1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 191 break; 192 } 193 case Instruction::Trunc: 194 case Instruction::ZExt: 195 case Instruction::SExt: 196 // If the source type of the cast is the type we're trying for then we can 197 // just return the source. There's no need to insert it because it is not 198 // new. 199 if (I->getOperand(0)->getType() == Ty) 200 return I->getOperand(0); 201 202 // Otherwise, must be the same type of cast, so just reinsert a new one. 203 // This also handles the case of zext(trunc(x)) -> zext(x). 204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 205 Opc == Instruction::SExt); 206 break; 207 case Instruction::Select: { 208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 210 Res = SelectInst::Create(I->getOperand(0), True, False); 211 break; 212 } 213 case Instruction::PHI: { 214 PHINode *OPN = cast<PHINode>(I); 215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 217 Value *V = 218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 234 const CastInst *CI2) { 235 Type *SrcTy = CI1->getSrcTy(); 236 Type *MidTy = CI1->getDestTy(); 237 Type *DstTy = CI2->getDestTy(); 238 239 Instruction::CastOps firstOp = CI1->getOpcode(); 240 Instruction::CastOps secondOp = CI2->getOpcode(); 241 Type *SrcIntPtrTy = 242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 243 Type *MidIntPtrTy = 244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 245 Type *DstIntPtrTy = 246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 248 DstTy, SrcIntPtrTy, MidIntPtrTy, 249 DstIntPtrTy); 250 251 // We don't want to form an inttoptr or ptrtoint that converts to an integer 252 // type that differs from the pointer size. 253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 255 Res = 0; 256 257 return Instruction::CastOps(Res); 258 } 259 260 /// Implement the transforms common to all CastInst visitors. 261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 262 Value *Src = CI.getOperand(0); 263 264 // Try to eliminate a cast of a cast. 265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 267 // The first cast (CSrc) is eliminable so we need to fix up or replace 268 // the second cast (CI). CSrc will then have a good chance of being dead. 269 auto *Ty = CI.getType(); 270 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 271 // Point debug users of the dying cast to the new one. 272 if (CSrc->hasOneUse()) 273 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 274 return Res; 275 } 276 } 277 278 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 279 // We are casting a select. Try to fold the cast into the select, but only 280 // if the select does not have a compare instruction with matching operand 281 // types. Creating a select with operands that are different sizes than its 282 // condition may inhibit other folds and lead to worse codegen. 283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType()) 285 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 286 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 287 return NV; 288 } 289 } 290 291 // If we are casting a PHI, then fold the cast into the PHI. 292 if (auto *PN = dyn_cast<PHINode>(Src)) { 293 // Don't do this if it would create a PHI node with an illegal type from a 294 // legal type. 295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 296 shouldChangeType(CI.getType(), Src->getType())) 297 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 298 return NV; 299 } 300 301 return nullptr; 302 } 303 304 /// Constants and extensions/truncates from the destination type are always 305 /// free to be evaluated in that type. This is a helper for canEvaluate*. 306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 307 if (isa<Constant>(V)) 308 return true; 309 Value *X; 310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 311 X->getType() == Ty) 312 return true; 313 314 return false; 315 } 316 317 /// Filter out values that we can not evaluate in the destination type for free. 318 /// This is a helper for canEvaluate*. 319 static bool canNotEvaluateInType(Value *V, Type *Ty) { 320 assert(!isa<Constant>(V) && "Constant should already be handled."); 321 if (!isa<Instruction>(V)) 322 return true; 323 // We don't extend or shrink something that has multiple uses -- doing so 324 // would require duplicating the instruction which isn't profitable. 325 if (!V->hasOneUse()) 326 return true; 327 328 return false; 329 } 330 331 /// Return true if we can evaluate the specified expression tree as type Ty 332 /// instead of its larger type, and arrive with the same value. 333 /// This is used by code that tries to eliminate truncates. 334 /// 335 /// Ty will always be a type smaller than V. We should return true if trunc(V) 336 /// can be computed by computing V in the smaller type. If V is an instruction, 337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 338 /// makes sense if x and y can be efficiently truncated. 339 /// 340 /// This function works on both vectors and scalars. 341 /// 342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 343 Instruction *CxtI) { 344 if (canAlwaysEvaluateInType(V, Ty)) 345 return true; 346 if (canNotEvaluateInType(V, Ty)) 347 return false; 348 349 auto *I = cast<Instruction>(V); 350 Type *OrigTy = V->getType(); 351 switch (I->getOpcode()) { 352 case Instruction::Add: 353 case Instruction::Sub: 354 case Instruction::Mul: 355 case Instruction::And: 356 case Instruction::Or: 357 case Instruction::Xor: 358 // These operators can all arbitrarily be extended or truncated. 