xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision ceab2329b64dedee972d620d3e8bd68e02e6c6e4)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                         uint64_t &Offset) {
33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34     Offset = CI->getZExtValue();
35     Scale  = 0;
36     return ConstantInt::get(Val->getType(), 0);
37   }
38 
39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40     // Cannot look past anything that might overflow.
41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43       Scale = 1;
44       Offset = 0;
45       return Val;
46     }
47 
48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49       if (I->getOpcode() == Instruction::Shl) {
50         // This is a value scaled by '1 << the shift amt'.
51         Scale = UINT64_C(1) << RHS->getZExtValue();
52         Offset = 0;
53         return I->getOperand(0);
54       }
55 
56       if (I->getOpcode() == Instruction::Mul) {
57         // This value is scaled by 'RHS'.
58         Scale = RHS->getZExtValue();
59         Offset = 0;
60         return I->getOperand(0);
61       }
62 
63       if (I->getOpcode() == Instruction::Add) {
64         // We have X+C.  Check to see if we really have (X*C2)+C1,
65         // where C1 is divisible by C2.
66         unsigned SubScale;
67         Value *SubVal =
68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69         Offset += RHS->getZExtValue();
70         Scale = SubScale;
71         return SubVal;
72       }
73     }
74   }
75 
76   // Otherwise, we can't look past this.
77   Scale = 1;
78   Offset = 0;
79   return Val;
80 }
81 
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                    AllocaInst &AI) {
86   PointerType *PTy = cast<PointerType>(CI.getType());
87 
88   BuilderTy AllocaBuilder(Builder);
89   AllocaBuilder.SetInsertPoint(&AI);
90 
91   // Get the type really allocated and the type casted to.
92   Type *AllocElTy = AI.getAllocatedType();
93   Type *CastElTy = PTy->getElementType();
94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 
96   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 
100   // If the allocation has multiple uses, only promote it if we are strictly
101   // increasing the alignment of the resultant allocation.  If we keep it the
102   // same, we open the door to infinite loops of various kinds.
103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 
105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 
109   // If the allocation has multiple uses, only promote it if we're not
110   // shrinking the amount of memory being allocated.
111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 
115   // See if we can satisfy the modulus by pulling a scale out of the array
116   // size argument.
117   unsigned ArraySizeScale;
118   uint64_t ArrayOffset;
119   Value *NumElements = // See if the array size is a decomposable linear expr.
120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 
122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
123   // do the xform.
124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126 
127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128   Value *Amt = nullptr;
129   if (Scale == 1) {
130     Amt = NumElements;
131   } else {
132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133     // Insert before the alloca, not before the cast.
134     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135   }
136 
137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                   Offset, true);
140     Amt = AllocaBuilder.CreateAdd(Amt, Off);
141   }
142 
143   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144   New->setAlignment(AI.getAlignment());
145   New->takeName(&AI);
146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 
148   // If the allocation has multiple real uses, insert a cast and change all
149   // things that used it to use the new cast.  This will also hack on CI, but it
150   // will die soon.
151   if (!AI.hasOneUse()) {
152     // New is the allocation instruction, pointer typed. AI is the original
153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155     replaceInstUsesWith(AI, NewCast);
156   }
157   return replaceInstUsesWith(CI, New);
158 }
159 
160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161 /// true for, actually insert the code to evaluate the expression.
162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163                                              bool isSigned) {
164   if (Constant *C = dyn_cast<Constant>(V)) {
165     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166     // If we got a constantexpr back, try to simplify it with DL info.
167     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168       C = FoldedC;
169     return C;
170   }
171 
172   // Otherwise, it must be an instruction.
173   Instruction *I = cast<Instruction>(V);
174   Instruction *Res = nullptr;
175   unsigned Opc = I->getOpcode();
176   switch (Opc) {
177   case Instruction::Add:
178   case Instruction::Sub:
179   case Instruction::Mul:
180   case Instruction::And:
181   case Instruction::Or:
182   case Instruction::Xor:
183   case Instruction::AShr:
184   case Instruction::LShr:
185   case Instruction::Shl:
186   case Instruction::UDiv:
187   case Instruction::URem: {
188     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191     break;
192   }
193   case Instruction::Trunc:
194   case Instruction::ZExt:
195   case Instruction::SExt:
196     // If the source type of the cast is the type we're trying for then we can
197     // just return the source.  There's no need to insert it because it is not
198     // new.
199     if (I->getOperand(0)->getType() == Ty)
200       return I->getOperand(0);
201 
202     // Otherwise, must be the same type of cast, so just reinsert a new one.
203     // This also handles the case of zext(trunc(x)) -> zext(x).
204     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205                                       Opc == Instruction::SExt);
206     break;
207   case Instruction::Select: {
208     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210     Res = SelectInst::Create(I->getOperand(0), True, False);
211     break;
212   }
213   case Instruction::PHI: {
214     PHINode *OPN = cast<PHINode>(I);
215     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
216     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217       Value *V =
218           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219       NPN->addIncoming(V, OPN->getIncomingBlock(i));
220     }
221     Res = NPN;
222     break;
223   }
224   default:
225     // TODO: Can handle more cases here.
226     llvm_unreachable("Unreachable!");
227   }
228 
229   Res->takeName(I);
230   return InsertNewInstWith(Res, *I);
231 }
232 
233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
234                                                         const CastInst *CI2) {
235   Type *SrcTy = CI1->getSrcTy();
236   Type *MidTy = CI1->getDestTy();
237   Type *DstTy = CI2->getDestTy();
238 
239   Instruction::CastOps firstOp = CI1->getOpcode();
240   Instruction::CastOps secondOp = CI2->getOpcode();
241   Type *SrcIntPtrTy =
242       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
243   Type *MidIntPtrTy =
244       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
245   Type *DstIntPtrTy =
246       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
247   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
249                                                 DstIntPtrTy);
250 
251   // We don't want to form an inttoptr or ptrtoint that converts to an integer
252   // type that differs from the pointer size.
253   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255     Res = 0;
256 
257   return Instruction::CastOps(Res);
258 }
259 
260 /// Implement the transforms common to all CastInst visitors.
261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
262   Value *Src = CI.getOperand(0);
263 
264   // Try to eliminate a cast of a cast.
265   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
266     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
267       // The first cast (CSrc) is eliminable so we need to fix up or replace
268       // the second cast (CI). CSrc will then have a good chance of being dead.
269       auto *Ty = CI.getType();
270       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
271       // Point debug users of the dying cast to the new one.
272       if (CSrc->hasOneUse())
273         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
274       return Res;
275     }
276   }
277 
278   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
279     // We are casting a select. Try to fold the cast into the select, but only
280     // if the select does not have a compare instruction with matching operand
281     // types. Creating a select with operands that are different sizes than its
282     // condition may inhibit other folds and lead to worse codegen.
283     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
285       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
286         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
287         return NV;
288       }
289   }
290 
291   // If we are casting a PHI, then fold the cast into the PHI.
292   if (auto *PN = dyn_cast<PHINode>(Src)) {
293     // Don't do this if it would create a PHI node with an illegal type from a
294     // legal type.
295     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
296         shouldChangeType(CI.getType(), Src->getType()))
297       if (Instruction *NV = foldOpIntoPhi(CI, PN))
298         return NV;
299   }
300 
301   return nullptr;
302 }
303 
304 /// Constants and extensions/truncates from the destination type are always
305 /// free to be evaluated in that type. This is a helper for canEvaluate*.
306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
307   if (isa<Constant>(V))
308     return true;
309   Value *X;
310   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
311       X->getType() == Ty)
312     return true;
313 
314   return false;
315 }
316 
317 /// Filter out values that we can not evaluate in the destination type for free.
318 /// This is a helper for canEvaluate*.
319 static bool canNotEvaluateInType(Value *V, Type *Ty) {
320   assert(!isa<Constant>(V) && "Constant should already be handled.");
321   if (!isa<Instruction>(V))
322     return true;
323   // We don't extend or shrink something that has multiple uses --  doing so
324   // would require duplicating the instruction which isn't profitable.
325   if (!V->hasOneUse())
326     return true;
327 
328   return false;
329 }
330 
331 /// Return true if we can evaluate the specified expression tree as type Ty
332 /// instead of its larger type, and arrive with the same value.
333 /// This is used by code that tries to eliminate truncates.
334 ///
335 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
336 /// can be computed by computing V in the smaller type.  If V is an instruction,
337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
338 /// makes sense if x and y can be efficiently truncated.
339 ///
340 /// This function works on both vectors and scalars.
341 ///
342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
343                                  Instruction *CxtI) {
344   if (canAlwaysEvaluateInType(V, Ty))
345     return true;
346   if (canNotEvaluateInType(V, Ty))
347     return false;
348 
349   auto *I = cast<Instruction>(V);
350   Type *OrigTy = V->getType();
351   switch (I->getOpcode()) {
352   case Instruction::Add:
353   case Instruction::Sub:
354   case Instruction::Mul:
355   case Instruction::And:
356   case Instruction::Or:
357   case Instruction::Xor:
358     // These operators can all arbitrarily be extended or truncated.
