xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision d3f6dd6585f4866a38a794b80db55a62c1050c77)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 #include <optional>
22 
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29 /// true for, actually insert the code to evaluate the expression.
30 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
31                                                  bool isSigned) {
32   if (Constant *C = dyn_cast<Constant>(V))
33     return ConstantFoldIntegerCast(C, Ty, isSigned, DL);
34 
35   // Otherwise, it must be an instruction.
36   Instruction *I = cast<Instruction>(V);
37   Instruction *Res = nullptr;
38   unsigned Opc = I->getOpcode();
39   switch (Opc) {
40   case Instruction::Add:
41   case Instruction::Sub:
42   case Instruction::Mul:
43   case Instruction::And:
44   case Instruction::Or:
45   case Instruction::Xor:
46   case Instruction::AShr:
47   case Instruction::LShr:
48   case Instruction::Shl:
49   case Instruction::UDiv:
50   case Instruction::URem: {
51     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
52     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
53     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
54     break;
55   }
56   case Instruction::Trunc:
57   case Instruction::ZExt:
58   case Instruction::SExt:
59     // If the source type of the cast is the type we're trying for then we can
60     // just return the source.  There's no need to insert it because it is not
61     // new.
62     if (I->getOperand(0)->getType() == Ty)
63       return I->getOperand(0);
64 
65     // Otherwise, must be the same type of cast, so just reinsert a new one.
66     // This also handles the case of zext(trunc(x)) -> zext(x).
67     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
68                                       Opc == Instruction::SExt);
69     break;
70   case Instruction::Select: {
71     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
72     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
73     Res = SelectInst::Create(I->getOperand(0), True, False);
74     break;
75   }
76   case Instruction::PHI: {
77     PHINode *OPN = cast<PHINode>(I);
78     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
79     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
80       Value *V =
81           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
82       NPN->addIncoming(V, OPN->getIncomingBlock(i));
83     }
84     Res = NPN;
85     break;
86   }
87   case Instruction::FPToUI:
88   case Instruction::FPToSI:
89     Res = CastInst::Create(
90       static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
91     break;
92   case Instruction::Call:
93     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
94       switch (II->getIntrinsicID()) {
95       default:
96         llvm_unreachable("Unsupported call!");
97       case Intrinsic::vscale: {
98         Function *Fn =
99             Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
100         Res = CallInst::Create(Fn->getFunctionType(), Fn);
101         break;
102       }
103       }
104     }
105     break;
106   case Instruction::ShuffleVector: {
107     auto *ScalarTy = cast<VectorType>(Ty)->getElementType();
108     auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
109     auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount());
110     Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned);
111     Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned);
112     Res = new ShuffleVectorInst(Op0, Op1,
113                                 cast<ShuffleVectorInst>(I)->getShuffleMask());
114     break;
115   }
116   default:
117     // TODO: Can handle more cases here.
118     llvm_unreachable("Unreachable!");
119   }
120 
121   Res->takeName(I);
122   return InsertNewInstWith(Res, I->getIterator());
123 }
124 
125 Instruction::CastOps
126 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
127                                        const CastInst *CI2) {
128   Type *SrcTy = CI1->getSrcTy();
129   Type *MidTy = CI1->getDestTy();
130   Type *DstTy = CI2->getDestTy();
131 
132   Instruction::CastOps firstOp = CI1->getOpcode();
133   Instruction::CastOps secondOp = CI2->getOpcode();
134   Type *SrcIntPtrTy =
135       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
136   Type *MidIntPtrTy =
137       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
138   Type *DstIntPtrTy =
139       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
140   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
141                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
142                                                 DstIntPtrTy);
143 
144   // We don't want to form an inttoptr or ptrtoint that converts to an integer
145   // type that differs from the pointer size.
146   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
147       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
148     Res = 0;
149 
150   return Instruction::CastOps(Res);
151 }
152 
153 /// Implement the transforms common to all CastInst visitors.
154 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
155   Value *Src = CI.getOperand(0);
156   Type *Ty = CI.getType();
157 
158   if (auto *SrcC = dyn_cast<Constant>(Src))
159     if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
160       return replaceInstUsesWith(CI, Res);
161 
162   // Try to eliminate a cast of a cast.
163   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
164     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
165       // The first cast (CSrc) is eliminable so we need to fix up or replace
166       // the second cast (CI). CSrc will then have a good chance of being dead.
167       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
168       // Point debug users of the dying cast to the new one.
169       if (CSrc->hasOneUse())
170         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
171       return Res;
172     }
173   }
174 
175   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
176     // We are casting a select. Try to fold the cast into the select if the
177     // select does not have a compare instruction with matching operand types
178     // or the select is likely better done in a narrow type.
179     // Creating a select with operands that are different sizes than its
180     // condition may inhibit other folds and lead to worse codegen.
181     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
182     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
183         (CI.getOpcode() == Instruction::Trunc &&
184          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
185 
186       // If it's a bitcast involving vectors, make sure it has the same number
187       // of elements on both sides.
188       if (CI.getOpcode() != Instruction::BitCast ||
189           match(&CI, m_ElementWiseBitCast(m_Value()))) {
190         if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
191           replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
192           return NV;
193         }
194       }
195     }
196   }
197 
198   // If we are casting a PHI, then fold the cast into the PHI.
199   if (auto *PN = dyn_cast<PHINode>(Src)) {
200     // Don't do this if it would create a PHI node with an illegal type from a
201     // legal type.
202     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
203         shouldChangeType(CI.getSrcTy(), CI.getType()))
204       if (Instruction *NV = foldOpIntoPhi(CI, PN))
205         return NV;
206   }
207 
208   // Canonicalize a unary shuffle after the cast if neither operation changes
209   // the size or element size of the input vector.
210   // TODO: We could allow size-changing ops if that doesn't harm codegen.
211   // cast (shuffle X, Mask) --> shuffle (cast X), Mask
212   Value *X;
213   ArrayRef<int> Mask;
214   if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
215     // TODO: Allow scalable vectors?
216     auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
217     auto *DestTy = dyn_cast<FixedVectorType>(Ty);
218     if (SrcTy && DestTy &&
219         SrcTy->getNumElements() == DestTy->getNumElements() &&
220         SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
221       Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
222       return new ShuffleVectorInst(CastX, Mask);
223     }
224   }
225 
226   return nullptr;
227 }
228 
229 /// Constants and extensions/truncates from the destination type are always
230 /// free to be evaluated in that type. This is a helper for canEvaluate*.
231 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
232   if (isa<Constant>(V))
233     return match(V, m_ImmConstant());
234 
235   Value *X;
236   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
237       X->getType() == Ty)
238     return true;
239 
240   return false;
241 }
242 
243 /// Filter out values that we can not evaluate in the destination type for free.
244 /// This is a helper for canEvaluate*.
245 static bool canNotEvaluateInType(Value *V, Type *Ty) {
246   if (!isa<Instruction>(V))
247     return true;
248   // We don't extend or shrink something that has multiple uses --  doing so
249   // would require duplicating the instruction which isn't profitable.
250   if (!V->hasOneUse())
251     return true;
252 
253   return false;
254 }
255 
256 /// Return true if we can evaluate the specified expression tree as type Ty
257 /// instead of its larger type, and arrive with the same value.
258 /// This is used by code that tries to eliminate truncates.
259 ///
260 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
261 /// can be computed by computing V in the smaller type.  If V is an instruction,
262 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
263 /// makes sense if x and y can be efficiently truncated.
264 ///
265 /// This function works on both vectors and scalars.
266 ///
267 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
268                                  Instruction *CxtI) {
269   if (canAlwaysEvaluateInType(V, Ty))
270     return true;
271   if (canNotEvaluateInType(V, Ty))
272     return false;
273 
274   auto *I = cast<Instruction>(V);
275   Type *OrigTy = V->getType();
276   switch (I->getOpcode()) {
277   case Instruction::Add:
278   case Instruction::Sub:
279   case Instruction::Mul:
280   case Instruction::And:
281   case Instruction::Or:
282   case Instruction::Xor:
283     // These operators can all arbitrarily be extended or truncated.
284     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
285            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
286 
287   case Instruction::UDiv:
288   case Instruction::URem: {
289     // UDiv and URem can be truncated if all the truncated bits are zero.
290     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
291     uint32_t BitWidth = Ty->getScalarSizeInBits();
292     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
293     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
294     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
295         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
296       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
297              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
298     }
299     break;
300   }
301   case Instruction::Shl: {
302     // If we are truncating the result of this SHL, and if it's a shift of an
303     // inrange amount, we can always perform a SHL in a smaller type.
304     uint32_t BitWidth = Ty->getScalarSizeInBits();
305     KnownBits AmtKnownBits =
306         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
307     if (AmtKnownBits.getMaxValue().ult(BitWidth))
308       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
309              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
310     break;
311   }
312   case Instruction::LShr: {
313     // If this is a truncate of a logical shr, we can truncate it to a smaller
314     // lshr iff we know that the bits we would otherwise be shifting in are
315     // already zeros.
316     // TODO: It is enough to check that the bits we would be shifting in are
317     //       zero - use AmtKnownBits.getMaxValue().
318     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
319     uint32_t BitWidth = Ty->getScalarSizeInBits();
320     KnownBits AmtKnownBits =
321         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
322     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
323     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
324         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
325       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
326              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
327     }
328     break;
329   }
330   case Instruction::AShr: {
331     // If this is a truncate of an arithmetic shr, we can truncate it to a
332     // smaller ashr iff we know that all the bits from the sign bit of the
333     // original type and the sign bit of the truncate type are similar.
334     // TODO: It is enough to check that the bits we would be shifting in are
335     //       similar to sign bit of the truncate type.
336     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
337     uint32_t BitWidth = Ty->getScalarSizeInBits();
338     KnownBits AmtKnownBits =
339         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
340     unsigned ShiftedBits = OrigBitWidth - BitWidth;
341     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
342         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
343       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345     break;
346   }
347   case Instruction::Trunc:
348     // trunc(trunc(x)) -> trunc(x)
349     return true;
350   case Instruction::ZExt:
351   case Instruction::SExt:
352     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
353     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
354     return true;
355   case Instruction::Select: {
356     SelectInst *SI = cast<SelectInst>(I);
357     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
358            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
359   }
360   case Instruction::PHI: {
361     // We can change a phi if we can change all operands.  Note that we never
362     // get into trouble with cyclic PHIs here because we only consider
363     // instructions with a single use.
364     PHINode *PN = cast<PHINode>(I);
365     for (Value *IncValue : PN->incoming_values())
366       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
367         return false;
368     return true;
369   }
370   case Instruction::FPToUI:
371   case Instruction::FPToSI: {
372     // If the integer type can hold the max FP value, it is safe to cast
373     // directly to that type. Otherwise, we may create poison via overflow
374     // that did not exist in the original code.
