xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision d34dbf07bdbe022cc9e96f5de2ac315ec4b20373)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
24 /// Analyze 'Val', seeing if it is a simple linear expression.
25 /// If so, decompose it, returning some value X, such that Val is
26 /// X*Scale+Offset.
27 ///
28 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29                                         uint64_t &Offset) {
30   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31     Offset = CI->getZExtValue();
32     Scale  = 0;
33     return ConstantInt::get(Val->getType(), 0);
34   }
35 
36   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37     // Cannot look past anything that might overflow.
38     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40       Scale = 1;
41       Offset = 0;
42       return Val;
43     }
44 
45     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46       if (I->getOpcode() == Instruction::Shl) {
47         // This is a value scaled by '1 << the shift amt'.
48         Scale = UINT64_C(1) << RHS->getZExtValue();
49         Offset = 0;
50         return I->getOperand(0);
51       }
52 
53       if (I->getOpcode() == Instruction::Mul) {
54         // This value is scaled by 'RHS'.
55         Scale = RHS->getZExtValue();
56         Offset = 0;
57         return I->getOperand(0);
58       }
59 
60       if (I->getOpcode() == Instruction::Add) {
61         // We have X+C.  Check to see if we really have (X*C2)+C1,
62         // where C1 is divisible by C2.
63         unsigned SubScale;
64         Value *SubVal =
65           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66         Offset += RHS->getZExtValue();
67         Scale = SubScale;
68         return SubVal;
69       }
70     }
71   }
72 
73   // Otherwise, we can't look past this.
74   Scale = 1;
75   Offset = 0;
76   return Val;
77 }
78 
79 /// If we find a cast of an allocation instruction, try to eliminate the cast by
80 /// moving the type information into the alloc.
81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82                                                    AllocaInst &AI) {
83   PointerType *PTy = cast<PointerType>(CI.getType());
84 
85   BuilderTy AllocaBuilder(*Builder);
86   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
87 
88   // Get the type really allocated and the type casted to.
89   Type *AllocElTy = AI.getAllocatedType();
90   Type *CastElTy = PTy->getElementType();
91   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
92 
93   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
94   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
95   if (CastElTyAlign < AllocElTyAlign) return nullptr;
96 
97   // If the allocation has multiple uses, only promote it if we are strictly
98   // increasing the alignment of the resultant allocation.  If we keep it the
99   // same, we open the door to infinite loops of various kinds.
100   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
101 
102   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
103   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
104   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
105 
106   // If the allocation has multiple uses, only promote it if we're not
107   // shrinking the amount of memory being allocated.
108   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
109   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
110   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
111 
112   // See if we can satisfy the modulus by pulling a scale out of the array
113   // size argument.
114   unsigned ArraySizeScale;
115   uint64_t ArrayOffset;
116   Value *NumElements = // See if the array size is a decomposable linear expr.
117     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
118 
119   // If we can now satisfy the modulus, by using a non-1 scale, we really can
120   // do the xform.
121   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
122       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
123 
124   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
125   Value *Amt = nullptr;
126   if (Scale == 1) {
127     Amt = NumElements;
128   } else {
129     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
130     // Insert before the alloca, not before the cast.
131     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
132   }
133 
134   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
135     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
136                                   Offset, true);
137     Amt = AllocaBuilder.CreateAdd(Amt, Off);
138   }
139 
140   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
141   New->setAlignment(AI.getAlignment());
142   New->takeName(&AI);
143   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
144 
145   // If the allocation has multiple real uses, insert a cast and change all
146   // things that used it to use the new cast.  This will also hack on CI, but it
147   // will die soon.
148   if (!AI.hasOneUse()) {
149     // New is the allocation instruction, pointer typed. AI is the original
150     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
151     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
152     ReplaceInstUsesWith(AI, NewCast);
153   }
154   return ReplaceInstUsesWith(CI, New);
155 }
156 
157 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
158 /// true for, actually insert the code to evaluate the expression.
159 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
160                                              bool isSigned) {
161   if (Constant *C = dyn_cast<Constant>(V)) {
162     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
163     // If we got a constantexpr back, try to simplify it with DL info.
164     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
165       C = ConstantFoldConstantExpression(CE, DL, TLI);
166     return C;
167   }
168 
169   // Otherwise, it must be an instruction.
170   Instruction *I = cast<Instruction>(V);
171   Instruction *Res = nullptr;
172   unsigned Opc = I->getOpcode();
173   switch (Opc) {
174   case Instruction::Add:
175   case Instruction::Sub:
176   case Instruction::Mul:
177   case Instruction::And:
178   case Instruction::Or:
179   case Instruction::Xor:
180   case Instruction::AShr:
181   case Instruction::LShr:
182   case Instruction::Shl:
183   case Instruction::UDiv:
184   case Instruction::URem: {
185     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
186     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
187     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
188     break;
189   }
190   case Instruction::Trunc:
191   case Instruction::ZExt:
192   case Instruction::SExt:
193     // If the source type of the cast is the type we're trying for then we can
194     // just return the source.  There's no need to insert it because it is not
195     // new.
196     if (I->getOperand(0)->getType() == Ty)
197       return I->getOperand(0);
198 
199     // Otherwise, must be the same type of cast, so just reinsert a new one.
200     // This also handles the case of zext(trunc(x)) -> zext(x).
201     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
202                                       Opc == Instruction::SExt);
203     break;
204   case Instruction::Select: {
205     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
207     Res = SelectInst::Create(I->getOperand(0), True, False);
208     break;
209   }
210   case Instruction::PHI: {
211     PHINode *OPN = cast<PHINode>(I);
212     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
213     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
214       Value *V =
215           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
216       NPN->addIncoming(V, OPN->getIncomingBlock(i));
217     }
218     Res = NPN;
219     break;
220   }
221   default:
222     // TODO: Can handle more cases here.
223     llvm_unreachable("Unreachable!");
224   }
225 
226   Res->takeName(I);
227   return InsertNewInstWith(Res, *I);
228 }
229 
230 
231 /// This function is a wrapper around CastInst::isEliminableCastPair. It
232 /// simply extracts arguments and returns what that function returns.
233 static Instruction::CastOps
234 isEliminableCastPair(const CastInst *CI, ///< First cast instruction
235                      unsigned opcode,    ///< Opcode for the second cast
236                      Type *DstTy,        ///< Target type for the second cast
237                      const DataLayout &DL) {
238   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
239   Type *MidTy = CI->getType();                  // B from above
240 
241   // Get the opcodes of the two Cast instructions
242   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
243   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
244   Type *SrcIntPtrTy =
245       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
246   Type *MidIntPtrTy =
247       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
248   Type *DstIntPtrTy =
249       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
250   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
251                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
252                                                 DstIntPtrTy);
253 
254   // We don't want to form an inttoptr or ptrtoint that converts to an integer
255   // type that differs from the pointer size.
256   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
257       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
258     Res = 0;
259 
260   return Instruction::CastOps(Res);
261 }
262 
263 /// Return true if the cast from "V to Ty" actually results in any code being
264 /// generated and is interesting to optimize out.
265 /// If the cast can be eliminated by some other simple transformation, we prefer
266 /// to do the simplification first.
267 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
268                                       Type *Ty) {
269   // Noop casts and casts of constants should be eliminated trivially.
