xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision e9ca7ea3e5c0f3e155fc7b47cb9068a2f12cae6a)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                         uint64_t &Offset) {
33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34     Offset = CI->getZExtValue();
35     Scale  = 0;
36     return ConstantInt::get(Val->getType(), 0);
37   }
38 
39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40     // Cannot look past anything that might overflow.
41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43       Scale = 1;
44       Offset = 0;
45       return Val;
46     }
47 
48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49       if (I->getOpcode() == Instruction::Shl) {
50         // This is a value scaled by '1 << the shift amt'.
51         Scale = UINT64_C(1) << RHS->getZExtValue();
52         Offset = 0;
53         return I->getOperand(0);
54       }
55 
56       if (I->getOpcode() == Instruction::Mul) {
57         // This value is scaled by 'RHS'.
58         Scale = RHS->getZExtValue();
59         Offset = 0;
60         return I->getOperand(0);
61       }
62 
63       if (I->getOpcode() == Instruction::Add) {
64         // We have X+C.  Check to see if we really have (X*C2)+C1,
65         // where C1 is divisible by C2.
66         unsigned SubScale;
67         Value *SubVal =
68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69         Offset += RHS->getZExtValue();
70         Scale = SubScale;
71         return SubVal;
72       }
73     }
74   }
75 
76   // Otherwise, we can't look past this.
77   Scale = 1;
78   Offset = 0;
79   return Val;
80 }
81 
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                    AllocaInst &AI) {
86   PointerType *PTy = cast<PointerType>(CI.getType());
87 
88   BuilderTy AllocaBuilder(Builder);
89   AllocaBuilder.SetInsertPoint(&AI);
90 
91   // Get the type really allocated and the type casted to.
92   Type *AllocElTy = AI.getAllocatedType();
93   Type *CastElTy = PTy->getElementType();
94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 
96   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 
100   // If the allocation has multiple uses, only promote it if we are strictly
101   // increasing the alignment of the resultant allocation.  If we keep it the
102   // same, we open the door to infinite loops of various kinds.
103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 
105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 
109   // If the allocation has multiple uses, only promote it if we're not
110   // shrinking the amount of memory being allocated.
111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 
115   // See if we can satisfy the modulus by pulling a scale out of the array
116   // size argument.
117   unsigned ArraySizeScale;
118   uint64_t ArrayOffset;
119   Value *NumElements = // See if the array size is a decomposable linear expr.
120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 
122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
123   // do the xform.
124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126 
127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128   Value *Amt = nullptr;
129   if (Scale == 1) {
130     Amt = NumElements;
131   } else {
132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133     // Insert before the alloca, not before the cast.
134     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135   }
136 
137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                   Offset, true);
140     Amt = AllocaBuilder.CreateAdd(Amt, Off);
141   }
142 
143   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144   New->setAlignment(AI.getAlignment());
145   New->takeName(&AI);
146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 
148   // If the allocation has multiple real uses, insert a cast and change all
149   // things that used it to use the new cast.  This will also hack on CI, but it
150   // will die soon.
151   if (!AI.hasOneUse()) {
152     // New is the allocation instruction, pointer typed. AI is the original
153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155     replaceInstUsesWith(AI, NewCast);
156   }
157   return replaceInstUsesWith(CI, New);
158 }
159 
160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161 /// true for, actually insert the code to evaluate the expression.
162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163                                              bool isSigned) {
164   if (Constant *C = dyn_cast<Constant>(V)) {
165     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166     // If we got a constantexpr back, try to simplify it with DL info.
167     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168       C = FoldedC;
169     return C;
170   }
171 
172   // Otherwise, it must be an instruction.
173   Instruction *I = cast<Instruction>(V);
174   Instruction *Res = nullptr;
175   unsigned Opc = I->getOpcode();
176   switch (Opc) {
177   case Instruction::Add:
178   case Instruction::Sub:
179   case Instruction::Mul:
180   case Instruction::And:
181   case Instruction::Or:
182   case Instruction::Xor:
183   case Instruction::AShr:
184   case Instruction::LShr:
185   case Instruction::Shl:
186   case Instruction::UDiv:
187   case Instruction::URem: {
188     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191     break;
192   }
193   case Instruction::Trunc:
194   case Instruction::ZExt:
195   case Instruction::SExt:
196     // If the source type of the cast is the type we're trying for then we can
197     // just return the source.  There's no need to insert it because it is not
198     // new.
199     if (I->getOperand(0)->getType() == Ty)
200       return I->getOperand(0);
201 
202     // Otherwise, must be the same type of cast, so just reinsert a new one.
203     // This also handles the case of zext(trunc(x)) -> zext(x).
204     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205                                       Opc == Instruction::SExt);
206     break;
207   case Instruction::Select: {
208     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210     Res = SelectInst::Create(I->getOperand(0), True, False);
211     break;
212   }
213   case Instruction::PHI: {
214     PHINode *OPN = cast<PHINode>(I);
215     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
216     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217       Value *V =
218           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219       NPN->addIncoming(V, OPN->getIncomingBlock(i));
220     }
221     Res = NPN;
222     break;
223   }
224   default:
225     // TODO: Can handle more cases here.
226     llvm_unreachable("Unreachable!");
227   }
228 
229   Res->takeName(I);
230   return InsertNewInstWith(Res, *I);
231 }
232 
233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
234                                                         const CastInst *CI2) {
235   Type *SrcTy = CI1->getSrcTy();
236   Type *MidTy = CI1->getDestTy();
237   Type *DstTy = CI2->getDestTy();
238 
239   Instruction::CastOps firstOp = CI1->getOpcode();
240   Instruction::CastOps secondOp = CI2->getOpcode();
241   Type *SrcIntPtrTy =
242       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
243   Type *MidIntPtrTy =
244       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
245   Type *DstIntPtrTy =
246       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
247   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
249                                                 DstIntPtrTy);
250 
251   // We don't want to form an inttoptr or ptrtoint that converts to an integer
252   // type that differs from the pointer size.
253   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255     Res = 0;
256 
257   return Instruction::CastOps(Res);
258 }
259 
260 /// Implement the transforms common to all CastInst visitors.
261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
262   Value *Src = CI.getOperand(0);
263 
264   // Try to eliminate a cast of a cast.
265   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
266     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
267       // The first cast (CSrc) is eliminable so we need to fix up or replace
268       // the second cast (CI). CSrc will then have a good chance of being dead.
269       auto *Ty = CI.getType();
270       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
271       // Point debug users of the dying cast to the new one.
272       if (CSrc->hasOneUse())
273         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
274       return Res;
275     }
276   }
277 
278   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
279     // We are casting a select. Try to fold the cast into the select, but only
280     // if the select does not have a compare instruction with matching operand
281     // types. Creating a select with operands that are different sizes than its
282     // condition may inhibit other folds and lead to worse codegen.
283     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
285       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
286         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
287         return NV;
288       }
289   }
290 
291   // If we are casting a PHI, then fold the cast into the PHI.
292   if (auto *PN = dyn_cast<PHINode>(Src)) {
293     // Don't do this if it would create a PHI node with an illegal type from a
294     // legal type.
295     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
296         shouldChangeType(CI.getType(), Src->getType()))
297       if (Instruction *NV = foldOpIntoPhi(CI, PN))
298         return NV;
299   }
300 
301   return nullptr;
302 }
303 
304 /// Constants and extensions/truncates from the destination type are always
305 /// free to be evaluated in that type. This is a helper for canEvaluate*.
306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
307   if (isa<Constant>(V))
308     return true;
309   Value *X;
310   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
311       X->getType() == Ty)
312     return true;
313 
314   return false;
315 }
316 
317 /// Filter out values that we can not evaluate in the destination type for free.
318 /// This is a helper for canEvaluate*.
319 static bool canNotEvaluateInType(Value *V, Type *Ty) {
320   assert(!isa<Constant>(V) && "Constant should already be handled.");
321   if (!isa<Instruction>(V))
322     return true;
323   // We don't extend or shrink something that has multiple uses --  doing so
324   // would require duplicating the instruction which isn't profitable.
325   if (!V->hasOneUse())
326     return true;
327 
328   return false;
329 }
330 
331 /// Return true if we can evaluate the specified expression tree as type Ty
332 /// instead of its larger type, and arrive with the same value.
333 /// This is used by code that tries to eliminate truncates.
334 ///
335 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
336 /// can be computed by computing V in the smaller type.  If V is an instruction,
337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
338 /// makes sense if x and y can be efficiently truncated.
339 ///
340 /// This function works on both vectors and scalars.
341 ///
342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
343                                  Instruction *CxtI) {
344   if (canAlwaysEvaluateInType(V, Ty))
345     return true;
346   if (canNotEvaluateInType(V, Ty))
347     return false;
348 
349   auto *I = cast<Instruction>(V);
350   Type *OrigTy = V->getType();
351   switch (I->getOpcode()) {
352   case Instruction::Add:
353   case Instruction::Sub:
354   case Instruction::Mul:
355   case Instruction::And:
356   case Instruction::Or:
357   case Instruction::Xor:
358     // These operators can all arbitrarily be extended or truncated.
