1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Analyze 'Val', seeing if it is a simple linear expression. 26 /// If so, decompose it, returning some value X, such that Val is 27 /// X*Scale+Offset. 28 /// 29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 30 uint64_t &Offset) { 31 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 32 Offset = CI->getZExtValue(); 33 Scale = 0; 34 return ConstantInt::get(Val->getType(), 0); 35 } 36 37 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 38 // Cannot look past anything that might overflow. 39 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 40 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 41 Scale = 1; 42 Offset = 0; 43 return Val; 44 } 45 46 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 47 if (I->getOpcode() == Instruction::Shl) { 48 // This is a value scaled by '1 << the shift amt'. 49 Scale = UINT64_C(1) << RHS->getZExtValue(); 50 Offset = 0; 51 return I->getOperand(0); 52 } 53 54 if (I->getOpcode() == Instruction::Mul) { 55 // This value is scaled by 'RHS'. 56 Scale = RHS->getZExtValue(); 57 Offset = 0; 58 return I->getOperand(0); 59 } 60 61 if (I->getOpcode() == Instruction::Add) { 62 // We have X+C. Check to see if we really have (X*C2)+C1, 63 // where C1 is divisible by C2. 64 unsigned SubScale; 65 Value *SubVal = 66 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 67 Offset += RHS->getZExtValue(); 68 Scale = SubScale; 69 return SubVal; 70 } 71 } 72 } 73 74 // Otherwise, we can't look past this. 75 Scale = 1; 76 Offset = 0; 77 return Val; 78 } 79 80 /// If we find a cast of an allocation instruction, try to eliminate the cast by 81 /// moving the type information into the alloc. 82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 83 AllocaInst &AI) { 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(&AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 93 94 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return nullptr; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 102 103 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 106 107 // If the allocation has multiple uses, only promote it if we're not 108 // shrinking the amount of memory being allocated. 109 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 110 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 112 113 // See if we can satisfy the modulus by pulling a scale out of the array 114 // size argument. 115 unsigned ArraySizeScale; 116 uint64_t ArrayOffset; 117 Value *NumElements = // See if the array size is a decomposable linear expr. 118 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 119 120 // If we can now satisfy the modulus, by using a non-1 scale, we really can 121 // do the xform. 122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 124 125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 126 Value *Amt = nullptr; 127 if (Scale == 1) { 128 Amt = NumElements; 129 } else { 130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 131 // Insert before the alloca, not before the cast. 132 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 133 } 134 135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 137 Offset, true); 138 Amt = AllocaBuilder.CreateAdd(Amt, Off); 139 } 140 141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 142 New->setAlignment(AI.getAlignment()); 143 New->takeName(&AI); 144 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 145 146 // If the allocation has multiple real uses, insert a cast and change all 147 // things that used it to use the new cast. This will also hack on CI, but it 148 // will die soon. 149 if (!AI.hasOneUse()) { 150 // New is the allocation instruction, pointer typed. AI is the original 151 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 152 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 153 replaceInstUsesWith(AI, NewCast); 154 } 155 return replaceInstUsesWith(CI, New); 156 } 157 158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 159 /// true for, actually insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with DL info. 165 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 166 C = FoldedC; 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = nullptr; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V = 216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 217 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 218 } 219 Res = NPN; 220 break; 221 } 222 default: 223 // TODO: Can handle more cases here. 224 llvm_unreachable("Unreachable!"); 225 } 226 227 Res->takeName(I); 228 return InsertNewInstWith(Res, *I); 229 } 230 231 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 232 const CastInst *CI2) { 233 Type *SrcTy = CI1->getSrcTy(); 234 Type *MidTy = CI1->getDestTy(); 235 Type *DstTy = CI2->getDestTy(); 236 237 Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode()); 238 Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode()); 239 Type *SrcIntPtrTy = 240 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 241 Type *MidIntPtrTy = 242 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 243 Type *DstIntPtrTy = 244 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 245 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 246 DstTy, SrcIntPtrTy, MidIntPtrTy, 247 DstIntPtrTy); 248 249 // We don't want to form an inttoptr or ptrtoint that converts to an integer 250 // type that differs from the pointer size. 251 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 252 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 253 Res = 0; 254 255 return Instruction::CastOps(Res); 256 } 257 258 /// @brief Implement the transforms common to all CastInst visitors. 259 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 260 Value *Src = CI.getOperand(0); 261 262 // Try to eliminate a cast of a cast. 263 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 264 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 265 // The first cast (CSrc) is eliminable so we need to fix up or replace 266 // the second cast (CI). CSrc will then have a good chance of being dead. 267 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 268 } 269 } 270 271 // If we are casting a select, then fold the cast into the select. 272 if (auto *SI = dyn_cast<SelectInst>(Src)) 273 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 274 return NV; 275 276 // If we are casting a PHI, then fold the cast into the PHI. 277 if (isa<PHINode>(Src)) { 278 // Don't do this if it would create a PHI node with an illegal type from a 279 // legal type. 280 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 281 ShouldChangeType(CI.getType(), Src->getType())) 282 if (Instruction *NV = FoldOpIntoPhi(CI)) 283 return NV; 284 } 285 286 return nullptr; 287 } 288 289 /// Return true if we can evaluate the specified expression tree as type Ty 290 /// instead of its larger type, and arrive with the same value. 291 /// This is used by code that tries to eliminate truncates. 292 /// 293 /// Ty will always be a type smaller than V. We should return true if trunc(V) 294 /// can be computed by computing V in the smaller type. If V is an instruction, 295 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 296 /// makes sense if x and y can be efficiently truncated. 297 /// 298 /// This function works on both vectors and scalars. 299 /// 300 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 301 Instruction *CxtI) { 302 // We can always evaluate constants in another type. 303 if (isa<Constant>(V)) 304 return true; 305 306 Instruction *I = dyn_cast<Instruction>(V); 307 if (!I) return false; 308 309 Type *OrigTy = V->getType(); 310 311 // If this is an extension from the dest type, we can eliminate it, even if it 312 // has multiple uses. 313 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 314 I->getOperand(0)->getType() == Ty) 315 return true; 316 317 // We can't extend or shrink something that has multiple uses: doing so would 318 // require duplicating the instruction in general, which isn't profitable. 319 if (!I->hasOneUse()) return false; 320 321 unsigned Opc = I->getOpcode(); 322 switch (Opc) { 323 case Instruction::Add: 324 case Instruction::Sub: 325 case Instruction::Mul: 326 case Instruction::And: 327 case Instruction::Or: 328 case Instruction::Xor: 329 // These operators can all arbitrarily be extended or truncated. 330 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 331 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 332 333 case Instruction::UDiv: 334 case Instruction::URem: { 335 // UDiv and URem can be truncated if all the truncated bits are zero. 336 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 337 uint32_t BitWidth = Ty->getScalarSizeInBits(); 338 if (BitWidth < OrigBitWidth) { 339 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 340 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 341 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 342 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 343 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 344 } 345 } 346 break; 347 } 348 case Instruction::Shl: 349 // If we are truncating the result of this SHL, and if it's a shift of a 350 // constant amount, we can always perform a SHL in a smaller type. 351 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 352 uint32_t BitWidth = Ty->getScalarSizeInBits(); 353 if (CI->getLimitedValue(BitWidth) < BitWidth) 354 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 355 } 356 break; 357 case Instruction::LShr: 358 // If this is a truncate of a logical shr, we can truncate it to a smaller 359 // lshr iff we know that the bits we would otherwise be shifting in are 360 // already zeros. 