359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 361 362 case Instruction::UDiv: 363 case Instruction::URem: { 364 // UDiv and URem can be truncated if all the truncated bits are zero. 365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 366 uint32_t BitWidth = Ty->getScalarSizeInBits(); 367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 373 } 374 break; 375 } 376 case Instruction::Shl: { 377 // If we are truncating the result of this SHL, and if it's a shift of a 378 // constant amount, we can always perform a SHL in a smaller type. 379 const APInt *Amt; 380 if (match(I->getOperand(1), m_APInt(Amt))) { 381 uint32_t BitWidth = Ty->getScalarSizeInBits(); 382 if (Amt->getLimitedValue(BitWidth) < BitWidth) 383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 384 } 385 break; 386 } 387 case Instruction::LShr: { 388 // If this is a truncate of a logical shr, we can truncate it to a smaller 389 // lshr iff we know that the bits we would otherwise be shifting in are 390 // already zeros. 391 const APInt *Amt; 392 if (match(I->getOperand(1), m_APInt(Amt))) { 393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 394 uint32_t BitWidth = Ty->getScalarSizeInBits(); 395 if (Amt->getLimitedValue(BitWidth) < BitWidth && 396 IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 399 } 400 } 401 break; 402 } 403 case Instruction::AShr: { 404 // If this is a truncate of an arithmetic shr, we can truncate it to a 405 // smaller ashr iff we know that all the bits from the sign bit of the 406 // original type and the sign bit of the truncate type are similar. 407 // TODO: It is enough to check that the bits we would be shifting in are 408 // similar to sign bit of the truncate type. 409 const APInt *Amt; 410 if (match(I->getOperand(1), m_APInt(Amt))) { 411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 412 uint32_t BitWidth = Ty->getScalarSizeInBits(); 413 if (Amt->getLimitedValue(BitWidth) < BitWidth && 414 OrigBitWidth - BitWidth < 415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 417 } 418 break; 419 } 420 case Instruction::Trunc: 421 // trunc(trunc(x)) -> trunc(x) 422 return true; 423 case Instruction::ZExt: 424 case Instruction::SExt: 425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 427 return true; 428 case Instruction::Select: { 429 SelectInst *SI = cast<SelectInst>(I); 430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 432 } 433 case Instruction::PHI: { 434 // We can change a phi if we can change all operands. Note that we never 435 // get into trouble with cyclic PHIs here because we only consider 436 // instructions with a single use. 437 PHINode *PN = cast<PHINode>(I); 438 for (Value *IncValue : PN->incoming_values()) 439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 440 return false; 441 return true; 442 } 443 default: 444 // TODO: Can handle more cases here. 445 break; 446 } 447 448 return false; 449 } 450 451 /// Given a vector that is bitcast to an integer, optionally logically 452 /// right-shifted, and truncated, convert it to an extractelement. 453 /// Example (big endian): 454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 455 /// ---> 456 /// extractelement <4 x i32> %X, 1 457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 458 Value *TruncOp = Trunc.getOperand(0); 459 Type *DestType = Trunc.getType(); 460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 461 return nullptr; 462 463 Value *VecInput = nullptr; 464 ConstantInt *ShiftVal = nullptr; 465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 466 m_LShr(m_BitCast(m_Value(VecInput)), 467 m_ConstantInt(ShiftVal)))) || 468 !isa<VectorType>(VecInput->getType())) 469 return nullptr; 470 471 VectorType *VecType = cast<VectorType>(VecInput->getType()); 472 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 473 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 475 476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 477 return nullptr; 478 479 // If the element type of the vector doesn't match the result type, 480 // bitcast it to a vector type that we can extract from. 481 unsigned NumVecElts = VecWidth / DestWidth; 482 if (VecType->getElementType() != DestType) { 483 VecType = VectorType::get(DestType, NumVecElts); 484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 485 } 486 487 unsigned Elt = ShiftAmount / DestWidth; 488 if (IC.getDataLayout().isBigEndian()) 489 Elt = NumVecElts - 1 - Elt; 490 491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 492 } 493 494 /// Rotate left/right may occur in a wider type than necessary because of type 495 /// promotion rules. Try to narrow all of the component instructions. 496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 497 assert((isa<VectorType>(Trunc.getSrcTy()) || 498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 499 "Don't narrow to an illegal scalar type"); 500 501 // First, find an or'd pair of opposite shifts with the same shifted operand: 502 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 503 Value *Or0, *Or1; 504 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 505 return nullptr; 506 507 Value *ShVal, *ShAmt0, *ShAmt1; 508 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 509 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 510 return nullptr; 511 512 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 513 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 514 if (ShiftOpcode0 == ShiftOpcode1) 515 return nullptr; 516 517 // Match the shift amount operands for a rotate pattern. This always matches 518 // a subtraction on the R operand. 519 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 520 // The shift amounts may add up to the narrow bit width: 521 // (shl ShVal, L) | (lshr ShVal, Width - L) 522 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 523 return L; 524 525 return nullptr; 526 }; 527 528 Type *DestTy = Trunc.getType(); 529 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 530 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 531 bool SubIsOnLHS = false; 532 if (!ShAmt) { 533 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 534 SubIsOnLHS = true; 535 } 536 if (!ShAmt) 537 return nullptr; 538 539 // The shifted value must have high zeros in the wide type. Typically, this 540 // will be a zext, but it could also be the result of an 'and' or 'shift'. 