } 1395 1396 return nullptr; 1397 } 1398 1399 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1400 /// --> shufflevector X, CVec', Mask' 1401 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1402 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1403 // Bail out if the parent has more than one use. In that case, we'd be 1404 // replacing the insertelt with a shuffle, and that's not a clear win. 1405 if (!Inst || !Inst->hasOneUse()) 1406 return nullptr; 1407 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1408 // The shuffle must have a constant vector operand. The insertelt must have 1409 // a constant scalar being inserted at a constant position in the vector. 1410 Constant *ShufConstVec, *InsEltScalar; 1411 uint64_t InsEltIndex; 1412 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1413 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1414 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1415 return nullptr; 1416 1417 // Adding an element to an arbitrary shuffle could be expensive, but a 1418 // shuffle that selects elements from vectors without crossing lanes is 1419 // assumed cheap. 1420 // If we're just adding a constant into that shuffle, it will still be 1421 // cheap. 1422 if (!isShuffleEquivalentToSelect(*Shuf)) 1423 return nullptr; 1424 1425 // From the above 'select' check, we know that the mask has the same number 1426 // of elements as the vector input operands. We also know that each constant 1427 // input element is used in its lane and can not be used more than once by 1428 // the shuffle. Therefore, replace the constant in the shuffle's constant 1429 // vector with the insertelt constant. Replace the constant in the shuffle's 1430 // mask vector with the insertelt index plus the length of the vector 1431 // (because the constant vector operand of a shuffle is always the 2nd 1432 // operand). 1433 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1434 unsigned NumElts = Mask.size(); 1435 SmallVector<Constant *, 16> NewShufElts(NumElts); 1436 SmallVector<int, 16> NewMaskElts(NumElts); 1437 for (unsigned I = 0; I != NumElts; ++I) { 1438 if (I == InsEltIndex) { 1439 NewShufElts[I] = InsEltScalar; 1440 NewMaskElts[I] = InsEltIndex + NumElts; 1441 } else { 1442 // Copy over the existing values. 1443 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1444 NewMaskElts[I] = Mask[I]; 1445 } 1446 1447 // Bail if we failed to find an element. 1448 if (!NewShufElts[I]) 1449 return nullptr; 1450 } 1451 1452 // Create new operands for a shuffle that includes the constant of the 1453 // original insertelt. The old shuffle will be dead now. 1454 return new ShuffleVectorInst(Shuf->getOperand(0), 1455 ConstantVector::get(NewShufElts), NewMaskElts); 1456 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1457 // Transform sequences of insertelements ops with constant data/indexes into 1458 // a single shuffle op. 1459 // Can not handle scalable type, the number of elements needed to create 1460 // shuffle mask is not a compile-time constant. 1461 if (isa<ScalableVectorType>(InsElt.getType())) 1462 return nullptr; 1463 unsigned NumElts = 1464 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1465 1466 uint64_t InsertIdx[2]; 1467 Constant *Val[2]; 1468 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1469 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1470 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1471 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1472 return nullptr; 1473 SmallVector<Constant *, 16> Values(NumElts); 1474 SmallVector<int, 16> Mask(NumElts); 1475 auto ValI = std::begin(Val); 1476 // Generate new constant vector and mask. 1477 // We have 2 values/masks from the insertelements instructions. Insert them 1478 // into new value/mask vectors. 1479 for (uint64_t I : InsertIdx) { 1480 if (!Values[I]) { 1481 Values[I] = *ValI; 1482 Mask[I] = NumElts + I; 1483 } 1484 ++ValI; 1485 } 1486 // Remaining values are filled with 'poison' values. 1487 for (unsigned I = 0; I < NumElts; ++I) { 1488 if (!Values[I]) { 1489 Values[I] = PoisonValue::get(InsElt.getType()->getElementType()); 1490 Mask[I] = I; 1491 } 1492 } 1493 // Create new operands for a shuffle that includes the constant of the 1494 // original insertelt. 1495 return new ShuffleVectorInst(IEI->getOperand(0), 1496 ConstantVector::get(Values), Mask); 1497 } 1498 return nullptr; 1499 } 1500 1501 /// If both the base vector and the inserted element are extended from the same 1502 /// type, do the insert element in the narrow source type followed by extend. 1503 /// TODO: This can be extended to include other cast opcodes, but particularly 1504 /// if we create a wider insertelement, make sure codegen is not harmed. 1505 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1506 InstCombiner::BuilderTy &Builder) { 1507 // We are creating a vector extend. If the original vector extend has another 1508 // use, that would mean we end up with 2 vector extends, so avoid that. 1509 // TODO: We could ease the use-clause to "if at least one op has one use" 1510 // (assuming that the source types match - see next TODO comment). 1511 Value *Vec = InsElt.getOperand(0); 1512 if (!Vec->hasOneUse()) 1513 return nullptr; 1514 1515 Value *Scalar = InsElt.getOperand(1); 1516 Value *X, *Y; 1517 CastInst::CastOps CastOpcode; 1518 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1519 CastOpcode = Instruction::FPExt; 1520 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1521 CastOpcode = Instruction::SExt; 1522 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1523 CastOpcode = Instruction::ZExt; 1524 else 1525 return nullptr; 1526 1527 // TODO: We can allow mismatched types by creating an intermediate cast. 1528 if (X->getType()->getScalarType() != Y->getType()) 1529 return nullptr; 1530 1531 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1532 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1533 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1534 } 1535 1536 /// If we are inserting 2 halves of a value into adjacent elements of a vector, 1537 /// try to convert to a single insert with appropriate bitcasts. 1538 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt, 1539 bool IsBigEndian, 1540 InstCombiner::BuilderTy &Builder) { 1541 Value *VecOp = InsElt.getOperand(0); 1542 Value *ScalarOp = InsElt.getOperand(1); 1543 Value *IndexOp = InsElt.getOperand(2); 1544 1545 // Pattern depends on endian because we expect lower index is inserted first. 1546 // Big endian: 1547 // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1 1548 // Little endian: 1549 // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1 1550 // Note: It is not safe to do this transform with an arbitrary base vector 1551 // because the bitcast of that vector to fewer/larger elements could 1552 // allow poison to spill into an element that was not poison before. 1553 // TODO: Detect smaller fractions of the scalar. 1554 // TODO: One-use checks are conservative. 1555 auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType()); 1556 Value *Scalar0, *BaseVec; 1557 uint64_t Index0, Index1; 1558 if (!VTy || (VTy->getNumElements() & 1) || 1559 !match(IndexOp, m_ConstantInt(Index1)) || 1560 !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0), 1561 m_ConstantInt(Index0))) || 1562 !match(BaseVec, m_Undef())) 1563 return nullptr; 1564 1565 // The first insert must be to the index one less than this one, and 1566 // the first insert must be to an even index. 1567 if (Index0 + 1 != Index1 || Index0 & 1) 1568 return nullptr; 1569 1570 // For big endian, the high half of the value should be inserted first. 1571 // For little endian, the low half of the value should be inserted first. 1572 Value *X; 1573 uint64_t ShAmt; 1574 if (IsBigEndian) { 1575 if (!match(ScalarOp, m_Trunc(m_Value(X))) || 1576 !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1577 return nullptr; 1578 } else { 1579 if (!match(Scalar0, m_Trunc(m_Value(X))) || 1580 !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1581 return nullptr; 1582 } 1583 1584 Type *SrcTy = X->getType(); 1585 unsigned ScalarWidth = SrcTy->getScalarSizeInBits(); 1586 unsigned VecEltWidth = VTy->getScalarSizeInBits(); 1587 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth) 1588 return nullptr; 1589 1590 // Bitcast the base vector to a vector type with the source element type. 1591 Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2); 1592 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy); 1593 1594 // Scale the insert index for a vector with half as many elements. 