361 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 362 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 363 uint32_t BitWidth = Ty->getScalarSizeInBits(); 364 if (IC.MaskedValueIsZero(I->getOperand(0), 365 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 366 CI->getLimitedValue(BitWidth) < BitWidth) { 367 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 368 } 369 } 370 break; 371 case Instruction::Trunc: 372 // trunc(trunc(x)) -> trunc(x) 373 return true; 374 case Instruction::ZExt: 375 case Instruction::SExt: 376 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 377 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 378 return true; 379 case Instruction::Select: { 380 SelectInst *SI = cast<SelectInst>(I); 381 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 382 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 383 } 384 case Instruction::PHI: { 385 // We can change a phi if we can change all operands. Note that we never 386 // get into trouble with cyclic PHIs here because we only consider 387 // instructions with a single use. 388 PHINode *PN = cast<PHINode>(I); 389 for (Value *IncValue : PN->incoming_values()) 390 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 391 return false; 392 return true; 393 } 394 default: 395 // TODO: Can handle more cases here. 396 break; 397 } 398 399 return false; 400 } 401 402 /// Given a vector that is bitcast to an integer, optionally logically 403 /// right-shifted, and truncated, convert it to an extractelement. 404 /// Example (big endian): 405 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 406 /// ---> 407 /// extractelement <4 x i32> %X, 1 408 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, 409 const DataLayout &DL) { 410 Value *TruncOp = Trunc.getOperand(0); 411 Type *DestType = Trunc.getType(); 412 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 413 return nullptr; 414 415 Value *VecInput = nullptr; 416 ConstantInt *ShiftVal = nullptr; 417 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 418 m_LShr(m_BitCast(m_Value(VecInput)), 419 m_ConstantInt(ShiftVal)))) || 420 !isa<VectorType>(VecInput->getType())) 421 return nullptr; 422 423 VectorType *VecType = cast<VectorType>(VecInput->getType()); 424 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 425 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 426 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 427 428 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 429 return nullptr; 430 431 // If the element type of the vector doesn't match the result type, 432 // bitcast it to a vector type that we can extract from. 433 unsigned NumVecElts = VecWidth / DestWidth; 434 if (VecType->getElementType() != DestType) { 435 VecType = VectorType::get(DestType, NumVecElts); 436 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); 437 } 438 439 unsigned Elt = ShiftAmount / DestWidth; 440 if (DL.isBigEndian()) 441 Elt = NumVecElts - 1 - Elt; 442 443 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 444 } 445 446 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 447 if (Instruction *Result = commonCastTransforms(CI)) 448 return Result; 449 450 // Test if the trunc is the user of a select which is part of a 451 // minimum or maximum operation. If so, don't do any more simplification. 452 // Even simplifying demanded bits can break the canonical form of a 453 // min/max. 454 Value *LHS, *RHS; 455 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 456 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 457 return nullptr; 458 459 // See if we can simplify any instructions used by the input whose sole 460 // purpose is to compute bits we don't care about. 461 if (SimplifyDemandedInstructionBits(CI)) 462 return &CI; 463 464 Value *Src = CI.getOperand(0); 465 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 466 467 // Attempt to truncate the entire input expression tree to the destination 468 // type. Only do this if the dest type is a simple type, don't convert the 469 // expression tree to something weird like i93 unless the source is also 470 // strange. 471 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 472 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 473 474 // If this cast is a truncate, evaluting in a different type always 475 // eliminates the cast, so it is always a win. 476 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 477 " to avoid cast: " << CI << '\n'); 478 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 479 assert(Res->getType() == DestTy); 480 return replaceInstUsesWith(CI, Res); 481 } 482 483 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 484 if (DestTy->getScalarSizeInBits() == 1) { 485 Constant *One = ConstantInt::get(SrcTy, 1); 486 Src = Builder->CreateAnd(Src, One); 487 Value *Zero = Constant::getNullValue(Src->getType()); 488 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 489 } 490 491 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 492 Value *A = nullptr; ConstantInt *Cst = nullptr; 493 if (Src->hasOneUse() && 494 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 495 // We have three types to worry about here, the type of A, the source of 496 // the truncate (MidSize), and the destination of the truncate. We know that 497 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 498 // between ASize and ResultSize. 499 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 500 501 // If the shift amount is larger than the size of A, then the result is 502 // known to be zero because all the input bits got shifted out. 503 if (Cst->getZExtValue() >= ASize) 504 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 505 506 // Since we're doing an lshr and a zero extend, and know that the shift 507 // amount is smaller than ASize, it is always safe to do the shift in A's 508 // type, then zero extend or truncate to the result. 509 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 510 Shift->takeName(Src); 511 return CastInst::CreateIntegerCast(Shift, DestTy, false); 512 } 513 514 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 515 // conversion. 516 // It works because bits coming from sign extension have the same value as 517 // the sign bit of the original value; performing ashr instead of lshr 518 // generates bits of the same value as the sign bit. 519 if (Src->hasOneUse() && 520 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && 521 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { 522 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 523 // This optimization can be only performed when zero bits generated by 524 // the original lshr aren't pulled into the value after truncation, so we 525 // can only shift by values smaller than the size of destination type (in 526 // bits). 527 if (Cst->getValue().ult(ASize)) { 528 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); 529 Shift->takeName(Src); 530 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 531 } 532 } 533 534 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 535 ShouldChangeType(SrcTy, DestTy)) { 536 537 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the 538 // dest type is native. 539 if (match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 540 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 541 return BinaryOperator::CreateAnd(NewTrunc, 542 ConstantExpr::getTrunc(Cst, DestTy)); 543 } 544 545 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 546 // dest type is native and cst < dest size. 547 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 548 !match(A, m_Shr(m_Value(), m_Constant()))) { 549 // Skip shifts of shift by constants. It undoes a combine in 550 // FoldShiftByConstant and is the extend in reg pattern. 551 const unsigned DestSize = DestTy->getScalarSizeInBits(); 552 if (Cst->getValue().ult(DestSize)) { 553 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 554 555 return BinaryOperator::Create( 556 Instruction::Shl, NewTrunc, 557 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 558 } 559 } 560 } 561 562 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) 563 return I; 564 565 return nullptr; 566 } 567 568 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 569 bool DoTransform) { 570 // If we are just checking for a icmp eq of a single bit and zext'ing it 571 // to an integer, then shift the bit to the appropriate place and then 572 // cast to integer to avoid the comparison. 573 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 574 const APInt &Op1CV = Op1C->getValue(); 575 576 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 577 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 578 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 579 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 580 if (!DoTransform) return ICI; 581 582 Value *In = ICI->getOperand(0); 583 Value *Sh = ConstantInt::get(In->getType(), 584 In->getType()->getScalarSizeInBits() - 1); 585 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); 586 if (In->getType() != CI.getType()) 587 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 588 589 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 590 Constant *One = ConstantInt::get(In->getType(), 1); 591 In = Builder->CreateXor(In, One, In->getName() + ".not"); 592 } 593 594 return replaceInstUsesWith(CI, In); 595 } 596 597 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 598 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 599 // zext (X == 1) to i32 --> X iff X has only the low bit set. 600 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 601 // zext (X != 0) to i32 --> X iff X has only the low bit set. 602 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 603 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 604 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 605 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 606 // This only works for EQ and NE 607 ICI->isEquality()) { 608 // If Op1C some other power of two, convert: 609 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 610 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 611 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 612 613 APInt KnownZeroMask(~KnownZero); 614 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 615 if (!DoTransform) return ICI; 616 617 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 618 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 619 // (X&4) == 2 --> false 620 // (X&4) != 2 --> true 621 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 622 isNE); 623 Res = ConstantExpr::getZExt(Res, CI.getType()); 624 return replaceInstUsesWith(CI, Res); 625 } 626 627 uint32_t ShAmt = KnownZeroMask.logBase2(); 628 Value *In = ICI->getOperand(0); 629 if (ShAmt) { 630 // Perform a logical shr by shiftamt. 