375     Type *InputTy = I->getOperand(0)->getType()->getScalarType();
376     const fltSemantics &Semantics = InputTy->getFltSemantics();
377     uint32_t MinBitWidth =
378       APFloatBase::semanticsIntSizeInBits(Semantics,
379           I->getOpcode() == Instruction::FPToSI);
380     return Ty->getScalarSizeInBits() >= MinBitWidth;
381   }
382   case Instruction::ShuffleVector:
383     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
384            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
385   default:
386     // TODO: Can handle more cases here.
387     break;
388   }
389 
390   return false;
391 }
392 
393 /// Given a vector that is bitcast to an integer, optionally logically
394 /// right-shifted, and truncated, convert it to an extractelement.
395 /// Example (big endian):
396 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
397 ///   --->
398 ///   extractelement <4 x i32> %X, 1
399 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
400                                          InstCombinerImpl &IC) {
401   Value *TruncOp = Trunc.getOperand(0);
402   Type *DestType = Trunc.getType();
403   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
404     return nullptr;
405 
406   Value *VecInput = nullptr;
407   ConstantInt *ShiftVal = nullptr;
408   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
409                                   m_LShr(m_BitCast(m_Value(VecInput)),
410                                          m_ConstantInt(ShiftVal)))) ||
411       !isa<VectorType>(VecInput->getType()))
412     return nullptr;
413 
414   VectorType *VecType = cast<VectorType>(VecInput->getType());
415   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
416   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
417   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
418 
419   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
420     return nullptr;
421 
422   // If the element type of the vector doesn't match the result type,
423   // bitcast it to a vector type that we can extract from.
424   unsigned NumVecElts = VecWidth / DestWidth;
425   if (VecType->getElementType() != DestType) {
426     VecType = FixedVectorType::get(DestType, NumVecElts);
427     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
428   }
429 
430   unsigned Elt = ShiftAmount / DestWidth;
431   if (IC.getDataLayout().isBigEndian())
432     Elt = NumVecElts - 1 - Elt;
433 
434   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
435 }
436 
437 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
438 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
439 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
440   assert((isa<VectorType>(Trunc.getSrcTy()) ||
441           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
442          "Don't narrow to an illegal scalar type");
443 
444   // Bail out on strange types. It is possible to handle some of these patterns
445   // even with non-power-of-2 sizes, but it is not a likely scenario.
446   Type *DestTy = Trunc.getType();
447   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
448   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
449   if (!isPowerOf2_32(NarrowWidth))
450     return nullptr;
451 
452   // First, find an or'd pair of opposite shifts:
453   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
454   BinaryOperator *Or0, *Or1;
455   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
456     return nullptr;
457 
458   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
459   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
460       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
461       Or0->getOpcode() == Or1->getOpcode())
462     return nullptr;
463 
464   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
465   if (Or0->getOpcode() == BinaryOperator::LShr) {
466     std::swap(Or0, Or1);
467     std::swap(ShVal0, ShVal1);
468     std::swap(ShAmt0, ShAmt1);
469   }
470   assert(Or0->getOpcode() == BinaryOperator::Shl &&
471          Or1->getOpcode() == BinaryOperator::LShr &&
472          "Illegal or(shift,shift) pair");
473 
474   // Match the shift amount operands for a funnel/rotate pattern. This always
475   // matches a subtraction on the R operand.
476   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
477     // The shift amounts may add up to the narrow bit width:
478     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
479     // If this is a funnel shift (different operands are shifted), then the
480     // shift amount can not over-shift (create poison) in the narrow type.
481     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
482     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
483     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
484       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
485         return L;
486 
487     // The following patterns currently only work for rotation patterns.
488     // TODO: Add more general funnel-shift compatible patterns.
489     if (ShVal0 != ShVal1)
490       return nullptr;
491 
492     // The shift amount may be masked with negation:
493     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
494     Value *X;
495     unsigned Mask = Width - 1;
496     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
497         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
498       return X;
499 
500     // Same as above, but the shift amount may be extended after masking:
501     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
502         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
503       return X;
504 
505     return nullptr;
506   };
507 
508   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
509   bool IsFshl = true; // Sub on LSHR.
510   if (!ShAmt) {
511     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
512     IsFshl = false; // Sub on SHL.
513   }
514   if (!ShAmt)
515     return nullptr;
516 
517   // The right-shifted value must have high zeros in the wide type (for example
518   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
519   // truncated, so those do not matter.
520   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
521   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
522     return nullptr;
523 
524   // Adjust the width of ShAmt for narrowed funnel shift operation:
525   // - Zero-extend if ShAmt is narrower than the destination type.
526   // - Truncate if ShAmt is wider, discarding non-significant high-order bits.
527   // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal),
528   // zext/trunc(ShAmt)).
529   Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy);
530 
531   Value *X, *Y;
532   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
533   if (ShVal0 != ShVal1)
534     Y = Builder.CreateTrunc(ShVal1, DestTy);
535   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
536   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
537   return CallInst::Create(F, {X, Y, NarrowShAmt});
538 }
539 
540 /// Try to narrow the width of math or bitwise logic instructions by pulling a
541 /// truncate ahead of binary operators.
542 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
543   Type *SrcTy = Trunc.getSrcTy();
544   Type *DestTy = Trunc.getType();
545   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
546   unsigned DestWidth = DestTy->getScalarSizeInBits();
547 
548   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
549     return nullptr;
550 
551   BinaryOperator *BinOp;
552   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
553     return nullptr;
554 
555   Value *BinOp0 = BinOp->getOperand(0);
556   Value *BinOp1 = BinOp->getOperand(1);
557   switch (BinOp->getOpcode()) {
558   case Instruction::And:
559   case Instruction::Or:
560   case Instruction::Xor:
561   case Instruction::Add:
562   case Instruction::Sub:
563   case Instruction::Mul: {
564     Constant *C;
565     if (match(BinOp0, m_Constant(C))) {
566       // trunc (binop C, X) --> binop (trunc C', X)
567       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
568       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
569       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
570     }
571     if (match(BinOp1, m_Constant(C))) {
572       // trunc (binop X, C) --> binop (trunc X, C')
573       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
574       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
575       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
576     }
577     Value *X;
578     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
579       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
580       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
581       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
582     }
583     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
584       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
585       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
586       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
587     }
588     break;
589   }
590   case Instruction::LShr:
591   case Instruction::AShr: {
592     // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
593     Value *A;
594     Constant *C;
595     if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
596       unsigned MaxShiftAmt = SrcWidth - DestWidth;
597       // If the shift is small enough, all zero/sign bits created by the shift
598       // are removed by the trunc.
599       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
600                                       APInt(SrcWidth, MaxShiftAmt)))) {
601         auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
602         bool IsExact = OldShift->isExact();
603         if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(),
604                                                       /*IsSigned*/ true, DL)) {
605           ShAmt = Constant::mergeUndefsWith(ShAmt, C);
606           Value *Shift =
607               OldShift->getOpcode() == Instruction::AShr
608                   ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
609                   : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
610           return CastInst::CreateTruncOrBitCast(Shift, DestTy);
611         }
612       }
613     }
614     break;
615   }
616   default: break;
617   }
618 
619   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
620     return NarrowOr;
621 
622   return nullptr;
623 }
624 
625 /// Try to narrow the width of a splat shuffle. This could be generalized to any
626 /// shuffle with a constant operand, but we limit the transform to avoid
627 /// creating a shuffle type that targets may not be able to lower effectively.
628 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
629                                        InstCombiner::BuilderTy &Builder) {
630   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
631   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
632       all_equal(Shuf->getShuffleMask()) &&
633       Shuf->getType() == Shuf->getOperand(0)->getType()) {
634     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
635     // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
636     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
637     return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
638   }
639 
640   return nullptr;
641 }
642 
643 /// Try to narrow the width of an insert element. This could be generalized for
644 /// any vector constant, but we limit the transform to insertion into undef to
645 /// avoid potential backend problems from unsupported insertion widths. This
646 /// could also be extended to handle the case of inserting a scalar constant
647 /// into a vector variable.
648 static Instruction *shrinkInsertElt(CastInst &Trunc,
649                                     InstCombiner::BuilderTy &Builder) {
650   Instruction::CastOps Opcode = Trunc.getOpcode();
651   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
652          "Unexpected instruction for shrinking");
653 
654   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
655   if (!InsElt || !InsElt->hasOneUse())
656     return nullptr;
657 
658   Type *DestTy = Trunc.getType();
659   Type *DestScalarTy = DestTy->getScalarType();
660   Value *VecOp = InsElt->getOperand(0);
661   Value *ScalarOp = InsElt->getOperand(1);
662   Value *Index = InsElt->getOperand(2);
663 
664   if (match(VecOp, m_Undef())) {
665     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
666     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
667     UndefValue *NarrowUndef = UndefValue::get(DestTy);
668     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
669     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
670   }
671 
672   return nullptr;
673 }
674 
675 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
676   if (Instruction *Result = commonCastTransforms(Trunc))
677     return Result;
678 
679   Value *Src = Trunc.getOperand(0);
680   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
681   unsigned DestWidth = DestTy->getScalarSizeInBits();
682   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
683 
684   // Attempt to truncate the entire input expression tree to the destination
685   // type.   Only do this if the dest type is a simple type, don't convert the
686   // expression tree to something weird like i93 unless the source is also
687   // strange.
688   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
689       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
690 
691     // If this cast is a truncate, evaluting in a different type always
692     // eliminates the cast, so it is always a win.
693     LLVM_DEBUG(
694         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
695                   " to avoid cast: "
696                << Trunc << '\n');
697     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
698     assert(Res->getType() == DestTy);
699     return replaceInstUsesWith(Trunc, Res);
700   }
701 
702   // For integer types, check if we can shorten the entire input expression to
703   // DestWidth * 2, which won't allow removing the truncate, but reducing the
704   // width may enable further optimizations, e.g. allowing for larger
705   // vectorization factors.
706   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
707     if (DestWidth * 2 < SrcWidth) {
708       auto *NewDestTy = DestITy->getExtendedType();
709       if (shouldChangeType(SrcTy, NewDestTy) &&
710           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
711         LLVM_DEBUG(
712             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
713                       " to reduce the width of operand of"
714                    << Trunc << '\n');
715         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
716         return new TruncInst(Res, DestTy);
717       }
718     }
719   }
720 
721   // Test if the trunc is the user of a select which is part of a
722   // minimum or maximum operation. If so, don't do any more simplification.
723   // Even simplifying demanded bits can break the canonical form of a
724   // min/max.
725   Value *LHS, *RHS;
726   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
727     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
728       return nullptr;
729 
730   // See if we can simplify any instructions used by the input whose sole
731   // purpose is to compute bits we don't care about.