1595 // bitcast (inselt (bitcast BaseVec), X, NewIndex) 1596 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2; 1597 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex); 1598 return new BitCastInst(NewInsert, VTy); 1599 } 1600 1601 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1602 Value *VecOp = IE.getOperand(0); 1603 Value *ScalarOp = IE.getOperand(1); 1604 Value *IdxOp = IE.getOperand(2); 1605 1606 if (auto *V = simplifyInsertElementInst( 1607 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1608 return replaceInstUsesWith(IE, V); 1609 1610 // Canonicalize type of constant indices to i64 to simplify CSE 1611 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) { 1612 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1613 return replaceOperand(IE, 2, NewIdx); 1614 1615 Value *BaseVec, *OtherScalar; 1616 uint64_t OtherIndexVal; 1617 if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec), 1618 m_Value(OtherScalar), 1619 m_ConstantInt(OtherIndexVal)))) && 1620 !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) { 1621 Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp); 1622 return InsertElementInst::Create(NewIns, OtherScalar, 1623 Builder.getInt64(OtherIndexVal)); 1624 } 1625 } 1626 1627 // If the scalar is bitcast and inserted into undef, do the insert in the 1628 // source type followed by bitcast. 1629 // TODO: Generalize for insert into any constant, not just undef? 1630 Value *ScalarSrc; 1631 if (match(VecOp, m_Undef()) && 1632 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1633 (ScalarSrc->getType()->isIntegerTy() || 1634 ScalarSrc->getType()->isFloatingPointTy())) { 1635 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1636 // bitcast (inselt undef, ScalarSrc, IdxOp) 1637 Type *ScalarTy = ScalarSrc->getType(); 1638 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1639 Constant *NewUndef = isa<PoisonValue>(VecOp) ? PoisonValue::get(VecTy) 1640 : UndefValue::get(VecTy); 1641 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1642 return new BitCastInst(NewInsElt, IE.getType()); 1643 } 1644 1645 // If the vector and scalar are both bitcast from the same element type, do 1646 // the insert in that source type followed by bitcast. 1647 Value *VecSrc; 1648 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1649 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1650 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1651 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1652 cast<VectorType>(VecSrc->getType())->getElementType() == 1653 ScalarSrc->getType()) { 1654 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1655 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1656 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1657 return new BitCastInst(NewInsElt, IE.getType()); 1658 } 1659 1660 // If the inserted element was extracted from some other fixed-length vector 1661 // and both indexes are valid constants, try to turn this into a shuffle. 1662 // Can not handle scalable vector type, the number of elements needed to 1663 // create shuffle mask is not a compile-time constant. 1664 uint64_t InsertedIdx, ExtractedIdx; 1665 Value *ExtVecOp; 1666 if (isa<FixedVectorType>(IE.getType()) && 1667 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1668 match(ScalarOp, 1669 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1670 isa<FixedVectorType>(ExtVecOp->getType()) && 1671 ExtractedIdx < 1672 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1673 // TODO: Looking at the user(s) to determine if this insert is a 1674 // fold-to-shuffle opportunity does not match the usual instcombine 1675 // constraints. We should decide if the transform is worthy based only 1676 // on this instruction and its operands, but that may not work currently. 1677 // 1678 // Here, we are trying to avoid creating shuffles before reaching 1679 // the end of a chain of extract-insert pairs. This is complicated because 1680 // we do not generally form arbitrary shuffle masks in instcombine 1681 // (because those may codegen poorly), but collectShuffleElements() does 1682 // exactly that. 1683 // 1684 // The rules for determining what is an acceptable target-independent 1685 // shuffle mask are fuzzy because they evolve based on the backend's 1686 // capabilities and real-world impact. 1687 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1688 if (!Insert.hasOneUse()) 1689 return true; 1690 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1691 if (!InsertUser) 1692 return true; 1693 return false; 1694 }; 1695 1696 // Try to form a shuffle from a chain of extract-insert ops. 1697 if (isShuffleRootCandidate(IE)) { 1698 bool Rerun = true; 1699 while (Rerun) { 1700 Rerun = false; 1701 1702 SmallVector<int, 16> Mask; 1703 ShuffleOps LR = 1704 collectShuffleElements(&IE, Mask, nullptr, *this, Rerun); 1705 1706 // The proposed shuffle may be trivial, in which case we shouldn't 1707 // perform the combine. 1708 if (LR.first != &IE && LR.second != &IE) { 1709 // We now have a shuffle of LHS, RHS, Mask. 1710 if (LR.second == nullptr) 1711 LR.second = PoisonValue::get(LR.first->getType()); 1712 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1713 } 1714 } 1715 } 1716 } 1717 1718 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1719 unsigned VWidth = VecTy->getNumElements(); 1720 APInt PoisonElts(VWidth, 0); 1721 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1722 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, 1723 PoisonElts)) { 1724 if (V != &IE) 1725 return replaceInstUsesWith(IE, V); 1726 return &IE; 1727 } 1728 } 1729 1730 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1731 return Shuf; 1732 1733 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1734 return NewInsElt; 1735 1736 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1737 return Broadcast; 1738 1739 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1740 return Splat; 1741 1742 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1743 return IdentityShuf; 1744 1745 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1746 return Ext; 1747 1748 if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder)) 1749 return Ext; 1750 1751 return nullptr; 1752 } 1753 1754 /// Return true if we can evaluate the specified expression tree if the vector 1755 /// elements were shuffled in a different order. 1756 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1757 unsigned Depth = 5) { 1758 // We can always reorder the elements of a constant. 1759 if (isa<Constant>(V)) 1760 return true; 1761 1762 // We won't reorder vector arguments. No IPO here. 1763 Instruction *I = dyn_cast<Instruction>(V); 1764 if (!I) return false; 1765 1766 // Two users may expect different orders of the elements. Don't try it. 1767 if (!I->hasOneUse()) 1768 return false; 1769 1770 if (Depth == 0) return false; 1771 1772 switch (I->getOpcode()) { 1773 case Instruction::UDiv: 1774 case Instruction::SDiv: 1775 case Instruction::URem: 1776 case Instruction::SRem: 1777 // Propagating an undefined shuffle mask element to integer div/rem is not 1778 // allowed because those opcodes can create immediate undefined behavior 1779 // from an undefined element in an operand. 1780 if (llvm::is_contained(Mask, -1)) 1781 return false; 1782 [[fallthrough]]; 1783 case Instruction::Add: 1784 case Instruction::FAdd: 1785 case Instruction::Sub: 1786 case Instruction::FSub: 1787 case Instruction::Mul: 1788 case Instruction::FMul: 1789 case Instruction::FDiv: 1790 case Instruction::FRem: 1791 case Instruction::Shl: 1792 case Instruction::LShr: 1793 case Instruction::AShr: 1794 case Instruction::And: 1795 case Instruction::Or: 1796 case Instruction::Xor: 1797 case Instruction::ICmp: 1798 case Instruction::FCmp: 1799 case Instruction::Trunc: 1800 case Instruction::ZExt: 1801 case Instruction::SExt: 1802 case Instruction::FPToUI: 1803 case Instruction::FPToSI: 1804 case Instruction::UIToFP: 1805 case Instruction::SIToFP: 1806 case Instruction::FPTrunc: 1807 case Instruction::FPExt: 1808 case Instruction::GetElementPtr: { 1809 // Bail out if we would create longer vector ops. We could allow creating 1810 // longer vector ops, but that may result in more expensive codegen. 1811 Type *ITy = I->getType(); 1812 if (ITy->isVectorTy() && 1813 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1814 return false; 1815 for (Value *Operand : I->operands()) { 1816 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1817 return false; 1818 } 1819 return true; 1820 } 1821 case Instruction::InsertElement: { 1822 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1823 if (!CI) return false; 1824 int ElementNumber = CI->getLimitedValue(); 1825 1826 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1827 // can't put an element into multiple indices. 