631 // Insert the shift to put the result in the low bit. 632 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 633 In->getName() + ".lobit"); 634 } 635 636 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 637 Constant *One = ConstantInt::get(In->getType(), 1); 638 In = Builder->CreateXor(In, One); 639 } 640 641 if (CI.getType() == In->getType()) 642 return replaceInstUsesWith(CI, In); 643 644 Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false); 645 return replaceInstUsesWith(CI, IntCast); 646 } 647 } 648 } 649 650 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 651 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 652 // may lead to additional simplifications. 653 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 654 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 655 uint32_t BitWidth = ITy->getBitWidth(); 656 Value *LHS = ICI->getOperand(0); 657 Value *RHS = ICI->getOperand(1); 658 659 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 660 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 661 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 662 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 663 664 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 665 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 666 APInt UnknownBit = ~KnownBits; 667 if (UnknownBit.countPopulation() == 1) { 668 if (!DoTransform) return ICI; 669 670 Value *Result = Builder->CreateXor(LHS, RHS); 671 672 // Mask off any bits that are set and won't be shifted away. 673 if (KnownOneLHS.uge(UnknownBit)) 674 Result = Builder->CreateAnd(Result, 675 ConstantInt::get(ITy, UnknownBit)); 676 677 // Shift the bit we're testing down to the lsb. 678 Result = Builder->CreateLShr( 679 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 680 681 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 682 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 683 Result->takeName(ICI); 684 return replaceInstUsesWith(CI, Result); 685 } 686 } 687 } 688 } 689 690 return nullptr; 691 } 692 693 /// Determine if the specified value can be computed in the specified wider type 694 /// and produce the same low bits. If not, return false. 695 /// 696 /// If this function returns true, it can also return a non-zero number of bits 697 /// (in BitsToClear) which indicates that the value it computes is correct for 698 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 699 /// out. For example, to promote something like: 700 /// 701 /// %B = trunc i64 %A to i32 702 /// %C = lshr i32 %B, 8 703 /// %E = zext i32 %C to i64 704 /// 705 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 706 /// set to 8 to indicate that the promoted value needs to have bits 24-31 707 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 708 /// clear the top bits anyway, doing this has no extra cost. 709 /// 710 /// This function works on both vectors and scalars. 711 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 712 InstCombiner &IC, Instruction *CxtI) { 713 BitsToClear = 0; 714 if (isa<Constant>(V)) 715 return true; 716 717 Instruction *I = dyn_cast<Instruction>(V); 718 if (!I) return false; 719 720 // If the input is a truncate from the destination type, we can trivially 721 // eliminate it. 722 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 723 return true; 724 725 // We can't extend or shrink something that has multiple uses: doing so would 726 // require duplicating the instruction in general, which isn't profitable. 727 if (!I->hasOneUse()) return false; 728 729 unsigned Opc = I->getOpcode(), Tmp; 730 switch (Opc) { 731 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 732 case Instruction::SExt: // zext(sext(x)) -> sext(x). 733 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 734 return true; 735 case Instruction::And: 736 case Instruction::Or: 737 case Instruction::Xor: 738 case Instruction::Add: 739 case Instruction::Sub: 740 case Instruction::Mul: 741 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 742 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 743 return false; 744 // These can all be promoted if neither operand has 'bits to clear'. 745 if (BitsToClear == 0 && Tmp == 0) 746 return true; 747 748 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 749 // other side, BitsToClear is ok. 750 if (Tmp == 0 && 751 (Opc == Instruction::And || Opc == Instruction::Or || 752 Opc == Instruction::Xor)) { 753 // We use MaskedValueIsZero here for generality, but the case we care 754 // about the most is constant RHS. 755 unsigned VSize = V->getType()->getScalarSizeInBits(); 756 if (IC.MaskedValueIsZero(I->getOperand(1), 757 APInt::getHighBitsSet(VSize, BitsToClear), 758 0, CxtI)) 759 return true; 760 } 761 762 // Otherwise, we don't know how to analyze this BitsToClear case yet. 763 return false; 764 765 case Instruction::Shl: 766 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 767 // upper bits we can reduce BitsToClear by the shift amount. 768 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 769 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 770 return false; 771 uint64_t ShiftAmt = Amt->getZExtValue(); 772 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 773 return true; 774 } 775 return false; 776 case Instruction::LShr: 777 // We can promote lshr(x, cst) if we can promote x. This requires the 778 // ultimate 'and' to clear out the high zero bits we're clearing out though. 779 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 780 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 781 return false; 782 BitsToClear += Amt->getZExtValue(); 783 if (BitsToClear > V->getType()->getScalarSizeInBits()) 784 BitsToClear = V->getType()->getScalarSizeInBits(); 785 return true; 786 } 787 // Cannot promote variable LSHR. 788 return false; 789 case Instruction::Select: 790 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 791 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 792 // TODO: If important, we could handle the case when the BitsToClear are 793 // known zero in the disagreeing side. 794 Tmp != BitsToClear) 795 return false; 796 return true; 797 798 case Instruction::PHI: { 799 // We can change a phi if we can change all operands. Note that we never 800 // get into trouble with cyclic PHIs here because we only consider 801 // instructions with a single use. 802 PHINode *PN = cast<PHINode>(I); 803 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 804 return false; 805 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 806 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 807 // TODO: If important, we could handle the case when the BitsToClear 808 // are known zero in the disagreeing input. 809 Tmp != BitsToClear) 810 return false; 811 return true; 812 } 813 default: 814 // TODO: Can handle more cases here. 815 return false; 816 } 817 } 818 819 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 820 // If this zero extend is only used by a truncate, let the truncate be 821 // eliminated before we try to optimize this zext. 822 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 823 return nullptr; 824 825 // If one of the common conversion will work, do it. 826 if (Instruction *Result = commonCastTransforms(CI)) 827 return Result; 828 829 // See if we can simplify any instructions used by the input whose sole 830 // purpose is to compute bits we don't care about. 831 if (SimplifyDemandedInstructionBits(CI)) 832 return &CI; 833 834 Value *Src = CI.getOperand(0); 835 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 836 837 // Attempt to extend the entire input expression tree to the destination 838 // type. Only do this if the dest type is a simple type, don't convert the 839 // expression tree to something weird like i93 unless the source is also 840 // strange. 841 unsigned BitsToClear; 842 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 843 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 844 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 845 "Unreasonable BitsToClear"); 846 847 // Okay, we can transform this! Insert the new expression now. 848 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 849 " to avoid zero extend: " << CI << '\n'); 850 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 851 assert(Res->getType() == DestTy); 852 853 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 854 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 855 856 // If the high bits are already filled with zeros, just replace this 857 // cast with the result. 