270   if (V->getType() == Ty || isa<Constant>(V)) return false;
271 
272   // If this is another cast that can be eliminated, we prefer to have it
273   // eliminated.
274   if (const CastInst *CI = dyn_cast<CastInst>(V))
275     if (isEliminableCastPair(CI, opc, Ty, DL))
276       return false;
277 
278   // If this is a vector sext from a compare, then we don't want to break the
279   // idiom where each element of the extended vector is either zero or all ones.
280   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
281     return false;
282 
283   return true;
284 }
285 
286 
287 /// @brief Implement the transforms common to all CastInst visitors.
288 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
289   Value *Src = CI.getOperand(0);
290 
291   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
292   // eliminate it now.
293   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
294     if (Instruction::CastOps opc =
295             isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
296       // The first cast (CSrc) is eliminable so we need to fix up or replace
297       // the second cast (CI). CSrc will then have a good chance of being dead.
298       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
299     }
300   }
301 
302   // If we are casting a select then fold the cast into the select
303   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
304     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
305       return NV;
306 
307   // If we are casting a PHI then fold the cast into the PHI
308   if (isa<PHINode>(Src)) {
309     // We don't do this if this would create a PHI node with an illegal type if
310     // it is currently legal.
311     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
312         ShouldChangeType(CI.getType(), Src->getType()))
313       if (Instruction *NV = FoldOpIntoPhi(CI))
314         return NV;
315   }
316 
317   return nullptr;
318 }
319 
320 /// Return true if we can evaluate the specified expression tree as type Ty
321 /// instead of its larger type, and arrive with the same value.
322 /// This is used by code that tries to eliminate truncates.
323 ///
324 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
325 /// can be computed by computing V in the smaller type.  If V is an instruction,
326 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
327 /// makes sense if x and y can be efficiently truncated.
328 ///
329 /// This function works on both vectors and scalars.
330 ///
331 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
332                                  Instruction *CxtI) {
333   // We can always evaluate constants in another type.
334   if (isa<Constant>(V))
335     return true;
336 
337   Instruction *I = dyn_cast<Instruction>(V);
338   if (!I) return false;
339 
340   Type *OrigTy = V->getType();
341 
342   // If this is an extension from the dest type, we can eliminate it, even if it
343   // has multiple uses.
344   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
345       I->getOperand(0)->getType() == Ty)
346     return true;
347 
348   // We can't extend or shrink something that has multiple uses: doing so would
349   // require duplicating the instruction in general, which isn't profitable.
350   if (!I->hasOneUse()) return false;
351 
352   unsigned Opc = I->getOpcode();
353   switch (Opc) {
354   case Instruction::Add:
355   case Instruction::Sub:
356   case Instruction::Mul:
357   case Instruction::And:
358   case Instruction::Or:
359   case Instruction::Xor:
360     // These operators can all arbitrarily be extended or truncated.
361     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
362            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
363 
364   case Instruction::UDiv:
365   case Instruction::URem: {
366     // UDiv and URem can be truncated if all the truncated bits are zero.
367     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
368     uint32_t BitWidth = Ty->getScalarSizeInBits();
369     if (BitWidth < OrigBitWidth) {
370       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
371       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
372           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
373         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
374                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
375       }
376     }
377     break;
378   }
379   case Instruction::Shl:
380     // If we are truncating the result of this SHL, and if it's a shift of a
381     // constant amount, we can always perform a SHL in a smaller type.
382     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
383       uint32_t BitWidth = Ty->getScalarSizeInBits();
384       if (CI->getLimitedValue(BitWidth) < BitWidth)
385         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
386     }
387     break;
388   case Instruction::LShr:
389     // If this is a truncate of a logical shr, we can truncate it to a smaller
390     // lshr iff we know that the bits we would otherwise be shifting in are
391     // already zeros.
392     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
393       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394       uint32_t BitWidth = Ty->getScalarSizeInBits();
395       if (IC.MaskedValueIsZero(I->getOperand(0),
396             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
397           CI->getLimitedValue(BitWidth) < BitWidth) {
398         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399       }
400     }
401     break;
402   case Instruction::Trunc:
403     // trunc(trunc(x)) -> trunc(x)
404     return true;
405   case Instruction::ZExt:
406   case Instruction::SExt:
407     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
408     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
409     return true;
410   case Instruction::Select: {
411     SelectInst *SI = cast<SelectInst>(I);
412     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
413            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
414   }
415   case Instruction::PHI: {
416     // We can change a phi if we can change all operands.  Note that we never
417     // get into trouble with cyclic PHIs here because we only consider
418     // instructions with a single use.
419     PHINode *PN = cast<PHINode>(I);
420     for (Value *IncValue : PN->incoming_values())
421       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
422         return false;
423     return true;
424   }
425   default:
426     // TODO: Can handle more cases here.
427     break;
428   }
429 
430   return false;
431 }
432 
433 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
434   if (Instruction *Result = commonCastTransforms(CI))
435     return Result;
436 
437   // Test if the trunc is the user of a select which is part of a
438   // minimum or maximum operation. If so, don't do any more simplification.
439   // Even simplifying demanded bits can break the canonical form of a
440   // min/max.
441   Value *LHS, *RHS;
442   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
443     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
444       return nullptr;
445 
446   // See if we can simplify any instructions used by the input whose sole
447   // purpose is to compute bits we don't care about.
448   if (SimplifyDemandedInstructionBits(CI))
449     return &CI;
450 
451   Value *Src = CI.getOperand(0);
452   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
453 
454   // Attempt to truncate the entire input expression tree to the destination
455   // type.   Only do this if the dest type is a simple type, don't convert the
456   // expression tree to something weird like i93 unless the source is also
457   // strange.
458   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
459       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
460 
461     // If this cast is a truncate, evaluting in a different type always
462     // eliminates the cast, so it is always a win.
463     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
464           " to avoid cast: " << CI << '\n');
465     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
466     assert(Res->getType() == DestTy);
467     return ReplaceInstUsesWith(CI, Res);
468   }
469 
470   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
471   if (DestTy->getScalarSizeInBits() == 1) {
472     Constant *One = ConstantInt::get(Src->getType(), 1);
473     Src = Builder->CreateAnd(Src, One);
474     Value *Zero = Constant::getNullValue(Src->getType());
475     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
476   }
477 
478   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
479   Value *A = nullptr; ConstantInt *Cst = nullptr;
480   if (Src->hasOneUse() &&
481       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
482     // We have three types to worry about here, the type of A, the source of
483     // the truncate (MidSize), and the destination of the truncate. We know that
484     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
485     // between ASize and ResultSize.
486     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
487 
488     // If the shift amount is larger than the size of A, then the result is
489     // known to be zero because all the input bits got shifted out.
490     if (Cst->getZExtValue() >= ASize)
491       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
492 
493     // Since we're doing an lshr and a zero extend, and know that the shift
494     // amount is smaller than ASize, it is always safe to do the shift in A's
495     // type, then zero extend or truncate to the result.
496     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
497     Shift->takeName(Src);
498     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
499   }
500 
501   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
502   // type isn't non-native.