1828 bool SeenOnce = false; 1829 for (int I : Mask) { 1830 if (I == ElementNumber) { 1831 if (SeenOnce) 1832 return false; 1833 SeenOnce = true; 1834 } 1835 } 1836 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1837 } 1838 } 1839 return false; 1840 } 1841 1842 /// Rebuild a new instruction just like 'I' but with the new operands given. 1843 /// In the event of type mismatch, the type of the operands is correct. 1844 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps, 1845 IRBuilderBase &Builder) { 1846 Builder.SetInsertPoint(I); 1847 switch (I->getOpcode()) { 1848 case Instruction::Add: 1849 case Instruction::FAdd: 1850 case Instruction::Sub: 1851 case Instruction::FSub: 1852 case Instruction::Mul: 1853 case Instruction::FMul: 1854 case Instruction::UDiv: 1855 case Instruction::SDiv: 1856 case Instruction::FDiv: 1857 case Instruction::URem: 1858 case Instruction::SRem: 1859 case Instruction::FRem: 1860 case Instruction::Shl: 1861 case Instruction::LShr: 1862 case Instruction::AShr: 1863 case Instruction::And: 1864 case Instruction::Or: 1865 case Instruction::Xor: { 1866 BinaryOperator *BO = cast<BinaryOperator>(I); 1867 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1868 Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(), 1869 NewOps[0], NewOps[1]); 1870 if (auto *NewI = dyn_cast<Instruction>(New)) { 1871 if (isa<OverflowingBinaryOperator>(BO)) { 1872 NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1873 NewI->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1874 } 1875 if (isa<PossiblyExactOperator>(BO)) { 1876 NewI->setIsExact(BO->isExact()); 1877 } 1878 if (isa<FPMathOperator>(BO)) 1879 NewI->copyFastMathFlags(I); 1880 } 1881 return New; 1882 } 1883 case Instruction::ICmp: 1884 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1885 return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 1886 NewOps[1]); 1887 case Instruction::FCmp: 1888 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1889 return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 1890 NewOps[1]); 1891 case Instruction::Trunc: 1892 case Instruction::ZExt: 1893 case Instruction::SExt: 1894 case Instruction::FPToUI: 1895 case Instruction::FPToSI: 1896 case Instruction::UIToFP: 1897 case Instruction::SIToFP: 1898 case Instruction::FPTrunc: 1899 case Instruction::FPExt: { 1900 // It's possible that the mask has a different number of elements from 1901 // the original cast. We recompute the destination type to match the mask. 1902 Type *DestTy = VectorType::get( 1903 I->getType()->getScalarType(), 1904 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1905 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1906 return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0], 1907 DestTy); 1908 } 1909 case Instruction::GetElementPtr: { 1910 Value *Ptr = NewOps[0]; 1911 ArrayRef<Value*> Idx = NewOps.slice(1); 1912 return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(), 1913 Ptr, Idx, "", 1914 cast<GEPOperator>(I)->isInBounds()); 1915 } 1916 } 1917 llvm_unreachable("failed to rebuild vector instructions"); 1918 } 1919 1920 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask, 1921 IRBuilderBase &Builder) { 1922 // Mask.size() does not need to be equal to the number of vector elements. 1923 1924 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1925 Type *EltTy = V->getType()->getScalarType(); 1926 1927 if (isa<PoisonValue>(V)) 1928 return PoisonValue::get(FixedVectorType::get(EltTy, Mask.size())); 1929 1930 if (match(V, m_Undef())) 1931 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1932 1933 if (isa<ConstantAggregateZero>(V)) 1934 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1935 1936 if (Constant *C = dyn_cast<Constant>(V)) 1937 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1938 Mask); 1939 1940 Instruction *I = cast<Instruction>(V); 1941 switch (I->getOpcode()) { 1942 case Instruction::Add: 1943 case Instruction::FAdd: 1944 case Instruction::Sub: 1945 case Instruction::FSub: 1946 case Instruction::Mul: 1947 case Instruction::FMul: 1948 case Instruction::UDiv: 1949 case Instruction::SDiv: 1950 case Instruction::FDiv: 1951 case Instruction::URem: 1952 case Instruction::SRem: 1953 case Instruction::FRem: 1954 case Instruction::Shl: 1955 case Instruction::LShr: 1956 case Instruction::AShr: 1957 case Instruction::And: 1958 case Instruction::Or: 1959 case Instruction::Xor: 1960 case Instruction::ICmp: 1961 case Instruction::FCmp: 1962 case Instruction::Trunc: 1963 case Instruction::ZExt: 1964 case Instruction::SExt: 1965 case Instruction::FPToUI: 1966 case Instruction::FPToSI: 1967 case Instruction::UIToFP: 1968 case Instruction::SIToFP: 1969 case Instruction::FPTrunc: 1970 case Instruction::FPExt: 1971 case Instruction::Select: 1972 case Instruction::GetElementPtr: { 1973 SmallVector<Value*, 8> NewOps; 1974 bool NeedsRebuild = 1975 (Mask.size() != 1976 cast<FixedVectorType>(I->getType())->getNumElements()); 1977 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1978 Value *V; 1979 // Recursively call evaluateInDifferentElementOrder on vector arguments 1980 // as well. E.g. GetElementPtr may have scalar operands even if the 1981 // return value is a vector, so we need to examine the operand type. 1982 if (I->getOperand(i)->getType()->isVectorTy()) 1983 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder); 1984 else 1985 V = I->getOperand(i); 1986 NewOps.push_back(V); 1987 NeedsRebuild |= (V != I->getOperand(i)); 1988 } 1989 if (NeedsRebuild) 1990 return buildNew(I, NewOps, Builder); 1991 return I; 1992 } 1993 case Instruction::InsertElement: { 1994 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1995 1996 // The insertelement was inserting at Element. Figure out which element 1997 // that becomes after shuffling. The answer is guaranteed to be unique 1998 // by CanEvaluateShuffled. 1999 bool Found = false; 2000 int Index = 0; 2001 for (int e = Mask.size(); Index != e; ++Index) { 2002 if (Mask[Index] == Element) { 2003 Found = true; 2004 break; 2005 } 2006 } 2007 2008 // If element is not in Mask, no need to handle the operand 1 (element to 2009 // be inserted). Just evaluate values in operand 0 according to Mask. 2010 if (!Found) 2011 return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder); 2012 2013 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask, 2014 Builder); 2015 Builder.SetInsertPoint(I); 2016 return Builder.CreateInsertElement(V, I->getOperand(1), Index); 2017 } 2018 } 2019 llvm_unreachable("failed to reorder elements of vector instruction!"); 2020 } 2021 2022 // Returns true if the shuffle is extracting a contiguous range of values from 2023 // LHS, for example: 2024 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2025 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 2026 // Shuffles to: |EE|FF|GG|HH| 2027 // +--+--+--+--+ 2028 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 2029 ArrayRef<int> Mask) { 2030 unsigned LHSElems = 2031 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 2032 unsigned MaskElems = Mask.size(); 2033 unsigned BegIdx = Mask.front(); 2034 unsigned EndIdx = Mask.back(); 2035 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 2036 return false; 2037 for (unsigned I = 0; I != MaskElems; ++I) 2038 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 2039 return false; 2040 return true; 2041 } 2042 2043 /// These are the ingredients in an alternate form binary operator as described 2044 /// below. 2045 struct BinopElts { 2046 BinaryOperator::BinaryOps Opcode; 2047 Value *Op0; 2048 Value *Op1; 2049 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 2050 Value *V0 = nullptr, Value *V1 = nullptr) : 2051 Opcode(Opc), Op0(V0), Op1(V1) {} 2052 operator bool() const { return Opcode != 0; } 2053 }; 2054 2055 /// Binops may be transformed into binops with different opcodes and operands. 2056 /// Reverse the usual canonicalization to enable folds with the non-canonical 2057 /// form of the binop. If a transform is possible, return the elements of the 2058 /// new binop. If not, return invalid elements. 2059 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 2060 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 2061 Type *Ty = BO->getType(); 2062 switch (BO->getOpcode()) { 2063 case Instruction::Shl: { 2064 // shl X, C --> mul X, (1 << C) 2065 Constant *C; 2066 if (match(BO1, m_Constant(C))) { 2067 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 2068 return {Instruction::Mul, BO0, ShlOne}; 2069 } 2070 break; 2071 } 2072 case Instruction::Or: { 2073 // or X, C --> add X, C (when X and C have no common bits set) 2074 const APInt *C; 2075 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 2076 return {Instruction::Add, BO0, BO1}; 2077 break; 2078 } 2079 case Instruction::Sub: 2080 // sub 0, X --> mul X, -1 2081 if (match(BO0, m_ZeroInt())) 2082 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; 2083 break; 2084 default: 2085 break; 2086 } 2087 return {}; 2088 } 2089 2090 /// A select shuffle of a select shuffle with a shared operand can be reduced 2091 /// to a single select shuffle. This is an obvious improvement in IR, and the 2092 /// backend is expected to lower select shuffles efficiently. 