732   if (SimplifyDemandedInstructionBits(Trunc))
733     return &Trunc;
734 
735   if (DestWidth == 1) {
736     Value *Zero = Constant::getNullValue(SrcTy);
737     if (DestTy->isIntegerTy()) {
738       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
739       // TODO: We canonicalize to more instructions here because we are probably
740       // lacking equivalent analysis for trunc relative to icmp. There may also
741       // be codegen concerns. If those trunc limitations were removed, we could
742       // remove this transform.
743       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
744       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
745     }
746 
747     // For vectors, we do not canonicalize all truncs to icmp, so optimize
748     // patterns that would be covered within visitICmpInst.
749     Value *X;
750     Constant *C;
751     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
752       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
753       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
754       Constant *MaskC = ConstantExpr::getShl(One, C);
755       Value *And = Builder.CreateAnd(X, MaskC);
756       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
757     }
758     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)),
759                                    m_Deferred(X))))) {
760       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
761       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
762       Constant *MaskC = ConstantExpr::getShl(One, C);
763       Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
764       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
765     }
766   }
767 
768   Value *A, *B;
769   Constant *C;
770   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
771     unsigned AWidth = A->getType()->getScalarSizeInBits();
772     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
773     auto *OldSh = cast<Instruction>(Src);
774     bool IsExact = OldSh->isExact();
775 
776     // If the shift is small enough, all zero bits created by the shift are
777     // removed by the trunc.
778     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
779                                     APInt(SrcWidth, MaxShiftAmt)))) {
780       auto GetNewShAmt = [&](unsigned Width) {
781         Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
782         Constant *Cmp =
783             ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL);
784         Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
785         return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
786                                        DL);
787       };
788 
789       // trunc (lshr (sext A), C) --> ashr A, C
790       if (A->getType() == DestTy) {
791         Constant *ShAmt = GetNewShAmt(DestWidth);
792         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
793         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
794                        : BinaryOperator::CreateAShr(A, ShAmt);
795       }
796       // The types are mismatched, so create a cast after shifting:
797       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
798       if (Src->hasOneUse()) {
799         Constant *ShAmt = GetNewShAmt(AWidth);
800         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
801         return CastInst::CreateIntegerCast(Shift, DestTy, true);
802       }
803     }
804     // TODO: Mask high bits with 'and'.
805   }
806 
807   if (Instruction *I = narrowBinOp(Trunc))
808     return I;
809 
810   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
811     return I;
812 
813   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
814     return I;
815 
816   if (Src->hasOneUse() &&
817       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
818     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
819     // dest type is native and cst < dest size.
820     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
821         !match(A, m_Shr(m_Value(), m_Constant()))) {
822       // Skip shifts of shift by constants. It undoes a combine in
823       // FoldShiftByConstant and is the extend in reg pattern.
824       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
825       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
826         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
827         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
828                                       ConstantExpr::getTrunc(C, DestTy));
829       }
830     }
831   }
832 
833   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
834     return I;
835 
836   // Whenever an element is extracted from a vector, and then truncated,
837   // canonicalize by converting it to a bitcast followed by an
838   // extractelement.
839   //
840   // Example (little endian):
841   //   trunc (extractelement <4 x i64> %X, 0) to i32
842   //   --->
843   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
844   Value *VecOp;
845   ConstantInt *Cst;
846   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
847     auto *VecOpTy = cast<VectorType>(VecOp->getType());
848     auto VecElts = VecOpTy->getElementCount();
849 
850     // A badly fit destination size would result in an invalid cast.
851     if (SrcWidth % DestWidth == 0) {
852       uint64_t TruncRatio = SrcWidth / DestWidth;
853       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
854       uint64_t VecOpIdx = Cst->getZExtValue();
855       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
856                                          : VecOpIdx * TruncRatio;
857       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
858              "overflow 32-bits");
859 
860       auto *BitCastTo =
861           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
862       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
863       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
864     }
865   }
866 
867   // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
868   if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
869                                                        m_Value(B))))) {
870     unsigned AWidth = A->getType()->getScalarSizeInBits();
871     if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
872       Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
873       Value *NarrowCtlz =
874           Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
875       return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
876     }
877   }
878 
879   if (match(Src, m_VScale())) {
880     if (Trunc.getFunction() &&
881         Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
882       Attribute Attr =
883           Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
884       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
885         if (Log2_32(*MaxVScale) < DestWidth) {
886           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
887           return replaceInstUsesWith(Trunc, VScale);
888         }
889       }
890     }
891   }
892 
893   return nullptr;
894 }
895 
896 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
897                                                  ZExtInst &Zext) {
898   // If we are just checking for a icmp eq of a single bit and zext'ing it
899   // to an integer, then shift the bit to the appropriate place and then
900   // cast to integer to avoid the comparison.
901 
902   // FIXME: This set of transforms does not check for extra uses and/or creates
903   //        an extra instruction (an optional final cast is not included
904   //        in the transform comments). We may also want to favor icmp over
905   //        shifts in cases of equal instructions because icmp has better
906   //        analysis in general (invert the transform).
907 
908   const APInt *Op1CV;
909   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
910 
911     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
912     if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
913       Value *In = Cmp->getOperand(0);
914       Value *Sh = ConstantInt::get(In->getType(),
915                                    In->getType()->getScalarSizeInBits() - 1);
916       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
917       if (In->getType() != Zext.getType())
918         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
919 
920       return replaceInstUsesWith(Zext, In);
921     }
922 
923     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
924     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
925     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
926     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
927 
928     if (Op1CV->isZero() && Cmp->isEquality()) {
929       // Exactly 1 possible 1? But not the high-bit because that is
930       // canonicalized to this form.
931       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
932       APInt KnownZeroMask(~Known.Zero);
933       uint32_t ShAmt = KnownZeroMask.logBase2();
934       bool IsExpectShAmt = KnownZeroMask.isPowerOf2() &&
935                            (Zext.getType()->getScalarSizeInBits() != ShAmt + 1);
936       if (IsExpectShAmt &&
937           (Cmp->getOperand(0)->getType() == Zext.getType() ||
938            Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) {
939         Value *In = Cmp->getOperand(0);
940         if (ShAmt) {
941           // Perform a logical shr by shiftamt.
942           // Insert the shift to put the result in the low bit.
943           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
944                                   In->getName() + ".lobit");
945         }
946 
947         // Toggle the low bit for "X == 0".
948         if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
949           In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
950 
951         if (Zext.getType() == In->getType())
952           return replaceInstUsesWith(Zext, In);
953 
954         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
955         return replaceInstUsesWith(Zext, IntCast);
956       }
957     }
958   }
959 
960   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
961     // Test if a bit is clear/set using a shifted-one mask:
962     // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
963     // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
964     Value *X, *ShAmt;
965     if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
966         match(Cmp->getOperand(0),
967               m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
968       if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
969         X = Builder.CreateNot(X);
970       Value *Lshr = Builder.CreateLShr(X, ShAmt);
971       Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
972       return replaceInstUsesWith(Zext, And1);
973     }
974   }
975 
976   return nullptr;
977 }
978 
979 /// Determine if the specified value can be computed in the specified wider type
980 /// and produce the same low bits. If not, return false.
981 ///
982 /// If this function returns true, it can also return a non-zero number of bits
983 /// (in BitsToClear) which indicates that the value it computes is correct for
984 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
985 /// out.  For example, to promote something like:
986 ///
987 ///   %B = trunc i64 %A to i32
988 ///   %C = lshr i32 %B, 8
989 ///   %E = zext i32 %C to i64
990 ///
991 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
992 /// set to 8 to indicate that the promoted value needs to have bits 24-31
993 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
994 /// clear the top bits anyway, doing this has no extra cost.
995 ///
996 /// This function works on both vectors and scalars.
997 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
998                              InstCombinerImpl &IC, Instruction *CxtI) {
999   BitsToClear = 0;
1000   if (canAlwaysEvaluateInType(V, Ty))
1001     return true;
1002   if (canNotEvaluateInType(V, Ty))
1003     return false;
1004 
1005   auto *I = cast<Instruction>(V);
1006   unsigned Tmp;
1007   switch (I->getOpcode()) {
1008   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1009   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1010   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1011     return true;
1012   case Instruction::And:
1013   case Instruction::Or:
1014   case Instruction::Xor:
1015   case Instruction::Add:
1016   case Instruction::Sub:
1017   case Instruction::Mul:
1018     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1019         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1020       return false;
1021     // These can all be promoted if neither operand has 'bits to clear'.
1022     if (BitsToClear == 0 && Tmp == 0)
1023       return true;
1024 
1025     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1026     // other side, BitsToClear is ok.
1027     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1028       // We use MaskedValueIsZero here for generality, but the case we care
1029       // about the most is constant RHS.
1030       unsigned VSize = V->getType()->getScalarSizeInBits();
1031       if (IC.MaskedValueIsZero(I->getOperand(1),
1032                                APInt::getHighBitsSet(VSize, BitsToClear),
1033                                0, CxtI)) {
1034         // If this is an And instruction and all of the BitsToClear are
1035         // known to be zero we can reset BitsToClear.
1036         if (I->getOpcode() == Instruction::And)
1037           BitsToClear = 0;
1038         return true;
1039       }
1040     }
1041 
1042     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1043     return false;
1044 
1045   case Instruction::Shl: {
1046     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1047     // upper bits we can reduce BitsToClear by the shift amount.
1048     const APInt *Amt;
1049     if (match(I->getOperand(1), m_APInt(Amt))) {
1050       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1051         return false;
1052       uint64_t ShiftAmt = Amt->getZExtValue();
1053       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1054       return true;
1055     }
1056     return false;
1057   }
1058   case Instruction::LShr: {
1059     // We can promote lshr(x, cst) if we can promote x.  This requires the
1060     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1061     const APInt *Amt;
1062     if (match(I->getOperand(1), m_APInt(Amt))) {
1063       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1064         return false;
1065       BitsToClear += Amt->getZExtValue();
1066       if (BitsToClear > V->getType()->getScalarSizeInBits())
1067         BitsToClear = V->getType()->getScalarSizeInBits();
1068       return true;
1069     }
1070     // Cannot promote variable LSHR.
1071     return false;
1072   }
1073   case Instruction::Select:
1074     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1075         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1076         // TODO: If important, we could handle the case when the BitsToClear are
1077         // known zero in the disagreeing side.
1078         Tmp != BitsToClear)
1079       return false;
1080     return true;
1081 
1082   case Instruction::PHI: {
1083     // We can change a phi if we can change all operands.  Note that we never
1084     // get into trouble with cyclic PHIs here because we only consider
1085     // instructions with a single use.