503   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
504       ShouldChangeType(Src->getType(), CI.getType()) &&
505       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
506     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
507     return BinaryOperator::CreateAnd(NewTrunc,
508                                      ConstantExpr::getTrunc(Cst, CI.getType()));
509   }
510 
511   return nullptr;
512 }
513 
514 /// Transform (zext icmp) to bitwise / integer operations in order to eliminate
515 /// the icmp.
516 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
517                                              bool DoXform) {
518   // If we are just checking for a icmp eq of a single bit and zext'ing it
519   // to an integer, then shift the bit to the appropriate place and then
520   // cast to integer to avoid the comparison.
521   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
522     const APInt &Op1CV = Op1C->getValue();
523 
524     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
525     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
526     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
527         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
528       if (!DoXform) return ICI;
529 
530       Value *In = ICI->getOperand(0);
531       Value *Sh = ConstantInt::get(In->getType(),
532                                    In->getType()->getScalarSizeInBits()-1);
533       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
534       if (In->getType() != CI.getType())
535         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
536 
537       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
538         Constant *One = ConstantInt::get(In->getType(), 1);
539         In = Builder->CreateXor(In, One, In->getName()+".not");
540       }
541 
542       return ReplaceInstUsesWith(CI, In);
543     }
544 
545     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
546     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
547     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
548     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
549     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
550     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
551     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
552     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
553     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
554         // This only works for EQ and NE
555         ICI->isEquality()) {
556       // If Op1C some other power of two, convert:
557       uint32_t BitWidth = Op1C->getType()->getBitWidth();
558       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
559       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
560 
561       APInt KnownZeroMask(~KnownZero);
562       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
563         if (!DoXform) return ICI;
564 
565         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
566         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
567           // (X&4) == 2 --> false
568           // (X&4) != 2 --> true
569           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
570                                            isNE);
571           Res = ConstantExpr::getZExt(Res, CI.getType());
572           return ReplaceInstUsesWith(CI, Res);
573         }
574 
575         uint32_t ShiftAmt = KnownZeroMask.logBase2();
576         Value *In = ICI->getOperand(0);
577         if (ShiftAmt) {
578           // Perform a logical shr by shiftamt.
579           // Insert the shift to put the result in the low bit.
580           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
581                                    In->getName()+".lobit");
582         }
583 
584         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
585           Constant *One = ConstantInt::get(In->getType(), 1);
586           In = Builder->CreateXor(In, One);
587         }
588 
589         if (CI.getType() == In->getType())
590           return ReplaceInstUsesWith(CI, In);
591         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
592       }
593     }
594   }
595 
596   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
597   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
598   // may lead to additional simplifications.
599   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
600     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
601       uint32_t BitWidth = ITy->getBitWidth();
602       Value *LHS = ICI->getOperand(0);
603       Value *RHS = ICI->getOperand(1);
604 
605       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
606       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
607       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
608       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
609 
610       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
611         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
612         APInt UnknownBit = ~KnownBits;
613         if (UnknownBit.countPopulation() == 1) {
614           if (!DoXform) return ICI;
615 
616           Value *Result = Builder->CreateXor(LHS, RHS);
617 
618           // Mask off any bits that are set and won't be shifted away.
619           if (KnownOneLHS.uge(UnknownBit))
620             Result = Builder->CreateAnd(Result,
621                                         ConstantInt::get(ITy, UnknownBit));
622 
623           // Shift the bit we're testing down to the lsb.
624           Result = Builder->CreateLShr(
625                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
626 
627           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
628             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
629           Result->takeName(ICI);
630           return ReplaceInstUsesWith(CI, Result);
631         }
632       }
633     }
634   }
635 
636   return nullptr;
637 }
638 
639 /// Determine if the specified value can be computed in the specified wider type
640 /// and produce the same low bits. If not, return false.
641 ///
642 /// If this function returns true, it can also return a non-zero number of bits
643 /// (in BitsToClear) which indicates that the value it computes is correct for
644 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
645 /// out.  For example, to promote something like:
646 ///
647 ///   %B = trunc i64 %A to i32
648 ///   %C = lshr i32 %B, 8
649 ///   %E = zext i32 %C to i64
650 ///
651 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
652 /// set to 8 to indicate that the promoted value needs to have bits 24-31
653 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
654 /// clear the top bits anyway, doing this has no extra cost.
655 ///
656 /// This function works on both vectors and scalars.
657 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
658                              InstCombiner &IC, Instruction *CxtI) {
659   BitsToClear = 0;
660   if (isa<Constant>(V))
661     return true;
662 
663   Instruction *I = dyn_cast<Instruction>(V);
664   if (!I) return false;
665 
666   // If the input is a truncate from the destination type, we can trivially
667   // eliminate it.
668   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
669     return true;
670 
671   // We can't extend or shrink something that has multiple uses: doing so would
672   // require duplicating the instruction in general, which isn't profitable.
673   if (!I->hasOneUse()) return false;
674 
675   unsigned Opc = I->getOpcode(), Tmp;
676   switch (Opc) {
677   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
678   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
679   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
680     return true;
681   case Instruction::And:
682   case Instruction::Or:
683   case Instruction::Xor:
684   case Instruction::Add:
685   case Instruction::Sub:
686   case Instruction::Mul:
687     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
688         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
689       return false;
690     // These can all be promoted if neither operand has 'bits to clear'.
691     if (BitsToClear == 0 && Tmp == 0)
692       return true;
693 
694     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
695     // other side, BitsToClear is ok.
696     if (Tmp == 0 &&
697         (Opc == Instruction::And || Opc == Instruction::Or ||
698          Opc == Instruction::Xor)) {
699       // We use MaskedValueIsZero here for generality, but the case we care
700       // about the most is constant RHS.
701       unsigned VSize = V->getType()->getScalarSizeInBits();
702       if (IC.MaskedValueIsZero(I->getOperand(1),
703                                APInt::getHighBitsSet(VSize, BitsToClear),
704                                0, CxtI))
705         return true;
706     }
707 
708     // Otherwise, we don't know how to analyze this BitsToClear case yet.
709     return false;
710 
711   case Instruction::Shl:
712     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
713     // upper bits we can reduce BitsToClear by the shift amount.
714     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
715       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
716         return false;
717       uint64_t ShiftAmt = Amt->getZExtValue();
718       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
719       return true;
720     }
721     return false;
722   case Instruction::LShr:
723     // We can promote lshr(x, cst) if we can promote x.  This requires the
724     // ultimate 'and' to clear out the high zero bits we're clearing out though.
725     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
726       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
727         return false;
728       BitsToClear += Amt->getZExtValue();
729       if (BitsToClear > V->getType()->getScalarSizeInBits())
730         BitsToClear = V->getType()->getScalarSizeInBits();
731       return true;
732     }
733     // Cannot promote variable LSHR.
734     return false;
735   case Instruction::Select:
736     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
737         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
738         // TODO: If important, we could handle the case when the BitsToClear are
739         // known zero in the disagreeing side.
740         Tmp != BitsToClear)
741       return false;
742     return true;
743 
744   case Instruction::PHI: {
745     // We can change a phi if we can change all operands.  Note that we never
746     // get into trouble with cyclic PHIs here because we only consider
747     // instructions with a single use.
748     PHINode *PN = cast<PHINode>(I);
749     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
750       return false;
751     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
752       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
753           // TODO: If important, we could handle the case when the BitsToClear
754           // are known zero in the disagreeing input.