359     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
360            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361 
362   case Instruction::UDiv:
363   case Instruction::URem: {
364     // UDiv and URem can be truncated if all the truncated bits are zero.
365     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
366     uint32_t BitWidth = Ty->getScalarSizeInBits();
367     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
368     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
369     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
370         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
371       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
372              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373     }
374     break;
375   }
376   case Instruction::Shl: {
377     // If we are truncating the result of this SHL, and if it's a shift of a
378     // constant amount, we can always perform a SHL in a smaller type.
379     const APInt *Amt;
380     if (match(I->getOperand(1), m_APInt(Amt))) {
381       uint32_t BitWidth = Ty->getScalarSizeInBits();
382       if (Amt->getLimitedValue(BitWidth) < BitWidth)
383         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384     }
385     break;
386   }
387   case Instruction::LShr: {
388     // If this is a truncate of a logical shr, we can truncate it to a smaller
389     // lshr iff we know that the bits we would otherwise be shifting in are
390     // already zeros.
391     const APInt *Amt;
392     if (match(I->getOperand(1), m_APInt(Amt))) {
393       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394       uint32_t BitWidth = Ty->getScalarSizeInBits();
395       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
396           IC.MaskedValueIsZero(I->getOperand(0),
397             APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
398         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399       }
400     }
401     break;
402   }
403   case Instruction::AShr: {
404     // If this is a truncate of an arithmetic shr, we can truncate it to a
405     // smaller ashr iff we know that all the bits from the sign bit of the
406     // original type and the sign bit of the truncate type are similar.
407     // TODO: It is enough to check that the bits we would be shifting in are
408     //       similar to sign bit of the truncate type.
409     const APInt *Amt;
410     if (match(I->getOperand(1), m_APInt(Amt))) {
411       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
412       uint32_t BitWidth = Ty->getScalarSizeInBits();
413       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
414           OrigBitWidth - BitWidth <
415               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
416         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417     }
418     break;
419   }
420   case Instruction::Trunc:
421     // trunc(trunc(x)) -> trunc(x)
422     return true;
423   case Instruction::ZExt:
424   case Instruction::SExt:
425     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
426     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
427     return true;
428   case Instruction::Select: {
429     SelectInst *SI = cast<SelectInst>(I);
430     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
431            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432   }
433   case Instruction::PHI: {
434     // We can change a phi if we can change all operands.  Note that we never
435     // get into trouble with cyclic PHIs here because we only consider
436     // instructions with a single use.
437     PHINode *PN = cast<PHINode>(I);
438     for (Value *IncValue : PN->incoming_values())
439       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
440         return false;
441     return true;
442   }
443   default:
444     // TODO: Can handle more cases here.
445     break;
446   }
447 
448   return false;
449 }
450 
451 /// Given a vector that is bitcast to an integer, optionally logically
452 /// right-shifted, and truncated, convert it to an extractelement.
453 /// Example (big endian):
454 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
455 ///   --->
456 ///   extractelement <4 x i32> %X, 1
457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
458   Value *TruncOp = Trunc.getOperand(0);
459   Type *DestType = Trunc.getType();
460   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
461     return nullptr;
462 
463   Value *VecInput = nullptr;
464   ConstantInt *ShiftVal = nullptr;
465   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
466                                   m_LShr(m_BitCast(m_Value(VecInput)),
467                                          m_ConstantInt(ShiftVal)))) ||
468       !isa<VectorType>(VecInput->getType()))
469     return nullptr;
470 
471   VectorType *VecType = cast<VectorType>(VecInput->getType());
472   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
473   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
474   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475 
476   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
477     return nullptr;
478 
479   // If the element type of the vector doesn't match the result type,
480   // bitcast it to a vector type that we can extract from.
481   unsigned NumVecElts = VecWidth / DestWidth;
482   if (VecType->getElementType() != DestType) {
483     VecType = VectorType::get(DestType, NumVecElts);
484     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
485   }
486 
487   unsigned Elt = ShiftAmount / DestWidth;
488   if (IC.getDataLayout().isBigEndian())
489     Elt = NumVecElts - 1 - Elt;
490 
491   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
492 }
493 
494 /// Rotate left/right may occur in a wider type than necessary because of type
495 /// promotion rules. Try to narrow all of the component instructions.
496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
497   assert((isa<VectorType>(Trunc.getSrcTy()) ||
498           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
499          "Don't narrow to an illegal scalar type");
500 
501   // First, find an or'd pair of opposite shifts with the same shifted operand:
502   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
503   Value *Or0, *Or1;
504   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
505     return nullptr;
506 
507   Value *ShVal, *ShAmt0, *ShAmt1;
508   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
509       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
510     return nullptr;
511 
512   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
513   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
514   if (ShiftOpcode0 == ShiftOpcode1)
515     return nullptr;
516 
517   // Match the shift amount operands for a rotate pattern. This always matches
518   // a subtraction on the R operand.
519   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
520     // The shift amounts may add up to the narrow bit width:
521     // (shl ShVal, L) | (lshr ShVal, Width - L)
522     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
523       return L;
524 
525     return nullptr;
526   };
527 
528   Type *DestTy = Trunc.getType();
529   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
530   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
531   bool SubIsOnLHS = false;
532   if (!ShAmt) {
533     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
534     SubIsOnLHS = true;
535   }
536   if (!ShAmt)
537     return nullptr;
538 
539   // The shifted value must have high zeros in the wide type. Typically, this
540   // will be a zext, but it could also be the result of an 'and' or 'shift'.
541   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
542   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
543   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
544     return nullptr;
545 
546   // We have an unnecessarily wide rotate!
547   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
548   // Narrow it down to eliminate the zext/trunc:
549   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
550   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
551   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
552 
553   // Mask both shift amounts to ensure there's no UB from oversized shifts.
554   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
555   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
556   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
557 
558   // Truncate the original value and use narrow ops.
559   Value *X = Builder.CreateTrunc(ShVal, DestTy);
560   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
561   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
562   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
563   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
564   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
565 }
566 
567 /// Try to narrow the width of math or bitwise logic instructions by pulling a
568 /// truncate ahead of binary operators.
569 /// TODO: Transforms for truncated shifts should be moved into here.
570 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
571   Type *SrcTy = Trunc.getSrcTy();
572   Type *DestTy = Trunc.getType();
573   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
574     return nullptr;
575 
576   BinaryOperator *BinOp;
577   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
578     return nullptr;
579 
580   Value *BinOp0 = BinOp->getOperand(0);
581   Value *BinOp1 = BinOp->getOperand(1);
582   switch (BinOp->getOpcode()) {
583   case Instruction::And:
584   case Instruction::Or:
585   case Instruction::Xor:
586   case Instruction::Add:
587   case Instruction::Sub:
588   case Instruction::Mul: {
589     Constant *C;
590     if (match(BinOp0, m_Constant(C))) {
591       // trunc (binop C, X) --> binop (trunc C', X)
592       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
593       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
594       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
595     }
596     if (match(BinOp1, m_Constant(C))) {
597       // trunc (binop X, C) --> binop (trunc X, C')
598       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
599       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
600       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
601     }
602     Value *X;
603     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
604       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
605       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
606       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
607     }
608     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
609       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
610       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
611       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
612     }
613     break;
614   }
615 
616   default: break;
617   }
618 
619   if (Instruction *NarrowOr = narrowRotate(Trunc))
620     return NarrowOr;
621 
622   return nullptr;
623 }
624 
625 /// Try to narrow the width of a splat shuffle. This could be generalized to any
626 /// shuffle with a constant operand, but we limit the transform to avoid
627 /// creating a shuffle type that targets may not be able to lower effectively.
628 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
629                                        InstCombiner::BuilderTy &Builder) {
630   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
631   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
632       Shuf->getMask()->getSplatValue() &&
633       Shuf->getType() == Shuf->getOperand(0)->getType()) {
634     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
635     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
636     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
637     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
638   }
639 
640   return nullptr;
641 }
642 
643 /// Try to narrow the width of an insert element. This could be generalized for
644 /// any vector constant, but we limit the transform to insertion into undef to
645 /// avoid potential backend problems from unsupported insertion widths. This
646 /// could also be extended to handle the case of inserting a scalar constant
647 /// into a vector variable.
648 static Instruction *shrinkInsertElt(CastInst &Trunc,
649                                     InstCombiner::BuilderTy &Builder) {
650   Instruction::CastOps Opcode = Trunc.getOpcode();
651   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
652          "Unexpected instruction for shrinking");
653 
654   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
655   if (!InsElt || !InsElt->hasOneUse())
656     return nullptr;
657 
658   Type *DestTy = Trunc.getType();
659   Type *DestScalarTy = DestTy->getScalarType();
660   Value *VecOp = InsElt->getOperand(0);
661   Value *ScalarOp = InsElt->getOperand(1);
662   Value *Index = InsElt->getOperand(2);
663 
664   if (isa<UndefValue>(VecOp)) {
665     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
666     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
667     UndefValue *NarrowUndef = UndefValue::get(DestTy);
668     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
669     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
670   }
671 
672   return nullptr;
673 }
674 
675 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
676   if (Instruction *Result = commonCastTransforms(CI))
677     return Result;
678 
679   Value *Src = CI.getOperand(0);
680   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
681 
682   // Attempt to truncate the entire input expression tree to the destination
683   // type.   Only do this if the dest type is a simple type, don't convert the
684   // expression tree to something weird like i93 unless the source is also
685   // strange.