858 if (MaskedValueIsZero(Res, 859 APInt::getHighBitsSet(DestBitSize, 860 DestBitSize-SrcBitsKept), 861 0, &CI)) 862 return replaceInstUsesWith(CI, Res); 863 864 // We need to emit an AND to clear the high bits. 865 Constant *C = ConstantInt::get(Res->getType(), 866 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 867 return BinaryOperator::CreateAnd(Res, C); 868 } 869 870 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 871 // types and if the sizes are just right we can convert this into a logical 872 // 'and' which will be much cheaper than the pair of casts. 873 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 874 // TODO: Subsume this into EvaluateInDifferentType. 875 876 // Get the sizes of the types involved. We know that the intermediate type 877 // will be smaller than A or C, but don't know the relation between A and C. 878 Value *A = CSrc->getOperand(0); 879 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 880 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 881 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 882 // If we're actually extending zero bits, then if 883 // SrcSize < DstSize: zext(a & mask) 884 // SrcSize == DstSize: a & mask 885 // SrcSize > DstSize: trunc(a) & mask 886 if (SrcSize < DstSize) { 887 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 888 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 889 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 890 return new ZExtInst(And, CI.getType()); 891 } 892 893 if (SrcSize == DstSize) { 894 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 895 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 896 AndValue)); 897 } 898 if (SrcSize > DstSize) { 899 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 900 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 901 return BinaryOperator::CreateAnd(Trunc, 902 ConstantInt::get(Trunc->getType(), 903 AndValue)); 904 } 905 } 906 907 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 908 return transformZExtICmp(ICI, CI); 909 910 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 911 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 912 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 913 // of the (zext icmp) can be eliminated. If so, immediately perform the 914 // according elimination. 915 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 916 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 917 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 918 (transformZExtICmp(LHS, CI, false) || 919 transformZExtICmp(RHS, CI, false))) { 920 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 921 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 922 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 923 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 924 925 // Perform the elimination. 926 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 927 transformZExtICmp(LHS, *LZExt); 928 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 929 transformZExtICmp(RHS, *RZExt); 930 931 return Or; 932 } 933 } 934 935 // zext(trunc(X) & C) -> (X & zext(C)). 936 Constant *C; 937 Value *X; 938 if (SrcI && 939 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 940 X->getType() == CI.getType()) 941 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 942 943 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 944 Value *And; 945 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 946 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 947 X->getType() == CI.getType()) { 948 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 949 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 950 } 951 952 return nullptr; 953 } 954 955 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 956 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 957 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 958 ICmpInst::Predicate Pred = ICI->getPredicate(); 959 960 // Don't bother if Op1 isn't of vector or integer type. 961 if (!Op1->getType()->isIntOrIntVectorTy()) 962 return nullptr; 963 964 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 965 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 966 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 967 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 968 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 969 970 Value *Sh = ConstantInt::get(Op0->getType(), 971 Op0->getType()->getScalarSizeInBits()-1); 972 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 973 if (In->getType() != CI.getType()) 974 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 975 976 if (Pred == ICmpInst::ICMP_SGT) 977 In = Builder->CreateNot(In, In->getName()+".not"); 978 return replaceInstUsesWith(CI, In); 979 } 980 } 981 982 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 983 // If we know that only one bit of the LHS of the icmp can be set and we 984 // have an equality comparison with zero or a power of 2, we can transform 985 // the icmp and sext into bitwise/integer operations. 986 if (ICI->hasOneUse() && 987 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 988 unsigned BitWidth = Op1C->getType()->getBitWidth(); 989 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 990 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 991 992 APInt KnownZeroMask(~KnownZero); 993 if (KnownZeroMask.isPowerOf2()) { 994 Value *In = ICI->getOperand(0); 995 996 // If the icmp tests for a known zero bit we can constant fold it. 997 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 998 Value *V = Pred == ICmpInst::ICMP_NE ? 999 ConstantInt::getAllOnesValue(CI.getType()) : 1000 ConstantInt::getNullValue(CI.getType()); 1001 return replaceInstUsesWith(CI, V); 1002 } 1003 1004 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1005 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1006 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1007 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1008 // Perform a right shift to place the desired bit in the LSB. 1009 if (ShiftAmt) 1010 In = Builder->CreateLShr(In, 1011 ConstantInt::get(In->getType(), ShiftAmt)); 1012 1013 // At this point "In" is either 1 or 0. Subtract 1 to turn 1014 // {1, 0} -> {0, -1}. 1015 In = Builder->CreateAdd(In, 1016 ConstantInt::getAllOnesValue(In->getType()), 1017 "sext"); 1018 } else { 1019 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1020 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1021 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1022 // Perform a left shift to place the desired bit in the MSB. 1023 if (ShiftAmt) 1024 In = Builder->CreateShl(In, 1025 ConstantInt::get(In->getType(), ShiftAmt)); 1026 1027 // Distribute the bit over the whole bit width. 1028 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 1029 BitWidth - 1), "sext"); 1030 } 1031 1032 if (CI.getType() == In->getType()) 1033 return replaceInstUsesWith(CI, In); 1034 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1035 } 1036 } 1037 } 1038 1039 return nullptr; 1040 } 1041 1042 /// Return true if we can take the specified value and return it as type Ty 1043 /// without inserting any new casts and without changing the value of the common 1044 /// low bits. This is used by code that tries to promote integer operations to 1045 /// a wider types will allow us to eliminate the extension. 1046 /// 1047 /// This function works on both vectors and scalars. 1048 /// 1049 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1050 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1051 "Can't sign extend type to a smaller type"); 1052 // If this is a constant, it can be trivially promoted. 1053 if (isa<Constant>(V)) 1054 return true; 1055 1056 Instruction *I = dyn_cast<Instruction>(V); 1057 if (!I) return false; 1058 1059 // If this is a truncate from the dest type, we can trivially eliminate it. 1060 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1061 return true; 1062 1063 // We can't extend or shrink something that has multiple uses: doing so would 1064 // require duplicating the instruction in general, which isn't profitable. 1065 if (!I->hasOneUse()) return false; 1066 1067 switch (I->getOpcode()) { 1068 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1069 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1070 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1071 return true; 1072 case Instruction::And: 1073 case Instruction::Or: 1074 case Instruction::Xor: 1075 case Instruction::Add: 1076 case Instruction::Sub: 1077 case Instruction::Mul: 1078 // These operators can all arbitrarily be extended if their inputs can. 1079 return canEvaluateSExtd(I->getOperand(0), Ty) && 1080 canEvaluateSExtd(I->getOperand(1), Ty); 1081 1082 //case Instruction::Shl: TODO 1083 //case Instruction::LShr: TODO 1084 1085 case Instruction::Select: 1086 return canEvaluateSExtd(I->getOperand(1), Ty) && 1087 canEvaluateSExtd(I->getOperand(2), Ty); 1088 1089 case Instruction::PHI: { 1090 // We can change a phi if we can change all operands. Note that we never 1091 // get into trouble with cyclic PHIs here because we only consider 1092 // instructions with a single use. 1093 PHINode *PN = cast<PHINode>(I); 1094 for (Value *IncValue : PN->incoming_values()) 1095 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1096 return true; 1097 } 1098 default: 1099 // TODO: Can handle more cases here. 1100 break; 1101 } 1102 1103 return false; 1104 } 1105 1106 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1107 // If this sign extend is only used by a truncate, let the truncate be 1108 // eliminated before we try to optimize this sext. 1109 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1110 return nullptr; 1111 1112 if (Instruction *I = commonCastTransforms(CI)) 1113 return I; 1114 1115 // See if we can simplify any instructions used by the input whose sole 1116 // purpose is to compute bits we don't care about. 