755           Tmp != BitsToClear)
756         return false;
757     return true;
758   }
759   default:
760     // TODO: Can handle more cases here.
761     return false;
762   }
763 }
764 
765 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
766   // If this zero extend is only used by a truncate, let the truncate be
767   // eliminated before we try to optimize this zext.
768   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
769     return nullptr;
770 
771   // If one of the common conversion will work, do it.
772   if (Instruction *Result = commonCastTransforms(CI))
773     return Result;
774 
775   // See if we can simplify any instructions used by the input whose sole
776   // purpose is to compute bits we don't care about.
777   if (SimplifyDemandedInstructionBits(CI))
778     return &CI;
779 
780   Value *Src = CI.getOperand(0);
781   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
782 
783   // Attempt to extend the entire input expression tree to the destination
784   // type.   Only do this if the dest type is a simple type, don't convert the
785   // expression tree to something weird like i93 unless the source is also
786   // strange.
787   unsigned BitsToClear;
788   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
789       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
790     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
791            "Unreasonable BitsToClear");
792 
793     // Okay, we can transform this!  Insert the new expression now.
794     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
795           " to avoid zero extend: " << CI);
796     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
797     assert(Res->getType() == DestTy);
798 
799     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
800     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
801 
802     // If the high bits are already filled with zeros, just replace this
803     // cast with the result.
804     if (MaskedValueIsZero(Res,
805                           APInt::getHighBitsSet(DestBitSize,
806                                                 DestBitSize-SrcBitsKept),
807                              0, &CI))
808       return ReplaceInstUsesWith(CI, Res);
809 
810     // We need to emit an AND to clear the high bits.
811     Constant *C = ConstantInt::get(Res->getType(),
812                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
813     return BinaryOperator::CreateAnd(Res, C);
814   }
815 
816   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
817   // types and if the sizes are just right we can convert this into a logical
818   // 'and' which will be much cheaper than the pair of casts.
819   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
820     // TODO: Subsume this into EvaluateInDifferentType.
821 
822     // Get the sizes of the types involved.  We know that the intermediate type
823     // will be smaller than A or C, but don't know the relation between A and C.
824     Value *A = CSrc->getOperand(0);
825     unsigned SrcSize = A->getType()->getScalarSizeInBits();
826     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
827     unsigned DstSize = CI.getType()->getScalarSizeInBits();
828     // If we're actually extending zero bits, then if
829     // SrcSize <  DstSize: zext(a & mask)
830     // SrcSize == DstSize: a & mask
831     // SrcSize  > DstSize: trunc(a) & mask
832     if (SrcSize < DstSize) {
833       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
834       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
835       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
836       return new ZExtInst(And, CI.getType());
837     }
838 
839     if (SrcSize == DstSize) {
840       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
841       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
842                                                            AndValue));
843     }
844     if (SrcSize > DstSize) {
845       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
846       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
847       return BinaryOperator::CreateAnd(Trunc,
848                                        ConstantInt::get(Trunc->getType(),
849                                                         AndValue));
850     }
851   }
852 
853   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
854     return transformZExtICmp(ICI, CI);
855 
856   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
857   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
858     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
859     // of the (zext icmp) will be transformed.
860     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
861     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
862     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
863         (transformZExtICmp(LHS, CI, false) ||
864          transformZExtICmp(RHS, CI, false))) {
865       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
866       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
867       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
868     }
869   }
870 
871   // zext(trunc(X) & C) -> (X & zext(C)).
872   Constant *C;
873   Value *X;
874   if (SrcI &&
875       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
876       X->getType() == CI.getType())
877     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
878 
879   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
880   Value *And;
881   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
882       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
883       X->getType() == CI.getType()) {
884     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
885     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
886   }
887 
888   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
889   if (SrcI && SrcI->hasOneUse() &&
890       SrcI->getType()->getScalarType()->isIntegerTy(1) &&
891       match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
892     Value *New = Builder->CreateZExt(X, CI.getType());
893     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
894   }
895 
896   return nullptr;
897 }
898 
899 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
900 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
901   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
902   ICmpInst::Predicate Pred = ICI->getPredicate();
903 
904   // Don't bother if Op1 isn't of vector or integer type.
905   if (!Op1->getType()->isIntOrIntVectorTy())
906     return nullptr;
907 
908   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
909     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
910     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
911     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
912         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
913 
914       Value *Sh = ConstantInt::get(Op0->getType(),
915                                    Op0->getType()->getScalarSizeInBits()-1);
916       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
917       if (In->getType() != CI.getType())
918         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
919 
920       if (Pred == ICmpInst::ICMP_SGT)
921         In = Builder->CreateNot(In, In->getName()+".not");
922       return ReplaceInstUsesWith(CI, In);
923     }
924   }
925 
926   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
927     // If we know that only one bit of the LHS of the icmp can be set and we
928     // have an equality comparison with zero or a power of 2, we can transform
929     // the icmp and sext into bitwise/integer operations.
930     if (ICI->hasOneUse() &&
931         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
932       unsigned BitWidth = Op1C->getType()->getBitWidth();
933       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
934       computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
935 
936       APInt KnownZeroMask(~KnownZero);
937       if (KnownZeroMask.isPowerOf2()) {
938         Value *In = ICI->getOperand(0);
939 
940         // If the icmp tests for a known zero bit we can constant fold it.
941         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
942           Value *V = Pred == ICmpInst::ICMP_NE ?
943                        ConstantInt::getAllOnesValue(CI.getType()) :
944                        ConstantInt::getNullValue(CI.getType());
945           return ReplaceInstUsesWith(CI, V);
946         }
947 
948         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
949           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
950           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
951           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
952           // Perform a right shift to place the desired bit in the LSB.
953           if (ShiftAmt)
954             In = Builder->CreateLShr(In,
955                                      ConstantInt::get(In->getType(), ShiftAmt));
956 
957           // At this point "In" is either 1 or 0. Subtract 1 to turn
958           // {1, 0} -> {0, -1}.
959           In = Builder->CreateAdd(In,
960                                   ConstantInt::getAllOnesValue(In->getType()),
961                                   "sext");
962         } else {
963           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
964           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
965           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
966           // Perform a left shift to place the desired bit in the MSB.
967           if (ShiftAmt)
968             In = Builder->CreateShl(In,
969                                     ConstantInt::get(In->getType(), ShiftAmt));
970 
971           // Distribute the bit over the whole bit width.
972           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
973                                                         BitWidth - 1), "sext");
974         }
975 
976         if (CI.getType() == In->getType())
977           return ReplaceInstUsesWith(CI, In);
978         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
979       }
980     }
981   }
982 
983   return nullptr;
984 }
985 
986 /// Return true if we can take the specified value and return it as type Ty
987 /// without inserting any new casts and without changing the value of the common
988 /// low bits.  This is used by code that tries to promote integer operations to
989 /// a wider types will allow us to eliminate the extension.
990 ///
991 /// This function works on both vectors and scalars.
992 ///
993 static bool canEvaluateSExtd(Value *V, Type *Ty) {
994   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
995          "Can't sign extend type to a smaller type");
996   // If this is a constant, it can be trivially promoted.
997   if (isa<Constant>(V))
998     return true;
999 
1000   Instruction *I = dyn_cast<Instruction>(V);
1001   if (!I) return false;
1002 
1003   // If this is a truncate from the dest type, we can trivially eliminate it.