359     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
360            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361 
362   case Instruction::UDiv:
363   case Instruction::URem: {
364     // UDiv and URem can be truncated if all the truncated bits are zero.
365     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
366     uint32_t BitWidth = Ty->getScalarSizeInBits();
367     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
368     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
369     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
370         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
371       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
372              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373     }
374     break;
375   }
376   case Instruction::Shl: {
377     // If we are truncating the result of this SHL, and if it's a shift of a
378     // constant amount, we can always perform a SHL in a smaller type.
379     const APInt *Amt;
380     if (match(I->getOperand(1), m_APInt(Amt))) {
381       uint32_t BitWidth = Ty->getScalarSizeInBits();
382       if (Amt->getLimitedValue(BitWidth) < BitWidth)
383         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384     }
385     break;
386   }
387   case Instruction::LShr: {
388     // If this is a truncate of a logical shr, we can truncate it to a smaller
389     // lshr iff we know that the bits we would otherwise be shifting in are
390     // already zeros.
391     const APInt *Amt;
392     if (match(I->getOperand(1), m_APInt(Amt))) {
393       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394       uint32_t BitWidth = Ty->getScalarSizeInBits();
395       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
396           IC.MaskedValueIsZero(I->getOperand(0),
397             APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
398         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399       }
400     }
401     break;
402   }
403   case Instruction::AShr: {
404     // If this is a truncate of an arithmetic shr, we can truncate it to a
405     // smaller ashr iff we know that all the bits from the sign bit of the
406     // original type and the sign bit of the truncate type are similar.
407     // TODO: It is enough to check that the bits we would be shifting in are
408     //       similar to sign bit of the truncate type.
409     const APInt *Amt;
410     if (match(I->getOperand(1), m_APInt(Amt))) {
411       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
412       uint32_t BitWidth = Ty->getScalarSizeInBits();
413       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
414           OrigBitWidth - BitWidth <
415               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
416         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417     }
418     break;
419   }
420   case Instruction::Trunc:
421     // trunc(trunc(x)) -> trunc(x)
422     return true;
423   case Instruction::ZExt:
424   case Instruction::SExt:
425     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
426     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
427     return true;
428   case Instruction::Select: {
429     SelectInst *SI = cast<SelectInst>(I);
430     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
431            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432   }
433   case Instruction::PHI: {
434     // We can change a phi if we can change all operands.  Note that we never
435     // get into trouble with cyclic PHIs here because we only consider
436     // instructions with a single use.
437     PHINode *PN = cast<PHINode>(I);
438     for (Value *IncValue : PN->incoming_values())
439       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
440         return false;
441     return true;
442   }
443   default:
444     // TODO: Can handle more cases here.
445     break;
446   }
447 
448   return false;
449 }
450 
451 /// Given a vector that is bitcast to an integer, optionally logically
452 /// right-shifted, and truncated, convert it to an extractelement.
453 /// Example (big endian):
454 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
455 ///   --->
456 ///   extractelement <4 x i32> %X, 1
457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
458   Value *TruncOp = Trunc.getOperand(0);
459   Type *DestType = Trunc.getType();
460   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
461     return nullptr;
462 
463   Value *VecInput = nullptr;
464   ConstantInt *ShiftVal = nullptr;
465   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
466                                   m_LShr(m_BitCast(m_Value(VecInput)),
467                                          m_ConstantInt(ShiftVal)))) ||
468       !isa<VectorType>(VecInput->getType()))
469     return nullptr;
470 
471   VectorType *VecType = cast<VectorType>(VecInput->getType());
472   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
473   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
474   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475 
476   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
477     return nullptr;
478 
479   // If the element type of the vector doesn't match the result type,
480   // bitcast it to a vector type that we can extract from.
481   unsigned NumVecElts = VecWidth / DestWidth;
482   if (VecType->getElementType() != DestType) {
483     VecType = VectorType::get(DestType, NumVecElts);
484     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
485   }
486 
487   unsigned Elt = ShiftAmount / DestWidth;
488   if (IC.getDataLayout().isBigEndian())
489     Elt = NumVecElts - 1 - Elt;
490 
491   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
492 }
493 
494 /// Rotate left/right may occur in a wider type than necessary because of type
495 /// promotion rules. Try to narrow all of the component instructions.
496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
497   assert((isa<VectorType>(Trunc.getSrcTy()) ||
498           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
499          "Don't narrow to an illegal scalar type");
500 
501   // First, find an or'd pair of opposite shifts with the same shifted operand:
502   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
503   Value *Or0, *Or1;
504   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
505     return nullptr;
506 
507   Value *ShVal, *ShAmt0, *ShAmt1;
508   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
509       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
510     return nullptr;
511 
512   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
513   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
514   if (ShiftOpcode0 == ShiftOpcode1)
515     return nullptr;
516 
517   // The shift amounts must add up to the narrow bit width.
518   Value *ShAmt;
519   bool SubIsOnLHS;
520   Type *DestTy = Trunc.getType();
521   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
522   if (match(ShAmt0,
523             m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
524     ShAmt = ShAmt1;
525     SubIsOnLHS = true;
526   } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
527                                           m_Specific(ShAmt0))))) {
528     ShAmt = ShAmt0;
529     SubIsOnLHS = false;
530   } else {
531     return nullptr;
532   }
533 
534   // The shifted value must have high zeros in the wide type. Typically, this
535   // will be a zext, but it could also be the result of an 'and' or 'shift'.
536   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
537   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
538   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
539     return nullptr;
540 
541   // We have an unnecessarily wide rotate!
542   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
543   // Narrow it down to eliminate the zext/trunc:
544   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
545   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
546   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
547 
548   // Mask both shift amounts to ensure there's no UB from oversized shifts.
549   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
550   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
551   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
552 
553   // Truncate the original value and use narrow ops.
554   Value *X = Builder.CreateTrunc(ShVal, DestTy);
555   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
556   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
557   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
558   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
559   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
560 }
561 
562 /// Try to narrow the width of math or bitwise logic instructions by pulling a
563 /// truncate ahead of binary operators.
564 /// TODO: Transforms for truncated shifts should be moved into here.
565 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
566   Type *SrcTy = Trunc.getSrcTy();
567   Type *DestTy = Trunc.getType();
568   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
569     return nullptr;
570 
571   BinaryOperator *BinOp;
572   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
573     return nullptr;
574 
575   Value *BinOp0 = BinOp->getOperand(0);
576   Value *BinOp1 = BinOp->getOperand(1);
577   switch (BinOp->getOpcode()) {
578   case Instruction::And:
579   case Instruction::Or:
580   case Instruction::Xor:
581   case Instruction::Add:
582   case Instruction::Sub:
583   case Instruction::Mul: {
584     Constant *C;
585     if (match(BinOp0, m_Constant(C))) {
586       // trunc (binop C, X) --> binop (trunc C', X)
587       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
588       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
589       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
590     }
591     if (match(BinOp1, m_Constant(C))) {
592       // trunc (binop X, C) --> binop (trunc X, C')
593       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
594       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
595       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
596     }
597     Value *X;
598     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
599       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
600       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
601       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
602     }
603     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
604       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
605       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
606       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
607     }
608     break;
609   }
610 
611   default: break;
612   }
613 
614   if (Instruction *NarrowOr = narrowRotate(Trunc))
615     return NarrowOr;
616 
617   return nullptr;
618 }
619 
620 /// Try to narrow the width of a splat shuffle. This could be generalized to any
621 /// shuffle with a constant operand, but we limit the transform to avoid
622 /// creating a shuffle type that targets may not be able to lower effectively.
623 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
624                                        InstCombiner::BuilderTy &Builder) {
625   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
626   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
627       Shuf->getMask()->getSplatValue() &&
628       Shuf->getType() == Shuf->getOperand(0)->getType()) {
629     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
630     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
631     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
632     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
633   }
634 
635   return nullptr;
636 }
637 
638 /// Try to narrow the width of an insert element. This could be generalized for
639 /// any vector constant, but we limit the transform to insertion into undef to
640 /// avoid potential backend problems from unsupported insertion widths. This
641 /// could also be extended to handle the case of inserting a scalar constant
642 /// into a vector variable.
643 static Instruction *shrinkInsertElt(CastInst &Trunc,
644                                     InstCombiner::BuilderTy &Builder) {
645   Instruction::CastOps Opcode = Trunc.getOpcode();
646   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
647          "Unexpected instruction for shrinking");
648 
649   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
650   if (!InsElt || !InsElt->hasOneUse())
651     return nullptr;
652 
653   Type *DestTy = Trunc.getType();
654   Type *DestScalarTy = DestTy->getScalarType();
655   Value *VecOp = InsElt->getOperand(0);
656   Value *ScalarOp = InsElt->getOperand(1);
657   Value *Index = InsElt->getOperand(2);
658 
659   if (isa<UndefValue>(VecOp)) {
660     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
661     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
662     UndefValue *NarrowUndef = UndefValue::get(DestTy);
663     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
664     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
665   }
666 
667   return nullptr;
668 }
669 
670 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
671   if (Instruction *Result = commonCastTransforms(CI))
672     return Result;
673 
674   Value *Src = CI.getOperand(0);
675   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
676 
677   // Attempt to truncate the entire input expression tree to the destination
678   // type.   Only do this if the dest type is a simple type, don't convert the
679   // expression tree to something weird like i93 unless the source is also
680   // strange.