1086     PHINode *PN = cast<PHINode>(I);
1087     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1088       return false;
1089     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1090       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1091           // TODO: If important, we could handle the case when the BitsToClear
1092           // are known zero in the disagreeing input.
1093           Tmp != BitsToClear)
1094         return false;
1095     return true;
1096   }
1097   case Instruction::Call:
1098     // llvm.vscale() can always be executed in larger type, because the
1099     // value is automatically zero-extended.
1100     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1101       if (II->getIntrinsicID() == Intrinsic::vscale)
1102         return true;
1103     return false;
1104   default:
1105     // TODO: Can handle more cases here.
1106     return false;
1107   }
1108 }
1109 
1110 Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1111   // If this zero extend is only used by a truncate, let the truncate be
1112   // eliminated before we try to optimize this zext.
1113   if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1114       !isa<Constant>(Zext.getOperand(0)))
1115     return nullptr;
1116 
1117   // If one of the common conversion will work, do it.
1118   if (Instruction *Result = commonCastTransforms(Zext))
1119     return Result;
1120 
1121   Value *Src = Zext.getOperand(0);
1122   Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1123 
1124   // Try to extend the entire expression tree to the wide destination type.
1125   unsigned BitsToClear;
1126   if (shouldChangeType(SrcTy, DestTy) &&
1127       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1128     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1129            "Can't clear more bits than in SrcTy");
1130 
1131     // Okay, we can transform this!  Insert the new expression now.
1132     LLVM_DEBUG(
1133         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1134                   " to avoid zero extend: "
1135                << Zext << '\n');
1136     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1137     assert(Res->getType() == DestTy);
1138 
1139     // Preserve debug values referring to Src if the zext is its last use.
1140     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1141       if (SrcOp->hasOneUse())
1142         replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1143 
1144     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1145     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1146 
1147     // If the high bits are already filled with zeros, just replace this
1148     // cast with the result.
1149     if (MaskedValueIsZero(Res,
1150                           APInt::getHighBitsSet(DestBitSize,
1151                                                 DestBitSize - SrcBitsKept),
1152                              0, &Zext))
1153       return replaceInstUsesWith(Zext, Res);
1154 
1155     // We need to emit an AND to clear the high bits.
1156     Constant *C = ConstantInt::get(Res->getType(),
1157                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1158     return BinaryOperator::CreateAnd(Res, C);
1159   }
1160 
1161   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1162   // types and if the sizes are just right we can convert this into a logical
1163   // 'and' which will be much cheaper than the pair of casts.
1164   if (auto *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1165     // TODO: Subsume this into EvaluateInDifferentType.
1166 
1167     // Get the sizes of the types involved.  We know that the intermediate type
1168     // will be smaller than A or C, but don't know the relation between A and C.
1169     Value *A = CSrc->getOperand(0);
1170     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1171     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1172     unsigned DstSize = DestTy->getScalarSizeInBits();
1173     // If we're actually extending zero bits, then if
1174     // SrcSize <  DstSize: zext(a & mask)
1175     // SrcSize == DstSize: a & mask
1176     // SrcSize  > DstSize: trunc(a) & mask
1177     if (SrcSize < DstSize) {
1178       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1179       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1180       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1181       return new ZExtInst(And, DestTy);
1182     }
1183 
1184     if (SrcSize == DstSize) {
1185       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1186       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1187                                                            AndValue));
1188     }
1189     if (SrcSize > DstSize) {
1190       Value *Trunc = Builder.CreateTrunc(A, DestTy);
1191       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1192       return BinaryOperator::CreateAnd(Trunc,
1193                                        ConstantInt::get(Trunc->getType(),
1194                                                         AndValue));
1195     }
1196   }
1197 
1198   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1199     return transformZExtICmp(Cmp, Zext);
1200 
1201   // zext(trunc(X) & C) -> (X & zext(C)).
1202   Constant *C;
1203   Value *X;
1204   if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1205       X->getType() == DestTy)
1206     return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy));
1207 
1208   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1209   Value *And;
1210   if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1211       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1212       X->getType() == DestTy) {
1213     Value *ZC = Builder.CreateZExt(C, DestTy);
1214     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1215   }
1216 
1217   // If we are truncating, masking, and then zexting back to the original type,
1218   // that's just a mask. This is not handled by canEvaluateZextd if the
1219   // intermediate values have extra uses. This could be generalized further for
1220   // a non-constant mask operand.
1221   // zext (and (trunc X), C) --> and X, (zext C)
1222   if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1223       X->getType() == DestTy) {
1224     Value *ZextC = Builder.CreateZExt(C, DestTy);
1225     return BinaryOperator::CreateAnd(X, ZextC);
1226   }
1227 
1228   if (match(Src, m_VScale())) {
1229     if (Zext.getFunction() &&
1230         Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1231       Attribute Attr =
1232           Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1233       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1234         unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1235         if (Log2_32(*MaxVScale) < TypeWidth) {
1236           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1237           return replaceInstUsesWith(Zext, VScale);
1238         }
1239       }
1240     }
1241   }
1242 
1243   if (!Zext.hasNonNeg()) {
1244     // If this zero extend is only used by a shift, add nneg flag.
1245     if (Zext.hasOneUse() &&
1246         SrcTy->getScalarSizeInBits() >
1247             Log2_64_Ceil(DestTy->getScalarSizeInBits()) &&
1248         match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) {
1249       Zext.setNonNeg();
1250       return &Zext;
1251     }
1252 
1253     if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) {
1254       Zext.setNonNeg();
1255       return &Zext;
1256     }
1257   }
1258 
1259   return nullptr;
1260 }
1261 
1262 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1263 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1264                                                  SExtInst &Sext) {
1265   Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1266   ICmpInst::Predicate Pred = Cmp->getPredicate();
1267 
1268   // Don't bother if Op1 isn't of vector or integer type.
1269   if (!Op1->getType()->isIntOrIntVectorTy())
1270     return nullptr;
1271 
1272   if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1273     // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1274     Value *Sh = ConstantInt::get(Op0->getType(),
1275                                  Op0->getType()->getScalarSizeInBits() - 1);
1276     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1277     if (In->getType() != Sext.getType())
1278       In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1279 
1280     return replaceInstUsesWith(Sext, In);
1281   }
1282 
1283   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1284     // If we know that only one bit of the LHS of the icmp can be set and we
1285     // have an equality comparison with zero or a power of 2, we can transform
1286     // the icmp and sext into bitwise/integer operations.
1287     if (Cmp->hasOneUse() &&
1288         Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1289       KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1290 
1291       APInt KnownZeroMask(~Known.Zero);
1292       if (KnownZeroMask.isPowerOf2()) {
1293         Value *In = Cmp->getOperand(0);
1294 
1295         // If the icmp tests for a known zero bit we can constant fold it.
1296         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1297           Value *V = Pred == ICmpInst::ICMP_NE ?
1298                        ConstantInt::getAllOnesValue(Sext.getType()) :
1299                        ConstantInt::getNullValue(Sext.getType());
1300           return replaceInstUsesWith(Sext, V);
1301         }
1302 
1303         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1304           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1305           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1306           unsigned ShiftAmt = KnownZeroMask.countr_zero();
1307           // Perform a right shift to place the desired bit in the LSB.
1308           if (ShiftAmt)
1309             In = Builder.CreateLShr(In,
1310                                     ConstantInt::get(In->getType(), ShiftAmt));
1311 
1312           // At this point "In" is either 1 or 0. Subtract 1 to turn
1313           // {1, 0} -> {0, -1}.
1314           In = Builder.CreateAdd(In,
1315                                  ConstantInt::getAllOnesValue(In->getType()),
1316                                  "sext");
1317         } else {
1318           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1319           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1320           unsigned ShiftAmt = KnownZeroMask.countl_zero();
1321           // Perform a left shift to place the desired bit in the MSB.
1322           if (ShiftAmt)
1323             In = Builder.CreateShl(In,
1324                                    ConstantInt::get(In->getType(), ShiftAmt));
1325 
1326           // Distribute the bit over the whole bit width.
1327           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1328                                   KnownZeroMask.getBitWidth() - 1), "sext");
1329         }
1330 
1331         if (Sext.getType() == In->getType())
1332           return replaceInstUsesWith(Sext, In);
1333         return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1334       }
1335     }
1336   }
1337 
1338   return nullptr;
1339 }
1340 
1341 /// Return true if we can take the specified value and return it as type Ty
1342 /// without inserting any new casts and without changing the value of the common
1343 /// low bits.  This is used by code that tries to promote integer operations to
1344 /// a wider types will allow us to eliminate the extension.
1345 ///
1346 /// This function works on both vectors and scalars.
1347 ///
1348 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1349   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1350          "Can't sign extend type to a smaller type");
1351   if (canAlwaysEvaluateInType(V, Ty))
1352     return true;
1353   if (canNotEvaluateInType(V, Ty))
1354     return false;
1355 
1356   auto *I = cast<Instruction>(V);
1357   switch (I->getOpcode()) {
1358   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1359   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1360   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1361     return true;
1362   case Instruction::And:
1363   case Instruction::Or:
1364   case Instruction::Xor:
1365   case Instruction::Add:
1366   case Instruction::Sub:
1367   case Instruction::Mul:
1368     // These operators can all arbitrarily be extended if their inputs can.
1369     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1370            canEvaluateSExtd(I->getOperand(1), Ty);
1371 
1372   //case Instruction::Shl:   TODO
1373   //case Instruction::LShr:  TODO
1374 
1375   case Instruction::Select:
1376     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1377            canEvaluateSExtd(I->getOperand(2), Ty);
1378 
1379   case Instruction::PHI: {
1380     // We can change a phi if we can change all operands.  Note that we never
1381     // get into trouble with cyclic PHIs here because we only consider
1382     // instructions with a single use.
1383     PHINode *PN = cast<PHINode>(I);
1384     for (Value *IncValue : PN->incoming_values())
1385       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1386     return true;
1387   }
1388   default:
1389     // TODO: Can handle more cases here.
1390     break;
1391   }
1392 
1393   return false;
1394 }
1395 
1396 Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1397   // If this sign extend is only used by a truncate, let the truncate be
1398   // eliminated before we try to optimize this sext.
1399   if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1400     return nullptr;
1401 
1402   if (Instruction *I = commonCastTransforms(Sext))
1403     return I;
1404 
1405   Value *Src = Sext.getOperand(0);
1406   Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1407   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1408   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1409 
1410   // If the value being extended is zero or positive, use a zext instead.
1411   if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) {
1412     auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy);
1413     CI->setNonNeg(true);
1414     return CI;
1415   }
1416 
1417   // Try to extend the entire expression tree to the wide destination type.
1418   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1419     // Okay, we can transform this!  Insert the new expression now.