1117 if (SimplifyDemandedInstructionBits(CI)) 1118 return &CI; 1119 1120 Value *Src = CI.getOperand(0); 1121 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1122 1123 // If we know that the value being extended is positive, we can use a zext 1124 // instead. 1125 bool KnownZero, KnownOne; 1126 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1127 if (KnownZero) { 1128 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1129 return replaceInstUsesWith(CI, ZExt); 1130 } 1131 1132 // Attempt to extend the entire input expression tree to the destination 1133 // type. Only do this if the dest type is a simple type, don't convert the 1134 // expression tree to something weird like i93 unless the source is also 1135 // strange. 1136 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1137 canEvaluateSExtd(Src, DestTy)) { 1138 // Okay, we can transform this! Insert the new expression now. 1139 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1140 " to avoid sign extend: " << CI << '\n'); 1141 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1142 assert(Res->getType() == DestTy); 1143 1144 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1145 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1146 1147 // If the high bits are already filled with sign bit, just replace this 1148 // cast with the result. 1149 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1150 return replaceInstUsesWith(CI, Res); 1151 1152 // We need to emit a shl + ashr to do the sign extend. 1153 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1154 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1155 ShAmt); 1156 } 1157 1158 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1159 // into shifts. 1160 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1161 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1162 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1163 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1164 1165 // We need to emit a shl + ashr to do the sign extend. 1166 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1167 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1168 return BinaryOperator::CreateAShr(Res, ShAmt); 1169 } 1170 1171 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1172 return transformSExtICmp(ICI, CI); 1173 1174 // If the input is a shl/ashr pair of a same constant, then this is a sign 1175 // extension from a smaller value. If we could trust arbitrary bitwidth 1176 // integers, we could turn this into a truncate to the smaller bit and then 1177 // use a sext for the whole extension. Since we don't, look deeper and check 1178 // for a truncate. If the source and dest are the same type, eliminate the 1179 // trunc and extend and just do shifts. For example, turn: 1180 // %a = trunc i32 %i to i8 1181 // %b = shl i8 %a, 6 1182 // %c = ashr i8 %b, 6 1183 // %d = sext i8 %c to i32 1184 // into: 1185 // %a = shl i32 %i, 30 1186 // %d = ashr i32 %a, 30 1187 Value *A = nullptr; 1188 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1189 ConstantInt *BA = nullptr, *CA = nullptr; 1190 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1191 m_ConstantInt(CA))) && 1192 BA == CA && A->getType() == CI.getType()) { 1193 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1194 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1195 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1196 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1197 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1198 return BinaryOperator::CreateAShr(A, ShAmtV); 1199 } 1200 1201 return nullptr; 1202 } 1203 1204 1205 /// Return a Constant* for the specified floating-point constant if it fits 1206 /// in the specified FP type without changing its value. 1207 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1208 bool losesInfo; 1209 APFloat F = CFP->getValueAPF(); 1210 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1211 if (!losesInfo) 1212 return ConstantFP::get(CFP->getContext(), F); 1213 return nullptr; 1214 } 1215 1216 /// If this is a floating-point extension instruction, look 1217 /// through it until we get the source value. 1218 static Value *lookThroughFPExtensions(Value *V) { 1219 if (Instruction *I = dyn_cast<Instruction>(V)) 1220 if (I->getOpcode() == Instruction::FPExt) 1221 return lookThroughFPExtensions(I->getOperand(0)); 1222 1223 // If this value is a constant, return the constant in the smallest FP type 1224 // that can accurately represent it. This allows us to turn 1225 // (float)((double)X+2.0) into x+2.0f. 1226 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1227 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1228 return V; // No constant folding of this. 1229 // See if the value can be truncated to half and then reextended. 1230 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf)) 1231 return V; 1232 // See if the value can be truncated to float and then reextended. 1233 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle)) 1234 return V; 1235 if (CFP->getType()->isDoubleTy()) 1236 return V; // Won't shrink. 1237 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble)) 1238 return V; 1239 // Don't try to shrink to various long double types. 1240 } 1241 1242 return V; 1243 } 1244 1245 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1246 if (Instruction *I = commonCastTransforms(CI)) 1247 return I; 1248 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1249 // simplify this expression to avoid one or more of the trunc/extend 1250 // operations if we can do so without changing the numerical results. 1251 // 1252 // The exact manner in which the widths of the operands interact to limit 1253 // what we can and cannot do safely varies from operation to operation, and 1254 // is explained below in the various case statements. 1255 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1256 if (OpI && OpI->hasOneUse()) { 1257 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1258 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1259 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1260 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1261 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1262 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1263 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1264 switch (OpI->getOpcode()) { 1265 default: break; 1266 case Instruction::FAdd: 1267 case Instruction::FSub: 1268 // For addition and subtraction, the infinitely precise result can 1269 // essentially be arbitrarily wide; proving that double rounding 1270 // will not occur because the result of OpI is exact (as we will for 1271 // FMul, for example) is hopeless. However, we *can* nonetheless 1272 // frequently know that double rounding cannot occur (or that it is 1273 // innocuous) by taking advantage of the specific structure of 1274 // infinitely-precise results that admit double rounding. 1275 // 1276 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1277 // to represent both sources, we can guarantee that the double 1278 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1279 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1280 // for proof of this fact). 1281 // 1282 // Note: Figueroa does not consider the case where DstFormat != 1283 // SrcFormat. It's possible (likely even!) that this analysis 1284 // could be tightened for those cases, but they are rare (the main 1285 // case of interest here is (float)((double)float + float)). 1286 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1287 if (LHSOrig->getType() != CI.getType()) 1288 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1289 if (RHSOrig->getType() != CI.getType()) 1290 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1291 Instruction *RI = 1292 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1293 RI->copyFastMathFlags(OpI); 1294 return RI; 1295 } 1296 break; 1297 case Instruction::FMul: 1298 // For multiplication, the infinitely precise result has at most 1299 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1300 // that such a value can be exactly represented, then no double 1301 // rounding can possibly occur; we can safely perform the operation 1302 // in the destination format if it can represent both sources. 1303 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1304 if (LHSOrig->getType() != CI.getType()) 1305 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1306 if (RHSOrig->getType() != CI.getType()) 1307 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1308 Instruction *RI = 1309 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1310 RI->copyFastMathFlags(OpI); 1311 return RI; 1312 } 1313 break; 1314 case Instruction::FDiv: 1315 // For division, we use again use the bound from Figueroa's 1316 // dissertation. I am entirely certain that this bound can be 1317 // tightened in the unbalanced operand case by an analysis based on 1318 // the diophantine rational approximation bound, but the well-known 1319 // condition used here is a good conservative first pass. 1320 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1321 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1322 if (LHSOrig->getType() != CI.getType()) 1323 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1324 if (RHSOrig->getType() != CI.getType()) 1325 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1326 Instruction *RI = 1327 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1328 RI->copyFastMathFlags(OpI); 1329 return RI; 1330 } 1331 break; 1332 case Instruction::FRem: 1333 // Remainder is straightforward. Remainder is always exact, so the 1334 // type of OpI doesn't enter into things at all. We simply evaluate 1335 // in whichever source type is larger, then convert to the 1336 // destination type. 1337 if (SrcWidth == OpWidth) 1338 break; 1339 if (LHSWidth < SrcWidth) 1340 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1341 else if (RHSWidth <= SrcWidth) 1342 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1343 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1344 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1345 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1346 RI->copyFastMathFlags(OpI); 1347 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1348 } 1349 } 1350 1351 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1352 if (BinaryOperator::isFNeg(OpI)) { 1353 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1354 CI.getType()); 1355 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1356 RI->copyFastMathFlags(OpI); 1357 return RI; 1358 } 1359 } 1360 1361 // (fptrunc (select cond, R1, Cst)) --> 1362 // (select cond, (fptrunc R1), (fptrunc Cst)) 1363 // 1364 // - but only if this isn't part of a min/max operation, else we'll 1365 // ruin min/max canonical form which is to have the select and 1366 // compare's operands be of the same type with no casts to look through. 