681   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
682       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
683 
684     // If this cast is a truncate, evaluting in a different type always
685     // eliminates the cast, so it is always a win.
686     LLVM_DEBUG(
687         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
688                   " to avoid cast: "
689                << CI << '\n');
690     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
691     assert(Res->getType() == DestTy);
692     return replaceInstUsesWith(CI, Res);
693   }
694 
695   // Test if the trunc is the user of a select which is part of a
696   // minimum or maximum operation. If so, don't do any more simplification.
697   // Even simplifying demanded bits can break the canonical form of a
698   // min/max.
699   Value *LHS, *RHS;
700   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
701     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
702       return nullptr;
703 
704   // See if we can simplify any instructions used by the input whose sole
705   // purpose is to compute bits we don't care about.
706   if (SimplifyDemandedInstructionBits(CI))
707     return &CI;
708 
709   if (DestTy->getScalarSizeInBits() == 1) {
710     Value *Zero = Constant::getNullValue(Src->getType());
711     if (DestTy->isIntegerTy()) {
712       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
713       // TODO: We canonicalize to more instructions here because we are probably
714       // lacking equivalent analysis for trunc relative to icmp. There may also
715       // be codegen concerns. If those trunc limitations were removed, we could
716       // remove this transform.
717       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
718       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
719     }
720 
721     // For vectors, we do not canonicalize all truncs to icmp, so optimize
722     // patterns that would be covered within visitICmpInst.
723     Value *X;
724     const APInt *C;
725     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
726       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
727       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
728       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
729       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
730     }
731     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
732                                    m_Deferred(X))))) {
733       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
734       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
735       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
736       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
737     }
738   }
739 
740   // FIXME: Maybe combine the next two transforms to handle the no cast case
741   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
742 
743   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
744   Value *A = nullptr; ConstantInt *Cst = nullptr;
745   if (Src->hasOneUse() &&
746       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
747     // We have three types to worry about here, the type of A, the source of
748     // the truncate (MidSize), and the destination of the truncate. We know that
749     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
750     // between ASize and ResultSize.
751     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
752 
753     // If the shift amount is larger than the size of A, then the result is
754     // known to be zero because all the input bits got shifted out.
755     if (Cst->getZExtValue() >= ASize)
756       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
757 
758     // Since we're doing an lshr and a zero extend, and know that the shift
759     // amount is smaller than ASize, it is always safe to do the shift in A's
760     // type, then zero extend or truncate to the result.
761     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
762     Shift->takeName(Src);
763     return CastInst::CreateIntegerCast(Shift, DestTy, false);
764   }
765 
766   // FIXME: We should canonicalize to zext/trunc and remove this transform.
767   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
768   // conversion.
769   // It works because bits coming from sign extension have the same value as
770   // the sign bit of the original value; performing ashr instead of lshr
771   // generates bits of the same value as the sign bit.
772   if (Src->hasOneUse() &&
773       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
774     Value *SExt = cast<Instruction>(Src)->getOperand(0);
775     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
776     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
777     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
778     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
779     unsigned ShiftAmt = Cst->getZExtValue();
780 
781     // This optimization can be only performed when zero bits generated by
782     // the original lshr aren't pulled into the value after truncation, so we
783     // can only shift by values no larger than the number of extension bits.
784     // FIXME: Instead of bailing when the shift is too large, use and to clear
785     // the extra bits.
786     if (ShiftAmt <= MaxAmt) {
787       if (CISize == ASize)
788         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
789                                           std::min(ShiftAmt, ASize - 1)));
790       if (SExt->hasOneUse()) {
791         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
792         Shift->takeName(Src);
793         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
794       }
795     }
796   }
797 
798   if (Instruction *I = narrowBinOp(CI))
799     return I;
800 
801   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
802     return I;
803 
804   if (Instruction *I = shrinkInsertElt(CI, Builder))
805     return I;
806 
807   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
808       shouldChangeType(SrcTy, DestTy)) {
809     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
810     // dest type is native and cst < dest size.
811     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
812         !match(A, m_Shr(m_Value(), m_Constant()))) {
813       // Skip shifts of shift by constants. It undoes a combine in
814       // FoldShiftByConstant and is the extend in reg pattern.
815       const unsigned DestSize = DestTy->getScalarSizeInBits();
816       if (Cst->getValue().ult(DestSize)) {
817         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
818 
819         return BinaryOperator::Create(
820           Instruction::Shl, NewTrunc,
821           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
822       }
823     }
824   }
825 
826   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
827     return I;
828 
829   return nullptr;
830 }
831 
832 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
833                                              bool DoTransform) {
834   // If we are just checking for a icmp eq of a single bit and zext'ing it
835   // to an integer, then shift the bit to the appropriate place and then
836   // cast to integer to avoid the comparison.
837   const APInt *Op1CV;
838   if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
839 
840     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
841     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
842     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
843         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
844       if (!DoTransform) return ICI;
845 
846       Value *In = ICI->getOperand(0);
847       Value *Sh = ConstantInt::get(In->getType(),
848                                    In->getType()->getScalarSizeInBits() - 1);
849       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
850       if (In->getType() != CI.getType())
851         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
852 
853       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
854         Constant *One = ConstantInt::get(In->getType(), 1);
855         In = Builder.CreateXor(In, One, In->getName() + ".not");
856       }
857 
858       return replaceInstUsesWith(CI, In);
859     }
860 
861     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
862     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
863     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
864     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
865     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
866     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
867     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
868     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
869     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
870         // This only works for EQ and NE
871         ICI->isEquality()) {
872       // If Op1C some other power of two, convert:
873       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
874 
875       APInt KnownZeroMask(~Known.Zero);
876       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
877         if (!DoTransform) return ICI;
878 
879         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
880         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
881           // (X&4) == 2 --> false
882           // (X&4) != 2 --> true
883           Constant *Res = ConstantInt::get(CI.getType(), isNE);
884           return replaceInstUsesWith(CI, Res);
885         }
886 
887         uint32_t ShAmt = KnownZeroMask.logBase2();
888         Value *In = ICI->getOperand(0);
889         if (ShAmt) {
890           // Perform a logical shr by shiftamt.
891           // Insert the shift to put the result in the low bit.
892           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
893                                   In->getName() + ".lobit");
894         }
895 
896         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
897           Constant *One = ConstantInt::get(In->getType(), 1);
898           In = Builder.CreateXor(In, One);
899         }
900 
901         if (CI.getType() == In->getType())
902           return replaceInstUsesWith(CI, In);
903 
904         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
905         return replaceInstUsesWith(CI, IntCast);
906       }
907     }
908   }
909 
910   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
911   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
912   // may lead to additional simplifications.
913   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
914     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
915       Value *LHS = ICI->getOperand(0);
916       Value *RHS = ICI->getOperand(1);
917 
918       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
919       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
920 
921       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
922         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
923         APInt UnknownBit = ~KnownBits;
924         if (UnknownBit.countPopulation() == 1) {
925           if (!DoTransform) return ICI;
926 
927           Value *Result = Builder.CreateXor(LHS, RHS);
928 
929           // Mask off any bits that are set and won't be shifted away.
930           if (KnownLHS.One.uge(UnknownBit))
931             Result = Builder.CreateAnd(Result,
932                                         ConstantInt::get(ITy, UnknownBit));
933 
934           // Shift the bit we're testing down to the lsb.
935           Result = Builder.CreateLShr(
936                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
937 
938           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
939             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
940           Result->takeName(ICI);
941           return replaceInstUsesWith(CI, Result);
942         }
943       }
944     }
945   }
946 
947   return nullptr;
948 }
949 
950 /// Determine if the specified value can be computed in the specified wider type
951 /// and produce the same low bits. If not, return false.
952 ///
953 /// If this function returns true, it can also return a non-zero number of bits
954 /// (in BitsToClear) which indicates that the value it computes is correct for
955 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
956 /// out.  For example, to promote something like:
957 ///
958 ///   %B = trunc i64 %A to i32
959 ///   %C = lshr i32 %B, 8
960 ///   %E = zext i32 %C to i64
961 ///
962 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
963 /// set to 8 to indicate that the promoted value needs to have bits 24-31
964 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
965 /// clear the top bits anyway, doing this has no extra cost.
966 ///
967 /// This function works on both vectors and scalars.