2093 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) { 2094 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2095 2096 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2097 SmallVector<int, 16> Mask; 2098 Shuf.getShuffleMask(Mask); 2099 unsigned NumElts = Mask.size(); 2100 2101 // Canonicalize a select shuffle with common operand as Op1. 2102 auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0); 2103 if (ShufOp && ShufOp->isSelect() && 2104 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) { 2105 std::swap(Op0, Op1); 2106 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2107 } 2108 2109 ShufOp = dyn_cast<ShuffleVectorInst>(Op1); 2110 if (!ShufOp || !ShufOp->isSelect() || 2111 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0)) 2112 return nullptr; 2113 2114 Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1); 2115 SmallVector<int, 16> Mask1; 2116 ShufOp->getShuffleMask(Mask1); 2117 assert(Mask1.size() == NumElts && "Vector size changed with select shuffle"); 2118 2119 // Canonicalize common operand (Op0) as X (first operand of first shuffle). 2120 if (Y == Op0) { 2121 std::swap(X, Y); 2122 ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts); 2123 } 2124 2125 // If the mask chooses from X (operand 0), it stays the same. 2126 // If the mask chooses from the earlier shuffle, the other mask value is 2127 // transferred to the combined select shuffle: 2128 // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M' 2129 SmallVector<int, 16> NewMask(NumElts); 2130 for (unsigned i = 0; i != NumElts; ++i) 2131 NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i]; 2132 2133 // A select mask with undef elements might look like an identity mask. 2134 assert((ShuffleVectorInst::isSelectMask(NewMask, NumElts) || 2135 ShuffleVectorInst::isIdentityMask(NewMask, NumElts)) && 2136 "Unexpected shuffle mask"); 2137 return new ShuffleVectorInst(X, Y, NewMask); 2138 } 2139 2140 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf, 2141 const SimplifyQuery &SQ) { 2142 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2143 2144 // Are we shuffling together some value and that same value after it has been 2145 // modified by a binop with a constant? 2146 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2147 Constant *C; 2148 bool Op0IsBinop; 2149 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 2150 Op0IsBinop = true; 2151 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 2152 Op0IsBinop = false; 2153 else 2154 return nullptr; 2155 2156 // The identity constant for a binop leaves a variable operand unchanged. For 2157 // a vector, this is a splat of something like 0, -1, or 1. 2158 // If there's no identity constant for this binop, we're done. 2159 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 2160 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 2161 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 2162 if (!IdC) 2163 return nullptr; 2164 2165 Value *X = Op0IsBinop ? Op1 : Op0; 2166 2167 // Prevent folding in the case the non-binop operand might have NaN values. 2168 // If X can have NaN elements then we have that the floating point math 2169 // operation in the transformed code may not preserve the exact NaN 2170 // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`. 2171 // This makes the transformation incorrect since the original program would 2172 // have preserved the exact NaN bit-pattern. 2173 // Avoid the folding if X can have NaN elements. 2174 if (Shuf.getType()->getElementType()->isFloatingPointTy() && 2175 !isKnownNeverNaN(X, 0, SQ)) 2176 return nullptr; 2177 2178 // Shuffle identity constants into the lanes that return the original value. 2179 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 2180 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 2181 // The existing binop constant vector remains in the same operand position. 2182 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2183 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 2184 ConstantExpr::getShuffleVector(IdC, C, Mask); 2185 2186 bool MightCreatePoisonOrUB = 2187 is_contained(Mask, PoisonMaskElem) && 2188 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 2189 if (MightCreatePoisonOrUB) 2190 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 2191 2192 // shuf (bop X, C), X, M --> bop X, C' 2193 // shuf X, (bop X, C), M --> bop X, C' 2194 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 2195 NewBO->copyIRFlags(BO); 2196 2197 // An undef shuffle mask element may propagate as an undef constant element in 2198 // the new binop. That would produce poison where the original code might not. 2199 // If we already made a safe constant, then there's no danger. 2200 if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) 2201 NewBO->dropPoisonGeneratingFlags(); 2202 return NewBO; 2203 } 2204 2205 /// If we have an insert of a scalar to a non-zero element of an undefined 2206 /// vector and then shuffle that value, that's the same as inserting to the zero 2207 /// element and shuffling. Splatting from the zero element is recognized as the 2208 /// canonical form of splat. 2209 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2210 InstCombiner::BuilderTy &Builder) { 2211 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2212 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2213 Value *X; 2214 uint64_t IndexC; 2215 2216 // Match a shuffle that is a splat to a non-zero element. 2217 if (!match(Op0, m_OneUse(m_InsertElt(m_Poison(), m_Value(X), 2218 m_ConstantInt(IndexC)))) || 2219 !match(Op1, m_Poison()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2220 return nullptr; 2221 2222 // Insert into element 0 of a poison vector. 2223 PoisonValue *PoisonVec = PoisonValue::get(Shuf.getType()); 2224 Value *NewIns = Builder.CreateInsertElement(PoisonVec, X, (uint64_t)0); 2225 2226 // Splat from element 0. Any mask element that is poison remains poison. 2227 // For example: 2228 // shuf (inselt poison, X, 2), _, <2,2,undef> 2229 // --> shuf (inselt poison, X, 0), poison, <0,0,undef> 2230 unsigned NumMaskElts = 2231 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2232 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2233 for (unsigned i = 0; i != NumMaskElts; ++i) 2234 if (Mask[i] == PoisonMaskElem) 2235 NewMask[i] = Mask[i]; 2236 2237 return new ShuffleVectorInst(NewIns, NewMask); 2238 } 2239 2240 /// Try to fold shuffles that are the equivalent of a vector select. 2241 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2242 if (!Shuf.isSelect()) 2243 return nullptr; 2244 2245 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2246 // Commuting undef to operand 0 conflicts with another canonicalization. 2247 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2248 if (!match(Shuf.getOperand(1), m_Undef()) && 2249 Shuf.getMaskValue(0) >= (int)NumElts) { 2250 // TODO: Can we assert that both operands of a shuffle-select are not undef 2251 // (otherwise, it would have been folded by instsimplify? 2252 Shuf.commute(); 2253 return &Shuf; 2254 } 2255 2256 if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf)) 2257 return I; 2258 2259 if (Instruction *I = foldSelectShuffleWith1Binop( 2260 Shuf, getSimplifyQuery().getWithInstruction(&Shuf))) 2261 return I; 2262 2263 BinaryOperator *B0, *B1; 2264 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2265 !match(Shuf.getOperand(1), m_BinOp(B1))) 2266 return nullptr; 2267 2268 // If one operand is "0 - X", allow that to be viewed as "X * -1" 2269 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired 2270 // with a multiply, we will exit because C0/C1 will not be set. 2271 Value *X, *Y; 2272 Constant *C0 = nullptr, *C1 = nullptr; 2273 bool ConstantsAreOp1; 2274 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2275 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2276 ConstantsAreOp1 = false; 2277 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), 2278 m_Neg(m_Value(X)))) && 2279 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), 2280 m_Neg(m_Value(Y))))) 2281 ConstantsAreOp1 = true; 2282 else 2283 return nullptr; 2284 2285 // We need matching binops to fold the lanes together. 