541 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 542 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 543 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 544 return nullptr; 545 546 // We have an unnecessarily wide rotate! 547 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 548 // Narrow it down to eliminate the zext/trunc: 549 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 550 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 551 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 552 553 // Mask both shift amounts to ensure there's no UB from oversized shifts. 554 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 555 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 556 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 557 558 // Truncate the original value and use narrow ops. 559 Value *X = Builder.CreateTrunc(ShVal, DestTy); 560 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 561 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 562 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 563 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 564 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 565 } 566 567 /// Try to narrow the width of math or bitwise logic instructions by pulling a 568 /// truncate ahead of binary operators. 569 /// TODO: Transforms for truncated shifts should be moved into here. 570 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 571 Type *SrcTy = Trunc.getSrcTy(); 572 Type *DestTy = Trunc.getType(); 573 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 574 return nullptr; 575 576 BinaryOperator *BinOp; 577 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 578 return nullptr; 579 580 Value *BinOp0 = BinOp->getOperand(0); 581 Value *BinOp1 = BinOp->getOperand(1); 582 switch (BinOp->getOpcode()) { 583 case Instruction::And: 584 case Instruction::Or: 585 case Instruction::Xor: 586 case Instruction::Add: 587 case Instruction::Sub: 588 case Instruction::Mul: { 589 Constant *C; 590 if (match(BinOp0, m_Constant(C))) { 591 // trunc (binop C, X) --> binop (trunc C', X) 592 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 593 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 594 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 595 } 596 if (match(BinOp1, m_Constant(C))) { 597 // trunc (binop X, C) --> binop (trunc X, C') 598 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 599 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 600 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 601 } 602 Value *X; 603 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 604 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 605 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 606 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 607 } 608 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 609 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 610 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 611 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 612 } 613 break; 614 } 615 616 default: break; 617 } 618 619 if (Instruction *NarrowOr = narrowRotate(Trunc)) 620 return NarrowOr; 621 622 return nullptr; 623 } 624 625 /// Try to narrow the width of a splat shuffle. This could be generalized to any 626 /// shuffle with a constant operand, but we limit the transform to avoid 627 /// creating a shuffle type that targets may not be able to lower effectively. 628 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 629 InstCombiner::BuilderTy &Builder) { 630 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 631 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 632 Shuf->getMask()->getSplatValue() && 633 Shuf->getType() == Shuf->getOperand(0)->getType()) { 634 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 635 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 636 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 637 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 638 } 639 640 return nullptr; 641 } 642 643 /// Try to narrow the width of an insert element. This could be generalized for 644 /// any vector constant, but we limit the transform to insertion into undef to 645 /// avoid potential backend problems from unsupported insertion widths. This 646 /// could also be extended to handle the case of inserting a scalar constant 647 /// into a vector variable. 648 static Instruction *shrinkInsertElt(CastInst &Trunc, 649 InstCombiner::BuilderTy &Builder) { 650 Instruction::CastOps Opcode = Trunc.getOpcode(); 651 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 652 "Unexpected instruction for shrinking"); 653 654 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 655 if (!InsElt || !InsElt->hasOneUse()) 656 return nullptr; 657 658 Type *DestTy = Trunc.getType(); 659 Type *DestScalarTy = DestTy->getScalarType(); 660 Value *VecOp = InsElt->getOperand(0); 661 Value *ScalarOp = InsElt->getOperand(1); 662 Value *Index = InsElt->getOperand(2); 663 664 if (isa<UndefValue>(VecOp)) { 665 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 666 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 667 UndefValue *NarrowUndef = UndefValue::get(DestTy); 668 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 669 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 670 } 671 672 return nullptr; 673 } 674 675 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 676 if (Instruction *Result = commonCastTransforms(CI)) 677 return Result; 678 679 Value *Src = CI.getOperand(0); 680 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 681 682 // Attempt to truncate the entire input expression tree to the destination 683 // type. Only do this if the dest type is a simple type, don't convert the 684 // expression tree to something weird like i93 unless the source is also 685 // strange. 