968 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
969                              InstCombiner &IC, Instruction *CxtI) {
970   BitsToClear = 0;
971   if (canAlwaysEvaluateInType(V, Ty))
972     return true;
973   if (canNotEvaluateInType(V, Ty))
974     return false;
975 
976   auto *I = cast<Instruction>(V);
977   unsigned Tmp;
978   switch (I->getOpcode()) {
979   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
980   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
981   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
982     return true;
983   case Instruction::And:
984   case Instruction::Or:
985   case Instruction::Xor:
986   case Instruction::Add:
987   case Instruction::Sub:
988   case Instruction::Mul:
989     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
990         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
991       return false;
992     // These can all be promoted if neither operand has 'bits to clear'.
993     if (BitsToClear == 0 && Tmp == 0)
994       return true;
995 
996     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
997     // other side, BitsToClear is ok.
998     if (Tmp == 0 && I->isBitwiseLogicOp()) {
999       // We use MaskedValueIsZero here for generality, but the case we care
1000       // about the most is constant RHS.
1001       unsigned VSize = V->getType()->getScalarSizeInBits();
1002       if (IC.MaskedValueIsZero(I->getOperand(1),
1003                                APInt::getHighBitsSet(VSize, BitsToClear),
1004                                0, CxtI)) {
1005         // If this is an And instruction and all of the BitsToClear are
1006         // known to be zero we can reset BitsToClear.
1007         if (I->getOpcode() == Instruction::And)
1008           BitsToClear = 0;
1009         return true;
1010       }
1011     }
1012 
1013     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1014     return false;
1015 
1016   case Instruction::Shl: {
1017     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1018     // upper bits we can reduce BitsToClear by the shift amount.
1019     const APInt *Amt;
1020     if (match(I->getOperand(1), m_APInt(Amt))) {
1021       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1022         return false;
1023       uint64_t ShiftAmt = Amt->getZExtValue();
1024       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1025       return true;
1026     }
1027     return false;
1028   }
1029   case Instruction::LShr: {
1030     // We can promote lshr(x, cst) if we can promote x.  This requires the
1031     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1032     const APInt *Amt;
1033     if (match(I->getOperand(1), m_APInt(Amt))) {
1034       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1035         return false;
1036       BitsToClear += Amt->getZExtValue();
1037       if (BitsToClear > V->getType()->getScalarSizeInBits())
1038         BitsToClear = V->getType()->getScalarSizeInBits();
1039       return true;
1040     }
1041     // Cannot promote variable LSHR.
1042     return false;
1043   }
1044   case Instruction::Select:
1045     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1046         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1047         // TODO: If important, we could handle the case when the BitsToClear are
1048         // known zero in the disagreeing side.
1049         Tmp != BitsToClear)
1050       return false;
1051     return true;
1052 
1053   case Instruction::PHI: {
1054     // We can change a phi if we can change all operands.  Note that we never
1055     // get into trouble with cyclic PHIs here because we only consider
1056     // instructions with a single use.
1057     PHINode *PN = cast<PHINode>(I);
1058     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1059       return false;
1060     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1061       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1062           // TODO: If important, we could handle the case when the BitsToClear
1063           // are known zero in the disagreeing input.
1064           Tmp != BitsToClear)
1065         return false;
1066     return true;
1067   }
1068   default:
1069     // TODO: Can handle more cases here.
1070     return false;
1071   }
1072 }
1073 
1074 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1075   // If this zero extend is only used by a truncate, let the truncate be
1076   // eliminated before we try to optimize this zext.
1077   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1078     return nullptr;
1079 
1080   // If one of the common conversion will work, do it.
1081   if (Instruction *Result = commonCastTransforms(CI))
1082     return Result;
1083 
1084   Value *Src = CI.getOperand(0);
1085   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1086 
1087   // Attempt to extend the entire input expression tree to the destination
1088   // type.   Only do this if the dest type is a simple type, don't convert the
1089   // expression tree to something weird like i93 unless the source is also
1090   // strange.
1091   unsigned BitsToClear;
1092   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1093       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1094     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1095            "Can't clear more bits than in SrcTy");
1096 
1097     // Okay, we can transform this!  Insert the new expression now.
1098     LLVM_DEBUG(
1099         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1100                   " to avoid zero extend: "
1101                << CI << '\n');
1102     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1103     assert(Res->getType() == DestTy);
1104 
1105     // Preserve debug values referring to Src if the zext is its last use.
1106     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1107       if (SrcOp->hasOneUse())
1108         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1109 
1110     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1111     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1112 
1113     // If the high bits are already filled with zeros, just replace this
1114     // cast with the result.
1115     if (MaskedValueIsZero(Res,
1116                           APInt::getHighBitsSet(DestBitSize,
1117                                                 DestBitSize-SrcBitsKept),
1118                              0, &CI))
1119       return replaceInstUsesWith(CI, Res);
1120 
1121     // We need to emit an AND to clear the high bits.
1122     Constant *C = ConstantInt::get(Res->getType(),
1123                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1124     return BinaryOperator::CreateAnd(Res, C);
1125   }
1126 
1127   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1128   // types and if the sizes are just right we can convert this into a logical
1129   // 'and' which will be much cheaper than the pair of casts.
1130   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1131     // TODO: Subsume this into EvaluateInDifferentType.
1132 
1133     // Get the sizes of the types involved.  We know that the intermediate type
1134     // will be smaller than A or C, but don't know the relation between A and C.
1135     Value *A = CSrc->getOperand(0);
1136     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1137     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1138     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1139     // If we're actually extending zero bits, then if
1140     // SrcSize <  DstSize: zext(a & mask)
1141     // SrcSize == DstSize: a & mask
1142     // SrcSize  > DstSize: trunc(a) & mask
1143     if (SrcSize < DstSize) {
1144       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1145       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1146       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1147       return new ZExtInst(And, CI.getType());
1148     }
1149 
1150     if (SrcSize == DstSize) {
1151       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1152       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1153                                                            AndValue));
1154     }
1155     if (SrcSize > DstSize) {
1156       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1157       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1158       return BinaryOperator::CreateAnd(Trunc,
1159                                        ConstantInt::get(Trunc->getType(),
1160                                                         AndValue));
1161     }
1162   }
1163 
1164   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1165     return transformZExtICmp(ICI, CI);
1166 
1167   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1168   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1169     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1170     // of the (zext icmp) can be eliminated. If so, immediately perform the
1171     // according elimination.
1172     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1173     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1174     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1175         (transformZExtICmp(LHS, CI, false) ||
1176          transformZExtICmp(RHS, CI, false))) {
1177       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1178       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1179       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1180       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1181 
1182       // Perform the elimination.
1183       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1184         transformZExtICmp(LHS, *LZExt);
1185       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1186         transformZExtICmp(RHS, *RZExt);
1187 
1188       return Or;
1189     }
1190   }
1191 
1192   // zext(trunc(X) & C) -> (X & zext(C)).
1193   Constant *C;
1194   Value *X;
1195   if (SrcI &&
1196       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1197       X->getType() == CI.getType())
1198     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1199 
1200   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1201   Value *And;
1202   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1203       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1204       X->getType() == CI.getType()) {
1205     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1206     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1207   }
1208 
1209   return nullptr;
1210 }
1211 
1212 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1213 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1214   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1215   ICmpInst::Predicate Pred = ICI->getPredicate();
1216 
1217   // Don't bother if Op1 isn't of vector or integer type.
1218   if (!Op1->getType()->isIntOrIntVectorTy())
1219     return nullptr;
1220 
1221   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1222       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1223     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1224     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1225     Value *Sh = ConstantInt::get(Op0->getType(),
1226                                  Op0->getType()->getScalarSizeInBits() - 1);
1227     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1228     if (In->getType() != CI.getType())
1229       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1230 
1231     if (Pred == ICmpInst::ICMP_SGT)
1232       In = Builder.CreateNot(In, In->getName() + ".not");
1233     return replaceInstUsesWith(CI, In);
1234   }
1235 
1236   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1237     // If we know that only one bit of the LHS of the icmp can be set and we
1238     // have an equality comparison with zero or a power of 2, we can transform
1239     // the icmp and sext into bitwise/integer operations.
1240     if (ICI->hasOneUse() &&
1241         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1242       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1243 
1244       APInt KnownZeroMask(~Known.Zero);
1245       if (KnownZeroMask.isPowerOf2()) {
1246         Value *In = ICI->getOperand(0);
1247 
1248         // If the icmp tests for a known zero bit we can constant fold it.
1249         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1250           Value *V = Pred == ICmpInst::ICMP_NE ?
1251                        ConstantInt::getAllOnesValue(CI.getType()) :
1252                        ConstantInt::getNullValue(CI.getType());
1253           return replaceInstUsesWith(CI, V);
1254         }
1255 
1256         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1257           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1258           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1259           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1260           // Perform a right shift to place the desired bit in the LSB.
1261           if (ShiftAmt)
1262             In = Builder.CreateLShr(In,
1263                                     ConstantInt::get(In->getType(), ShiftAmt));
1264 
1265           // At this point "In" is either 1 or 0. Subtract 1 to turn
1266           // {1, 0} -> {0, -1}.