2286 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2287 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2288 bool DropNSW = false; 2289 if (ConstantsAreOp1 && Opc0 != Opc1) { 2290 // TODO: We drop "nsw" if shift is converted into multiply because it may 2291 // not be correct when the shift amount is BitWidth - 1. We could examine 2292 // each vector element to determine if it is safe to keep that flag. 2293 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2294 DropNSW = true; 2295 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2296 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2297 Opc0 = AltB0.Opcode; 2298 C0 = cast<Constant>(AltB0.Op1); 2299 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2300 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2301 Opc1 = AltB1.Opcode; 2302 C1 = cast<Constant>(AltB1.Op1); 2303 } 2304 } 2305 2306 if (Opc0 != Opc1 || !C0 || !C1) 2307 return nullptr; 2308 2309 // The opcodes must be the same. Use a new name to make that clear. 2310 BinaryOperator::BinaryOps BOpc = Opc0; 2311 2312 // Select the constant elements needed for the single binop. 2313 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2314 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2315 2316 // We are moving a binop after a shuffle. When a shuffle has an undefined 2317 // mask element, the result is undefined, but it is not poison or undefined 2318 // behavior. That is not necessarily true for div/rem/shift. 2319 bool MightCreatePoisonOrUB = 2320 is_contained(Mask, PoisonMaskElem) && 2321 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2322 if (MightCreatePoisonOrUB) 2323 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2324 ConstantsAreOp1); 2325 2326 Value *V; 2327 if (X == Y) { 2328 // Remove a binop and the shuffle by rearranging the constant: 2329 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2330 // shuffle (op C0, V), (op C1, V), M --> op C', V 2331 V = X; 2332 } else { 2333 // If there are 2 different variable operands, we must create a new shuffle 2334 // (select) first, so check uses to ensure that we don't end up with more 2335 // instructions than we started with. 2336 if (!B0->hasOneUse() && !B1->hasOneUse()) 2337 return nullptr; 2338 2339 // If we use the original shuffle mask and op1 is *variable*, we would be 2340 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2341 // poison. We do not have to guard against UB when *constants* are op1 2342 // because safe constants guarantee that we do not overflow sdiv/srem (and 2343 // there's no danger for other opcodes). 2344 // TODO: To allow this case, create a new shuffle mask with no undefs. 2345 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2346 return nullptr; 2347 2348 // Note: In general, we do not create new shuffles in InstCombine because we 2349 // do not know if a target can lower an arbitrary shuffle optimally. In this 2350 // case, the shuffle uses the existing mask, so there is no additional risk. 2351 2352 // Select the variable vectors first, then perform the binop: 2353 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2354 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2355 V = Builder.CreateShuffleVector(X, Y, Mask); 2356 } 2357 2358 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2359 Builder.CreateBinOp(BOpc, NewC, V); 2360 2361 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2362 // 1. If we changed an opcode, poison conditions might have changed. 2363 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2364 // where the original code did not. But if we already made a safe constant, 2365 // then there's no danger. 2366 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2367 NewI->copyIRFlags(B0); 2368 NewI->andIRFlags(B1); 2369 if (DropNSW) 2370 NewI->setHasNoSignedWrap(false); 2371 if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) 2372 NewI->dropPoisonGeneratingFlags(); 2373 } 2374 return replaceInstUsesWith(Shuf, NewBO); 2375 } 2376 2377 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2378 /// Example (little endian): 2379 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2380 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2381 bool IsBigEndian) { 2382 // This must be a bitcasted shuffle of 1 vector integer operand. 2383 Type *DestType = Shuf.getType(); 2384 Value *X; 2385 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2386 !match(Shuf.getOperand(1), m_Poison()) || !DestType->isIntOrIntVectorTy()) 2387 return nullptr; 2388 2389 // The source type must have the same number of elements as the shuffle, 2390 // and the source element type must be larger than the shuffle element type. 2391 Type *SrcType = X->getType(); 2392 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2393 cast<FixedVectorType>(SrcType)->getNumElements() != 2394 cast<FixedVectorType>(DestType)->getNumElements() || 2395 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2396 return nullptr; 2397 2398 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2399 "Expected a shuffle that decreases length"); 2400 2401 // Last, check that the mask chooses the correct low bits for each narrow 2402 // element in the result. 2403 uint64_t TruncRatio = 2404 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2405 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2406 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2407 if (Mask[i] == PoisonMaskElem) 2408 continue; 2409 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2410 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2411 if (Mask[i] != (int)LSBIndex) 2412 return nullptr; 2413 } 2414 2415 return new TruncInst(X, DestType); 2416 } 2417 2418 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2419 /// narrowing (concatenating with undef and extracting back to the original 2420 /// length). This allows replacing the wide select with a narrow select. 2421 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2422 InstCombiner::BuilderTy &Builder) { 2423 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2424 // of the 1st vector operand of a shuffle. 2425 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2426 return nullptr; 2427 2428 // The vector being shuffled must be a vector select that we can eliminate. 2429 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2430 Value *Cond, *X, *Y; 2431 if (!match(Shuf.getOperand(0), 2432 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2433 return nullptr; 2434 2435 // We need a narrow condition value. It must be extended with undef elements 2436 // and have the same number of elements as this shuffle. 2437 unsigned NarrowNumElts = 2438 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2439 Value *NarrowCond; 2440 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2441 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2442 NarrowNumElts || 2443 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2444 return nullptr; 2445 2446 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2447 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2448 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2449 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2450 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2451 } 2452 2453 /// Canonicalize FP negate/abs after shuffle. 2454 static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, 2455 InstCombiner::BuilderTy &Builder) { 2456 auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0)); 2457 Value *X; 2458 if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X))))) 2459 return nullptr; 2460 2461 bool IsFNeg = S0->getOpcode() == Instruction::FNeg; 2462 2463 // Match 1-input (unary) shuffle. 2464 // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask) 2465 if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Poison())) { 2466 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2467 if (IsFNeg) 2468 return UnaryOperator::CreateFNegFMF(NewShuf, S0); 2469 2470 Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(), 2471 Intrinsic::fabs, Shuf.getType()); 2472 CallInst *NewF = CallInst::Create(FAbs, {NewShuf}); 2473 NewF->setFastMathFlags(S0->getFastMathFlags()); 2474 return NewF; 2475 } 2476 2477 // Match 2-input (binary) shuffle. 2478 auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1)); 2479 Value *Y; 2480 if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) || 2481 S0->getOpcode() != S1->getOpcode() || 2482 (!S0->hasOneUse() && !S1->hasOneUse())) 2483 return nullptr; 2484 2485 // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask) 2486 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2487 Instruction *NewF; 2488 if (IsFNeg) { 2489 NewF = UnaryOperator::CreateFNeg(NewShuf); 2490 } else { 2491 Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(), 2492 Intrinsic::fabs, Shuf.getType()); 2493 NewF = CallInst::Create(FAbs, {NewShuf}); 2494 } 2495 NewF->copyIRFlags(S0); 2496 NewF->andIRFlags(S1); 2497 return NewF; 2498 } 2499 2500 /// Canonicalize casts after shuffle. 