1420     LLVM_DEBUG(
1421         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1422                   " to avoid sign extend: "
1423                << Sext << '\n');
1424     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1425     assert(Res->getType() == DestTy);
1426 
1427     // If the high bits are already filled with sign bit, just replace this
1428     // cast with the result.
1429     if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1430       return replaceInstUsesWith(Sext, Res);
1431 
1432     // We need to emit a shl + ashr to do the sign extend.
1433     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1434     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1435                                       ShAmt);
1436   }
1437 
1438   Value *X;
1439   if (match(Src, m_Trunc(m_Value(X)))) {
1440     // If the input has more sign bits than bits truncated, then convert
1441     // directly to final type.
1442     unsigned XBitSize = X->getType()->getScalarSizeInBits();
1443     if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1444       return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1445 
1446     // If input is a trunc from the destination type, then convert into shifts.
1447     if (Src->hasOneUse() && X->getType() == DestTy) {
1448       // sext (trunc X) --> ashr (shl X, C), C
1449       Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1450       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1451     }
1452 
1453     // If we are replacing shifted-in high zero bits with sign bits, convert
1454     // the logic shift to arithmetic shift and eliminate the cast to
1455     // intermediate type:
1456     // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1457     Value *Y;
1458     if (Src->hasOneUse() &&
1459         match(X, m_LShr(m_Value(Y),
1460                         m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
1461       Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1462       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1463     }
1464   }
1465 
1466   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1467     return transformSExtICmp(Cmp, Sext);
1468 
1469   // If the input is a shl/ashr pair of a same constant, then this is a sign
1470   // extension from a smaller value.  If we could trust arbitrary bitwidth
1471   // integers, we could turn this into a truncate to the smaller bit and then
1472   // use a sext for the whole extension.  Since we don't, look deeper and check
1473   // for a truncate.  If the source and dest are the same type, eliminate the
1474   // trunc and extend and just do shifts.  For example, turn:
1475   //   %a = trunc i32 %i to i8
1476   //   %b = shl i8 %a, C
1477   //   %c = ashr i8 %b, C
1478   //   %d = sext i8 %c to i32
1479   // into:
1480   //   %a = shl i32 %i, 32-(8-C)
1481   //   %d = ashr i32 %a, 32-(8-C)
1482   Value *A = nullptr;
1483   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1484   Constant *BA = nullptr, *CA = nullptr;
1485   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1486                         m_ImmConstant(CA))) &&
1487       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1488     Constant *WideCurrShAmt =
1489         ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL);
1490     assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail");
1491     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1492         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1493     Constant *NewShAmt = ConstantExpr::getSub(
1494         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1495         NumLowbitsLeft);
1496     NewShAmt =
1497         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1498     A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1499     return BinaryOperator::CreateAShr(A, NewShAmt);
1500   }
1501 
1502   // Splatting a bit of constant-index across a value:
1503   // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1504   // If the dest type is different, use a cast (adjust use check).
1505   if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1506                                  m_SpecificInt(SrcBitSize - 1))))) {
1507     Type *XTy = X->getType();
1508     unsigned XBitSize = XTy->getScalarSizeInBits();
1509     Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1510     Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1511     if (XTy == DestTy)
1512       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1513                                         AshrAmtC);
1514     if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1515       Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1516       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1517     }
1518   }
1519 
1520   if (match(Src, m_VScale())) {
1521     if (Sext.getFunction() &&
1522         Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1523       Attribute Attr =
1524           Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1525       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1526         if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1527           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1528           return replaceInstUsesWith(Sext, VScale);
1529         }
1530       }
1531     }
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Return a Constant* for the specified floating-point constant if it fits
1538 /// in the specified FP type without changing its value.
1539 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1540   bool losesInfo;
1541   APFloat F = CFP->getValueAPF();
1542   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1543   return !losesInfo;
1544 }
1545 
1546 static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) {
1547   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1548     return nullptr;  // No constant folding of this.
1549   // See if the value can be truncated to bfloat and then reextended.
1550   if (PreferBFloat && fitsInFPType(CFP, APFloat::BFloat()))
1551     return Type::getBFloatTy(CFP->getContext());
1552   // See if the value can be truncated to half and then reextended.
1553   if (!PreferBFloat && fitsInFPType(CFP, APFloat::IEEEhalf()))
1554     return Type::getHalfTy(CFP->getContext());
1555   // See if the value can be truncated to float and then reextended.
1556   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1557     return Type::getFloatTy(CFP->getContext());
1558   if (CFP->getType()->isDoubleTy())
1559     return nullptr;  // Won't shrink.
1560   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1561     return Type::getDoubleTy(CFP->getContext());
1562   // Don't try to shrink to various long double types.
1563   return nullptr;
1564 }
1565 
1566 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1567 // type we can safely truncate all elements to.
1568 static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) {
1569   auto *CV = dyn_cast<Constant>(V);
1570   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1571   if (!CV || !CVVTy)
1572     return nullptr;
1573 
1574   Type *MinType = nullptr;
1575 
1576   unsigned NumElts = CVVTy->getNumElements();
1577 
1578   // For fixed-width vectors we find the minimal type by looking
1579   // through the constant values of the vector.
1580   for (unsigned i = 0; i != NumElts; ++i) {
1581     if (isa<UndefValue>(CV->getAggregateElement(i)))
1582       continue;
1583 
1584     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1585     if (!CFP)
1586       return nullptr;
1587 
1588     Type *T = shrinkFPConstant(CFP, PreferBFloat);
1589     if (!T)
1590       return nullptr;
1591 
1592     // If we haven't found a type yet or this type has a larger mantissa than
1593     // our previous type, this is our new minimal type.
1594     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1595       MinType = T;
1596   }
1597 
1598   // Make a vector type from the minimal type.
1599   return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1600 }
1601 
1602 /// Find the minimum FP type we can safely truncate to.
1603 static Type *getMinimumFPType(Value *V, bool PreferBFloat) {
1604   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1605     return FPExt->getOperand(0)->getType();
1606 
1607   // If this value is a constant, return the constant in the smallest FP type
1608   // that can accurately represent it.  This allows us to turn
1609   // (float)((double)X+2.0) into x+2.0f.
1610   if (auto *CFP = dyn_cast<ConstantFP>(V))
1611     if (Type *T = shrinkFPConstant(CFP, PreferBFloat))
1612       return T;
1613 
1614   // We can only correctly find a minimum type for a scalable vector when it is
1615   // a splat. For splats of constant values the fpext is wrapped up as a
1616   // ConstantExpr.
1617   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1618     if (FPCExt->getOpcode() == Instruction::FPExt)
1619       return FPCExt->getOperand(0)->getType();
1620 
1621   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1622   // vectors
1623   if (Type *T = shrinkFPConstantVector(V, PreferBFloat))
1624     return T;
1625 
1626   return V->getType();
1627 }
1628 
1629 /// Return true if the cast from integer to FP can be proven to be exact for all
1630 /// possible inputs (the conversion does not lose any precision).
1631 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1632   CastInst::CastOps Opcode = I.getOpcode();
1633   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1634          "Unexpected cast");
1635   Value *Src = I.getOperand(0);
1636   Type *SrcTy = Src->getType();
1637   Type *FPTy = I.getType();
1638   bool IsSigned = Opcode == Instruction::SIToFP;
1639   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1640 
1641   // Easy case - if the source integer type has less bits than the FP mantissa,
1642   // then the cast must be exact.
1643   int DestNumSigBits = FPTy->getFPMantissaWidth();
1644   if (SrcSize <= DestNumSigBits)
1645     return true;
1646 
1647   // Cast from FP to integer and back to FP is independent of the intermediate
1648   // integer width because of poison on overflow.
1649   Value *F;
1650   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1651     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1652     // potential rounding of negative FP input values.
1653     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1654     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1655       SrcNumSigBits++;
1656 
1657     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1658     // significant bits than the destination (and make sure neither type is
1659     // weird -- ppc_fp128).
1660     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1661         SrcNumSigBits <= DestNumSigBits)
1662       return true;
1663   }
1664 
1665   // TODO:
1666   // Try harder to find if the source integer type has less significant bits.
1667   // For example, compute number of sign bits.
1668   KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1669   int SigBits = (int)SrcTy->getScalarSizeInBits() -
1670                 SrcKnown.countMinLeadingZeros() -
1671                 SrcKnown.countMinTrailingZeros();
1672   if (SigBits <= DestNumSigBits)
1673     return true;
1674 
1675   return false;
1676 }
1677 
1678 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1679   if (Instruction *I = commonCastTransforms(FPT))
1680     return I;
1681 
1682   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1683   // simplify this expression to avoid one or more of the trunc/extend
1684   // operations if we can do so without changing the numerical results.
1685   //
1686   // The exact manner in which the widths of the operands interact to limit
1687   // what we can and cannot do safely varies from operation to operation, and
1688   // is explained below in the various case statements.
1689   Type *Ty = FPT.getType();
1690   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1691   if (BO && BO->hasOneUse()) {
1692     Type *LHSMinType =
1693         getMinimumFPType(BO->getOperand(0), /*PreferBFloat=*/Ty->isBFloatTy());
1694     Type *RHSMinType =
1695         getMinimumFPType(BO->getOperand(1), /*PreferBFloat=*/Ty->isBFloatTy());
1696     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1697     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1698     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1699     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1700     unsigned DstWidth = Ty->getFPMantissaWidth();
1701     switch (BO->getOpcode()) {
1702       default: break;
1703       case Instruction::FAdd:
1704       case Instruction::FSub:
1705         // For addition and subtraction, the infinitely precise result can
1706         // essentially be arbitrarily wide; proving that double rounding
1707         // will not occur because the result of OpI is exact (as we will for
1708         // FMul, for example) is hopeless.  However, we *can* nonetheless
1709         // frequently know that double rounding cannot occur (or that it is
1710         // innocuous) by taking advantage of the specific structure of
1711         // infinitely-precise results that admit double rounding.
1712         //
1713         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1714         // to represent both sources, we can guarantee that the double
1715         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1716         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1717         // for proof of this fact).
1718         //
1719         // Note: Figueroa does not consider the case where DstFormat !=
1720         // SrcFormat.  It's possible (likely even!) that this analysis
1721         // could be tightened for those cases, but they are rare (the main
1722         // case of interest here is (float)((double)float + float)).
1723         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1724           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1725           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1726           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1727           RI->copyFastMathFlags(BO);
1728           return RI;
1729         }
1730         break;
1731       case Instruction::FMul:
1732         // For multiplication, the infinitely precise result has at most
1733         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1734         // that such a value can be exactly represented, then no double
1735         // rounding can possibly occur; we can safely perform the operation
1736         // in the destination format if it can represent both sources.