686   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
687       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
688 
689     // If this cast is a truncate, evaluting in a different type always
690     // eliminates the cast, so it is always a win.
691     LLVM_DEBUG(
692         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
693                   " to avoid cast: "
694                << CI << '\n');
695     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
696     assert(Res->getType() == DestTy);
697     return replaceInstUsesWith(CI, Res);
698   }
699 
700   // Test if the trunc is the user of a select which is part of a
701   // minimum or maximum operation. If so, don't do any more simplification.
702   // Even simplifying demanded bits can break the canonical form of a
703   // min/max.
704   Value *LHS, *RHS;
705   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
706     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
707       return nullptr;
708 
709   // See if we can simplify any instructions used by the input whose sole
710   // purpose is to compute bits we don't care about.
711   if (SimplifyDemandedInstructionBits(CI))
712     return &CI;
713 
714   if (DestTy->getScalarSizeInBits() == 1) {
715     Value *Zero = Constant::getNullValue(Src->getType());
716     if (DestTy->isIntegerTy()) {
717       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
718       // TODO: We canonicalize to more instructions here because we are probably
719       // lacking equivalent analysis for trunc relative to icmp. There may also
720       // be codegen concerns. If those trunc limitations were removed, we could
721       // remove this transform.
722       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
723       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
724     }
725 
726     // For vectors, we do not canonicalize all truncs to icmp, so optimize
727     // patterns that would be covered within visitICmpInst.
728     Value *X;
729     const APInt *C;
730     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
731       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
732       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
733       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
734       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
735     }
736     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
737                                    m_Deferred(X))))) {
738       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
739       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
740       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
741       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
742     }
743   }
744 
745   // FIXME: Maybe combine the next two transforms to handle the no cast case
746   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
747 
748   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
749   Value *A = nullptr; ConstantInt *Cst = nullptr;
750   if (Src->hasOneUse() &&
751       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
752     // We have three types to worry about here, the type of A, the source of
753     // the truncate (MidSize), and the destination of the truncate. We know that
754     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
755     // between ASize and ResultSize.
756     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
757 
758     // If the shift amount is larger than the size of A, then the result is
759     // known to be zero because all the input bits got shifted out.
760     if (Cst->getZExtValue() >= ASize)
761       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
762 
763     // Since we're doing an lshr and a zero extend, and know that the shift
764     // amount is smaller than ASize, it is always safe to do the shift in A's
765     // type, then zero extend or truncate to the result.
766     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
767     Shift->takeName(Src);
768     return CastInst::CreateIntegerCast(Shift, DestTy, false);
769   }
770 
771   // FIXME: We should canonicalize to zext/trunc and remove this transform.
772   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
773   // conversion.
774   // It works because bits coming from sign extension have the same value as
775   // the sign bit of the original value; performing ashr instead of lshr
776   // generates bits of the same value as the sign bit.
777   if (Src->hasOneUse() &&
778       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
779     Value *SExt = cast<Instruction>(Src)->getOperand(0);
780     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
781     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
782     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
783     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
784     unsigned ShiftAmt = Cst->getZExtValue();
785 
786     // This optimization can be only performed when zero bits generated by
787     // the original lshr aren't pulled into the value after truncation, so we
788     // can only shift by values no larger than the number of extension bits.
789     // FIXME: Instead of bailing when the shift is too large, use and to clear
790     // the extra bits.
791     if (ShiftAmt <= MaxAmt) {
792       if (CISize == ASize)
793         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
794                                           std::min(ShiftAmt, ASize - 1)));
795       if (SExt->hasOneUse()) {
796         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
797         Shift->takeName(Src);
798         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
799       }
800     }
801   }
802 
803   if (Instruction *I = narrowBinOp(CI))
804     return I;
805 
806   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
807     return I;
808 
809   if (Instruction *I = shrinkInsertElt(CI, Builder))
810     return I;
811 
812   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
813       shouldChangeType(SrcTy, DestTy)) {
814     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
815     // dest type is native and cst < dest size.
816     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
817         !match(A, m_Shr(m_Value(), m_Constant()))) {
818       // Skip shifts of shift by constants. It undoes a combine in
819       // FoldShiftByConstant and is the extend in reg pattern.
820       const unsigned DestSize = DestTy->getScalarSizeInBits();
821       if (Cst->getValue().ult(DestSize)) {
822         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
823 
824         return BinaryOperator::Create(
825           Instruction::Shl, NewTrunc,
826           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
827       }
828     }
829   }
830 
831   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
832     return I;
833 
834   return nullptr;
835 }
836 
837 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
838                                              bool DoTransform) {
839   // If we are just checking for a icmp eq of a single bit and zext'ing it
840   // to an integer, then shift the bit to the appropriate place and then
841   // cast to integer to avoid the comparison.
842   const APInt *Op1CV;
843   if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
844 
845     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
846     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
847     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
848         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
849       if (!DoTransform) return ICI;
850 
851       Value *In = ICI->getOperand(0);
852       Value *Sh = ConstantInt::get(In->getType(),
853                                    In->getType()->getScalarSizeInBits() - 1);
854       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
855       if (In->getType() != CI.getType())
856         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
857 
858       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
859         Constant *One = ConstantInt::get(In->getType(), 1);
860         In = Builder.CreateXor(In, One, In->getName() + ".not");
861       }
862 
863       return replaceInstUsesWith(CI, In);
864     }
865 
866     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
867     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
868     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
869     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
870     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
871     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
872     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
873     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
874     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
875         // This only works for EQ and NE
876         ICI->isEquality()) {
877       // If Op1C some other power of two, convert:
878       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
879 
880       APInt KnownZeroMask(~Known.Zero);
881       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
882         if (!DoTransform) return ICI;
883 
884         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
885         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
886           // (X&4) == 2 --> false
887           // (X&4) != 2 --> true
888           Constant *Res = ConstantInt::get(CI.getType(), isNE);
889           return replaceInstUsesWith(CI, Res);
890         }
891 
892         uint32_t ShAmt = KnownZeroMask.logBase2();
893         Value *In = ICI->getOperand(0);
894         if (ShAmt) {
895           // Perform a logical shr by shiftamt.
896           // Insert the shift to put the result in the low bit.
897           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
898                                   In->getName() + ".lobit");
899         }
900 
901         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
902           Constant *One = ConstantInt::get(In->getType(), 1);
903           In = Builder.CreateXor(In, One);
904         }
905 
906         if (CI.getType() == In->getType())
907           return replaceInstUsesWith(CI, In);
908 
909         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
910         return replaceInstUsesWith(CI, IntCast);
911       }
912     }
913   }
914 
915   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
916   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
917   // may lead to additional simplifications.
918   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
919     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
920       Value *LHS = ICI->getOperand(0);
921       Value *RHS = ICI->getOperand(1);
922 
923       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
924       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
925 
926       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
927         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
928         APInt UnknownBit = ~KnownBits;
929         if (UnknownBit.countPopulation() == 1) {
930           if (!DoTransform) return ICI;
931 
932           Value *Result = Builder.CreateXor(LHS, RHS);
933 
934           // Mask off any bits that are set and won't be shifted away.
935           if (KnownLHS.One.uge(UnknownBit))
936             Result = Builder.CreateAnd(Result,
937                                         ConstantInt::get(ITy, UnknownBit));
938 
939           // Shift the bit we're testing down to the lsb.
940           Result = Builder.CreateLShr(
941                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
942 
943           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
944             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
945           Result->takeName(ICI);
946           return replaceInstUsesWith(CI, Result);
947         }
948       }
949     }
950   }
951 
952   return nullptr;
953 }
954 
955 /// Determine if the specified value can be computed in the specified wider type
956 /// and produce the same low bits. If not, return false.
957 ///
958 /// If this function returns true, it can also return a non-zero number of bits
959 /// (in BitsToClear) which indicates that the value it computes is correct for
960 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
961 /// out.  For example, to promote something like:
962 ///
963 ///   %B = trunc i64 %A to i32
964 ///   %C = lshr i32 %B, 8
965 ///   %E = zext i32 %C to i64
966 ///
967 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
968 /// set to 8 to indicate that the promoted value needs to have bits 24-31
969 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
970 /// clear the top bits anyway, doing this has no extra cost.
971 ///
972 /// This function works on both vectors and scalars.