2501 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, 2502 InstCombiner::BuilderTy &Builder) { 2503 // Do we have 2 matching cast operands? 2504 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0)); 2505 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1)); 2506 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || 2507 Cast0->getSrcTy() != Cast1->getSrcTy()) 2508 return nullptr; 2509 2510 // TODO: Allow other opcodes? That would require easing the type restrictions 2511 // below here. 2512 CastInst::CastOps CastOpcode = Cast0->getOpcode(); 2513 switch (CastOpcode) { 2514 case Instruction::FPToSI: 2515 case Instruction::FPToUI: 2516 case Instruction::SIToFP: 2517 case Instruction::UIToFP: 2518 break; 2519 default: 2520 return nullptr; 2521 } 2522 2523 VectorType *ShufTy = Shuf.getType(); 2524 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType()); 2525 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy()); 2526 2527 // TODO: Allow length-increasing shuffles? 2528 if (ShufTy->getElementCount().getKnownMinValue() > 2529 ShufOpTy->getElementCount().getKnownMinValue()) 2530 return nullptr; 2531 2532 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? 2533 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) && 2534 "Expected fixed vector operands for casts and binary shuffle"); 2535 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) 2536 return nullptr; 2537 2538 // At least one of the operands must have only one use (the shuffle). 2539 if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) 2540 return nullptr; 2541 2542 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) 2543 Value *X = Cast0->getOperand(0); 2544 Value *Y = Cast1->getOperand(0); 2545 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2546 return CastInst::Create(CastOpcode, NewShuf, ShufTy); 2547 } 2548 2549 /// Try to fold an extract subvector operation. 2550 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2551 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2552 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Poison())) 2553 return nullptr; 2554 2555 // Check if we are extracting all bits of an inserted scalar: 2556 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2557 Value *X; 2558 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2559 X->getType()->getPrimitiveSizeInBits() == 2560 Shuf.getType()->getPrimitiveSizeInBits()) 2561 return new BitCastInst(X, Shuf.getType()); 2562 2563 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2564 Value *Y; 2565 ArrayRef<int> Mask; 2566 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2567 return nullptr; 2568 2569 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2570 // then combining may result in worse codegen. 2571 if (!Op0->hasOneUse()) 2572 return nullptr; 2573 2574 // We are extracting a subvector from a shuffle. Remove excess elements from 2575 // the 1st shuffle mask to eliminate the extract. 2576 // 2577 // This transform is conservatively limited to identity extracts because we do 2578 // not allow arbitrary shuffle mask creation as a target-independent transform 2579 // (because we can't guarantee that will lower efficiently). 2580 // 2581 // If the extracting shuffle has an poison mask element, it transfers to the 2582 // new shuffle mask. Otherwise, copy the original mask element. Example: 2583 // shuf (shuf X, Y, <C0, C1, C2, poison, C4>), poison, <0, poison, 2, 3> --> 2584 // shuf X, Y, <C0, poison, C2, poison> 2585 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2586 SmallVector<int, 16> NewMask(NumElts); 2587 assert(NumElts < Mask.size() && 2588 "Identity with extract must have less elements than its inputs"); 2589 2590 for (unsigned i = 0; i != NumElts; ++i) { 2591 int ExtractMaskElt = Shuf.getMaskValue(i); 2592 int MaskElt = Mask[i]; 2593 NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt; 2594 } 2595 return new ShuffleVectorInst(X, Y, NewMask); 2596 } 2597 2598 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2599 /// operand with the operand of an insertelement. 2600 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2601 InstCombinerImpl &IC) { 2602 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2603 SmallVector<int, 16> Mask; 2604 Shuf.getShuffleMask(Mask); 2605 2606 int NumElts = Mask.size(); 2607 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2608 2609 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2610 // not be able to handle it there if the insertelement has >1 use. 2611 // If the shuffle has an insertelement operand but does not choose the 2612 // inserted scalar element from that value, then we can replace that shuffle 2613 // operand with the source vector of the insertelement. 2614 Value *X; 2615 uint64_t IdxC; 2616 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2617 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2618 if (!is_contained(Mask, (int)IdxC)) 2619 return IC.replaceOperand(Shuf, 0, X); 2620 } 2621 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2622 // Offset the index constant by the vector width because we are checking for 2623 // accesses to the 2nd vector input of the shuffle. 2624 IdxC += InpNumElts; 2625 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2626 if (!is_contained(Mask, (int)IdxC)) 2627 return IC.replaceOperand(Shuf, 1, X); 2628 } 2629 // For the rest of the transform, the shuffle must not change vector sizes. 2630 // TODO: This restriction could be removed if the insert has only one use 2631 // (because the transform would require a new length-changing shuffle). 2632 if (NumElts != InpNumElts) 2633 return nullptr; 2634 2635 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2636 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2637 // We need an insertelement with a constant index. 2638 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2639 m_ConstantInt(IndexC)))) 2640 return false; 2641 2642 // Test the shuffle mask to see if it splices the inserted scalar into the 2643 // operand 1 vector of the shuffle. 2644 int NewInsIndex = -1; 2645 for (int i = 0; i != NumElts; ++i) { 2646 // Ignore undef mask elements. 2647 if (Mask[i] == -1) 2648 continue; 2649 2650 // The shuffle takes elements of operand 1 without lane changes. 2651 if (Mask[i] == NumElts + i) 2652 continue; 2653 2654 // The shuffle must choose the inserted scalar exactly once. 2655 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2656 return false; 2657 2658 // The shuffle is placing the inserted scalar into element i. 2659 NewInsIndex = i; 2660 } 2661 2662 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2663 2664 // Index is updated to the potentially translated insertion lane. 2665 IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex); 2666 return true; 2667 }; 2668 2669 // If the shuffle is unnecessary, insert the scalar operand directly into 2670 // operand 1 of the shuffle. Example: 2671 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2672 Value *Scalar; 2673 ConstantInt *IndexC; 2674 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2675 return InsertElementInst::Create(V1, Scalar, IndexC); 2676 2677 // Try again after commuting shuffle. Example: 2678 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2679 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2680 std::swap(V0, V1); 2681 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2682 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2683 return InsertElementInst::Create(V1, Scalar, IndexC); 2684 2685 return nullptr; 2686 } 2687 2688 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2689 // Match the operands as identity with padding (also known as concatenation 2690 // with undef) shuffles of the same source type. The backend is expected to 2691 // recreate these concatenations from a shuffle of narrow operands. 2692 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2693 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2694 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2695 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2696 return nullptr; 2697 2698 // We limit this transform to power-of-2 types because we expect that the 2699 // backend can convert the simplified IR patterns to identical nodes as the 2700 // original IR. 2701 // TODO: If we can verify the same behavior for arbitrary types, the 2702 // power-of-2 checks can be removed. 