1267           In = Builder.CreateAdd(In,
1268                                  ConstantInt::getAllOnesValue(In->getType()),
1269                                  "sext");
1270         } else {
1271           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1272           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1273           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1274           // Perform a left shift to place the desired bit in the MSB.
1275           if (ShiftAmt)
1276             In = Builder.CreateShl(In,
1277                                    ConstantInt::get(In->getType(), ShiftAmt));
1278 
1279           // Distribute the bit over the whole bit width.
1280           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1281                                   KnownZeroMask.getBitWidth() - 1), "sext");
1282         }
1283 
1284         if (CI.getType() == In->getType())
1285           return replaceInstUsesWith(CI, In);
1286         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1287       }
1288     }
1289   }
1290 
1291   return nullptr;
1292 }
1293 
1294 /// Return true if we can take the specified value and return it as type Ty
1295 /// without inserting any new casts and without changing the value of the common
1296 /// low bits.  This is used by code that tries to promote integer operations to
1297 /// a wider types will allow us to eliminate the extension.
1298 ///
1299 /// This function works on both vectors and scalars.
1300 ///
1301 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1302   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1303          "Can't sign extend type to a smaller type");
1304   if (canAlwaysEvaluateInType(V, Ty))
1305     return true;
1306   if (canNotEvaluateInType(V, Ty))
1307     return false;
1308 
1309   auto *I = cast<Instruction>(V);
1310   switch (I->getOpcode()) {
1311   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1312   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1313   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1314     return true;
1315   case Instruction::And:
1316   case Instruction::Or:
1317   case Instruction::Xor:
1318   case Instruction::Add:
1319   case Instruction::Sub:
1320   case Instruction::Mul:
1321     // These operators can all arbitrarily be extended if their inputs can.
1322     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1323            canEvaluateSExtd(I->getOperand(1), Ty);
1324 
1325   //case Instruction::Shl:   TODO
1326   //case Instruction::LShr:  TODO
1327 
1328   case Instruction::Select:
1329     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1330            canEvaluateSExtd(I->getOperand(2), Ty);
1331 
1332   case Instruction::PHI: {
1333     // We can change a phi if we can change all operands.  Note that we never
1334     // get into trouble with cyclic PHIs here because we only consider
1335     // instructions with a single use.
1336     PHINode *PN = cast<PHINode>(I);
1337     for (Value *IncValue : PN->incoming_values())
1338       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1339     return true;
1340   }
1341   default:
1342     // TODO: Can handle more cases here.
1343     break;
1344   }
1345 
1346   return false;
1347 }
1348 
1349 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1350   // If this sign extend is only used by a truncate, let the truncate be
1351   // eliminated before we try to optimize this sext.
1352   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1353     return nullptr;
1354 
1355   if (Instruction *I = commonCastTransforms(CI))
1356     return I;
1357 
1358   Value *Src = CI.getOperand(0);
1359   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1360 
1361   // If we know that the value being extended is positive, we can use a zext
1362   // instead.
1363   KnownBits Known = computeKnownBits(Src, 0, &CI);
1364   if (Known.isNonNegative()) {
1365     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1366     return replaceInstUsesWith(CI, ZExt);
1367   }
1368 
1369   // Attempt to extend the entire input expression tree to the destination
1370   // type.   Only do this if the dest type is a simple type, don't convert the
1371   // expression tree to something weird like i93 unless the source is also
1372   // strange.
1373   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1374       canEvaluateSExtd(Src, DestTy)) {
1375     // Okay, we can transform this!  Insert the new expression now.
1376     LLVM_DEBUG(
1377         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1378                   " to avoid sign extend: "
1379                << CI << '\n');
1380     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1381     assert(Res->getType() == DestTy);
1382 
1383     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1384     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1385 
1386     // If the high bits are already filled with sign bit, just replace this
1387     // cast with the result.
1388     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1389       return replaceInstUsesWith(CI, Res);
1390 
1391     // We need to emit a shl + ashr to do the sign extend.
1392     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1393     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1394                                       ShAmt);
1395   }
1396 
1397   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1398   // into shifts.
1399   Value *X;
1400   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1401     // sext(trunc(X)) --> ashr(shl(X, C), C)
1402     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1403     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1404     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1405     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1406   }
1407 
1408   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1409     return transformSExtICmp(ICI, CI);
1410 
1411   // If the input is a shl/ashr pair of a same constant, then this is a sign
1412   // extension from a smaller value.  If we could trust arbitrary bitwidth
1413   // integers, we could turn this into a truncate to the smaller bit and then
1414   // use a sext for the whole extension.  Since we don't, look deeper and check
1415   // for a truncate.  If the source and dest are the same type, eliminate the
1416   // trunc and extend and just do shifts.  For example, turn:
1417   //   %a = trunc i32 %i to i8
1418   //   %b = shl i8 %a, 6
1419   //   %c = ashr i8 %b, 6
1420   //   %d = sext i8 %c to i32
1421   // into:
1422   //   %a = shl i32 %i, 30
1423   //   %d = ashr i32 %a, 30
1424   Value *A = nullptr;
1425   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1426   ConstantInt *BA = nullptr, *CA = nullptr;
1427   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1428                         m_ConstantInt(CA))) &&
1429       BA == CA && A->getType() == CI.getType()) {
1430     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1431     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1432     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1433     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1434     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1435     return BinaryOperator::CreateAShr(A, ShAmtV);
1436   }
1437 
1438   return nullptr;
1439 }
1440 
1441 
1442 /// Return a Constant* for the specified floating-point constant if it fits
1443 /// in the specified FP type without changing its value.
1444 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1445   bool losesInfo;
1446   APFloat F = CFP->getValueAPF();
1447   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1448   return !losesInfo;
1449 }
1450 
1451 static Type *shrinkFPConstant(ConstantFP *CFP) {
1452   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1453     return nullptr;  // No constant folding of this.
1454   // See if the value can be truncated to half and then reextended.
1455   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1456     return Type::getHalfTy(CFP->getContext());
1457   // See if the value can be truncated to float and then reextended.
1458   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1459     return Type::getFloatTy(CFP->getContext());
1460   if (CFP->getType()->isDoubleTy())
1461     return nullptr;  // Won't shrink.
1462   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1463     return Type::getDoubleTy(CFP->getContext());
1464   // Don't try to shrink to various long double types.
1465   return nullptr;
1466 }
1467 
1468 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1469 // type we can safely truncate all elements to.
1470 // TODO: Make these support undef elements.
1471 static Type *shrinkFPConstantVector(Value *V) {
1472   auto *CV = dyn_cast<Constant>(V);
1473   if (!CV || !CV->getType()->isVectorTy())
1474     return nullptr;
1475 
1476   Type *MinType = nullptr;
1477 
1478   unsigned NumElts = CV->getType()->getVectorNumElements();
1479   for (unsigned i = 0; i != NumElts; ++i) {
1480     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1481     if (!CFP)
1482       return nullptr;
1483 
1484     Type *T = shrinkFPConstant(CFP);
1485     if (!T)
1486       return nullptr;
1487 
1488     // If we haven't found a type yet or this type has a larger mantissa than
1489     // our previous type, this is our new minimal type.
1490     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1491       MinType = T;
1492   }
1493 
1494   // Make a vector type from the minimal type.
1495   return VectorType::get(MinType, NumElts);
1496 }
1497 
1498 /// Find the minimum FP type we can safely truncate to.
1499 static Type *getMinimumFPType(Value *V) {
1500   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1501     return FPExt->getOperand(0)->getType();
1502 
1503   // If this value is a constant, return the constant in the smallest FP type
1504   // that can accurately represent it.  This allows us to turn
1505   // (float)((double)X+2.0) into x+2.0f.
1506   if (auto *CFP = dyn_cast<ConstantFP>(V))
1507     if (Type *T = shrinkFPConstant(CFP))
1508       return T;
1509 
1510   // Try to shrink a vector of FP constants.
1511   if (Type *T = shrinkFPConstantVector(V))
1512     return T;
1513 
1514   return V->getType();
1515 }
1516 
1517 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1518   if (Instruction *I = commonCastTransforms(FPT))
1519     return I;
1520 
1521   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1522   // simplify this expression to avoid one or more of the trunc/extend
1523   // operations if we can do so without changing the numerical results.
1524   //
1525   // The exact manner in which the widths of the operands interact to limit
1526   // what we can and cannot do safely varies from operation to operation, and
1527   // is explained below in the various case statements.
1528   Type *Ty = FPT.getType();
1529   BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1530   if (OpI && OpI->hasOneUse()) {
1531     Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
1532     Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
1533     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1534     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1535     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1536     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1537     unsigned DstWidth = Ty->getFPMantissaWidth();
1538     switch (OpI->getOpcode()) {
1539       default: break;
1540       case Instruction::FAdd:
1541       case Instruction::FSub:
1542         // For addition and subtraction, the infinitely precise result can
1543         // essentially be arbitrarily wide; proving that double rounding
1544         // will not occur because the result of OpI is exact (as we will for
1545         // FMul, for example) is hopeless.  However, we *can* nonetheless
1546         // frequently know that double rounding cannot occur (or that it is
1547         // innocuous) by taking advantage of the specific structure of
1548         // infinitely-precise results that admit double rounding.