973 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
974                              InstCombiner &IC, Instruction *CxtI) {
975   BitsToClear = 0;
976   if (canAlwaysEvaluateInType(V, Ty))
977     return true;
978   if (canNotEvaluateInType(V, Ty))
979     return false;
980 
981   auto *I = cast<Instruction>(V);
982   unsigned Tmp;
983   switch (I->getOpcode()) {
984   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
985   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
986   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
987     return true;
988   case Instruction::And:
989   case Instruction::Or:
990   case Instruction::Xor:
991   case Instruction::Add:
992   case Instruction::Sub:
993   case Instruction::Mul:
994     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
995         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
996       return false;
997     // These can all be promoted if neither operand has 'bits to clear'.
998     if (BitsToClear == 0 && Tmp == 0)
999       return true;
1000 
1001     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1002     // other side, BitsToClear is ok.
1003     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1004       // We use MaskedValueIsZero here for generality, but the case we care
1005       // about the most is constant RHS.
1006       unsigned VSize = V->getType()->getScalarSizeInBits();
1007       if (IC.MaskedValueIsZero(I->getOperand(1),
1008                                APInt::getHighBitsSet(VSize, BitsToClear),
1009                                0, CxtI)) {
1010         // If this is an And instruction and all of the BitsToClear are
1011         // known to be zero we can reset BitsToClear.
1012         if (I->getOpcode() == Instruction::And)
1013           BitsToClear = 0;
1014         return true;
1015       }
1016     }
1017 
1018     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1019     return false;
1020 
1021   case Instruction::Shl: {
1022     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1023     // upper bits we can reduce BitsToClear by the shift amount.
1024     const APInt *Amt;
1025     if (match(I->getOperand(1), m_APInt(Amt))) {
1026       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1027         return false;
1028       uint64_t ShiftAmt = Amt->getZExtValue();
1029       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1030       return true;
1031     }
1032     return false;
1033   }
1034   case Instruction::LShr: {
1035     // We can promote lshr(x, cst) if we can promote x.  This requires the
1036     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1037     const APInt *Amt;
1038     if (match(I->getOperand(1), m_APInt(Amt))) {
1039       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1040         return false;
1041       BitsToClear += Amt->getZExtValue();
1042       if (BitsToClear > V->getType()->getScalarSizeInBits())
1043         BitsToClear = V->getType()->getScalarSizeInBits();
1044       return true;
1045     }
1046     // Cannot promote variable LSHR.
1047     return false;
1048   }
1049   case Instruction::Select:
1050     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1051         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1052         // TODO: If important, we could handle the case when the BitsToClear are
1053         // known zero in the disagreeing side.
1054         Tmp != BitsToClear)
1055       return false;
1056     return true;
1057 
1058   case Instruction::PHI: {
1059     // We can change a phi if we can change all operands.  Note that we never
1060     // get into trouble with cyclic PHIs here because we only consider
1061     // instructions with a single use.
1062     PHINode *PN = cast<PHINode>(I);
1063     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1064       return false;
1065     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1066       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1067           // TODO: If important, we could handle the case when the BitsToClear
1068           // are known zero in the disagreeing input.
1069           Tmp != BitsToClear)
1070         return false;
1071     return true;
1072   }
1073   default:
1074     // TODO: Can handle more cases here.
1075     return false;
1076   }
1077 }
1078 
1079 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1080   // If this zero extend is only used by a truncate, let the truncate be
1081   // eliminated before we try to optimize this zext.
1082   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1083     return nullptr;
1084 
1085   // If one of the common conversion will work, do it.
1086   if (Instruction *Result = commonCastTransforms(CI))
1087     return Result;
1088 
1089   Value *Src = CI.getOperand(0);
1090   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1091 
1092   // Attempt to extend the entire input expression tree to the destination
1093   // type.   Only do this if the dest type is a simple type, don't convert the
1094   // expression tree to something weird like i93 unless the source is also
1095   // strange.
1096   unsigned BitsToClear;
1097   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1098       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1099     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1100            "Can't clear more bits than in SrcTy");
1101 
1102     // Okay, we can transform this!  Insert the new expression now.
1103     LLVM_DEBUG(
1104         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1105                   " to avoid zero extend: "
1106                << CI << '\n');
1107     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1108     assert(Res->getType() == DestTy);
1109 
1110     // Preserve debug values referring to Src if the zext is its last use.
1111     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1112       if (SrcOp->hasOneUse())
1113         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1114 
1115     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1116     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1117 
1118     // If the high bits are already filled with zeros, just replace this
1119     // cast with the result.
1120     if (MaskedValueIsZero(Res,
1121                           APInt::getHighBitsSet(DestBitSize,
1122                                                 DestBitSize-SrcBitsKept),
1123                              0, &CI))
1124       return replaceInstUsesWith(CI, Res);
1125 
1126     // We need to emit an AND to clear the high bits.
1127     Constant *C = ConstantInt::get(Res->getType(),
1128                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1129     return BinaryOperator::CreateAnd(Res, C);
1130   }
1131 
1132   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1133   // types and if the sizes are just right we can convert this into a logical
1134   // 'and' which will be much cheaper than the pair of casts.
1135   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1136     // TODO: Subsume this into EvaluateInDifferentType.
1137 
1138     // Get the sizes of the types involved.  We know that the intermediate type
1139     // will be smaller than A or C, but don't know the relation between A and C.
1140     Value *A = CSrc->getOperand(0);
1141     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1142     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1143     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1144     // If we're actually extending zero bits, then if
1145     // SrcSize <  DstSize: zext(a & mask)
1146     // SrcSize == DstSize: a & mask
1147     // SrcSize  > DstSize: trunc(a) & mask
1148     if (SrcSize < DstSize) {
1149       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1150       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1151       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1152       return new ZExtInst(And, CI.getType());
1153     }
1154 
1155     if (SrcSize == DstSize) {
1156       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1157       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1158                                                            AndValue));
1159     }
1160     if (SrcSize > DstSize) {
1161       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1162       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1163       return BinaryOperator::CreateAnd(Trunc,
1164                                        ConstantInt::get(Trunc->getType(),
1165                                                         AndValue));
1166     }
1167   }
1168 
1169   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1170     return transformZExtICmp(ICI, CI);
1171 
1172   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1173   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1174     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1175     // of the (zext icmp) can be eliminated. If so, immediately perform the
1176     // according elimination.
1177     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1178     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1179     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1180         (transformZExtICmp(LHS, CI, false) ||
1181          transformZExtICmp(RHS, CI, false))) {
1182       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1183       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1184       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1185       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1186 
1187       // Perform the elimination.
1188       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1189         transformZExtICmp(LHS, *LZExt);
1190       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1191         transformZExtICmp(RHS, *RZExt);
1192 
1193       return Or;
1194     }
1195   }
1196 
1197   // zext(trunc(X) & C) -> (X & zext(C)).
1198   Constant *C;
1199   Value *X;
1200   if (SrcI &&
1201       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1202       X->getType() == CI.getType())
1203     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1204 
1205   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1206   Value *And;
1207   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1208       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1209       X->getType() == CI.getType()) {
1210     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1211     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1212   }
1213 
1214   return nullptr;
1215 }
1216 
1217 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1218 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1219   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1220   ICmpInst::Predicate Pred = ICI->getPredicate();
1221 
1222   // Don't bother if Op1 isn't of vector or integer type.
1223   if (!Op1->getType()->isIntOrIntVectorTy())
1224     return nullptr;
1225 
1226   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1227       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1228     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1229     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1230     Value *Sh = ConstantInt::get(Op0->getType(),
1231                                  Op0->getType()->getScalarSizeInBits() - 1);
1232     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1233     if (In->getType() != CI.getType())
1234       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1235 
1236     if (Pred == ICmpInst::ICMP_SGT)
1237       In = Builder.CreateNot(In, In->getName() + ".not");
1238     return replaceInstUsesWith(CI, In);
1239   }
1240 
1241   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1242     // If we know that only one bit of the LHS of the icmp can be set and we
1243     // have an equality comparison with zero or a power of 2, we can transform
1244     // the icmp and sext into bitwise/integer operations.
1245     if (ICI->hasOneUse() &&
1246         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1247       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1248 
1249       APInt KnownZeroMask(~Known.Zero);
1250       if (KnownZeroMask.isPowerOf2()) {
1251         Value *In = ICI->getOperand(0);
1252 
1253         // If the icmp tests for a known zero bit we can constant fold it.
1254         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1255           Value *V = Pred == ICmpInst::ICMP_NE ?
1256                        ConstantInt::getAllOnesValue(CI.getType()) :
1257                        ConstantInt::getNullValue(CI.getType());
1258           return replaceInstUsesWith(CI, V);
1259         }
1260 
1261         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1262           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1263           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1264           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1265           // Perform a right shift to place the desired bit in the LSB.
1266           if (ShiftAmt)
1267             In = Builder.CreateLShr(In,
1268                                     ConstantInt::get(In->getType(), ShiftAmt));
1269 
1270           // At this point "In" is either 1 or 0. Subtract 1 to turn
1271           // {1, 0} -> {0, -1}.
1272           In = Builder.CreateAdd(In,
1273                                  ConstantInt::getAllOnesValue(In->getType()),
1274                                  "sext");
1275         } else {
1276           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1277           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1278           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1279           // Perform a left shift to place the desired bit in the MSB.