1737         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1738           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1739           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1740           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1741         }
1742         break;
1743       case Instruction::FDiv:
1744         // For division, we use again use the bound from Figueroa's
1745         // dissertation.  I am entirely certain that this bound can be
1746         // tightened in the unbalanced operand case by an analysis based on
1747         // the diophantine rational approximation bound, but the well-known
1748         // condition used here is a good conservative first pass.
1749         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1750         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1751           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1752           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1753           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1754         }
1755         break;
1756       case Instruction::FRem: {
1757         // Remainder is straightforward.  Remainder is always exact, so the
1758         // type of OpI doesn't enter into things at all.  We simply evaluate
1759         // in whichever source type is larger, then convert to the
1760         // destination type.
1761         if (SrcWidth == OpWidth)
1762           break;
1763         Value *LHS, *RHS;
1764         if (LHSWidth == SrcWidth) {
1765            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1766            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1767         } else {
1768            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1769            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1770         }
1771 
1772         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1773         return CastInst::CreateFPCast(ExactResult, Ty);
1774       }
1775     }
1776   }
1777 
1778   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1779   Value *X;
1780   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1781   if (Op && Op->hasOneUse()) {
1782     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1783     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1784     if (isa<FPMathOperator>(Op))
1785       Builder.setFastMathFlags(Op->getFastMathFlags());
1786 
1787     if (match(Op, m_FNeg(m_Value(X)))) {
1788       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1789 
1790       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1791     }
1792 
1793     // If we are truncating a select that has an extended operand, we can
1794     // narrow the other operand and do the select as a narrow op.
1795     Value *Cond, *X, *Y;
1796     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1797         X->getType() == Ty) {
1798       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1799       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1800       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1801       return replaceInstUsesWith(FPT, Sel);
1802     }
1803     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1804         X->getType() == Ty) {
1805       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1806       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1807       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1808       return replaceInstUsesWith(FPT, Sel);
1809     }
1810   }
1811 
1812   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1813     switch (II->getIntrinsicID()) {
1814     default: break;
1815     case Intrinsic::ceil:
1816     case Intrinsic::fabs:
1817     case Intrinsic::floor:
1818     case Intrinsic::nearbyint:
1819     case Intrinsic::rint:
1820     case Intrinsic::round:
1821     case Intrinsic::roundeven:
1822     case Intrinsic::trunc: {
1823       Value *Src = II->getArgOperand(0);
1824       if (!Src->hasOneUse())
1825         break;
1826 
1827       // Except for fabs, this transformation requires the input of the unary FP
1828       // operation to be itself an fpext from the type to which we're
1829       // truncating.
1830       if (II->getIntrinsicID() != Intrinsic::fabs) {
1831         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1832         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1833           break;
1834       }
1835 
1836       // Do unary FP operation on smaller type.
1837       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1838       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1839       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1840                                                      II->getIntrinsicID(), Ty);
1841       SmallVector<OperandBundleDef, 1> OpBundles;
1842       II->getOperandBundlesAsDefs(OpBundles);
1843       CallInst *NewCI =
1844           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1845       NewCI->copyFastMathFlags(II);
1846       return NewCI;
1847     }
1848     }
1849   }
1850 
1851   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1852     return I;
1853 
1854   Value *Src = FPT.getOperand(0);
1855   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1856     auto *FPCast = cast<CastInst>(Src);
1857     if (isKnownExactCastIntToFP(*FPCast, *this))
1858       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1859   }
1860 
1861   return nullptr;
1862 }
1863 
1864 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1865   // If the source operand is a cast from integer to FP and known exact, then
1866   // cast the integer operand directly to the destination type.
1867   Type *Ty = FPExt.getType();
1868   Value *Src = FPExt.getOperand(0);
1869   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1870     auto *FPCast = cast<CastInst>(Src);
1871     if (isKnownExactCastIntToFP(*FPCast, *this))
1872       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1873   }
1874 
1875   return commonCastTransforms(FPExt);
1876 }
1877 
1878 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1879 /// This is safe if the intermediate type has enough bits in its mantissa to
1880 /// accurately represent all values of X.  For example, this won't work with
1881 /// i64 -> float -> i64.
1882 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1883   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1884     return nullptr;
1885 
1886   auto *OpI = cast<CastInst>(FI.getOperand(0));
1887   Value *X = OpI->getOperand(0);
1888   Type *XType = X->getType();
1889   Type *DestType = FI.getType();
1890   bool IsOutputSigned = isa<FPToSIInst>(FI);
1891 
1892   // Since we can assume the conversion won't overflow, our decision as to
1893   // whether the input will fit in the float should depend on the minimum
1894   // of the input range and output range.
1895 
1896   // This means this is also safe for a signed input and unsigned output, since
1897   // a negative input would lead to undefined behavior.
1898   if (!isKnownExactCastIntToFP(*OpI, *this)) {
1899     // The first cast may not round exactly based on the source integer width
1900     // and FP width, but the overflow UB rules can still allow this to fold.
1901     // If the destination type is narrow, that means the intermediate FP value
1902     // must be large enough to hold the source value exactly.
1903     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1904     int OutputSize = (int)DestType->getScalarSizeInBits();
1905     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1906       return nullptr;
1907   }
1908 
1909   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1910     bool IsInputSigned = isa<SIToFPInst>(OpI);
1911     if (IsInputSigned && IsOutputSigned)
1912       return new SExtInst(X, DestType);
1913     return new ZExtInst(X, DestType);
1914   }
1915   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1916     return new TruncInst(X, DestType);
1917 
1918   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1919   return replaceInstUsesWith(FI, X);
1920 }
1921 
1922 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1923   if (Instruction *I = foldItoFPtoI(FI))
1924     return I;
1925 
1926   return commonCastTransforms(FI);
1927 }
1928 
1929 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1930   if (Instruction *I = foldItoFPtoI(FI))
1931     return I;
1932 
1933   return commonCastTransforms(FI);
1934 }
1935 
1936 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1937   return commonCastTransforms(CI);
1938 }
1939 
1940 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1941   return commonCastTransforms(CI);
1942 }
1943 
1944 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1945   // If the source integer type is not the intptr_t type for this target, do a
1946   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1947   // cast to be exposed to other transforms.
1948   unsigned AS = CI.getAddressSpace();
1949   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1950       DL.getPointerSizeInBits(AS)) {
1951     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
1952         DL.getIntPtrType(CI.getContext(), AS));
1953     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1954     return new IntToPtrInst(P, CI.getType());
1955   }
1956 
1957   if (Instruction *I = commonCastTransforms(CI))
1958     return I;
1959 
1960   return nullptr;
1961 }
1962 
1963 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1964   // If the destination integer type is not the intptr_t type for this target,
1965   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1966   // to be exposed to other transforms.
1967   Value *SrcOp = CI.getPointerOperand();
1968   Type *SrcTy = SrcOp->getType();
1969   Type *Ty = CI.getType();
1970   unsigned AS = CI.getPointerAddressSpace();
1971   unsigned TySize = Ty->getScalarSizeInBits();
1972   unsigned PtrSize = DL.getPointerSizeInBits(AS);
1973   if (TySize != PtrSize) {
1974     Type *IntPtrTy =
1975         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
1976     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1977     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1978   }
1979 
1980   // (ptrtoint (ptrmask P, M))
1981   //    -> (and (ptrtoint P), M)
1982   // This is generally beneficial as `and` is better supported than `ptrmask`.
1983   Value *Ptr, *Mask;
1984   if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr),
1985                                                             m_Value(Mask)))) &&
1986       Mask->getType() == Ty)
1987     return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask);
1988 
1989   if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
1990     // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
1991     // While this can increase the number of instructions it doesn't actually
1992     // increase the overall complexity since the arithmetic is just part of
1993     // the GEP otherwise.
1994     if (GEP->hasOneUse() &&
1995         isa<ConstantPointerNull>(GEP->getPointerOperand())) {
1996       return replaceInstUsesWith(CI,
1997                                  Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
1998                                                        /*isSigned=*/false));
1999     }
2000   }
2001 
2002   Value *Vec, *Scalar, *Index;
2003   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2004                                         m_Value(Scalar), m_Value(Index)))) &&
2005       Vec->getType() == Ty) {
2006     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2007     // Convert the scalar to int followed by insert to eliminate one cast:
2008     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2009     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2010     return InsertElementInst::Create(Vec, NewCast, Index);
2011   }
2012 
2013   return commonCastTransforms(CI);
2014 }
2015 
2016 /// This input value (which is known to have vector type) is being zero extended
2017 /// or truncated to the specified vector type. Since the zext/trunc is done
2018 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2019 /// endianness will impact which end of the vector that is extended or
2020 /// truncated.
2021 ///
2022 /// A vector is always stored with index 0 at the lowest address, which
2023 /// corresponds to the most significant bits for a big endian stored integer and
2024 /// the least significant bits for little endian. A trunc/zext of an integer
2025 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2026 /// the front of the vector for big endian targets, and the back of the vector
2027 /// for little endian targets.
2028 ///
2029 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2030 ///
2031 /// The source and destination vector types may have different element types.
2032 static Instruction *
2033 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2034                                         InstCombinerImpl &IC) {
2035   // We can only do this optimization if the output is a multiple of the input
2036   // element size, or the input is a multiple of the output element size.
2037   // Convert the input type to have the same element type as the output.
2038   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2039 
2040   if (SrcTy->getElementType() != DestTy->getElementType()) {
2041     // The input types don't need to be identical, but for now they must be the
2042     // same size.  There is no specific reason we couldn't handle things like
2043     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2044     // there yet.
2045     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2046         DestTy->getElementType()->getPrimitiveSizeInBits())
2047       return nullptr;
2048 
2049     SrcTy =
2050         FixedVectorType::get(DestTy->getElementType(),
2051                              cast<FixedVectorType>(SrcTy)->getNumElements());
2052     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2053   }
2054 
2055   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2056   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2057   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2058 
2059   assert(SrcElts != DestElts && "Element counts should be different.");
2060 
2061   // Now that the element types match, get the shuffle mask and RHS of the
2062   // shuffle to use, which depends on whether we're increasing or decreasing the
2063   // size of the input.
2064   auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2065   ArrayRef<int> ShuffleMask;
2066   Value *V2;
2067 
2068   if (SrcElts > DestElts) {
2069     // If we're shrinking the number of elements (rewriting an integer
2070     // truncate), just shuffle in the elements corresponding to the least
2071     // significant bits from the input and use poison as the second shuffle
2072     // input.
2073     V2 = PoisonValue::get(SrcTy);
2074     // Make sure the shuffle mask selects the "least significant bits" by
2075     // keeping elements from back of the src vector for big endian, and from the
2076     // front for little endian.