1549         //
1550         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1551         // to represent both sources, we can guarantee that the double
1552         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1553         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1554         // for proof of this fact).
1555         //
1556         // Note: Figueroa does not consider the case where DstFormat !=
1557         // SrcFormat.  It's possible (likely even!) that this analysis
1558         // could be tightened for those cases, but they are rare (the main
1559         // case of interest here is (float)((double)float + float)).
1560         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1561           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1562           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1563           Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1564           RI->copyFastMathFlags(OpI);
1565           return RI;
1566         }
1567         break;
1568       case Instruction::FMul:
1569         // For multiplication, the infinitely precise result has at most
1570         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1571         // that such a value can be exactly represented, then no double
1572         // rounding can possibly occur; we can safely perform the operation
1573         // in the destination format if it can represent both sources.
1574         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1575           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1576           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1577           return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1578         }
1579         break;
1580       case Instruction::FDiv:
1581         // For division, we use again use the bound from Figueroa's
1582         // dissertation.  I am entirely certain that this bound can be
1583         // tightened in the unbalanced operand case by an analysis based on
1584         // the diophantine rational approximation bound, but the well-known
1585         // condition used here is a good conservative first pass.
1586         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1587         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1588           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1589           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1590           return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1591         }
1592         break;
1593       case Instruction::FRem: {
1594         // Remainder is straightforward.  Remainder is always exact, so the
1595         // type of OpI doesn't enter into things at all.  We simply evaluate
1596         // in whichever source type is larger, then convert to the
1597         // destination type.
1598         if (SrcWidth == OpWidth)
1599           break;
1600         Value *LHS, *RHS;
1601         if (LHSWidth == SrcWidth) {
1602            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1603            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1604         } else {
1605            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1606            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1607         }
1608 
1609         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1610         return CastInst::CreateFPCast(ExactResult, Ty);
1611       }
1612     }
1613 
1614     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1615     if (BinaryOperator::isFNeg(OpI)) {
1616       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1617       return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
1618     }
1619   }
1620 
1621   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1622     switch (II->getIntrinsicID()) {
1623     default: break;
1624     case Intrinsic::ceil:
1625     case Intrinsic::fabs:
1626     case Intrinsic::floor:
1627     case Intrinsic::nearbyint:
1628     case Intrinsic::rint:
1629     case Intrinsic::round:
1630     case Intrinsic::trunc: {
1631       Value *Src = II->getArgOperand(0);
1632       if (!Src->hasOneUse())
1633         break;
1634 
1635       // Except for fabs, this transformation requires the input of the unary FP
1636       // operation to be itself an fpext from the type to which we're
1637       // truncating.
1638       if (II->getIntrinsicID() != Intrinsic::fabs) {
1639         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1640         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1641           break;
1642       }
1643 
1644       // Do unary FP operation on smaller type.
1645       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1646       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1647       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1648                                                      II->getIntrinsicID(), Ty);
1649       SmallVector<OperandBundleDef, 1> OpBundles;
1650       II->getOperandBundlesAsDefs(OpBundles);
1651       CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
1652                                          II->getName());
1653       NewCI->copyFastMathFlags(II);
1654       return NewCI;
1655     }
1656     }
1657   }
1658 
1659   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1660     return I;
1661 
1662   return nullptr;
1663 }
1664 
1665 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1666   return commonCastTransforms(CI);
1667 }
1668 
1669 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1670 // This is safe if the intermediate type has enough bits in its mantissa to
1671 // accurately represent all values of X.  For example, this won't work with
1672 // i64 -> float -> i64.
1673 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1674   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1675     return nullptr;
1676   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1677 
1678   Value *SrcI = OpI->getOperand(0);
1679   Type *FITy = FI.getType();
1680   Type *OpITy = OpI->getType();
1681   Type *SrcTy = SrcI->getType();
1682   bool IsInputSigned = isa<SIToFPInst>(OpI);
1683   bool IsOutputSigned = isa<FPToSIInst>(FI);
1684 
1685   // We can safely assume the conversion won't overflow the output range,
1686   // because (for example) (uint8_t)18293.f is undefined behavior.
1687 
1688   // Since we can assume the conversion won't overflow, our decision as to
1689   // whether the input will fit in the float should depend on the minimum
1690   // of the input range and output range.
1691 
1692   // This means this is also safe for a signed input and unsigned output, since
1693   // a negative input would lead to undefined behavior.
1694   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1695   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1696   int ActualSize = std::min(InputSize, OutputSize);
1697 
1698   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1699     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1700       if (IsInputSigned && IsOutputSigned)
1701         return new SExtInst(SrcI, FITy);
1702       return new ZExtInst(SrcI, FITy);
1703     }
1704     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1705       return new TruncInst(SrcI, FITy);
1706     if (SrcTy == FITy)
1707       return replaceInstUsesWith(FI, SrcI);
1708     return new BitCastInst(SrcI, FITy);
1709   }
1710   return nullptr;
1711 }
1712 
1713 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1714   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1715   if (!OpI)
1716     return commonCastTransforms(FI);
1717 
1718   if (Instruction *I = FoldItoFPtoI(FI))
1719     return I;
1720 
1721   return commonCastTransforms(FI);
1722 }
1723 
1724 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1725   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1726   if (!OpI)
1727     return commonCastTransforms(FI);
1728 
1729   if (Instruction *I = FoldItoFPtoI(FI))
1730     return I;
1731 
1732   return commonCastTransforms(FI);
1733 }
1734 
1735 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1736   return commonCastTransforms(CI);
1737 }
1738 
1739 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1740   return commonCastTransforms(CI);
1741 }
1742 
1743 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1744   // If the source integer type is not the intptr_t type for this target, do a
1745   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1746   // cast to be exposed to other transforms.
1747   unsigned AS = CI.getAddressSpace();
1748   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1749       DL.getPointerSizeInBits(AS)) {
1750     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1751     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1752       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1753 
1754     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1755     return new IntToPtrInst(P, CI.getType());
1756   }
1757 
1758   if (Instruction *I = commonCastTransforms(CI))
1759     return I;
1760 
1761   return nullptr;
1762 }
1763 
1764 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1765 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1766   Value *Src = CI.getOperand(0);
1767 
1768   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1769     // If casting the result of a getelementptr instruction with no offset, turn
1770     // this into a cast of the original pointer!
1771     if (GEP->hasAllZeroIndices() &&
1772         // If CI is an addrspacecast and GEP changes the poiner type, merging
1773         // GEP into CI would undo canonicalizing addrspacecast with different
1774         // pointer types, causing infinite loops.
1775         (!isa<AddrSpaceCastInst>(CI) ||
1776          GEP->getType() == GEP->getPointerOperandType())) {
1777       // Changing the cast operand is usually not a good idea but it is safe
1778       // here because the pointer operand is being replaced with another
1779       // pointer operand so the opcode doesn't need to change.
1780       Worklist.Add(GEP);
1781       CI.setOperand(0, GEP->getOperand(0));
1782       return &CI;
1783     }
1784   }
1785 
1786   return commonCastTransforms(CI);
1787 }
1788 
1789 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1790   // If the destination integer type is not the intptr_t type for this target,
1791   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1792   // to be exposed to other transforms.
1793 
1794   Type *Ty = CI.getType();
1795   unsigned AS = CI.getPointerAddressSpace();
1796 
1797   if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1798     return commonPointerCastTransforms(CI);
1799 
1800   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1801   if (Ty->isVectorTy()) // Handle vectors of pointers.
1802     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1803 
1804   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1805   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1806 }
1807 
1808 /// This input value (which is known to have vector type) is being zero extended
1809 /// or truncated to the specified vector type.
1810 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1811 ///
1812 /// The source and destination vector types may have different element types.
1813 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1814                                          InstCombiner &IC) {
1815   // We can only do this optimization if the output is a multiple of the input
1816   // element size, or the input is a multiple of the output element size.
1817   // Convert the input type to have the same element type as the output.
1818   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1819 
1820   if (SrcTy->getElementType() != DestTy->getElementType()) {
1821     // The input types don't need to be identical, but for now they must be the
1822     // same size.  There is no specific reason we couldn't handle things like
1823     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1824     // there yet.
1825     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1826         DestTy->getElementType()->getPrimitiveSizeInBits())
1827       return nullptr;
1828 
1829     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1830     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1831   }
1832 
1833   // Now that the element types match, get the shuffle mask and RHS of the
1834   // shuffle to use, which depends on whether we're increasing or decreasing the
1835   // size of the input.
1836   SmallVector<uint32_t, 16> ShuffleMask;
1837   Value *V2;
1838 
1839   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1840     // If we're shrinking the number of elements, just shuffle in the low
1841     // elements from the input and use undef as the second shuffle input.