1004   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1005     return true;
1006 
1007   // We can't extend or shrink something that has multiple uses: doing so would
1008   // require duplicating the instruction in general, which isn't profitable.
1009   if (!I->hasOneUse()) return false;
1010 
1011   switch (I->getOpcode()) {
1012   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1013   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1014   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1015     return true;
1016   case Instruction::And:
1017   case Instruction::Or:
1018   case Instruction::Xor:
1019   case Instruction::Add:
1020   case Instruction::Sub:
1021   case Instruction::Mul:
1022     // These operators can all arbitrarily be extended if their inputs can.
1023     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1024            canEvaluateSExtd(I->getOperand(1), Ty);
1025 
1026   //case Instruction::Shl:   TODO
1027   //case Instruction::LShr:  TODO
1028 
1029   case Instruction::Select:
1030     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1031            canEvaluateSExtd(I->getOperand(2), Ty);
1032 
1033   case Instruction::PHI: {
1034     // We can change a phi if we can change all operands.  Note that we never
1035     // get into trouble with cyclic PHIs here because we only consider
1036     // instructions with a single use.
1037     PHINode *PN = cast<PHINode>(I);
1038     for (Value *IncValue : PN->incoming_values())
1039       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1040     return true;
1041   }
1042   default:
1043     // TODO: Can handle more cases here.
1044     break;
1045   }
1046 
1047   return false;
1048 }
1049 
1050 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1051   // If this sign extend is only used by a truncate, let the truncate be
1052   // eliminated before we try to optimize this sext.
1053   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1054     return nullptr;
1055 
1056   if (Instruction *I = commonCastTransforms(CI))
1057     return I;
1058 
1059   // See if we can simplify any instructions used by the input whose sole
1060   // purpose is to compute bits we don't care about.
1061   if (SimplifyDemandedInstructionBits(CI))
1062     return &CI;
1063 
1064   Value *Src = CI.getOperand(0);
1065   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1066 
1067   // If we know that the value being extended is positive, we can use a zext
1068   // instead.
1069   bool KnownZero, KnownOne;
1070   ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1071   if (KnownZero) {
1072     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1073     return ReplaceInstUsesWith(CI, ZExt);
1074   }
1075 
1076   // Attempt to extend the entire input expression tree to the destination
1077   // type.   Only do this if the dest type is a simple type, don't convert the
1078   // expression tree to something weird like i93 unless the source is also
1079   // strange.
1080   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1081       canEvaluateSExtd(Src, DestTy)) {
1082     // Okay, we can transform this!  Insert the new expression now.
1083     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1084           " to avoid sign extend: " << CI);
1085     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1086     assert(Res->getType() == DestTy);
1087 
1088     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1089     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1090 
1091     // If the high bits are already filled with sign bit, just replace this
1092     // cast with the result.
1093     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1094       return ReplaceInstUsesWith(CI, Res);
1095 
1096     // We need to emit a shl + ashr to do the sign extend.
1097     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1098     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1099                                       ShAmt);
1100   }
1101 
1102   // If this input is a trunc from our destination, then turn sext(trunc(x))
1103   // into shifts.
1104   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1105     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1106       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1107       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1108 
1109       // We need to emit a shl + ashr to do the sign extend.
1110       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1111       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1112       return BinaryOperator::CreateAShr(Res, ShAmt);
1113     }
1114 
1115   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1116     return transformSExtICmp(ICI, CI);
1117 
1118   // If the input is a shl/ashr pair of a same constant, then this is a sign
1119   // extension from a smaller value.  If we could trust arbitrary bitwidth
1120   // integers, we could turn this into a truncate to the smaller bit and then
1121   // use a sext for the whole extension.  Since we don't, look deeper and check
1122   // for a truncate.  If the source and dest are the same type, eliminate the
1123   // trunc and extend and just do shifts.  For example, turn:
1124   //   %a = trunc i32 %i to i8
1125   //   %b = shl i8 %a, 6
1126   //   %c = ashr i8 %b, 6
1127   //   %d = sext i8 %c to i32
1128   // into:
1129   //   %a = shl i32 %i, 30
1130   //   %d = ashr i32 %a, 30
1131   Value *A = nullptr;
1132   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1133   ConstantInt *BA = nullptr, *CA = nullptr;
1134   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1135                         m_ConstantInt(CA))) &&
1136       BA == CA && A->getType() == CI.getType()) {
1137     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1138     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1139     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1140     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1141     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1142     return BinaryOperator::CreateAShr(A, ShAmtV);
1143   }
1144 
1145   return nullptr;
1146 }
1147 
1148 
1149 /// Return a Constant* for the specified floating-point constant if it fits
1150 /// in the specified FP type without changing its value.
1151 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1152   bool losesInfo;
1153   APFloat F = CFP->getValueAPF();
1154   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1155   if (!losesInfo)
1156     return ConstantFP::get(CFP->getContext(), F);
1157   return nullptr;
1158 }
1159 
1160 /// If this is a floating-point extension instruction, look
1161 /// through it until we get the source value.
1162 static Value *lookThroughFPExtensions(Value *V) {
1163   if (Instruction *I = dyn_cast<Instruction>(V))
1164     if (I->getOpcode() == Instruction::FPExt)
1165       return lookThroughFPExtensions(I->getOperand(0));
1166 
1167   // If this value is a constant, return the constant in the smallest FP type
1168   // that can accurately represent it.  This allows us to turn
1169   // (float)((double)X+2.0) into x+2.0f.
1170   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1171     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1172       return V;  // No constant folding of this.
1173     // See if the value can be truncated to half and then reextended.
1174     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
1175       return V;
1176     // See if the value can be truncated to float and then reextended.
1177     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
1178       return V;
1179     if (CFP->getType()->isDoubleTy())
1180       return V;  // Won't shrink.
1181     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
1182       return V;
1183     // Don't try to shrink to various long double types.
1184   }
1185 
1186   return V;
1187 }
1188 
1189 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1190   if (Instruction *I = commonCastTransforms(CI))
1191     return I;
1192   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1193   // simpilify this expression to avoid one or more of the trunc/extend
1194   // operations if we can do so without changing the numerical results.
1195   //
1196   // The exact manner in which the widths of the operands interact to limit
1197   // what we can and cannot do safely varies from operation to operation, and
1198   // is explained below in the various case statements.
1199   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1200   if (OpI && OpI->hasOneUse()) {
1201     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1202     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1203     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1204     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1205     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1206     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1207     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1208     switch (OpI->getOpcode()) {
1209       default: break;
1210       case Instruction::FAdd:
1211       case Instruction::FSub:
1212         // For addition and subtraction, the infinitely precise result can
1213         // essentially be arbitrarily wide; proving that double rounding
1214         // will not occur because the result of OpI is exact (as we will for
1215         // FMul, for example) is hopeless.  However, we *can* nonetheless
1216         // frequently know that double rounding cannot occur (or that it is
1217         // innocuous) by taking advantage of the specific structure of
1218         // infinitely-precise results that admit double rounding.
1219         //
1220         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1221         // to represent both sources, we can guarantee that the double
1222         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1223         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1224         // for proof of this fact).