1280           if (ShiftAmt)
1281             In = Builder.CreateShl(In,
1282                                    ConstantInt::get(In->getType(), ShiftAmt));
1283 
1284           // Distribute the bit over the whole bit width.
1285           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1286                                   KnownZeroMask.getBitWidth() - 1), "sext");
1287         }
1288 
1289         if (CI.getType() == In->getType())
1290           return replaceInstUsesWith(CI, In);
1291         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1292       }
1293     }
1294   }
1295 
1296   return nullptr;
1297 }
1298 
1299 /// Return true if we can take the specified value and return it as type Ty
1300 /// without inserting any new casts and without changing the value of the common
1301 /// low bits.  This is used by code that tries to promote integer operations to
1302 /// a wider types will allow us to eliminate the extension.
1303 ///
1304 /// This function works on both vectors and scalars.
1305 ///
1306 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1307   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1308          "Can't sign extend type to a smaller type");
1309   if (canAlwaysEvaluateInType(V, Ty))
1310     return true;
1311   if (canNotEvaluateInType(V, Ty))
1312     return false;
1313 
1314   auto *I = cast<Instruction>(V);
1315   switch (I->getOpcode()) {
1316   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1317   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1318   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1319     return true;
1320   case Instruction::And:
1321   case Instruction::Or:
1322   case Instruction::Xor:
1323   case Instruction::Add:
1324   case Instruction::Sub:
1325   case Instruction::Mul:
1326     // These operators can all arbitrarily be extended if their inputs can.
1327     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1328            canEvaluateSExtd(I->getOperand(1), Ty);
1329 
1330   //case Instruction::Shl:   TODO
1331   //case Instruction::LShr:  TODO
1332 
1333   case Instruction::Select:
1334     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1335            canEvaluateSExtd(I->getOperand(2), Ty);
1336 
1337   case Instruction::PHI: {
1338     // We can change a phi if we can change all operands.  Note that we never
1339     // get into trouble with cyclic PHIs here because we only consider
1340     // instructions with a single use.
1341     PHINode *PN = cast<PHINode>(I);
1342     for (Value *IncValue : PN->incoming_values())
1343       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1344     return true;
1345   }
1346   default:
1347     // TODO: Can handle more cases here.
1348     break;
1349   }
1350 
1351   return false;
1352 }
1353 
1354 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1355   // If this sign extend is only used by a truncate, let the truncate be
1356   // eliminated before we try to optimize this sext.
1357   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1358     return nullptr;
1359 
1360   if (Instruction *I = commonCastTransforms(CI))
1361     return I;
1362 
1363   Value *Src = CI.getOperand(0);
1364   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1365 
1366   // If we know that the value being extended is positive, we can use a zext
1367   // instead.
1368   KnownBits Known = computeKnownBits(Src, 0, &CI);
1369   if (Known.isNonNegative()) {
1370     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1371     return replaceInstUsesWith(CI, ZExt);
1372   }
1373 
1374   // Attempt to extend the entire input expression tree to the destination
1375   // type.   Only do this if the dest type is a simple type, don't convert the
1376   // expression tree to something weird like i93 unless the source is also
1377   // strange.
1378   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1379       canEvaluateSExtd(Src, DestTy)) {
1380     // Okay, we can transform this!  Insert the new expression now.
1381     LLVM_DEBUG(
1382         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1383                   " to avoid sign extend: "
1384                << CI << '\n');
1385     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1386     assert(Res->getType() == DestTy);
1387 
1388     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1389     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1390 
1391     // If the high bits are already filled with sign bit, just replace this
1392     // cast with the result.
1393     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1394       return replaceInstUsesWith(CI, Res);
1395 
1396     // We need to emit a shl + ashr to do the sign extend.
1397     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1398     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1399                                       ShAmt);
1400   }
1401 
1402   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1403   // into shifts.
1404   Value *X;
1405   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1406     // sext(trunc(X)) --> ashr(shl(X, C), C)
1407     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1408     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1409     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1410     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1411   }
1412 
1413   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1414     return transformSExtICmp(ICI, CI);
1415 
1416   // If the input is a shl/ashr pair of a same constant, then this is a sign
1417   // extension from a smaller value.  If we could trust arbitrary bitwidth
1418   // integers, we could turn this into a truncate to the smaller bit and then
1419   // use a sext for the whole extension.  Since we don't, look deeper and check
1420   // for a truncate.  If the source and dest are the same type, eliminate the
1421   // trunc and extend and just do shifts.  For example, turn:
1422   //   %a = trunc i32 %i to i8
1423   //   %b = shl i8 %a, 6
1424   //   %c = ashr i8 %b, 6
1425   //   %d = sext i8 %c to i32
1426   // into:
1427   //   %a = shl i32 %i, 30
1428   //   %d = ashr i32 %a, 30
1429   Value *A = nullptr;
1430   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1431   ConstantInt *BA = nullptr, *CA = nullptr;
1432   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1433                         m_ConstantInt(CA))) &&
1434       BA == CA && A->getType() == CI.getType()) {
1435     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1436     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1437     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1438     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1439     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1440     return BinaryOperator::CreateAShr(A, ShAmtV);
1441   }
1442 
1443   return nullptr;
1444 }
1445 
1446 
1447 /// Return a Constant* for the specified floating-point constant if it fits
1448 /// in the specified FP type without changing its value.
1449 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1450   bool losesInfo;
1451   APFloat F = CFP->getValueAPF();
1452   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1453   return !losesInfo;
1454 }
1455 
1456 static Type *shrinkFPConstant(ConstantFP *CFP) {
1457   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1458     return nullptr;  // No constant folding of this.
1459   // See if the value can be truncated to half and then reextended.
1460   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1461     return Type::getHalfTy(CFP->getContext());
1462   // See if the value can be truncated to float and then reextended.
1463   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1464     return Type::getFloatTy(CFP->getContext());
1465   if (CFP->getType()->isDoubleTy())
1466     return nullptr;  // Won't shrink.
1467   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1468     return Type::getDoubleTy(CFP->getContext());
1469   // Don't try to shrink to various long double types.
1470   return nullptr;
1471 }
1472 
1473 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1474 // type we can safely truncate all elements to.
1475 // TODO: Make these support undef elements.
1476 static Type *shrinkFPConstantVector(Value *V) {
1477   auto *CV = dyn_cast<Constant>(V);
1478   if (!CV || !CV->getType()->isVectorTy())
1479     return nullptr;
1480 
1481   Type *MinType = nullptr;
1482 
1483   unsigned NumElts = CV->getType()->getVectorNumElements();
1484   for (unsigned i = 0; i != NumElts; ++i) {
1485     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1486     if (!CFP)
1487       return nullptr;
1488 
1489     Type *T = shrinkFPConstant(CFP);
1490     if (!T)
1491       return nullptr;
1492 
1493     // If we haven't found a type yet or this type has a larger mantissa than
1494     // our previous type, this is our new minimal type.
1495     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1496       MinType = T;
1497   }
1498 
1499   // Make a vector type from the minimal type.
1500   return VectorType::get(MinType, NumElts);
1501 }
1502 
1503 /// Find the minimum FP type we can safely truncate to.
1504 static Type *getMinimumFPType(Value *V) {
1505   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1506     return FPExt->getOperand(0)->getType();
1507 
1508   // If this value is a constant, return the constant in the smallest FP type
1509   // that can accurately represent it.  This allows us to turn
1510   // (float)((double)X+2.0) into x+2.0f.
1511   if (auto *CFP = dyn_cast<ConstantFP>(V))
1512     if (Type *T = shrinkFPConstant(CFP))
1513       return T;
1514 
1515   // Try to shrink a vector of FP constants.
1516   if (Type *T = shrinkFPConstantVector(V))
1517     return T;
1518 
1519   return V->getType();
1520 }
1521 
1522 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1523   if (Instruction *I = commonCastTransforms(FPT))
1524     return I;
1525 
1526   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1527   // simplify this expression to avoid one or more of the trunc/extend
1528   // operations if we can do so without changing the numerical results.
1529   //
1530   // The exact manner in which the widths of the operands interact to limit
1531   // what we can and cannot do safely varies from operation to operation, and
1532   // is explained below in the various case statements.
1533   Type *Ty = FPT.getType();
1534   BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1535   if (OpI && OpI->hasOneUse()) {
1536     Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
1537     Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
1538     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1539     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1540     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1541     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1542     unsigned DstWidth = Ty->getFPMantissaWidth();
1543     switch (OpI->getOpcode()) {
1544       default: break;
1545       case Instruction::FAdd:
1546       case Instruction::FSub:
1547         // For addition and subtraction, the infinitely precise result can
1548         // essentially be arbitrarily wide; proving that double rounding
1549         // will not occur because the result of OpI is exact (as we will for
1550         // FMul, for example) is hopeless.  However, we *can* nonetheless
1551         // frequently know that double rounding cannot occur (or that it is
1552         // innocuous) by taking advantage of the specific structure of
1553         // infinitely-precise results that admit double rounding.