1367 Value *LHS, *RHS; 1368 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1369 if (SI && 1370 (isa<ConstantFP>(SI->getOperand(1)) || 1371 isa<ConstantFP>(SI->getOperand(2))) && 1372 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1373 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1374 CI.getType()); 1375 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1376 CI.getType()); 1377 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1378 } 1379 1380 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1381 if (II) { 1382 switch (II->getIntrinsicID()) { 1383 default: break; 1384 case Intrinsic::fabs: { 1385 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1386 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1387 CI.getType()); 1388 Type *IntrinsicType[] = { CI.getType() }; 1389 Function *Overload = Intrinsic::getDeclaration( 1390 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1391 1392 SmallVector<OperandBundleDef, 1> OpBundles; 1393 II->getOperandBundlesAsDefs(OpBundles); 1394 1395 Value *Args[] = { InnerTrunc }; 1396 return CallInst::Create(Overload, Args, OpBundles, II->getName()); 1397 } 1398 } 1399 } 1400 1401 return nullptr; 1402 } 1403 1404 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1405 return commonCastTransforms(CI); 1406 } 1407 1408 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1409 // This is safe if the intermediate type has enough bits in its mantissa to 1410 // accurately represent all values of X. For example, this won't work with 1411 // i64 -> float -> i64. 1412 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1413 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1414 return nullptr; 1415 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1416 1417 Value *SrcI = OpI->getOperand(0); 1418 Type *FITy = FI.getType(); 1419 Type *OpITy = OpI->getType(); 1420 Type *SrcTy = SrcI->getType(); 1421 bool IsInputSigned = isa<SIToFPInst>(OpI); 1422 bool IsOutputSigned = isa<FPToSIInst>(FI); 1423 1424 // We can safely assume the conversion won't overflow the output range, 1425 // because (for example) (uint8_t)18293.f is undefined behavior. 1426 1427 // Since we can assume the conversion won't overflow, our decision as to 1428 // whether the input will fit in the float should depend on the minimum 1429 // of the input range and output range. 1430 1431 // This means this is also safe for a signed input and unsigned output, since 1432 // a negative input would lead to undefined behavior. 1433 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1434 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1435 int ActualSize = std::min(InputSize, OutputSize); 1436 1437 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1438 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1439 if (IsInputSigned && IsOutputSigned) 1440 return new SExtInst(SrcI, FITy); 1441 return new ZExtInst(SrcI, FITy); 1442 } 1443 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1444 return new TruncInst(SrcI, FITy); 1445 if (SrcTy == FITy) 1446 return replaceInstUsesWith(FI, SrcI); 1447 return new BitCastInst(SrcI, FITy); 1448 } 1449 return nullptr; 1450 } 1451 1452 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1453 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1454 if (!OpI) 1455 return commonCastTransforms(FI); 1456 1457 if (Instruction *I = FoldItoFPtoI(FI)) 1458 return I; 1459 1460 return commonCastTransforms(FI); 1461 } 1462 1463 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1464 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1465 if (!OpI) 1466 return commonCastTransforms(FI); 1467 1468 if (Instruction *I = FoldItoFPtoI(FI)) 1469 return I; 1470 1471 return commonCastTransforms(FI); 1472 } 1473 1474 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1475 return commonCastTransforms(CI); 1476 } 1477 1478 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1479 return commonCastTransforms(CI); 1480 } 1481 1482 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1483 // If the source integer type is not the intptr_t type for this target, do a 1484 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1485 // cast to be exposed to other transforms. 1486 unsigned AS = CI.getAddressSpace(); 1487 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1488 DL.getPointerSizeInBits(AS)) { 1489 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1490 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1491 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1492 1493 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1494 return new IntToPtrInst(P, CI.getType()); 1495 } 1496 1497 if (Instruction *I = commonCastTransforms(CI)) 1498 return I; 1499 1500 return nullptr; 1501 } 1502 1503 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1504 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1505 Value *Src = CI.getOperand(0); 1506 1507 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1508 // If casting the result of a getelementptr instruction with no offset, turn 1509 // this into a cast of the original pointer! 1510 if (GEP->hasAllZeroIndices() && 1511 // If CI is an addrspacecast and GEP changes the poiner type, merging 1512 // GEP into CI would undo canonicalizing addrspacecast with different 1513 // pointer types, causing infinite loops. 1514 (!isa<AddrSpaceCastInst>(CI) || 1515 GEP->getType() == GEP->getPointerOperand()->getType())) { 1516 // Changing the cast operand is usually not a good idea but it is safe 1517 // here because the pointer operand is being replaced with another 1518 // pointer operand so the opcode doesn't need to change. 1519 Worklist.Add(GEP); 1520 CI.setOperand(0, GEP->getOperand(0)); 1521 return &CI; 1522 } 1523 } 1524 1525 return commonCastTransforms(CI); 1526 } 1527 1528 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1529 // If the destination integer type is not the intptr_t type for this target, 1530 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1531 // to be exposed to other transforms. 1532 1533 Type *Ty = CI.getType(); 1534 unsigned AS = CI.getPointerAddressSpace(); 1535 1536 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1537 return commonPointerCastTransforms(CI); 1538 1539 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1540 if (Ty->isVectorTy()) // Handle vectors of pointers. 1541 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1542 1543 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1544 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1545 } 1546 1547 /// This input value (which is known to have vector type) is being zero extended 1548 /// or truncated to the specified vector type. 1549 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1550 /// 1551 /// The source and destination vector types may have different element types. 1552 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1553 InstCombiner &IC) { 1554 // We can only do this optimization if the output is a multiple of the input 1555 // element size, or the input is a multiple of the output element size. 1556 // Convert the input type to have the same element type as the output. 1557 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1558 1559 if (SrcTy->getElementType() != DestTy->getElementType()) { 1560 // The input types don't need to be identical, but for now they must be the 1561 // same size. There is no specific reason we couldn't handle things like 1562 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1563 // there yet. 1564 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1565 DestTy->getElementType()->getPrimitiveSizeInBits()) 1566 return nullptr; 1567 1568 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1569 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1570 } 1571 1572 // Now that the element types match, get the shuffle mask and RHS of the 1573 // shuffle to use, which depends on whether we're increasing or decreasing the 1574 // size of the input. 1575 SmallVector<uint32_t, 16> ShuffleMask; 1576 Value *V2; 1577 1578 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1579 // If we're shrinking the number of elements, just shuffle in the low 1580 // elements from the input and use undef as the second shuffle input. 1581 V2 = UndefValue::get(SrcTy); 1582 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1583 ShuffleMask.push_back(i); 1584 1585 } else { 1586 // If we're increasing the number of elements, shuffle in all of the 1587 // elements from InVal and fill the rest of the result elements with zeros 1588 // from a constant zero. 1589 V2 = Constant::getNullValue(SrcTy); 1590 unsigned SrcElts = SrcTy->getNumElements(); 1591 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1592 ShuffleMask.push_back(i); 1593 1594 // The excess elements reference the first element of the zero input. 