2703 Value *X = Shuffle0->getOperand(0); 2704 Value *Y = Shuffle1->getOperand(0); 2705 if (X->getType() != Y->getType() || 2706 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2707 !isPowerOf2_32( 2708 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2709 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2710 match(X, m_Undef()) || match(Y, m_Undef())) 2711 return nullptr; 2712 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2713 match(Shuffle1->getOperand(1), m_Undef()) && 2714 "Unexpected operand for identity shuffle"); 2715 2716 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2717 // operands directly by adjusting the shuffle mask to account for the narrower 2718 // types: 2719 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2720 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2721 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2722 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2723 2724 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2725 SmallVector<int, 16> NewMask(Mask.size(), -1); 2726 for (int i = 0, e = Mask.size(); i != e; ++i) { 2727 if (Mask[i] == -1) 2728 continue; 2729 2730 // If this shuffle is choosing an undef element from 1 of the sources, that 2731 // element is undef. 2732 if (Mask[i] < WideElts) { 2733 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2734 continue; 2735 } else { 2736 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2737 continue; 2738 } 2739 2740 // If this shuffle is choosing from the 1st narrow op, the mask element is 2741 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2742 // element is offset down to adjust for the narrow vector widths. 2743 if (Mask[i] < WideElts) { 2744 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2745 NewMask[i] = Mask[i]; 2746 } else { 2747 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2748 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2749 } 2750 } 2751 return new ShuffleVectorInst(X, Y, NewMask); 2752 } 2753 2754 // Splatting the first element of the result of a BinOp, where any of the 2755 // BinOp's operands are the result of a first element splat can be simplified to 2756 // splatting the first element of the result of the BinOp 2757 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) { 2758 if (!match(SVI.getOperand(1), m_Poison()) || 2759 !match(SVI.getShuffleMask(), m_ZeroMask()) || 2760 !SVI.getOperand(0)->hasOneUse()) 2761 return nullptr; 2762 2763 Value *Op0 = SVI.getOperand(0); 2764 Value *X, *Y; 2765 if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Poison(), m_ZeroMask()), 2766 m_Value(Y))) && 2767 !match(Op0, m_BinOp(m_Value(X), 2768 m_Shuffle(m_Value(Y), m_Poison(), m_ZeroMask())))) 2769 return nullptr; 2770 if (X->getType() != Y->getType()) 2771 return nullptr; 2772 2773 auto *BinOp = cast<BinaryOperator>(Op0); 2774 if (!isSafeToSpeculativelyExecute(BinOp)) 2775 return nullptr; 2776 2777 Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y); 2778 if (auto NewBOI = dyn_cast<Instruction>(NewBO)) 2779 NewBOI->copyIRFlags(BinOp); 2780 2781 return new ShuffleVectorInst(NewBO, SVI.getShuffleMask()); 2782 } 2783 2784 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2785 Value *LHS = SVI.getOperand(0); 2786 Value *RHS = SVI.getOperand(1); 2787 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2788 if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2789 SVI.getType(), ShufQuery)) 2790 return replaceInstUsesWith(SVI, V); 2791 2792 if (Instruction *I = simplifyBinOpSplats(SVI)) 2793 return I; 2794 2795 // Canonicalize splat shuffle to use poison RHS. Handle this explicitly in 2796 // order to support scalable vectors. 2797 if (match(SVI.getShuffleMask(), m_ZeroMask()) && !isa<PoisonValue>(RHS)) 2798 return replaceOperand(SVI, 1, PoisonValue::get(RHS->getType())); 2799 2800 if (isa<ScalableVectorType>(LHS->getType())) 2801 return nullptr; 2802 2803 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2804 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2805 2806 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2807 // 2808 // if X and Y are of the same (vector) type, and the element size is not 2809 // changed by the bitcasts, we can distribute the bitcasts through the 2810 // shuffle, hopefully reducing the number of instructions. We make sure that 2811 // at least one bitcast only has one use, so we don't *increase* the number of 2812 // instructions here. 2813 Value *X, *Y; 2814 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2815 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2816 X->getType()->getScalarSizeInBits() == 2817 SVI.getType()->getScalarSizeInBits() && 2818 (LHS->hasOneUse() || RHS->hasOneUse())) { 2819 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2820 SVI.getName() + ".uncasted"); 2821 return new BitCastInst(V, SVI.getType()); 2822 } 2823 2824 ArrayRef<int> Mask = SVI.getShuffleMask(); 2825 2826 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2827 // simulated shuffle can simplify, then this shuffle is unnecessary: 2828 // shuf (bitcast X), undef, Mask --> bitcast X' 2829 // TODO: This could be extended to allow length-changing shuffles. 2830 // The transform might also be obsoleted if we allowed canonicalization 2831 // of bitcasted shuffles. 2832 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2833 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2834 // Try to create a scaled mask constant. 2835 auto *XType = cast<FixedVectorType>(X->getType()); 2836 unsigned XNumElts = XType->getNumElements(); 2837 SmallVector<int, 16> ScaledMask; 2838 if (XNumElts >= VWidth) { 2839 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2840 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2841 } else { 2842 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2843 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2844 ScaledMask.clear(); 2845 } 2846 if (!ScaledMask.empty()) { 2847 // If the shuffled source vector simplifies, cast that value to this 2848 // shuffle's type. 2849 if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType), 2850 ScaledMask, XType, ShufQuery)) 2851 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2852 } 2853 } 2854 2855 // shuffle x, x, mask --> shuffle x, undef, mask' 2856 if (LHS == RHS) { 2857 assert(!match(RHS, m_Undef()) && 2858 "Shuffle with 2 undef ops not simplified?"); 2859 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2860 } 2861 2862 // shuffle undef, x, mask --> shuffle x, undef, mask' 2863 if (match(LHS, m_Undef())) { 2864 SVI.commute(); 2865 return &SVI; 2866 } 2867 2868 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2869 return I; 2870 2871 if (Instruction *I = foldSelectShuffle(SVI)) 2872 return I; 2873 2874 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2875 return I; 2876 2877 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2878 return I; 2879 2880 if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder)) 2881 return I; 2882 2883 if (Instruction *I = foldCastShuffle(SVI, Builder)) 2884 return I; 2885 2886 APInt PoisonElts(VWidth, 0); 2887 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2888 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, PoisonElts)) { 2889 if (V != &SVI) 2890 return replaceInstUsesWith(SVI, V); 2891 return &SVI; 2892 } 2893 2894 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2895 return I; 2896 2897 // These transforms have the potential to lose undef knowledge, so they are 2898 // intentionally placed after SimplifyDemandedVectorElts(). 2899 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2900 return I; 2901 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2902 return I; 2903 2904 if (match(RHS, m_Poison()) && canEvaluateShuffled(LHS, Mask)) { 2905 Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder); 2906 return replaceInstUsesWith(SVI, V); 2907 } 2908 2909 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2910 // a non-vector type. We can instead bitcast the original vector followed by 2911 // an extract of the desired element: 2912 // 2913 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2914 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2915 // %1 = bitcast <4 x i8> %sroa to i32 2916 // Becomes: 2917 // %bc = bitcast <16 x i8> %in to <4 x i32> 2918 // %ext = extractelement <4 x i32> %bc, i32 0 2919 // 2920 // If the shuffle is extracting a contiguous range of values from the input 2921 // vector then each use which is a bitcast of the extracted size can be 2922 // replaced. This will work if the vector types are compatible, and the begin 2923 // index is aligned to a value in the casted vector type. If the begin index 2924 // isn't aligned then we can shuffle the original vector (keeping the same 2925 // vector type) before extracting. 