1842     V2 = UndefValue::get(SrcTy);
1843     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1844       ShuffleMask.push_back(i);
1845 
1846   } else {
1847     // If we're increasing the number of elements, shuffle in all of the
1848     // elements from InVal and fill the rest of the result elements with zeros
1849     // from a constant zero.
1850     V2 = Constant::getNullValue(SrcTy);
1851     unsigned SrcElts = SrcTy->getNumElements();
1852     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1853       ShuffleMask.push_back(i);
1854 
1855     // The excess elements reference the first element of the zero input.
1856     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1857       ShuffleMask.push_back(SrcElts);
1858   }
1859 
1860   return new ShuffleVectorInst(InVal, V2,
1861                                ConstantDataVector::get(V2->getContext(),
1862                                                        ShuffleMask));
1863 }
1864 
1865 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1866   return Value % Ty->getPrimitiveSizeInBits() == 0;
1867 }
1868 
1869 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1870   return Value / Ty->getPrimitiveSizeInBits();
1871 }
1872 
1873 /// V is a value which is inserted into a vector of VecEltTy.
1874 /// Look through the value to see if we can decompose it into
1875 /// insertions into the vector.  See the example in the comment for
1876 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1877 /// The type of V is always a non-zero multiple of VecEltTy's size.
1878 /// Shift is the number of bits between the lsb of V and the lsb of
1879 /// the vector.
1880 ///
1881 /// This returns false if the pattern can't be matched or true if it can,
1882 /// filling in Elements with the elements found here.
1883 static bool collectInsertionElements(Value *V, unsigned Shift,
1884                                      SmallVectorImpl<Value *> &Elements,
1885                                      Type *VecEltTy, bool isBigEndian) {
1886   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1887          "Shift should be a multiple of the element type size");
1888 
1889   // Undef values never contribute useful bits to the result.
1890   if (isa<UndefValue>(V)) return true;
1891 
1892   // If we got down to a value of the right type, we win, try inserting into the
1893   // right element.
1894   if (V->getType() == VecEltTy) {
1895     // Inserting null doesn't actually insert any elements.
1896     if (Constant *C = dyn_cast<Constant>(V))
1897       if (C->isNullValue())
1898         return true;
1899 
1900     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1901     if (isBigEndian)
1902       ElementIndex = Elements.size() - ElementIndex - 1;
1903 
1904     // Fail if multiple elements are inserted into this slot.
1905     if (Elements[ElementIndex])
1906       return false;
1907 
1908     Elements[ElementIndex] = V;
1909     return true;
1910   }
1911 
1912   if (Constant *C = dyn_cast<Constant>(V)) {
1913     // Figure out the # elements this provides, and bitcast it or slice it up
1914     // as required.
1915     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1916                                         VecEltTy);
1917     // If the constant is the size of a vector element, we just need to bitcast
1918     // it to the right type so it gets properly inserted.
1919     if (NumElts == 1)
1920       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1921                                       Shift, Elements, VecEltTy, isBigEndian);
1922 
1923     // Okay, this is a constant that covers multiple elements.  Slice it up into
1924     // pieces and insert each element-sized piece into the vector.
1925     if (!isa<IntegerType>(C->getType()))
1926       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1927                                        C->getType()->getPrimitiveSizeInBits()));
1928     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1929     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1930 
1931     for (unsigned i = 0; i != NumElts; ++i) {
1932       unsigned ShiftI = Shift+i*ElementSize;
1933       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1934                                                                   ShiftI));
1935       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1936       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1937                                     isBigEndian))
1938         return false;
1939     }
1940     return true;
1941   }
1942 
1943   if (!V->hasOneUse()) return false;
1944 
1945   Instruction *I = dyn_cast<Instruction>(V);
1946   if (!I) return false;
1947   switch (I->getOpcode()) {
1948   default: return false; // Unhandled case.
1949   case Instruction::BitCast:
1950     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1951                                     isBigEndian);
1952   case Instruction::ZExt:
1953     if (!isMultipleOfTypeSize(
1954                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1955                               VecEltTy))
1956       return false;
1957     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1958                                     isBigEndian);
1959   case Instruction::Or:
1960     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1961                                     isBigEndian) &&
1962            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1963                                     isBigEndian);
1964   case Instruction::Shl: {
1965     // Must be shifting by a constant that is a multiple of the element size.
1966     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1967     if (!CI) return false;
1968     Shift += CI->getZExtValue();
1969     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1970     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1971                                     isBigEndian);
1972   }
1973 
1974   }
1975 }
1976 
1977 
1978 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1979 /// assemble the elements of the vector manually.
1980 /// Try to rip the code out and replace it with insertelements.  This is to
1981 /// optimize code like this:
1982 ///
1983 ///    %tmp37 = bitcast float %inc to i32
1984 ///    %tmp38 = zext i32 %tmp37 to i64
1985 ///    %tmp31 = bitcast float %inc5 to i32
1986 ///    %tmp32 = zext i32 %tmp31 to i64
1987 ///    %tmp33 = shl i64 %tmp32, 32
1988 ///    %ins35 = or i64 %tmp33, %tmp38
1989 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1990 ///
1991 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1992 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1993                                                 InstCombiner &IC) {
1994   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1995   Value *IntInput = CI.getOperand(0);
1996 
1997   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1998   if (!collectInsertionElements(IntInput, 0, Elements,
1999                                 DestVecTy->getElementType(),
2000                                 IC.getDataLayout().isBigEndian()))
2001     return nullptr;
2002 
2003   // If we succeeded, we know that all of the element are specified by Elements
2004   // or are zero if Elements has a null entry.  Recast this as a set of
2005   // insertions.
2006   Value *Result = Constant::getNullValue(CI.getType());
2007   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2008     if (!Elements[i]) continue;  // Unset element.
2009 
2010     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2011                                             IC.Builder.getInt32(i));
2012   }
2013 
2014   return Result;
2015 }
2016 
2017 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2018 /// vector followed by extract element. The backend tends to handle bitcasts of
2019 /// vectors better than bitcasts of scalars because vector registers are
2020 /// usually not type-specific like scalar integer or scalar floating-point.
2021 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2022                                               InstCombiner &IC) {
2023   // TODO: Create and use a pattern matcher for ExtractElementInst.
2024   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2025   if (!ExtElt || !ExtElt->hasOneUse())
2026     return nullptr;
2027 
2028   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2029   // type to extract from.
2030   Type *DestType = BitCast.getType();
2031   if (!VectorType::isValidElementType(DestType))
2032     return nullptr;
2033 
2034   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2035   auto *NewVecType = VectorType::get(DestType, NumElts);
2036   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2037                                          NewVecType, "bc");
2038   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2039 }
2040 
2041 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2042 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2043                                             InstCombiner::BuilderTy &Builder) {
2044   Type *DestTy = BitCast.getType();
2045   BinaryOperator *BO;
2046   if (!DestTy->isIntOrIntVectorTy() ||
2047       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2048       !BO->isBitwiseLogicOp())
2049     return nullptr;
2050 
2051   // FIXME: This transform is restricted to vector types to avoid backend
2052   // problems caused by creating potentially illegal operations. If a fix-up is
2053   // added to handle that situation, we can remove this check.
2054   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2055     return nullptr;
2056 
2057   Value *X;
2058   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2059       X->getType() == DestTy && !isa<Constant>(X)) {
2060     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2061     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2062     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2063   }
2064 
2065   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2066       X->getType() == DestTy && !isa<Constant>(X)) {
2067     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2068     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2069     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2070   }
2071 
2072   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2073   // constant. This eases recognition of special constants for later ops.
2074   // Example:
2075   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2076   Constant *C;
2077   if (match(BO->getOperand(1), m_Constant(C))) {
2078     // bitcast (logic X, C) --> logic (bitcast X, C')
2079     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2080     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2081     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2082   }
2083 
2084   return nullptr;
2085 }
2086 
2087 /// Change the type of a select if we can eliminate a bitcast.
2088 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2089                                       InstCombiner::BuilderTy &Builder) {
2090   Value *Cond, *TVal, *FVal;
2091   if (!match(BitCast.getOperand(0),
2092              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2093     return nullptr;
2094 
2095   // A vector select must maintain the same number of elements in its operands.
2096   Type *CondTy = Cond->getType();
2097   Type *DestTy = BitCast.getType();
2098   if (CondTy->isVectorTy()) {
2099     if (!DestTy->isVectorTy())
2100       return nullptr;
2101     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2102       return nullptr;
2103   }
2104 
2105   // FIXME: This transform is restricted from changing the select between
2106   // scalars and vectors to avoid backend problems caused by creating
2107   // potentially illegal operations. If a fix-up is added to handle that
2108   // situation, we can remove this check.
2109   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2110     return nullptr;
2111 
2112   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2113   Value *X;
2114   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2115       !isa<Constant>(X)) {
2116     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2117     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2118     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2119   }
2120 
2121   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2122       !isa<Constant>(X)) {
2123     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2124     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2125     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2126   }
2127 
2128   return nullptr;
2129 }
2130 
2131 /// Check if all users of CI are StoreInsts.