2077     ShuffleMask = ShuffleMaskStorage;
2078     if (IsBigEndian)
2079       ShuffleMask = ShuffleMask.take_back(DestElts);
2080     else
2081       ShuffleMask = ShuffleMask.take_front(DestElts);
2082   } else {
2083     // If we're increasing the number of elements (rewriting an integer zext),
2084     // shuffle in all of the elements from InVal. Fill the rest of the result
2085     // elements with zeros from a constant zero.
2086     V2 = Constant::getNullValue(SrcTy);
2087     // Use first elt from V2 when indicating zero in the shuffle mask.
2088     uint32_t NullElt = SrcElts;
2089     // Extend with null values in the "most significant bits" by adding elements
2090     // in front of the src vector for big endian, and at the back for little
2091     // endian.
2092     unsigned DeltaElts = DestElts - SrcElts;
2093     if (IsBigEndian)
2094       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2095     else
2096       ShuffleMaskStorage.append(DeltaElts, NullElt);
2097     ShuffleMask = ShuffleMaskStorage;
2098   }
2099 
2100   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2101 }
2102 
2103 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2104   return Value % Ty->getPrimitiveSizeInBits() == 0;
2105 }
2106 
2107 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2108   return Value / Ty->getPrimitiveSizeInBits();
2109 }
2110 
2111 /// V is a value which is inserted into a vector of VecEltTy.
2112 /// Look through the value to see if we can decompose it into
2113 /// insertions into the vector.  See the example in the comment for
2114 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2115 /// The type of V is always a non-zero multiple of VecEltTy's size.
2116 /// Shift is the number of bits between the lsb of V and the lsb of
2117 /// the vector.
2118 ///
2119 /// This returns false if the pattern can't be matched or true if it can,
2120 /// filling in Elements with the elements found here.
2121 static bool collectInsertionElements(Value *V, unsigned Shift,
2122                                      SmallVectorImpl<Value *> &Elements,
2123                                      Type *VecEltTy, bool isBigEndian) {
2124   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2125          "Shift should be a multiple of the element type size");
2126 
2127   // Undef values never contribute useful bits to the result.
2128   if (isa<UndefValue>(V)) return true;
2129 
2130   // If we got down to a value of the right type, we win, try inserting into the
2131   // right element.
2132   if (V->getType() == VecEltTy) {
2133     // Inserting null doesn't actually insert any elements.
2134     if (Constant *C = dyn_cast<Constant>(V))
2135       if (C->isNullValue())
2136         return true;
2137 
2138     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2139     if (isBigEndian)
2140       ElementIndex = Elements.size() - ElementIndex - 1;
2141 
2142     // Fail if multiple elements are inserted into this slot.
2143     if (Elements[ElementIndex])
2144       return false;
2145 
2146     Elements[ElementIndex] = V;
2147     return true;
2148   }
2149 
2150   if (Constant *C = dyn_cast<Constant>(V)) {
2151     // Figure out the # elements this provides, and bitcast it or slice it up
2152     // as required.
2153     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2154                                         VecEltTy);
2155     // If the constant is the size of a vector element, we just need to bitcast
2156     // it to the right type so it gets properly inserted.
2157     if (NumElts == 1)
2158       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2159                                       Shift, Elements, VecEltTy, isBigEndian);
2160 
2161     // Okay, this is a constant that covers multiple elements.  Slice it up into
2162     // pieces and insert each element-sized piece into the vector.
2163     if (!isa<IntegerType>(C->getType()))
2164       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2165                                        C->getType()->getPrimitiveSizeInBits()));
2166     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2167     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2168 
2169     for (unsigned i = 0; i != NumElts; ++i) {
2170       unsigned ShiftI = Shift + i * ElementSize;
2171       Constant *Piece = ConstantFoldBinaryInstruction(
2172           Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI));
2173       if (!Piece)
2174         return false;
2175 
2176       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2177       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2178                                     isBigEndian))
2179         return false;
2180     }
2181     return true;
2182   }
2183 
2184   if (!V->hasOneUse()) return false;
2185 
2186   Instruction *I = dyn_cast<Instruction>(V);
2187   if (!I) return false;
2188   switch (I->getOpcode()) {
2189   default: return false; // Unhandled case.
2190   case Instruction::BitCast:
2191     if (I->getOperand(0)->getType()->isVectorTy())
2192       return false;
2193     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2194                                     isBigEndian);
2195   case Instruction::ZExt:
2196     if (!isMultipleOfTypeSize(
2197                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2198                               VecEltTy))
2199       return false;
2200     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2201                                     isBigEndian);
2202   case Instruction::Or:
2203     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2204                                     isBigEndian) &&
2205            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2206                                     isBigEndian);
2207   case Instruction::Shl: {
2208     // Must be shifting by a constant that is a multiple of the element size.
2209     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2210     if (!CI) return false;
2211     Shift += CI->getZExtValue();
2212     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2213     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2214                                     isBigEndian);
2215   }
2216 
2217   }
2218 }
2219 
2220 
2221 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2222 /// assemble the elements of the vector manually.
2223 /// Try to rip the code out and replace it with insertelements.  This is to
2224 /// optimize code like this:
2225 ///
2226 ///    %tmp37 = bitcast float %inc to i32
2227 ///    %tmp38 = zext i32 %tmp37 to i64
2228 ///    %tmp31 = bitcast float %inc5 to i32
2229 ///    %tmp32 = zext i32 %tmp31 to i64
2230 ///    %tmp33 = shl i64 %tmp32, 32
2231 ///    %ins35 = or i64 %tmp33, %tmp38
2232 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2233 ///
2234 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2235 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2236                                                 InstCombinerImpl &IC) {
2237   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2238   Value *IntInput = CI.getOperand(0);
2239 
2240   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2241   if (!collectInsertionElements(IntInput, 0, Elements,
2242                                 DestVecTy->getElementType(),
2243                                 IC.getDataLayout().isBigEndian()))
2244     return nullptr;
2245 
2246   // If we succeeded, we know that all of the element are specified by Elements
2247   // or are zero if Elements has a null entry.  Recast this as a set of
2248   // insertions.
2249   Value *Result = Constant::getNullValue(CI.getType());
2250   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2251     if (!Elements[i]) continue;  // Unset element.
2252 
2253     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2254                                             IC.Builder.getInt32(i));
2255   }
2256 
2257   return Result;
2258 }
2259 
2260 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2261 /// vector followed by extract element. The backend tends to handle bitcasts of
2262 /// vectors better than bitcasts of scalars because vector registers are
2263 /// usually not type-specific like scalar integer or scalar floating-point.
2264 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2265                                               InstCombinerImpl &IC) {
2266   Value *VecOp, *Index;
2267   if (!match(BitCast.getOperand(0),
2268              m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2269     return nullptr;
2270 
2271   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2272   // type to extract from.
2273   Type *DestType = BitCast.getType();
2274   VectorType *VecType = cast<VectorType>(VecOp->getType());
2275   if (VectorType::isValidElementType(DestType)) {
2276     auto *NewVecType = VectorType::get(DestType, VecType);
2277     auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2278     return ExtractElementInst::Create(NewBC, Index);
2279   }
2280 
2281   // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2282   // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2283   auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2284   if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2285     return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2286 
2287   return nullptr;
2288 }
2289 
2290 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2291 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2292                                             InstCombiner::BuilderTy &Builder) {
2293   Type *DestTy = BitCast.getType();
2294   BinaryOperator *BO;
2295 
2296   if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2297       !BO->isBitwiseLogicOp())
2298     return nullptr;
2299 
2300   // FIXME: This transform is restricted to vector types to avoid backend
2301   // problems caused by creating potentially illegal operations. If a fix-up is
2302   // added to handle that situation, we can remove this check.
2303   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2304     return nullptr;
2305 
2306   if (DestTy->isFPOrFPVectorTy()) {
2307     Value *X, *Y;
2308     // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2309     if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2310         match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2311       if (X->getType()->isFPOrFPVectorTy() &&
2312           Y->getType()->isIntOrIntVectorTy()) {
2313         Value *CastedOp =
2314             Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2315         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2316         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2317       }
2318       if (X->getType()->isIntOrIntVectorTy() &&
2319           Y->getType()->isFPOrFPVectorTy()) {
2320         Value *CastedOp =
2321             Builder.CreateBitCast(BO->getOperand(1), X->getType());
2322         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2323         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2324       }
2325     }
2326     return nullptr;
2327   }
2328 
2329   if (!DestTy->isIntOrIntVectorTy())
2330     return nullptr;
2331 
2332   Value *X;
2333   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2334       X->getType() == DestTy && !isa<Constant>(X)) {
2335     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2336     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2337     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2338   }
2339 
2340   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2341       X->getType() == DestTy && !isa<Constant>(X)) {
2342     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2343     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2344     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2345   }
2346 
2347   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2348   // constant. This eases recognition of special constants for later ops.
2349   // Example:
2350   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2351   Constant *C;
2352   if (match(BO->getOperand(1), m_Constant(C))) {
2353     // bitcast (logic X, C) --> logic (bitcast X, C')
2354     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2355     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2356     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2357   }
2358 
2359   return nullptr;
2360 }
2361 
2362 /// Change the type of a select if we can eliminate a bitcast.
2363 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2364                                       InstCombiner::BuilderTy &Builder) {
2365   Value *Cond, *TVal, *FVal;
2366   if (!match(BitCast.getOperand(0),
2367              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2368     return nullptr;
2369 
2370   // A vector select must maintain the same number of elements in its operands.
2371   Type *CondTy = Cond->getType();
2372   Type *DestTy = BitCast.getType();
2373   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2374     if (!DestTy->isVectorTy() ||
2375         CondVTy->getElementCount() !=
2376             cast<VectorType>(DestTy)->getElementCount())
2377       return nullptr;
2378 
2379   // FIXME: This transform is restricted from changing the select between
2380   // scalars and vectors to avoid backend problems caused by creating
2381   // potentially illegal operations. If a fix-up is added to handle that
2382   // situation, we can remove this check.
2383   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2384     return nullptr;
2385 
2386   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2387   Value *X;
2388   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2389       !isa<Constant>(X)) {
2390     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2391     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2392     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2393   }
2394 
2395   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2396       !isa<Constant>(X)) {
2397     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2398     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2399     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2400   }
2401 
2402   return nullptr;
2403 }
2404 
2405 /// Check if all users of CI are StoreInsts.
2406 static bool hasStoreUsersOnly(CastInst &CI) {
2407   for (User *U : CI.users()) {
2408     if (!isa<StoreInst>(U))
2409       return false;
2410   }
2411   return true;
2412 }
2413 
2414 /// This function handles following case
2415 ///
2416 ///     A  ->  B    cast
2417 ///     PHI
2418 ///     B  ->  A    cast
2419 ///
2420 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2421 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2422 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2423                                                       PHINode *PN) {
2424   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2425   if (hasStoreUsersOnly(CI))
2426     return nullptr;
2427 
2428   Value *Src = CI.getOperand(0);
2429   Type *SrcTy = Src->getType();         // Type B
2430   Type *DestTy = CI.getType();          // Type A
2431 
2432   SmallVector<PHINode *, 4> PhiWorklist;
2433   SmallSetVector<PHINode *, 4> OldPhiNodes;
2434 
2435   // Find all of the A->B casts and PHI nodes.