1595 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1596 ShuffleMask.push_back(SrcElts); 1597 } 1598 1599 return new ShuffleVectorInst(InVal, V2, 1600 ConstantDataVector::get(V2->getContext(), 1601 ShuffleMask)); 1602 } 1603 1604 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1605 return Value % Ty->getPrimitiveSizeInBits() == 0; 1606 } 1607 1608 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1609 return Value / Ty->getPrimitiveSizeInBits(); 1610 } 1611 1612 /// V is a value which is inserted into a vector of VecEltTy. 1613 /// Look through the value to see if we can decompose it into 1614 /// insertions into the vector. See the example in the comment for 1615 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1616 /// The type of V is always a non-zero multiple of VecEltTy's size. 1617 /// Shift is the number of bits between the lsb of V and the lsb of 1618 /// the vector. 1619 /// 1620 /// This returns false if the pattern can't be matched or true if it can, 1621 /// filling in Elements with the elements found here. 1622 static bool collectInsertionElements(Value *V, unsigned Shift, 1623 SmallVectorImpl<Value *> &Elements, 1624 Type *VecEltTy, bool isBigEndian) { 1625 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1626 "Shift should be a multiple of the element type size"); 1627 1628 // Undef values never contribute useful bits to the result. 1629 if (isa<UndefValue>(V)) return true; 1630 1631 // If we got down to a value of the right type, we win, try inserting into the 1632 // right element. 1633 if (V->getType() == VecEltTy) { 1634 // Inserting null doesn't actually insert any elements. 1635 if (Constant *C = dyn_cast<Constant>(V)) 1636 if (C->isNullValue()) 1637 return true; 1638 1639 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1640 if (isBigEndian) 1641 ElementIndex = Elements.size() - ElementIndex - 1; 1642 1643 // Fail if multiple elements are inserted into this slot. 1644 if (Elements[ElementIndex]) 1645 return false; 1646 1647 Elements[ElementIndex] = V; 1648 return true; 1649 } 1650 1651 if (Constant *C = dyn_cast<Constant>(V)) { 1652 // Figure out the # elements this provides, and bitcast it or slice it up 1653 // as required. 1654 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1655 VecEltTy); 1656 // If the constant is the size of a vector element, we just need to bitcast 1657 // it to the right type so it gets properly inserted. 1658 if (NumElts == 1) 1659 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1660 Shift, Elements, VecEltTy, isBigEndian); 1661 1662 // Okay, this is a constant that covers multiple elements. Slice it up into 1663 // pieces and insert each element-sized piece into the vector. 1664 if (!isa<IntegerType>(C->getType())) 1665 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1666 C->getType()->getPrimitiveSizeInBits())); 1667 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1668 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1669 1670 for (unsigned i = 0; i != NumElts; ++i) { 1671 unsigned ShiftI = Shift+i*ElementSize; 1672 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1673 ShiftI)); 1674 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1675 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1676 isBigEndian)) 1677 return false; 1678 } 1679 return true; 1680 } 1681 1682 if (!V->hasOneUse()) return false; 1683 1684 Instruction *I = dyn_cast<Instruction>(V); 1685 if (!I) return false; 1686 switch (I->getOpcode()) { 1687 default: return false; // Unhandled case. 1688 case Instruction::BitCast: 1689 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1690 isBigEndian); 1691 case Instruction::ZExt: 1692 if (!isMultipleOfTypeSize( 1693 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1694 VecEltTy)) 1695 return false; 1696 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1697 isBigEndian); 1698 case Instruction::Or: 1699 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1700 isBigEndian) && 1701 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1702 isBigEndian); 1703 case Instruction::Shl: { 1704 // Must be shifting by a constant that is a multiple of the element size. 1705 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1706 if (!CI) return false; 1707 Shift += CI->getZExtValue(); 1708 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1709 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1710 isBigEndian); 1711 } 1712 1713 } 1714 } 1715 1716 1717 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1718 /// assemble the elements of the vector manually. 1719 /// Try to rip the code out and replace it with insertelements. This is to 1720 /// optimize code like this: 1721 /// 1722 /// %tmp37 = bitcast float %inc to i32 1723 /// %tmp38 = zext i32 %tmp37 to i64 1724 /// %tmp31 = bitcast float %inc5 to i32 1725 /// %tmp32 = zext i32 %tmp31 to i64 1726 /// %tmp33 = shl i64 %tmp32, 32 1727 /// %ins35 = or i64 %tmp33, %tmp38 1728 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1729 /// 1730 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1731 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1732 InstCombiner &IC) { 1733 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1734 Value *IntInput = CI.getOperand(0); 1735 1736 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1737 if (!collectInsertionElements(IntInput, 0, Elements, 1738 DestVecTy->getElementType(), 1739 IC.getDataLayout().isBigEndian())) 1740 return nullptr; 1741 1742 // If we succeeded, we know that all of the element are specified by Elements 1743 // or are zero if Elements has a null entry. Recast this as a set of 1744 // insertions. 1745 Value *Result = Constant::getNullValue(CI.getType()); 1746 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1747 if (!Elements[i]) continue; // Unset element. 1748 1749 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1750 IC.Builder->getInt32(i)); 1751 } 1752 1753 return Result; 1754 } 1755 1756 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1757 /// vector followed by extract element. The backend tends to handle bitcasts of 1758 /// vectors better than bitcasts of scalars because vector registers are 1759 /// usually not type-specific like scalar integer or scalar floating-point. 1760 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1761 InstCombiner &IC, 1762 const DataLayout &DL) { 1763 // TODO: Create and use a pattern matcher for ExtractElementInst. 1764 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1765 if (!ExtElt || !ExtElt->hasOneUse()) 1766 return nullptr; 1767 1768 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1769 // type to extract from. 1770 Type *DestType = BitCast.getType(); 1771 if (!VectorType::isValidElementType(DestType)) 1772 return nullptr; 1773 1774 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1775 auto *NewVecType = VectorType::get(DestType, NumElts); 1776 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1777 NewVecType, "bc"); 1778 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1779 } 1780 1781 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1782 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1783 InstCombiner::BuilderTy &Builder) { 1784 BinaryOperator *BO; 1785 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO)))) 1786 return nullptr; 1787 1788 auto Opcode = BO->getOpcode(); 1789 if (Opcode != Instruction::And && Opcode != Instruction::Or && 1790 Opcode != Instruction::Xor) 1791 return nullptr; 1792 1793 Type *DestTy = BitCast.getType(); 1794 if (!DestTy->getScalarType()->isIntegerTy()) 1795 return nullptr; 1796 1797 // FIXME: This transform is restricted to vector types to avoid backend 1798 // problems caused by creating potentially illegal operations. If a fix-up is 1799 // added to handle that situation, we can remove this check. 1800 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 1801 return nullptr; 1802 1803 Value *X; 1804 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 1805 X->getType() == DestTy && !isa<Constant>(X)) { 1806 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 1807 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 1808 return BinaryOperator::Create(Opcode, X, CastedOp1); 1809 } 1810 1811 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 1812 X->getType() == DestTy && !isa<Constant>(X)) { 1813 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 1814 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1815 return BinaryOperator::Create(Opcode, CastedOp0, X); 1816 } 1817 1818 return nullptr; 1819 } 1820 1821 /// Check if all users of CI are StoreInsts. 1822 static bool hasStoreUsersOnly(CastInst &CI) { 1823 for (User *U : CI.users()) { 1824 if (!isa<StoreInst>(U)) 1825 return false; 1826 } 1827 return true; 1828 } 1829 1830 /// This function handles following case 1831 /// 1832 /// A -> B cast 1833 /// PHI 1834 /// B -> A cast 1835 /// 1836 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 1837 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 1838 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 1839 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 1840 if (hasStoreUsersOnly(CI)) 1841 return nullptr; 1842 1843 Value *Src = CI.getOperand(0); 1844 Type *SrcTy = Src->getType(); // Type B 1845 Type *DestTy = CI.getType(); // Type A 1846 1847 SmallVector<PHINode *, 4> PhiWorklist; 1848 SmallSetVector<PHINode *, 4> OldPhiNodes; 1849 1850 // Find all of the A->B casts and PHI nodes. 