2132 static bool hasStoreUsersOnly(CastInst &CI) {
2133   for (User *U : CI.users()) {
2134     if (!isa<StoreInst>(U))
2135       return false;
2136   }
2137   return true;
2138 }
2139 
2140 /// This function handles following case
2141 ///
2142 ///     A  ->  B    cast
2143 ///     PHI
2144 ///     B  ->  A    cast
2145 ///
2146 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2147 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2148 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2149   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2150   if (hasStoreUsersOnly(CI))
2151     return nullptr;
2152 
2153   Value *Src = CI.getOperand(0);
2154   Type *SrcTy = Src->getType();         // Type B
2155   Type *DestTy = CI.getType();          // Type A
2156 
2157   SmallVector<PHINode *, 4> PhiWorklist;
2158   SmallSetVector<PHINode *, 4> OldPhiNodes;
2159 
2160   // Find all of the A->B casts and PHI nodes.
2161   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2162   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2163   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2164   PhiWorklist.push_back(PN);
2165   OldPhiNodes.insert(PN);
2166   while (!PhiWorklist.empty()) {
2167     auto *OldPN = PhiWorklist.pop_back_val();
2168     for (Value *IncValue : OldPN->incoming_values()) {
2169       if (isa<Constant>(IncValue))
2170         continue;
2171 
2172       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2173         // If there is a sequence of one or more load instructions, each loaded
2174         // value is used as address of later load instruction, bitcast is
2175         // necessary to change the value type, don't optimize it. For
2176         // simplicity we give up if the load address comes from another load.
2177         Value *Addr = LI->getOperand(0);
2178         if (Addr == &CI || isa<LoadInst>(Addr))
2179           return nullptr;
2180         if (LI->hasOneUse() && LI->isSimple())
2181           continue;
2182         // If a LoadInst has more than one use, changing the type of loaded
2183         // value may create another bitcast.
2184         return nullptr;
2185       }
2186 
2187       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2188         if (OldPhiNodes.insert(PNode))
2189           PhiWorklist.push_back(PNode);
2190         continue;
2191       }
2192 
2193       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2194       // We can't handle other instructions.
2195       if (!BCI)
2196         return nullptr;
2197 
2198       // Verify it's a A->B cast.
2199       Type *TyA = BCI->getOperand(0)->getType();
2200       Type *TyB = BCI->getType();
2201       if (TyA != DestTy || TyB != SrcTy)
2202         return nullptr;
2203     }
2204   }
2205 
2206   // For each old PHI node, create a corresponding new PHI node with a type A.
2207   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2208   for (auto *OldPN : OldPhiNodes) {
2209     Builder.SetInsertPoint(OldPN);
2210     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2211     NewPNodes[OldPN] = NewPN;
2212   }
2213 
2214   // Fill in the operands of new PHI nodes.
2215   for (auto *OldPN : OldPhiNodes) {
2216     PHINode *NewPN = NewPNodes[OldPN];
2217     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2218       Value *V = OldPN->getOperand(j);
2219       Value *NewV = nullptr;
2220       if (auto *C = dyn_cast<Constant>(V)) {
2221         NewV = ConstantExpr::getBitCast(C, DestTy);
2222       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2223         Builder.SetInsertPoint(LI->getNextNode());
2224         NewV = Builder.CreateBitCast(LI, DestTy);
2225         Worklist.Add(LI);
2226       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2227         NewV = BCI->getOperand(0);
2228       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2229         NewV = NewPNodes[PrevPN];
2230       }
2231       assert(NewV);
2232       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2233     }
2234   }
2235 
2236   // If there is a store with type B, change it to type A.
2237   for (User *U : PN->users()) {
2238     auto *SI = dyn_cast<StoreInst>(U);
2239     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2240       Builder.SetInsertPoint(SI);
2241       auto *NewBC =
2242           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2243       SI->setOperand(0, NewBC);
2244       Worklist.Add(SI);
2245       assert(hasStoreUsersOnly(*NewBC));
2246     }
2247   }
2248 
2249   return replaceInstUsesWith(CI, NewPNodes[PN]);
2250 }
2251 
2252 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2253   // If the operands are integer typed then apply the integer transforms,
2254   // otherwise just apply the common ones.
2255   Value *Src = CI.getOperand(0);
2256   Type *SrcTy = Src->getType();
2257   Type *DestTy = CI.getType();
2258 
2259   // Get rid of casts from one type to the same type. These are useless and can
2260   // be replaced by the operand.
2261   if (DestTy == Src->getType())
2262     return replaceInstUsesWith(CI, Src);
2263 
2264   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2265     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2266     Type *DstElTy = DstPTy->getElementType();
2267     Type *SrcElTy = SrcPTy->getElementType();
2268 
2269     // Casting pointers between the same type, but with different address spaces
2270     // is an addrspace cast rather than a bitcast.
2271     if ((DstElTy == SrcElTy) &&
2272         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2273       return new AddrSpaceCastInst(Src, DestTy);
2274 
2275     // If we are casting a alloca to a pointer to a type of the same
2276     // size, rewrite the allocation instruction to allocate the "right" type.
2277     // There is no need to modify malloc calls because it is their bitcast that
2278     // needs to be cleaned up.
2279     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2280       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2281         return V;
2282 
2283     // When the type pointed to is not sized the cast cannot be
2284     // turned into a gep.
2285     Type *PointeeType =
2286         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2287     if (!PointeeType->isSized())
2288       return nullptr;
2289 
2290     // If the source and destination are pointers, and this cast is equivalent
2291     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2292     // This can enhance SROA and other transforms that want type-safe pointers.
2293     unsigned NumZeros = 0;
2294     while (SrcElTy != DstElTy &&
2295            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2296            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2297       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2298       ++NumZeros;
2299     }
2300 
2301     // If we found a path from the src to dest, create the getelementptr now.
2302     if (SrcElTy == DstElTy) {
2303       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2304       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2305     }
2306   }
2307 
2308   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2309     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2310       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2311       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2312                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2313       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2314     }
2315 
2316     if (isa<IntegerType>(SrcTy)) {
2317       // If this is a cast from an integer to vector, check to see if the input
2318       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2319       // the casts with a shuffle and (potentially) a bitcast.
2320       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2321         CastInst *SrcCast = cast<CastInst>(Src);
2322         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2323           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2324             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2325                                                cast<VectorType>(DestTy), *this))
2326               return I;
2327       }
2328 
2329       // If the input is an 'or' instruction, we may be doing shifts and ors to
2330       // assemble the elements of the vector manually.  Try to rip the code out
2331       // and replace it with insertelements.
2332       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2333         return replaceInstUsesWith(CI, V);
2334     }
2335   }
2336 
2337   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2338     if (SrcVTy->getNumElements() == 1) {
2339       // If our destination is not a vector, then make this a straight
2340       // scalar-scalar cast.
2341       if (!DestTy->isVectorTy()) {
2342         Value *Elem =
2343           Builder.CreateExtractElement(Src,
2344                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2345         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2346       }
2347 
2348       // Otherwise, see if our source is an insert. If so, then use the scalar
2349       // component directly.
2350       if (InsertElementInst *IEI =
2351             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2352         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2353                                 DestTy);
2354     }
2355   }
2356 
2357   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2358     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2359     // a bitcast to a vector with the same # elts.
2360     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2361         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2362         SVI->getType()->getNumElements() ==
2363         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2364       BitCastInst *Tmp;
2365       // If either of the operands is a cast from CI.getType(), then
2366       // evaluating the shuffle in the casted destination's type will allow
2367       // us to eliminate at least one cast.
2368       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2369            Tmp->getOperand(0)->getType() == DestTy) ||
2370           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2371            Tmp->getOperand(0)->getType() == DestTy)) {
2372         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2373         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2374         // Return a new shuffle vector.  Use the same element ID's, as we
2375         // know the vector types match #elts.
2376         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2377       }
2378     }
2379   }
2380 
2381   // Handle the A->B->A cast, and there is an intervening PHI node.
2382   if (PHINode *PN = dyn_cast<PHINode>(Src))
2383     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2384       return I;
2385 
2386   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2387     return I;
2388 
2389   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2390     return I;
2391 
2392   if (Instruction *I = foldBitCastSelect(CI, Builder))
2393     return I;
2394 
2395   if (SrcTy->isPointerTy())
2396     return commonPointerCastTransforms(CI);
2397   return commonCastTransforms(CI);
2398 }
2399 
2400 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2401   // If the destination pointer element type is not the same as the source's
2402   // first do a bitcast to the destination type, and then the addrspacecast.
2403   // This allows the cast to be exposed to other transforms.
2404   Value *Src = CI.getOperand(0);
2405   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2406   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2407 
2408   Type *DestElemTy = DestTy->getElementType();
2409   if (SrcTy->getElementType() != DestElemTy) {
2410     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2411     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2412       // Handle vectors of pointers.
2413       MidTy = VectorType::get(MidTy, VT->getNumElements());
2414     }
2415 
2416     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2417     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2418   }
2419 
2420   return commonPointerCastTransforms(CI);
2421 }
2422