1554         //
1555         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1556         // to represent both sources, we can guarantee that the double
1557         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1558         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1559         // for proof of this fact).
1560         //
1561         // Note: Figueroa does not consider the case where DstFormat !=
1562         // SrcFormat.  It's possible (likely even!) that this analysis
1563         // could be tightened for those cases, but they are rare (the main
1564         // case of interest here is (float)((double)float + float)).
1565         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1566           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1567           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1568           Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1569           RI->copyFastMathFlags(OpI);
1570           return RI;
1571         }
1572         break;
1573       case Instruction::FMul:
1574         // For multiplication, the infinitely precise result has at most
1575         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1576         // that such a value can be exactly represented, then no double
1577         // rounding can possibly occur; we can safely perform the operation
1578         // in the destination format if it can represent both sources.
1579         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1580           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1581           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1582           return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1583         }
1584         break;
1585       case Instruction::FDiv:
1586         // For division, we use again use the bound from Figueroa's
1587         // dissertation.  I am entirely certain that this bound can be
1588         // tightened in the unbalanced operand case by an analysis based on
1589         // the diophantine rational approximation bound, but the well-known
1590         // condition used here is a good conservative first pass.
1591         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1592         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1593           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1594           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1595           return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1596         }
1597         break;
1598       case Instruction::FRem: {
1599         // Remainder is straightforward.  Remainder is always exact, so the
1600         // type of OpI doesn't enter into things at all.  We simply evaluate
1601         // in whichever source type is larger, then convert to the
1602         // destination type.
1603         if (SrcWidth == OpWidth)
1604           break;
1605         Value *LHS, *RHS;
1606         if (LHSWidth == SrcWidth) {
1607            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1608            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1609         } else {
1610            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1611            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1612         }
1613 
1614         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1615         return CastInst::CreateFPCast(ExactResult, Ty);
1616       }
1617     }
1618 
1619     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1620     Value *X;
1621     if (match(OpI, m_FNeg(m_Value(X)))) {
1622       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1623       return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
1624     }
1625   }
1626 
1627   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1628     switch (II->getIntrinsicID()) {
1629     default: break;
1630     case Intrinsic::ceil:
1631     case Intrinsic::fabs:
1632     case Intrinsic::floor:
1633     case Intrinsic::nearbyint:
1634     case Intrinsic::rint:
1635     case Intrinsic::round:
1636     case Intrinsic::trunc: {
1637       Value *Src = II->getArgOperand(0);
1638       if (!Src->hasOneUse())
1639         break;
1640 
1641       // Except for fabs, this transformation requires the input of the unary FP
1642       // operation to be itself an fpext from the type to which we're
1643       // truncating.
1644       if (II->getIntrinsicID() != Intrinsic::fabs) {
1645         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1646         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1647           break;
1648       }
1649 
1650       // Do unary FP operation on smaller type.
1651       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1652       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1653       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1654                                                      II->getIntrinsicID(), Ty);
1655       SmallVector<OperandBundleDef, 1> OpBundles;
1656       II->getOperandBundlesAsDefs(OpBundles);
1657       CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
1658                                          II->getName());
1659       NewCI->copyFastMathFlags(II);
1660       return NewCI;
1661     }
1662     }
1663   }
1664 
1665   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1666     return I;
1667 
1668   return nullptr;
1669 }
1670 
1671 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1672   return commonCastTransforms(CI);
1673 }
1674 
1675 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1676 // This is safe if the intermediate type has enough bits in its mantissa to
1677 // accurately represent all values of X.  For example, this won't work with
1678 // i64 -> float -> i64.
1679 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1680   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1681     return nullptr;
1682   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1683 
1684   Value *SrcI = OpI->getOperand(0);
1685   Type *FITy = FI.getType();
1686   Type *OpITy = OpI->getType();
1687   Type *SrcTy = SrcI->getType();
1688   bool IsInputSigned = isa<SIToFPInst>(OpI);
1689   bool IsOutputSigned = isa<FPToSIInst>(FI);
1690 
1691   // We can safely assume the conversion won't overflow the output range,
1692   // because (for example) (uint8_t)18293.f is undefined behavior.
1693 
1694   // Since we can assume the conversion won't overflow, our decision as to
1695   // whether the input will fit in the float should depend on the minimum
1696   // of the input range and output range.
1697 
1698   // This means this is also safe for a signed input and unsigned output, since
1699   // a negative input would lead to undefined behavior.
1700   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1701   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1702   int ActualSize = std::min(InputSize, OutputSize);
1703 
1704   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1705     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1706       if (IsInputSigned && IsOutputSigned)
1707         return new SExtInst(SrcI, FITy);
1708       return new ZExtInst(SrcI, FITy);
1709     }
1710     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1711       return new TruncInst(SrcI, FITy);
1712     if (SrcTy == FITy)
1713       return replaceInstUsesWith(FI, SrcI);
1714     return new BitCastInst(SrcI, FITy);
1715   }
1716   return nullptr;
1717 }
1718 
1719 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1720   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1721   if (!OpI)
1722     return commonCastTransforms(FI);
1723 
1724   if (Instruction *I = FoldItoFPtoI(FI))
1725     return I;
1726 
1727   return commonCastTransforms(FI);
1728 }
1729 
1730 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1731   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1732   if (!OpI)
1733     return commonCastTransforms(FI);
1734 
1735   if (Instruction *I = FoldItoFPtoI(FI))
1736     return I;
1737 
1738   return commonCastTransforms(FI);
1739 }
1740 
1741 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1742   return commonCastTransforms(CI);
1743 }
1744 
1745 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1746   return commonCastTransforms(CI);
1747 }
1748 
1749 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1750   // If the source integer type is not the intptr_t type for this target, do a
1751   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1752   // cast to be exposed to other transforms.
1753   unsigned AS = CI.getAddressSpace();
1754   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1755       DL.getPointerSizeInBits(AS)) {
1756     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1757     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1758       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1759 
1760     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1761     return new IntToPtrInst(P, CI.getType());
1762   }
1763 
1764   if (Instruction *I = commonCastTransforms(CI))
1765     return I;
1766 
1767   return nullptr;
1768 }
1769 
1770 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1771 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1772   Value *Src = CI.getOperand(0);
1773 
1774   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1775     // If casting the result of a getelementptr instruction with no offset, turn
1776     // this into a cast of the original pointer!
1777     if (GEP->hasAllZeroIndices() &&
1778         // If CI is an addrspacecast and GEP changes the poiner type, merging
1779         // GEP into CI would undo canonicalizing addrspacecast with different
1780         // pointer types, causing infinite loops.
1781         (!isa<AddrSpaceCastInst>(CI) ||
1782          GEP->getType() == GEP->getPointerOperandType())) {
1783       // Changing the cast operand is usually not a good idea but it is safe
1784       // here because the pointer operand is being replaced with another
1785       // pointer operand so the opcode doesn't need to change.
1786       Worklist.Add(GEP);
1787       CI.setOperand(0, GEP->getOperand(0));
1788       return &CI;
1789     }
1790   }
1791 
1792   return commonCastTransforms(CI);
1793 }
1794 
1795 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1796   // If the destination integer type is not the intptr_t type for this target,
1797   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1798   // to be exposed to other transforms.
1799 
1800   Type *Ty = CI.getType();
1801   unsigned AS = CI.getPointerAddressSpace();
1802 
1803   if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1804     return commonPointerCastTransforms(CI);
1805 
1806   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1807   if (Ty->isVectorTy()) // Handle vectors of pointers.
1808     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1809 
1810   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1811   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1812 }
1813 
1814 /// This input value (which is known to have vector type) is being zero extended
1815 /// or truncated to the specified vector type.
1816 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1817 ///
1818 /// The source and destination vector types may have different element types.
1819 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1820                                          InstCombiner &IC) {
1821   // We can only do this optimization if the output is a multiple of the input
1822   // element size, or the input is a multiple of the output element size.
1823   // Convert the input type to have the same element type as the output.
1824   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1825 
1826   if (SrcTy->getElementType() != DestTy->getElementType()) {
1827     // The input types don't need to be identical, but for now they must be the
1828     // same size.  There is no specific reason we couldn't handle things like
1829     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1830     // there yet.
1831     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1832         DestTy->getElementType()->getPrimitiveSizeInBits())
1833       return nullptr;
1834 
1835     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1836     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1837   }
1838 
1839   // Now that the element types match, get the shuffle mask and RHS of the
1840   // shuffle to use, which depends on whether we're increasing or decreasing the
1841   // size of the input.
1842   SmallVector<uint32_t, 16> ShuffleMask;
1843   Value *V2;
1844 
1845   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1846     // If we're shrinking the number of elements, just shuffle in the low
1847     // elements from the input and use undef as the second shuffle input.
1848     V2 = UndefValue::get(SrcTy);
1849     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1850       ShuffleMask.push_back(i);
1851 
1852   } else {
1853     // If we're increasing the number of elements, shuffle in all of the
1854     // elements from InVal and fill the rest of the result elements with zeros
1855     // from a constant zero.