1225         //
1226         // Note: Figueroa does not consider the case where DstFormat !=
1227         // SrcFormat.  It's possible (likely even!) that this analysis
1228         // could be tightened for those cases, but they are rare (the main
1229         // case of interest here is (float)((double)float + float)).
1230         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1231           if (LHSOrig->getType() != CI.getType())
1232             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1233           if (RHSOrig->getType() != CI.getType())
1234             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1235           Instruction *RI =
1236             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1237           RI->copyFastMathFlags(OpI);
1238           return RI;
1239         }
1240         break;
1241       case Instruction::FMul:
1242         // For multiplication, the infinitely precise result has at most
1243         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1244         // that such a value can be exactly represented, then no double
1245         // rounding can possibly occur; we can safely perform the operation
1246         // in the destination format if it can represent both sources.
1247         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1248           if (LHSOrig->getType() != CI.getType())
1249             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1250           if (RHSOrig->getType() != CI.getType())
1251             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1252           Instruction *RI =
1253             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1254           RI->copyFastMathFlags(OpI);
1255           return RI;
1256         }
1257         break;
1258       case Instruction::FDiv:
1259         // For division, we use again use the bound from Figueroa's
1260         // dissertation.  I am entirely certain that this bound can be
1261         // tightened in the unbalanced operand case by an analysis based on
1262         // the diophantine rational approximation bound, but the well-known
1263         // condition used here is a good conservative first pass.
1264         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1265         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1266           if (LHSOrig->getType() != CI.getType())
1267             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1268           if (RHSOrig->getType() != CI.getType())
1269             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1270           Instruction *RI =
1271             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1272           RI->copyFastMathFlags(OpI);
1273           return RI;
1274         }
1275         break;
1276       case Instruction::FRem:
1277         // Remainder is straightforward.  Remainder is always exact, so the
1278         // type of OpI doesn't enter into things at all.  We simply evaluate
1279         // in whichever source type is larger, then convert to the
1280         // destination type.
1281         if (SrcWidth == OpWidth)
1282           break;
1283         if (LHSWidth < SrcWidth)
1284           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1285         else if (RHSWidth <= SrcWidth)
1286           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1287         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1288           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1289           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1290             RI->copyFastMathFlags(OpI);
1291           return CastInst::CreateFPCast(ExactResult, CI.getType());
1292         }
1293     }
1294 
1295     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1296     if (BinaryOperator::isFNeg(OpI)) {
1297       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1298                                                  CI.getType());
1299       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1300       RI->copyFastMathFlags(OpI);
1301       return RI;
1302     }
1303   }
1304 
1305   // (fptrunc (select cond, R1, Cst)) -->
1306   // (select cond, (fptrunc R1), (fptrunc Cst))
1307   //
1308   //  - but only if this isn't part of a min/max operation, else we'll
1309   // ruin min/max canonical form which is to have the select and
1310   // compare's operands be of the same type with no casts to look through.
1311   Value *LHS, *RHS;
1312   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1313   if (SI &&
1314       (isa<ConstantFP>(SI->getOperand(1)) ||
1315        isa<ConstantFP>(SI->getOperand(2))) &&
1316       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1317     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1318                                              CI.getType());
1319     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1320                                              CI.getType());
1321     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1322   }
1323 
1324   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1325   if (II) {
1326     switch (II->getIntrinsicID()) {
1327       default: break;
1328       case Intrinsic::fabs: {
1329         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1330         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1331                                                    CI.getType());
1332         Type *IntrinsicType[] = { CI.getType() };
1333         Function *Overload =
1334           Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1335                                     II->getIntrinsicID(), IntrinsicType);
1336 
1337         Value *Args[] = { InnerTrunc };
1338         return CallInst::Create(Overload, Args, II->getName());
1339       }
1340     }
1341   }
1342 
1343   return nullptr;
1344 }
1345 
1346 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1347   return commonCastTransforms(CI);
1348 }
1349 
1350 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1351 // This is safe if the intermediate type has enough bits in its mantissa to
1352 // accurately represent all values of X.  For example, this won't work with
1353 // i64 -> float -> i64.
1354 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1355   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1356     return nullptr;
1357   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1358 
1359   Value *SrcI = OpI->getOperand(0);
1360   Type *FITy = FI.getType();
1361   Type *OpITy = OpI->getType();
1362   Type *SrcTy = SrcI->getType();
1363   bool IsInputSigned = isa<SIToFPInst>(OpI);
1364   bool IsOutputSigned = isa<FPToSIInst>(FI);
1365 
1366   // We can safely assume the conversion won't overflow the output range,
1367   // because (for example) (uint8_t)18293.f is undefined behavior.
1368 
1369   // Since we can assume the conversion won't overflow, our decision as to
1370   // whether the input will fit in the float should depend on the minimum
1371   // of the input range and output range.
1372 
1373   // This means this is also safe for a signed input and unsigned output, since
1374   // a negative input would lead to undefined behavior.
1375   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1376   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1377   int ActualSize = std::min(InputSize, OutputSize);
1378 
1379   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1380     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1381       if (IsInputSigned && IsOutputSigned)
1382         return new SExtInst(SrcI, FITy);
1383       return new ZExtInst(SrcI, FITy);
1384     }
1385     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1386       return new TruncInst(SrcI, FITy);
1387     if (SrcTy == FITy)
1388       return ReplaceInstUsesWith(FI, SrcI);
1389     return new BitCastInst(SrcI, FITy);
1390   }
1391   return nullptr;
1392 }
1393 
1394 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1395   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1396   if (!OpI)
1397     return commonCastTransforms(FI);
1398 
1399   if (Instruction *I = FoldItoFPtoI(FI))
1400     return I;
1401 
1402   return commonCastTransforms(FI);
1403 }
1404 
1405 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1406   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1407   if (!OpI)
1408     return commonCastTransforms(FI);
1409 
1410   if (Instruction *I = FoldItoFPtoI(FI))
1411     return I;
1412 
1413   return commonCastTransforms(FI);
1414 }
1415 
1416 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1417   return commonCastTransforms(CI);
1418 }
1419 
1420 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1421   return commonCastTransforms(CI);
1422 }
1423 
1424 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1425   // If the source integer type is not the intptr_t type for this target, do a
1426   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1427   // cast to be exposed to other transforms.
1428   unsigned AS = CI.getAddressSpace();
1429   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1430       DL.getPointerSizeInBits(AS)) {
1431     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1432     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1433       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1434 
1435     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1436     return new IntToPtrInst(P, CI.getType());
1437   }
1438 
1439   if (Instruction *I = commonCastTransforms(CI))
1440     return I;
1441 
1442   return nullptr;
1443 }
1444 
1445 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1446 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1447   Value *Src = CI.getOperand(0);
1448 
1449   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1450     // If casting the result of a getelementptr instruction with no offset, turn
1451     // this into a cast of the original pointer!
1452     if (GEP->hasAllZeroIndices() &&
1453         // If CI is an addrspacecast and GEP changes the poiner type, merging
1454         // GEP into CI would undo canonicalizing addrspacecast with different
1455         // pointer types, causing infinite loops.
1456         (!isa<AddrSpaceCastInst>(CI) ||
1457           GEP->getType() == GEP->getPointerOperand()->getType())) {
1458       // Changing the cast operand is usually not a good idea but it is safe
1459       // here because the pointer operand is being replaced with another
1460       // pointer operand so the opcode doesn't need to change.