1851 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 1852 // OldPhiNodes is used to track all known PHI nodes, before adding a new 1853 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 1854 PhiWorklist.push_back(PN); 1855 OldPhiNodes.insert(PN); 1856 while (!PhiWorklist.empty()) { 1857 auto *OldPN = PhiWorklist.pop_back_val(); 1858 for (Value *IncValue : OldPN->incoming_values()) { 1859 if (isa<Constant>(IncValue)) 1860 continue; 1861 1862 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 1863 // If there is a sequence of one or more load instructions, each loaded 1864 // value is used as address of later load instruction, bitcast is 1865 // necessary to change the value type, don't optimize it. For 1866 // simplicity we give up if the load address comes from another load. 1867 Value *Addr = LI->getOperand(0); 1868 if (Addr == &CI || isa<LoadInst>(Addr)) 1869 return nullptr; 1870 if (LI->hasOneUse() && LI->isSimple()) 1871 continue; 1872 // If a LoadInst has more than one use, changing the type of loaded 1873 // value may create another bitcast. 1874 return nullptr; 1875 } 1876 1877 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 1878 if (OldPhiNodes.insert(PNode)) 1879 PhiWorklist.push_back(PNode); 1880 continue; 1881 } 1882 1883 auto *BCI = dyn_cast<BitCastInst>(IncValue); 1884 // We can't handle other instructions. 1885 if (!BCI) 1886 return nullptr; 1887 1888 // Verify it's a A->B cast. 1889 Type *TyA = BCI->getOperand(0)->getType(); 1890 Type *TyB = BCI->getType(); 1891 if (TyA != DestTy || TyB != SrcTy) 1892 return nullptr; 1893 } 1894 } 1895 1896 // For each old PHI node, create a corresponding new PHI node with a type A. 1897 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 1898 for (auto *OldPN : OldPhiNodes) { 1899 Builder->SetInsertPoint(OldPN); 1900 PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands()); 1901 NewPNodes[OldPN] = NewPN; 1902 } 1903 1904 // Fill in the operands of new PHI nodes. 1905 for (auto *OldPN : OldPhiNodes) { 1906 PHINode *NewPN = NewPNodes[OldPN]; 1907 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 1908 Value *V = OldPN->getOperand(j); 1909 Value *NewV = nullptr; 1910 if (auto *C = dyn_cast<Constant>(V)) { 1911 NewV = ConstantExpr::getBitCast(C, DestTy); 1912 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 1913 Builder->SetInsertPoint(LI->getNextNode()); 1914 NewV = Builder->CreateBitCast(LI, DestTy); 1915 Worklist.Add(LI); 1916 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 1917 NewV = BCI->getOperand(0); 1918 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 1919 NewV = NewPNodes[PrevPN]; 1920 } 1921 assert(NewV); 1922 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 1923 } 1924 } 1925 1926 // If there is a store with type B, change it to type A. 1927 for (User *U : PN->users()) { 1928 auto *SI = dyn_cast<StoreInst>(U); 1929 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 1930 Builder->SetInsertPoint(SI); 1931 auto *NewBC = 1932 cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy)); 1933 SI->setOperand(0, NewBC); 1934 Worklist.Add(SI); 1935 assert(hasStoreUsersOnly(*NewBC)); 1936 } 1937 } 1938 1939 return replaceInstUsesWith(CI, NewPNodes[PN]); 1940 } 1941 1942 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1943 // If the operands are integer typed then apply the integer transforms, 1944 // otherwise just apply the common ones. 1945 Value *Src = CI.getOperand(0); 1946 Type *SrcTy = Src->getType(); 1947 Type *DestTy = CI.getType(); 1948 1949 // Get rid of casts from one type to the same type. These are useless and can 1950 // be replaced by the operand. 1951 if (DestTy == Src->getType()) 1952 return replaceInstUsesWith(CI, Src); 1953 1954 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1955 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1956 Type *DstElTy = DstPTy->getElementType(); 1957 Type *SrcElTy = SrcPTy->getElementType(); 1958 1959 // If we are casting a alloca to a pointer to a type of the same 1960 // size, rewrite the allocation instruction to allocate the "right" type. 1961 // There is no need to modify malloc calls because it is their bitcast that 1962 // needs to be cleaned up. 1963 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1964 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1965 return V; 1966 1967 // When the type pointed to is not sized the cast cannot be 1968 // turned into a gep. 1969 Type *PointeeType = 1970 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 1971 if (!PointeeType->isSized()) 1972 return nullptr; 1973 1974 // If the source and destination are pointers, and this cast is equivalent 1975 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1976 // This can enhance SROA and other transforms that want type-safe pointers. 1977 unsigned NumZeros = 0; 1978 while (SrcElTy != DstElTy && 1979 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1980 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1981 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 1982 ++NumZeros; 1983 } 1984 1985 // If we found a path from the src to dest, create the getelementptr now. 1986 if (SrcElTy == DstElTy) { 1987 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 1988 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1989 } 1990 } 1991 1992 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1993 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1994 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1995 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1996 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1997 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1998 } 1999 2000 if (isa<IntegerType>(SrcTy)) { 2001 // If this is a cast from an integer to vector, check to see if the input 2002 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2003 // the casts with a shuffle and (potentially) a bitcast. 2004 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2005 CastInst *SrcCast = cast<CastInst>(Src); 2006 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2007 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2008 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2009 cast<VectorType>(DestTy), *this)) 2010 return I; 2011 } 2012 2013 // If the input is an 'or' instruction, we may be doing shifts and ors to 2014 // assemble the elements of the vector manually. Try to rip the code out 2015 // and replace it with insertelements. 2016 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2017 return replaceInstUsesWith(CI, V); 2018 } 2019 } 2020 2021 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2022 if (SrcVTy->getNumElements() == 1) { 2023 // If our destination is not a vector, then make this a straight 2024 // scalar-scalar cast. 2025 if (!DestTy->isVectorTy()) { 2026 Value *Elem = 2027 Builder->CreateExtractElement(Src, 2028 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2029 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2030 } 2031 2032 // Otherwise, see if our source is an insert. If so, then use the scalar 2033 // component directly. 2034 if (InsertElementInst *IEI = 2035 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2036 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2037 DestTy); 2038 } 2039 } 2040 2041 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2042 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2043 // a bitcast to a vector with the same # elts. 2044 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2045 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2046 SVI->getType()->getNumElements() == 2047 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2048 BitCastInst *Tmp; 2049 // If either of the operands is a cast from CI.getType(), then 2050 // evaluating the shuffle in the casted destination's type will allow 2051 // us to eliminate at least one cast. 2052 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2053 Tmp->getOperand(0)->getType() == DestTy) || 2054 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2055 Tmp->getOperand(0)->getType() == DestTy)) { 2056 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 2057 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 2058 // Return a new shuffle vector. Use the same element ID's, as we 2059 // know the vector types match #elts. 2060 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2061 } 2062 } 2063 } 2064 2065 // Handle the A->B->A cast, and there is an intervening PHI node. 2066 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2067 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2068 return I; 2069 2070 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 2071 return I; 2072 2073 if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder)) 2074 return I; 2075 2076 if (SrcTy->isPointerTy()) 2077 return commonPointerCastTransforms(CI); 2078 return commonCastTransforms(CI); 2079 } 2080 2081 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2082 // If the destination pointer element type is not the same as the source's 2083 // first do a bitcast to the destination type, and then the addrspacecast. 2084 // This allows the cast to be exposed to other transforms. 2085 Value *Src = CI.getOperand(0); 2086 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2087 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2088 2089 Type *DestElemTy = DestTy->getElementType(); 2090 if (SrcTy->getElementType() != DestElemTy) { 2091 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2092 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2093 // Handle vectors of pointers. 2094 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2095 } 2096 2097 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 2098 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2099 } 2100 2101 return commonPointerCastTransforms(CI); 2102 } 2103