1856     V2 = Constant::getNullValue(SrcTy);
1857     unsigned SrcElts = SrcTy->getNumElements();
1858     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1859       ShuffleMask.push_back(i);
1860 
1861     // The excess elements reference the first element of the zero input.
1862     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1863       ShuffleMask.push_back(SrcElts);
1864   }
1865 
1866   return new ShuffleVectorInst(InVal, V2,
1867                                ConstantDataVector::get(V2->getContext(),
1868                                                        ShuffleMask));
1869 }
1870 
1871 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1872   return Value % Ty->getPrimitiveSizeInBits() == 0;
1873 }
1874 
1875 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1876   return Value / Ty->getPrimitiveSizeInBits();
1877 }
1878 
1879 /// V is a value which is inserted into a vector of VecEltTy.
1880 /// Look through the value to see if we can decompose it into
1881 /// insertions into the vector.  See the example in the comment for
1882 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1883 /// The type of V is always a non-zero multiple of VecEltTy's size.
1884 /// Shift is the number of bits between the lsb of V and the lsb of
1885 /// the vector.
1886 ///
1887 /// This returns false if the pattern can't be matched or true if it can,
1888 /// filling in Elements with the elements found here.
1889 static bool collectInsertionElements(Value *V, unsigned Shift,
1890                                      SmallVectorImpl<Value *> &Elements,
1891                                      Type *VecEltTy, bool isBigEndian) {
1892   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1893          "Shift should be a multiple of the element type size");
1894 
1895   // Undef values never contribute useful bits to the result.
1896   if (isa<UndefValue>(V)) return true;
1897 
1898   // If we got down to a value of the right type, we win, try inserting into the
1899   // right element.
1900   if (V->getType() == VecEltTy) {
1901     // Inserting null doesn't actually insert any elements.
1902     if (Constant *C = dyn_cast<Constant>(V))
1903       if (C->isNullValue())
1904         return true;
1905 
1906     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1907     if (isBigEndian)
1908       ElementIndex = Elements.size() - ElementIndex - 1;
1909 
1910     // Fail if multiple elements are inserted into this slot.
1911     if (Elements[ElementIndex])
1912       return false;
1913 
1914     Elements[ElementIndex] = V;
1915     return true;
1916   }
1917 
1918   if (Constant *C = dyn_cast<Constant>(V)) {
1919     // Figure out the # elements this provides, and bitcast it or slice it up
1920     // as required.
1921     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1922                                         VecEltTy);
1923     // If the constant is the size of a vector element, we just need to bitcast
1924     // it to the right type so it gets properly inserted.
1925     if (NumElts == 1)
1926       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1927                                       Shift, Elements, VecEltTy, isBigEndian);
1928 
1929     // Okay, this is a constant that covers multiple elements.  Slice it up into
1930     // pieces and insert each element-sized piece into the vector.
1931     if (!isa<IntegerType>(C->getType()))
1932       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1933                                        C->getType()->getPrimitiveSizeInBits()));
1934     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1935     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1936 
1937     for (unsigned i = 0; i != NumElts; ++i) {
1938       unsigned ShiftI = Shift+i*ElementSize;
1939       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1940                                                                   ShiftI));
1941       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1942       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1943                                     isBigEndian))
1944         return false;
1945     }
1946     return true;
1947   }
1948 
1949   if (!V->hasOneUse()) return false;
1950 
1951   Instruction *I = dyn_cast<Instruction>(V);
1952   if (!I) return false;
1953   switch (I->getOpcode()) {
1954   default: return false; // Unhandled case.
1955   case Instruction::BitCast:
1956     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1957                                     isBigEndian);
1958   case Instruction::ZExt:
1959     if (!isMultipleOfTypeSize(
1960                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1961                               VecEltTy))
1962       return false;
1963     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1964                                     isBigEndian);
1965   case Instruction::Or:
1966     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1967                                     isBigEndian) &&
1968            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1969                                     isBigEndian);
1970   case Instruction::Shl: {
1971     // Must be shifting by a constant that is a multiple of the element size.
1972     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1973     if (!CI) return false;
1974     Shift += CI->getZExtValue();
1975     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1976     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1977                                     isBigEndian);
1978   }
1979 
1980   }
1981 }
1982 
1983 
1984 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1985 /// assemble the elements of the vector manually.
1986 /// Try to rip the code out and replace it with insertelements.  This is to
1987 /// optimize code like this:
1988 ///
1989 ///    %tmp37 = bitcast float %inc to i32
1990 ///    %tmp38 = zext i32 %tmp37 to i64
1991 ///    %tmp31 = bitcast float %inc5 to i32
1992 ///    %tmp32 = zext i32 %tmp31 to i64
1993 ///    %tmp33 = shl i64 %tmp32, 32
1994 ///    %ins35 = or i64 %tmp33, %tmp38
1995 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1996 ///
1997 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1998 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1999                                                 InstCombiner &IC) {
2000   VectorType *DestVecTy = cast<VectorType>(CI.getType());
2001   Value *IntInput = CI.getOperand(0);
2002 
2003   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2004   if (!collectInsertionElements(IntInput, 0, Elements,
2005                                 DestVecTy->getElementType(),
2006                                 IC.getDataLayout().isBigEndian()))
2007     return nullptr;
2008 
2009   // If we succeeded, we know that all of the element are specified by Elements
2010   // or are zero if Elements has a null entry.  Recast this as a set of
2011   // insertions.
2012   Value *Result = Constant::getNullValue(CI.getType());
2013   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2014     if (!Elements[i]) continue;  // Unset element.
2015 
2016     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2017                                             IC.Builder.getInt32(i));
2018   }
2019 
2020   return Result;
2021 }
2022 
2023 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2024 /// vector followed by extract element. The backend tends to handle bitcasts of
2025 /// vectors better than bitcasts of scalars because vector registers are
2026 /// usually not type-specific like scalar integer or scalar floating-point.
2027 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2028                                               InstCombiner &IC) {
2029   // TODO: Create and use a pattern matcher for ExtractElementInst.
2030   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2031   if (!ExtElt || !ExtElt->hasOneUse())
2032     return nullptr;
2033 
2034   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2035   // type to extract from.
2036   Type *DestType = BitCast.getType();
2037   if (!VectorType::isValidElementType(DestType))
2038     return nullptr;
2039 
2040   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2041   auto *NewVecType = VectorType::get(DestType, NumElts);
2042   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2043                                          NewVecType, "bc");
2044   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2045 }
2046 
2047 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2048 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2049                                             InstCombiner::BuilderTy &Builder) {
2050   Type *DestTy = BitCast.getType();
2051   BinaryOperator *BO;
2052   if (!DestTy->isIntOrIntVectorTy() ||
2053       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2054       !BO->isBitwiseLogicOp())
2055     return nullptr;
2056 
2057   // FIXME: This transform is restricted to vector types to avoid backend
2058   // problems caused by creating potentially illegal operations. If a fix-up is
2059   // added to handle that situation, we can remove this check.
2060   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2061     return nullptr;
2062 
2063   Value *X;
2064   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2065       X->getType() == DestTy && !isa<Constant>(X)) {
2066     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2067     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2068     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2069   }
2070 
2071   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2072       X->getType() == DestTy && !isa<Constant>(X)) {
2073     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2074     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2075     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2076   }
2077 
2078   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2079   // constant. This eases recognition of special constants for later ops.
2080   // Example:
2081   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2082   Constant *C;
2083   if (match(BO->getOperand(1), m_Constant(C))) {
2084     // bitcast (logic X, C) --> logic (bitcast X, C')
2085     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2086     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2087     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2088   }
2089 
2090   return nullptr;
2091 }
2092 
2093 /// Change the type of a select if we can eliminate a bitcast.
2094 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2095                                       InstCombiner::BuilderTy &Builder) {
2096   Value *Cond, *TVal, *FVal;
2097   if (!match(BitCast.getOperand(0),
2098              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2099     return nullptr;
2100 
2101   // A vector select must maintain the same number of elements in its operands.
2102   Type *CondTy = Cond->getType();
2103   Type *DestTy = BitCast.getType();
2104   if (CondTy->isVectorTy()) {
2105     if (!DestTy->isVectorTy())
2106       return nullptr;
2107     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2108       return nullptr;
2109   }
2110 
2111   // FIXME: This transform is restricted from changing the select between
2112   // scalars and vectors to avoid backend problems caused by creating
2113   // potentially illegal operations. If a fix-up is added to handle that
2114   // situation, we can remove this check.
2115   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2116     return nullptr;
2117 
2118   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2119   Value *X;
2120   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2121       !isa<Constant>(X)) {
2122     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2123     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2124     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2125   }
2126 
2127   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2128       !isa<Constant>(X)) {
2129     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2130     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2131     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2132   }
2133 
2134   return nullptr;
2135 }
2136 
2137 /// Check if all users of CI are StoreInsts.