2926 // 2927 // This code will bail out if the target type is fundamentally incompatible 2928 // with vectors of the source type. 2929 // 2930 // Example of <16 x i8>, target type i32: 2931 // Index range [4,8): v-----------v Will work. 2932 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2933 // <16 x i8>: | | | | | | | | | | | | | | | | | 2934 // <4 x i32>: | | | | | 2935 // +-----------+-----------+-----------+-----------+ 2936 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2937 // Target type i40: ^--------------^ Won't work, bail. 2938 bool MadeChange = false; 2939 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2940 Value *V = LHS; 2941 unsigned MaskElems = Mask.size(); 2942 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2943 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue(); 2944 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2945 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2946 unsigned SrcNumElems = SrcTy->getNumElements(); 2947 SmallVector<BitCastInst *, 8> BCs; 2948 DenseMap<Type *, Value *> NewBCs; 2949 for (User *U : SVI.users()) 2950 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2951 if (!BC->use_empty()) 2952 // Only visit bitcasts that weren't previously handled. 2953 BCs.push_back(BC); 2954 for (BitCastInst *BC : BCs) { 2955 unsigned BegIdx = Mask.front(); 2956 Type *TgtTy = BC->getDestTy(); 2957 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2958 if (!TgtElemBitWidth) 2959 continue; 2960 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2961 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2962 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2963 if (!VecBitWidthsEqual) 2964 continue; 2965 if (!VectorType::isValidElementType(TgtTy)) 2966 continue; 2967 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2968 if (!BegIsAligned) { 2969 // Shuffle the input so [0,NumElements) contains the output, and 2970 // [NumElems,SrcNumElems) is undef. 2971 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2972 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2973 ShuffleMask[I] = Idx; 2974 V = Builder.CreateShuffleVector(V, ShuffleMask, 2975 SVI.getName() + ".extract"); 2976 BegIdx = 0; 2977 } 2978 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2979 assert(SrcElemsPerTgtElem); 2980 BegIdx /= SrcElemsPerTgtElem; 2981 bool BCAlreadyExists = NewBCs.contains(CastSrcTy); 2982 auto *NewBC = 2983 BCAlreadyExists 2984 ? NewBCs[CastSrcTy] 2985 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2986 if (!BCAlreadyExists) 2987 NewBCs[CastSrcTy] = NewBC; 2988 auto *Ext = Builder.CreateExtractElement(NewBC, BegIdx, 2989 SVI.getName() + ".extract"); 2990 // The shufflevector isn't being replaced: the bitcast that used it 2991 // is. InstCombine will visit the newly-created instructions. 2992 replaceInstUsesWith(*BC, Ext); 2993 MadeChange = true; 2994 } 2995 } 2996 2997 // If the LHS is a shufflevector itself, see if we can combine it with this 2998 // one without producing an unusual shuffle. 2999 // Cases that might be simplified: 3000 // 1. 3001 // x1=shuffle(v1,v2,mask1) 3002 // x=shuffle(x1,undef,mask) 3003 // ==> 3004 // x=shuffle(v1,undef,newMask) 3005 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 3006 // 2. 3007 // x1=shuffle(v1,undef,mask1) 3008 // x=shuffle(x1,x2,mask) 3009 // where v1.size() == mask1.size() 3010 // ==> 3011 // x=shuffle(v1,x2,newMask) 3012 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 3013 // 3. 3014 // x2=shuffle(v2,undef,mask2) 3015 // x=shuffle(x1,x2,mask) 3016 // where v2.size() == mask2.size() 3017 // ==> 3018 // x=shuffle(x1,v2,newMask) 3019 // newMask[i] = (mask[i] < x1.size()) 3020 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 3021 // 4. 3022 // x1=shuffle(v1,undef,mask1) 3023 // x2=shuffle(v2,undef,mask2) 3024 // x=shuffle(x1,x2,mask) 3025 // where v1.size() == v2.size() 3026 // ==> 3027 // x=shuffle(v1,v2,newMask) 3028 // newMask[i] = (mask[i] < x1.size()) 3029 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 3030 // 3031 // Here we are really conservative: 3032 // we are absolutely afraid of producing a shuffle mask not in the input 3033 // program, because the code gen may not be smart enough to turn a merged 3034 // shuffle into two specific shuffles: it may produce worse code. As such, 3035 // we only merge two shuffles if the result is either a splat or one of the 3036 // input shuffle masks. In this case, merging the shuffles just removes 3037 // one instruction, which we know is safe. This is good for things like 3038 // turning: (splat(splat)) -> splat, or 3039 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 3040 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 3041 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 3042 if (LHSShuffle) 3043 if (!match(LHSShuffle->getOperand(1), m_Poison()) && 3044 !match(RHS, m_Poison())) 3045 LHSShuffle = nullptr; 3046 if (RHSShuffle) 3047 if (!match(RHSShuffle->getOperand(1), m_Poison())) 3048 RHSShuffle = nullptr; 3049 if (!LHSShuffle && !RHSShuffle) 3050 return MadeChange ? &SVI : nullptr; 3051 3052 Value* LHSOp0 = nullptr; 3053 Value* LHSOp1 = nullptr; 3054 Value* RHSOp0 = nullptr; 3055 unsigned LHSOp0Width = 0; 3056 unsigned RHSOp0Width = 0; 3057 if (LHSShuffle) { 3058 LHSOp0 = LHSShuffle->getOperand(0); 3059 LHSOp1 = LHSShuffle->getOperand(1); 3060 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 3061 } 3062 if (RHSShuffle) { 3063 RHSOp0 = RHSShuffle->getOperand(0); 3064 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 3065 } 3066 Value* newLHS = LHS; 3067 Value* newRHS = RHS; 3068 if (LHSShuffle) { 3069 // case 1 3070 if (match(RHS, m_Poison())) { 3071 newLHS = LHSOp0; 3072 newRHS = LHSOp1; 3073 } 3074 // case 2 or 4 3075 else if (LHSOp0Width == LHSWidth) { 3076 newLHS = LHSOp0; 3077 } 3078 } 3079 // case 3 or 4 3080 if (RHSShuffle && RHSOp0Width == LHSWidth) { 3081 newRHS = RHSOp0; 3082 } 3083 // case 4 3084 if (LHSOp0 == RHSOp0) { 3085 newLHS = LHSOp0; 3086 newRHS = nullptr; 3087 } 3088 3089 if (newLHS == LHS && newRHS == RHS) 3090 return MadeChange ? &SVI : nullptr; 3091 3092 ArrayRef<int> LHSMask; 3093 ArrayRef<int> RHSMask; 3094 if (newLHS != LHS) 3095 LHSMask = LHSShuffle->getShuffleMask(); 3096 if (RHSShuffle && newRHS != RHS) 3097 RHSMask = RHSShuffle->getShuffleMask(); 3098 3099 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 3100 SmallVector<int, 16> newMask; 3101 bool isSplat = true; 3102 int SplatElt = -1; 3103 // Create a new mask for the new ShuffleVectorInst so that the new 3104 // ShuffleVectorInst is equivalent to the original one. 3105 for (unsigned i = 0; i < VWidth; ++i) { 3106 int eltMask; 3107 if (Mask[i] < 0) { 3108 // This element is a poison value. 3109 eltMask = -1; 3110 } else if (Mask[i] < (int)LHSWidth) { 3111 // This element is from left hand side vector operand. 3112 // 3113 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 3114 // new mask value for the element. 3115 if (newLHS != LHS) { 3116 eltMask = LHSMask[Mask[i]]; 3117 // If the value selected is an poison value, explicitly specify it 3118 // with a -1 mask value. 3119 if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1)) 3120 eltMask = -1; 3121 } else 3122 eltMask = Mask[i]; 3123 } else { 3124 // This element is from right hand side vector operand 3125 // 3126 // If the value selected is a poison value, explicitly specify it 3127 // with a -1 mask value. (case 1) 3128 if (match(RHS, m_Poison())) 3129 eltMask = -1; 3130 // If RHS is going to be replaced (case 3 or 4), calculate the 3131 // new mask value for the element. 3132 else if (newRHS != RHS) { 3133 eltMask = RHSMask[Mask[i]-LHSWidth]; 3134 // If the value selected is an poison value, explicitly specify it 3135 // with a -1 mask value. 3136 if (eltMask >= (int)RHSOp0Width) { 3137 assert(match(RHSShuffle->getOperand(1), m_Poison()) && 3138 "should have been check above"); 3139 eltMask = -1; 3140 } 3141 } else 3142 eltMask = Mask[i]-LHSWidth; 3143 3144 // If LHS's width is changed, shift the mask value accordingly. 3145 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 3146 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 3147 // If newRHS == newLHS, we want to remap any references from newRHS to 3148 // newLHS so that we can properly identify splats that may occur due to 3149 // obfuscation across the two vectors. 3150 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 3151 eltMask += newLHSWidth; 3152 } 3153 3154 // Check if this could still be a splat. 3155 if (eltMask >= 0) { 3156 if (SplatElt >= 0 && SplatElt != eltMask) 3157 isSplat = false; 3158 SplatElt = eltMask; 3159 } 3160 3161 newMask.push_back(eltMask); 3162 } 3163 3164 // If the result mask is equal to one of the original shuffle masks, 3165 // or is a splat, do the replacement. 3166 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 3167 if (!newRHS) 3168 newRHS = PoisonValue::get(newLHS->getType()); 3169 return new ShuffleVectorInst(newLHS, newRHS, newMask); 3170 } 3171 3172 return MadeChange ? &SVI : nullptr; 3173 } 3174