2436   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2437   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2438   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2439   PhiWorklist.push_back(PN);
2440   OldPhiNodes.insert(PN);
2441   while (!PhiWorklist.empty()) {
2442     auto *OldPN = PhiWorklist.pop_back_val();
2443     for (Value *IncValue : OldPN->incoming_values()) {
2444       if (isa<Constant>(IncValue))
2445         continue;
2446 
2447       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2448         // If there is a sequence of one or more load instructions, each loaded
2449         // value is used as address of later load instruction, bitcast is
2450         // necessary to change the value type, don't optimize it. For
2451         // simplicity we give up if the load address comes from another load.
2452         Value *Addr = LI->getOperand(0);
2453         if (Addr == &CI || isa<LoadInst>(Addr))
2454           return nullptr;
2455         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2456         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2457         // TODO: Remove this check when bitcast between vector and x86_amx
2458         // is replaced with a specific intrinsic.
2459         if (DestTy->isX86_AMXTy())
2460           return nullptr;
2461         if (LI->hasOneUse() && LI->isSimple())
2462           continue;
2463         // If a LoadInst has more than one use, changing the type of loaded
2464         // value may create another bitcast.
2465         return nullptr;
2466       }
2467 
2468       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2469         if (OldPhiNodes.insert(PNode))
2470           PhiWorklist.push_back(PNode);
2471         continue;
2472       }
2473 
2474       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2475       // We can't handle other instructions.
2476       if (!BCI)
2477         return nullptr;
2478 
2479       // Verify it's a A->B cast.
2480       Type *TyA = BCI->getOperand(0)->getType();
2481       Type *TyB = BCI->getType();
2482       if (TyA != DestTy || TyB != SrcTy)
2483         return nullptr;
2484     }
2485   }
2486 
2487   // Check that each user of each old PHI node is something that we can
2488   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2489   for (auto *OldPN : OldPhiNodes) {
2490     for (User *V : OldPN->users()) {
2491       if (auto *SI = dyn_cast<StoreInst>(V)) {
2492         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2493           return nullptr;
2494       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2495         // Verify it's a B->A cast.
2496         Type *TyB = BCI->getOperand(0)->getType();
2497         Type *TyA = BCI->getType();
2498         if (TyA != DestTy || TyB != SrcTy)
2499           return nullptr;
2500       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2501         // As long as the user is another old PHI node, then even if we don't
2502         // rewrite it, the PHI web we're considering won't have any users
2503         // outside itself, so it'll be dead.
2504         if (!OldPhiNodes.contains(PHI))
2505           return nullptr;
2506       } else {
2507         return nullptr;
2508       }
2509     }
2510   }
2511 
2512   // For each old PHI node, create a corresponding new PHI node with a type A.
2513   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2514   for (auto *OldPN : OldPhiNodes) {
2515     Builder.SetInsertPoint(OldPN);
2516     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2517     NewPNodes[OldPN] = NewPN;
2518   }
2519 
2520   // Fill in the operands of new PHI nodes.
2521   for (auto *OldPN : OldPhiNodes) {
2522     PHINode *NewPN = NewPNodes[OldPN];
2523     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2524       Value *V = OldPN->getOperand(j);
2525       Value *NewV = nullptr;
2526       if (auto *C = dyn_cast<Constant>(V)) {
2527         NewV = ConstantExpr::getBitCast(C, DestTy);
2528       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2529         // Explicitly perform load combine to make sure no opposing transform
2530         // can remove the bitcast in the meantime and trigger an infinite loop.
2531         Builder.SetInsertPoint(LI);
2532         NewV = combineLoadToNewType(*LI, DestTy);
2533         // Remove the old load and its use in the old phi, which itself becomes
2534         // dead once the whole transform finishes.
2535         replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2536         eraseInstFromFunction(*LI);
2537       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2538         NewV = BCI->getOperand(0);
2539       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2540         NewV = NewPNodes[PrevPN];
2541       }
2542       assert(NewV);
2543       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2544     }
2545   }
2546 
2547   // Traverse all accumulated PHI nodes and process its users,
2548   // which are Stores and BitcCasts. Without this processing
2549   // NewPHI nodes could be replicated and could lead to extra
2550   // moves generated after DeSSA.
2551   // If there is a store with type B, change it to type A.
2552 
2553 
2554   // Replace users of BitCast B->A with NewPHI. These will help
2555   // later to get rid off a closure formed by OldPHI nodes.
2556   Instruction *RetVal = nullptr;
2557   for (auto *OldPN : OldPhiNodes) {
2558     PHINode *NewPN = NewPNodes[OldPN];
2559     for (User *V : make_early_inc_range(OldPN->users())) {
2560       if (auto *SI = dyn_cast<StoreInst>(V)) {
2561         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2562         Builder.SetInsertPoint(SI);
2563         auto *NewBC =
2564           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2565         SI->setOperand(0, NewBC);
2566         Worklist.push(SI);
2567         assert(hasStoreUsersOnly(*NewBC));
2568       }
2569       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2570         Type *TyB = BCI->getOperand(0)->getType();
2571         Type *TyA = BCI->getType();
2572         assert(TyA == DestTy && TyB == SrcTy);
2573         (void) TyA;
2574         (void) TyB;
2575         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2576         if (BCI == &CI)
2577           RetVal = I;
2578       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2579         assert(OldPhiNodes.contains(PHI));
2580         (void) PHI;
2581       } else {
2582         llvm_unreachable("all uses should be handled");
2583       }
2584     }
2585   }
2586 
2587   return RetVal;
2588 }
2589 
2590 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2591   // If the operands are integer typed then apply the integer transforms,
2592   // otherwise just apply the common ones.
2593   Value *Src = CI.getOperand(0);
2594   Type *SrcTy = Src->getType();
2595   Type *DestTy = CI.getType();
2596 
2597   // Get rid of casts from one type to the same type. These are useless and can
2598   // be replaced by the operand.
2599   if (DestTy == Src->getType())
2600     return replaceInstUsesWith(CI, Src);
2601 
2602   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2603     // Beware: messing with this target-specific oddity may cause trouble.
2604     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2605       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2606       return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2607                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2608     }
2609 
2610     if (isa<IntegerType>(SrcTy)) {
2611       // If this is a cast from an integer to vector, check to see if the input
2612       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2613       // the casts with a shuffle and (potentially) a bitcast.
2614       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2615         CastInst *SrcCast = cast<CastInst>(Src);
2616         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2617           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2618             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2619                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2620               return I;
2621       }
2622 
2623       // If the input is an 'or' instruction, we may be doing shifts and ors to
2624       // assemble the elements of the vector manually.  Try to rip the code out
2625       // and replace it with insertelements.
2626       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2627         return replaceInstUsesWith(CI, V);
2628     }
2629   }
2630 
2631   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2632     if (SrcVTy->getNumElements() == 1) {
2633       // If our destination is not a vector, then make this a straight
2634       // scalar-scalar cast.
2635       if (!DestTy->isVectorTy()) {
2636         Value *Elem =
2637           Builder.CreateExtractElement(Src,
2638                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2639         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2640       }
2641 
2642       // Otherwise, see if our source is an insert. If so, then use the scalar
2643       // component directly:
2644       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2645       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2646         return new BitCastInst(InsElt->getOperand(1), DestTy);
2647     }
2648 
2649     // Convert an artificial vector insert into more analyzable bitwise logic.
2650     unsigned BitWidth = DestTy->getScalarSizeInBits();
2651     Value *X, *Y;
2652     uint64_t IndexC;
2653     if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2654                                         m_Value(Y), m_ConstantInt(IndexC)))) &&
2655         DestTy->isIntegerTy() && X->getType() == DestTy &&
2656         Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2657       // Adjust for big endian - the LSBs are at the high index.
2658       if (DL.isBigEndian())
2659         IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2660 
2661       // We only handle (endian-normalized) insert to index 0. Any other insert
2662       // would require a left-shift, so that is an extra instruction.
2663       if (IndexC == 0) {
2664         // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2665         unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2666         APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2667         Value *AndX = Builder.CreateAnd(X, MaskC);
2668         Value *ZextY = Builder.CreateZExt(Y, DestTy);
2669         return BinaryOperator::CreateOr(AndX, ZextY);
2670       }
2671     }
2672   }
2673 
2674   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2675     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2676     // a bitcast to a vector with the same # elts.
2677     Value *ShufOp0 = Shuf->getOperand(0);
2678     Value *ShufOp1 = Shuf->getOperand(1);
2679     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2680     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2681     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2682         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2683         ShufElts == SrcVecElts) {
2684       BitCastInst *Tmp;
2685       // If either of the operands is a cast from CI.getType(), then
2686       // evaluating the shuffle in the casted destination's type will allow
2687       // us to eliminate at least one cast.
2688       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2689            Tmp->getOperand(0)->getType() == DestTy) ||
2690           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2691            Tmp->getOperand(0)->getType() == DestTy)) {
2692         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2693         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2694         // Return a new shuffle vector.  Use the same element ID's, as we
2695         // know the vector types match #elts.
2696         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2697       }
2698     }
2699 
2700     // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2701     // as a byte/bit swap:
2702     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2703     // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2704     if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2705         Shuf->hasOneUse() && Shuf->isReverse()) {
2706       unsigned IntrinsicNum = 0;
2707       if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2708           SrcTy->getScalarSizeInBits() == 8) {
2709         IntrinsicNum = Intrinsic::bswap;
2710       } else if (SrcTy->getScalarSizeInBits() == 1) {
2711         IntrinsicNum = Intrinsic::bitreverse;
2712       }
2713       if (IntrinsicNum != 0) {
2714         assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2715         assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2716         Function *BswapOrBitreverse =
2717             Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2718         Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2719         return CallInst::Create(BswapOrBitreverse, {ScalarX});
2720       }
2721     }
2722   }
2723 
2724   // Handle the A->B->A cast, and there is an intervening PHI node.
2725   if (PHINode *PN = dyn_cast<PHINode>(Src))
2726     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2727       return I;
2728 
2729   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2730     return I;
2731 
2732   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2733     return I;
2734 
2735   if (Instruction *I = foldBitCastSelect(CI, Builder))
2736     return I;
2737 
2738   return commonCastTransforms(CI);
2739 }
2740 
2741 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2742   return commonCastTransforms(CI);
2743 }
2744