2138 static bool hasStoreUsersOnly(CastInst &CI) {
2139   for (User *U : CI.users()) {
2140     if (!isa<StoreInst>(U))
2141       return false;
2142   }
2143   return true;
2144 }
2145 
2146 /// This function handles following case
2147 ///
2148 ///     A  ->  B    cast
2149 ///     PHI
2150 ///     B  ->  A    cast
2151 ///
2152 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2153 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2154 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2155   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2156   if (hasStoreUsersOnly(CI))
2157     return nullptr;
2158 
2159   Value *Src = CI.getOperand(0);
2160   Type *SrcTy = Src->getType();         // Type B
2161   Type *DestTy = CI.getType();          // Type A
2162 
2163   SmallVector<PHINode *, 4> PhiWorklist;
2164   SmallSetVector<PHINode *, 4> OldPhiNodes;
2165 
2166   // Find all of the A->B casts and PHI nodes.
2167   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2168   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2169   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2170   PhiWorklist.push_back(PN);
2171   OldPhiNodes.insert(PN);
2172   while (!PhiWorklist.empty()) {
2173     auto *OldPN = PhiWorklist.pop_back_val();
2174     for (Value *IncValue : OldPN->incoming_values()) {
2175       if (isa<Constant>(IncValue))
2176         continue;
2177 
2178       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2179         // If there is a sequence of one or more load instructions, each loaded
2180         // value is used as address of later load instruction, bitcast is
2181         // necessary to change the value type, don't optimize it. For
2182         // simplicity we give up if the load address comes from another load.
2183         Value *Addr = LI->getOperand(0);
2184         if (Addr == &CI || isa<LoadInst>(Addr))
2185           return nullptr;
2186         if (LI->hasOneUse() && LI->isSimple())
2187           continue;
2188         // If a LoadInst has more than one use, changing the type of loaded
2189         // value may create another bitcast.
2190         return nullptr;
2191       }
2192 
2193       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2194         if (OldPhiNodes.insert(PNode))
2195           PhiWorklist.push_back(PNode);
2196         continue;
2197       }
2198 
2199       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2200       // We can't handle other instructions.
2201       if (!BCI)
2202         return nullptr;
2203 
2204       // Verify it's a A->B cast.
2205       Type *TyA = BCI->getOperand(0)->getType();
2206       Type *TyB = BCI->getType();
2207       if (TyA != DestTy || TyB != SrcTy)
2208         return nullptr;
2209     }
2210   }
2211 
2212   // For each old PHI node, create a corresponding new PHI node with a type A.
2213   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2214   for (auto *OldPN : OldPhiNodes) {
2215     Builder.SetInsertPoint(OldPN);
2216     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2217     NewPNodes[OldPN] = NewPN;
2218   }
2219 
2220   // Fill in the operands of new PHI nodes.
2221   for (auto *OldPN : OldPhiNodes) {
2222     PHINode *NewPN = NewPNodes[OldPN];
2223     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2224       Value *V = OldPN->getOperand(j);
2225       Value *NewV = nullptr;
2226       if (auto *C = dyn_cast<Constant>(V)) {
2227         NewV = ConstantExpr::getBitCast(C, DestTy);
2228       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2229         Builder.SetInsertPoint(LI->getNextNode());
2230         NewV = Builder.CreateBitCast(LI, DestTy);
2231         Worklist.Add(LI);
2232       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2233         NewV = BCI->getOperand(0);
2234       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2235         NewV = NewPNodes[PrevPN];
2236       }
2237       assert(NewV);
2238       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2239     }
2240   }
2241 
2242   // If there is a store with type B, change it to type A.
2243   for (User *U : PN->users()) {
2244     auto *SI = dyn_cast<StoreInst>(U);
2245     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2246       Builder.SetInsertPoint(SI);
2247       auto *NewBC =
2248           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2249       SI->setOperand(0, NewBC);
2250       Worklist.Add(SI);
2251       assert(hasStoreUsersOnly(*NewBC));
2252     }
2253   }
2254 
2255   return replaceInstUsesWith(CI, NewPNodes[PN]);
2256 }
2257 
2258 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2259   // If the operands are integer typed then apply the integer transforms,
2260   // otherwise just apply the common ones.
2261   Value *Src = CI.getOperand(0);
2262   Type *SrcTy = Src->getType();
2263   Type *DestTy = CI.getType();
2264 
2265   // Get rid of casts from one type to the same type. These are useless and can
2266   // be replaced by the operand.
2267   if (DestTy == Src->getType())
2268     return replaceInstUsesWith(CI, Src);
2269 
2270   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2271     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2272     Type *DstElTy = DstPTy->getElementType();
2273     Type *SrcElTy = SrcPTy->getElementType();
2274 
2275     // Casting pointers between the same type, but with different address spaces
2276     // is an addrspace cast rather than a bitcast.
2277     if ((DstElTy == SrcElTy) &&
2278         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2279       return new AddrSpaceCastInst(Src, DestTy);
2280 
2281     // If we are casting a alloca to a pointer to a type of the same
2282     // size, rewrite the allocation instruction to allocate the "right" type.
2283     // There is no need to modify malloc calls because it is their bitcast that
2284     // needs to be cleaned up.
2285     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2286       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2287         return V;
2288 
2289     // When the type pointed to is not sized the cast cannot be
2290     // turned into a gep.
2291     Type *PointeeType =
2292         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2293     if (!PointeeType->isSized())
2294       return nullptr;
2295 
2296     // If the source and destination are pointers, and this cast is equivalent
2297     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2298     // This can enhance SROA and other transforms that want type-safe pointers.
2299     unsigned NumZeros = 0;
2300     while (SrcElTy != DstElTy &&
2301            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2302            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2303       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2304       ++NumZeros;
2305     }
2306 
2307     // If we found a path from the src to dest, create the getelementptr now.
2308     if (SrcElTy == DstElTy) {
2309       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2310       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2311     }
2312   }
2313 
2314   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2315     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2316       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2317       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2318                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2319       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2320     }
2321 
2322     if (isa<IntegerType>(SrcTy)) {
2323       // If this is a cast from an integer to vector, check to see if the input
2324       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2325       // the casts with a shuffle and (potentially) a bitcast.
2326       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2327         CastInst *SrcCast = cast<CastInst>(Src);
2328         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2329           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2330             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2331                                                cast<VectorType>(DestTy), *this))
2332               return I;
2333       }
2334 
2335       // If the input is an 'or' instruction, we may be doing shifts and ors to
2336       // assemble the elements of the vector manually.  Try to rip the code out
2337       // and replace it with insertelements.
2338       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2339         return replaceInstUsesWith(CI, V);
2340     }
2341   }
2342 
2343   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2344     if (SrcVTy->getNumElements() == 1) {
2345       // If our destination is not a vector, then make this a straight
2346       // scalar-scalar cast.
2347       if (!DestTy->isVectorTy()) {
2348         Value *Elem =
2349           Builder.CreateExtractElement(Src,
2350                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2351         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2352       }
2353 
2354       // Otherwise, see if our source is an insert. If so, then use the scalar
2355       // component directly.
2356       if (InsertElementInst *IEI =
2357             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2358         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2359                                 DestTy);
2360     }
2361   }
2362 
2363   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2364     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2365     // a bitcast to a vector with the same # elts.
2366     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2367         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2368         SVI->getType()->getNumElements() ==
2369         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2370       BitCastInst *Tmp;
2371       // If either of the operands is a cast from CI.getType(), then
2372       // evaluating the shuffle in the casted destination's type will allow
2373       // us to eliminate at least one cast.
2374       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2375            Tmp->getOperand(0)->getType() == DestTy) ||
2376           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2377            Tmp->getOperand(0)->getType() == DestTy)) {
2378         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2379         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2380         // Return a new shuffle vector.  Use the same element ID's, as we
2381         // know the vector types match #elts.
2382         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2383       }
2384     }
2385   }
2386 
2387   // Handle the A->B->A cast, and there is an intervening PHI node.
2388   if (PHINode *PN = dyn_cast<PHINode>(Src))
2389     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2390       return I;
2391 
2392   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2393     return I;
2394 
2395   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2396     return I;
2397 
2398   if (Instruction *I = foldBitCastSelect(CI, Builder))
2399     return I;
2400 
2401   if (SrcTy->isPointerTy())
2402     return commonPointerCastTransforms(CI);
2403   return commonCastTransforms(CI);
2404 }
2405 
2406 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2407   // If the destination pointer element type is not the same as the source's
2408   // first do a bitcast to the destination type, and then the addrspacecast.
2409   // This allows the cast to be exposed to other transforms.
2410   Value *Src = CI.getOperand(0);
2411   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2412   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2413 
2414   Type *DestElemTy = DestTy->getElementType();
2415   if (SrcTy->getElementType() != DestElemTy) {
2416     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2417     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2418       // Handle vectors of pointers.
2419       MidTy = VectorType::get(MidTy, VT->getNumElements());
2420     }
2421 
2422     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2423     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2424   }
2425 
2426   return commonPointerCastTransforms(CI);
2427 }
2428