1461       Worklist.Add(GEP);
1462       CI.setOperand(0, GEP->getOperand(0));
1463       return &CI;
1464     }
1465   }
1466 
1467   return commonCastTransforms(CI);
1468 }
1469 
1470 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1471   // If the destination integer type is not the intptr_t type for this target,
1472   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1473   // to be exposed to other transforms.
1474 
1475   Type *Ty = CI.getType();
1476   unsigned AS = CI.getPointerAddressSpace();
1477 
1478   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1479     return commonPointerCastTransforms(CI);
1480 
1481   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1482   if (Ty->isVectorTy()) // Handle vectors of pointers.
1483     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1484 
1485   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1486   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1487 }
1488 
1489 /// This input value (which is known to have vector type) is being zero extended
1490 /// or truncated to the specified vector type.
1491 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1492 ///
1493 /// The source and destination vector types may have different element types.
1494 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1495                                          InstCombiner &IC) {
1496   // We can only do this optimization if the output is a multiple of the input
1497   // element size, or the input is a multiple of the output element size.
1498   // Convert the input type to have the same element type as the output.
1499   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1500 
1501   if (SrcTy->getElementType() != DestTy->getElementType()) {
1502     // The input types don't need to be identical, but for now they must be the
1503     // same size.  There is no specific reason we couldn't handle things like
1504     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1505     // there yet.
1506     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1507         DestTy->getElementType()->getPrimitiveSizeInBits())
1508       return nullptr;
1509 
1510     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1511     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1512   }
1513 
1514   // Now that the element types match, get the shuffle mask and RHS of the
1515   // shuffle to use, which depends on whether we're increasing or decreasing the
1516   // size of the input.
1517   SmallVector<uint32_t, 16> ShuffleMask;
1518   Value *V2;
1519 
1520   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1521     // If we're shrinking the number of elements, just shuffle in the low
1522     // elements from the input and use undef as the second shuffle input.
1523     V2 = UndefValue::get(SrcTy);
1524     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1525       ShuffleMask.push_back(i);
1526 
1527   } else {
1528     // If we're increasing the number of elements, shuffle in all of the
1529     // elements from InVal and fill the rest of the result elements with zeros
1530     // from a constant zero.
1531     V2 = Constant::getNullValue(SrcTy);
1532     unsigned SrcElts = SrcTy->getNumElements();
1533     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1534       ShuffleMask.push_back(i);
1535 
1536     // The excess elements reference the first element of the zero input.
1537     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1538       ShuffleMask.push_back(SrcElts);
1539   }
1540 
1541   return new ShuffleVectorInst(InVal, V2,
1542                                ConstantDataVector::get(V2->getContext(),
1543                                                        ShuffleMask));
1544 }
1545 
1546 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1547   return Value % Ty->getPrimitiveSizeInBits() == 0;
1548 }
1549 
1550 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1551   return Value / Ty->getPrimitiveSizeInBits();
1552 }
1553 
1554 /// V is a value which is inserted into a vector of VecEltTy.
1555 /// Look through the value to see if we can decompose it into
1556 /// insertions into the vector.  See the example in the comment for
1557 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1558 /// The type of V is always a non-zero multiple of VecEltTy's size.
1559 /// Shift is the number of bits between the lsb of V and the lsb of
1560 /// the vector.
1561 ///
1562 /// This returns false if the pattern can't be matched or true if it can,
1563 /// filling in Elements with the elements found here.
1564 static bool collectInsertionElements(Value *V, unsigned Shift,
1565                                      SmallVectorImpl<Value *> &Elements,
1566                                      Type *VecEltTy, bool isBigEndian) {
1567   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1568          "Shift should be a multiple of the element type size");
1569 
1570   // Undef values never contribute useful bits to the result.
1571   if (isa<UndefValue>(V)) return true;
1572 
1573   // If we got down to a value of the right type, we win, try inserting into the
1574   // right element.
1575   if (V->getType() == VecEltTy) {
1576     // Inserting null doesn't actually insert any elements.
1577     if (Constant *C = dyn_cast<Constant>(V))
1578       if (C->isNullValue())
1579         return true;
1580 
1581     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1582     if (isBigEndian)
1583       ElementIndex = Elements.size() - ElementIndex - 1;
1584 
1585     // Fail if multiple elements are inserted into this slot.
1586     if (Elements[ElementIndex])
1587       return false;
1588 
1589     Elements[ElementIndex] = V;
1590     return true;
1591   }
1592 
1593   if (Constant *C = dyn_cast<Constant>(V)) {
1594     // Figure out the # elements this provides, and bitcast it or slice it up
1595     // as required.
1596     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1597                                         VecEltTy);
1598     // If the constant is the size of a vector element, we just need to bitcast
1599     // it to the right type so it gets properly inserted.
1600     if (NumElts == 1)
1601       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1602                                       Shift, Elements, VecEltTy, isBigEndian);
1603 
1604     // Okay, this is a constant that covers multiple elements.  Slice it up into
1605     // pieces and insert each element-sized piece into the vector.
1606     if (!isa<IntegerType>(C->getType()))
1607       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1608                                        C->getType()->getPrimitiveSizeInBits()));
1609     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1610     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1611 
1612     for (unsigned i = 0; i != NumElts; ++i) {
1613       unsigned ShiftI = Shift+i*ElementSize;
1614       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1615                                                                   ShiftI));
1616       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1617       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1618                                     isBigEndian))
1619         return false;
1620     }
1621     return true;
1622   }
1623 
1624   if (!V->hasOneUse()) return false;
1625 
1626   Instruction *I = dyn_cast<Instruction>(V);
1627   if (!I) return false;
1628   switch (I->getOpcode()) {
1629   default: return false; // Unhandled case.
1630   case Instruction::BitCast:
1631     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1632                                     isBigEndian);
1633   case Instruction::ZExt:
1634     if (!isMultipleOfTypeSize(
1635                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1636                               VecEltTy))
1637       return false;
1638     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1639                                     isBigEndian);
1640   case Instruction::Or:
1641     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1642                                     isBigEndian) &&
1643            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1644                                     isBigEndian);
1645   case Instruction::Shl: {
1646     // Must be shifting by a constant that is a multiple of the element size.
1647     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1648     if (!CI) return false;
1649     Shift += CI->getZExtValue();
1650     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1651     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1652                                     isBigEndian);
1653   }
1654 
1655   }
1656 }
1657 
1658 
1659 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1660 /// assemble the elements of the vector manually.
1661 /// Try to rip the code out and replace it with insertelements.  This is to
1662 /// optimize code like this:
1663 ///
1664 ///    %tmp37 = bitcast float %inc to i32
1665 ///    %tmp38 = zext i32 %tmp37 to i64
1666 ///    %tmp31 = bitcast float %inc5 to i32
1667 ///    %tmp32 = zext i32 %tmp31 to i64
1668 ///    %tmp33 = shl i64 %tmp32, 32
1669 ///    %ins35 = or i64 %tmp33, %tmp38
1670 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1671 ///
1672 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1673 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1674                                                 InstCombiner &IC) {
1675   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1676   Value *IntInput = CI.getOperand(0);
1677 
1678   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1679   if (!collectInsertionElements(IntInput, 0, Elements,
1680                                 DestVecTy->getElementType(),
1681                                 IC.getDataLayout().isBigEndian()))
1682     return nullptr;
1683 
1684   // If we succeeded, we know that all of the element are specified by Elements
1685   // or are zero if Elements has a null entry.  Recast this as a set of
1686   // insertions.
1687   Value *Result = Constant::getNullValue(CI.getType());
1688   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1689     if (!Elements[i]) continue;  // Unset element.
1690 
1691     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1692                                              IC.Builder->getInt32(i));
1693   }
1694 
1695   return Result;
1696 }
1697 
1698 
1699 /// See if we can optimize an integer->float/double bitcast.
1700 /// The various long double bitcasts can't get in here.
1701 static Instruction *optimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC,
1702                                               const DataLayout &DL) {
1703   Value *Src = CI.getOperand(0);
1704   Type *DestTy = CI.getType();
1705 
1706   // If this is a bitcast from int to float, check to see if the int is an
1707   // extraction from a vector.
1708   Value *VecInput = nullptr;
1709   // bitcast(trunc(bitcast(somevector)))
1710   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1711       isa<VectorType>(VecInput->getType())) {
1712     VectorType *VecTy = cast<VectorType>(VecInput->getType());
1713     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1714 
1715     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1716       // If the element type of the vector doesn't match the result type,
1717       // bitcast it to be a vector type we can extract from.
1718       if (VecTy->getElementType() != DestTy) {
1719         VecTy = VectorType::get(DestTy,
1720                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
1721         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1722       }
1723 
1724       unsigned Elt = 0;
1725       if (DL.isBigEndian())
1726         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1727       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1728     }
1729   }
1730 
1731   // bitcast(trunc(lshr(bitcast(somevector), cst))
1732   ConstantInt *ShAmt = nullptr;
1733   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1734                                 m_ConstantInt(ShAmt)))) &&
1735       isa<VectorType>(VecInput->getType())) {
1736     VectorType *VecTy = cast<VectorType>(VecInput->getType());
1737     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1738     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1739         ShAmt->getZExtValue() % DestWidth == 0) {
1740       // If the element type of the vector doesn't match the result type,
1741       // bitcast it to be a vector type we can extract from.
1742       if (VecTy->getElementType() != DestTy) {
1743         VecTy = VectorType::get(DestTy,
1744                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
1745         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1746       }
1747 
1748       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1749       if (DL.isBigEndian())
1750         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
1751       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1752     }
1753   }
1754   return nullptr;
1755 }
1756 
1757 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1758   // If the operands are integer typed then apply the integer transforms,
1759   // otherwise just apply the common ones.
1760   Value *Src = CI.getOperand(0);
1761   Type *SrcTy = Src->getType();
1762   Type *DestTy = CI.getType();
1763 
1764   // Get rid of casts from one type to the same type. These are useless and can
1765   // be replaced by the operand.
1766   if (DestTy == Src->getType())
1767     return ReplaceInstUsesWith(CI, Src);
1768 
1769   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1770     PointerType *SrcPTy = cast<PointerType>(SrcTy);
1771     Type *DstElTy = DstPTy->getElementType();
1772     Type *SrcElTy = SrcPTy->getElementType();
1773 
1774     // If we are casting a alloca to a pointer to a type of the same
1775     // size, rewrite the allocation instruction to allocate the "right" type.
1776     // There is no need to modify malloc calls because it is their bitcast that
1777     // needs to be cleaned up.
1778     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1779       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1780         return V;
1781 
1782     // If the source and destination are pointers, and this cast is equivalent
1783     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1784     // This can enhance SROA and other transforms that want type-safe pointers.
1785     unsigned NumZeros = 0;
1786     while (SrcElTy != DstElTy &&
1787            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1788            SrcElTy->getNumContainedTypes() /* not "{}" */) {
1789       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
1790       ++NumZeros;
1791     }
1792 
1793     // If we found a path from the src to dest, create the getelementptr now.
1794     if (SrcElTy == DstElTy) {
1795       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
1796       return GetElementPtrInst::CreateInBounds(Src, Idxs);
1797     }
1798   }
1799 
1800   // Try to optimize int -> float bitcasts.
1801   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1802     if (Instruction *I = optimizeIntToFloatBitCast(CI, *this, DL))
1803       return I;
1804 
1805   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1806     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1807       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1808       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1809                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1810       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1811     }
1812 
1813     if (isa<IntegerType>(SrcTy)) {
1814       // If this is a cast from an integer to vector, check to see if the input
1815       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1816       // the casts with a shuffle and (potentially) a bitcast.
1817       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1818         CastInst *SrcCast = cast<CastInst>(Src);
1819         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1820           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1821             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
1822                                                cast<VectorType>(DestTy), *this))
1823               return I;
1824       }
1825 
1826       // If the input is an 'or' instruction, we may be doing shifts and ors to
1827       // assemble the elements of the vector manually.  Try to rip the code out
1828       // and replace it with insertelements.
1829       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
1830         return ReplaceInstUsesWith(CI, V);
1831     }
1832   }
1833 
1834   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1835     if (SrcVTy->getNumElements() == 1) {
1836       // If our destination is not a vector, then make this a straight
1837       // scalar-scalar cast.
1838       if (!DestTy->isVectorTy()) {
1839         Value *Elem =
1840           Builder->CreateExtractElement(Src,
1841                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1842         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1843       }
1844 
1845       // Otherwise, see if our source is an insert. If so, then use the scalar
1846       // component directly.
1847       if (InsertElementInst *IEI =
1848             dyn_cast<InsertElementInst>(CI.getOperand(0)))
1849         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1850                                 DestTy);
1851     }
1852   }
1853 
1854   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1855     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1856     // a bitcast to a vector with the same # elts.
1857     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1858         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1859         SVI->getType()->getNumElements() ==
1860         SVI->getOperand(0)->getType()->getVectorNumElements()) {
1861       BitCastInst *Tmp;
1862       // If either of the operands is a cast from CI.getType(), then
1863       // evaluating the shuffle in the casted destination's type will allow
1864       // us to eliminate at least one cast.
1865       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1866            Tmp->getOperand(0)->getType() == DestTy) ||
1867           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1868            Tmp->getOperand(0)->getType() == DestTy)) {
1869         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1870         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1871         // Return a new shuffle vector.  Use the same element ID's, as we
1872         // know the vector types match #elts.
1873         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1874       }
1875     }
1876   }
1877 
1878   if (SrcTy->isPointerTy())
1879     return commonPointerCastTransforms(CI);
1880   return commonCastTransforms(CI);
1881 }
1882 
1883 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1884   // If the destination pointer element type is not the same as the source's
1885   // first do a bitcast to the destination type, and then the addrspacecast.
1886   // This allows the cast to be exposed to other transforms.
1887   Value *Src = CI.getOperand(0);
1888   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1889   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1890 
1891   Type *DestElemTy = DestTy->getElementType();
1892   if (SrcTy->getElementType() != DestElemTy) {
1893     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1894     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1895       // Handle vectors of pointers.
1896       MidTy = VectorType::get(MidTy, VT->getNumElements());
1897     }
1898 
1899     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1900     return new AddrSpaceCastInst(NewBitCast, CI.getType());
1901   }
1902 
1903   return commonPointerCastTransforms(CI);
1904 }
1905