686 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 687 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 688 689 // If this cast is a truncate, evaluting in a different type always 690 // eliminates the cast, so it is always a win. 691 LLVM_DEBUG( 692 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 693 " to avoid cast: " 694 << CI << '\n'); 695 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 696 assert(Res->getType() == DestTy); 697 return replaceInstUsesWith(CI, Res); 698 } 699 700 // Test if the trunc is the user of a select which is part of a 701 // minimum or maximum operation. If so, don't do any more simplification. 702 // Even simplifying demanded bits can break the canonical form of a 703 // min/max. 704 Value *LHS, *RHS; 705 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 706 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 707 return nullptr; 708 709 // See if we can simplify any instructions used by the input whose sole 710 // purpose is to compute bits we don't care about. 711 if (SimplifyDemandedInstructionBits(CI)) 712 return &CI; 713 714 if (DestTy->getScalarSizeInBits() == 1) { 715 Value *Zero = Constant::getNullValue(Src->getType()); 716 if (DestTy->isIntegerTy()) { 717 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 718 // TODO: We canonicalize to more instructions here because we are probably 719 // lacking equivalent analysis for trunc relative to icmp. There may also 720 // be codegen concerns. If those trunc limitations were removed, we could 721 // remove this transform. 722 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 723 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 724 } 725 726 // For vectors, we do not canonicalize all truncs to icmp, so optimize 727 // patterns that would be covered within visitICmpInst. 728 Value *X; 729 const APInt *C; 730 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 731 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 732 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C); 733 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 734 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 735 } 736 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)), 737 m_Deferred(X))))) { 738 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 739 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1; 740 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 741 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 742 } 743 } 744 745 // FIXME: Maybe combine the next two transforms to handle the no cast case 746 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 747 748 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 749 Value *A = nullptr; ConstantInt *Cst = nullptr; 750 if (Src->hasOneUse() && 751 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 752 // We have three types to worry about here, the type of A, the source of 753 // the truncate (MidSize), and the destination of the truncate. We know that 754 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 755 // between ASize and ResultSize. 756 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 757 758 // If the shift amount is larger than the size of A, then the result is 759 // known to be zero because all the input bits got shifted out. 760 if (Cst->getZExtValue() >= ASize) 761 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 762 763 // Since we're doing an lshr and a zero extend, and know that the shift 764 // amount is smaller than ASize, it is always safe to do the shift in A's 765 // type, then zero extend or truncate to the result. 766 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 767 Shift->takeName(Src); 768 return CastInst::CreateIntegerCast(Shift, DestTy, false); 769 } 770 771 // FIXME: We should canonicalize to zext/trunc and remove this transform. 772 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 773 // conversion. 774 // It works because bits coming from sign extension have the same value as 775 // the sign bit of the original value; performing ashr instead of lshr 776 // generates bits of the same value as the sign bit. 777 if (Src->hasOneUse() && 778 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 779 Value *SExt = cast<Instruction>(Src)->getOperand(0); 780 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 781 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 782 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 783 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 784 unsigned ShiftAmt = Cst->getZExtValue(); 785 786 // This optimization can be only performed when zero bits generated by 787 // the original lshr aren't pulled into the value after truncation, so we 788 // can only shift by values no larger than the number of extension bits. 789 // FIXME: Instead of bailing when the shift is too large, use and to clear 790 // the extra bits. 791 if (ShiftAmt <= MaxAmt) { 792 if (CISize == ASize) 793 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 794 std::min(ShiftAmt, ASize - 1))); 795 if (SExt->hasOneUse()) { 796 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 797 Shift->takeName(Src); 798 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 799 } 800 } 801 } 802 803 if (Instruction *I = narrowBinOp(CI)) 804 return I; 805 806 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 807 return I; 808 809 if (Instruction *I = shrinkInsertElt(CI, Builder)) 810 return I; 811 812 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 813 shouldChangeType(SrcTy, DestTy)) { 814 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 815 // dest type is native and cst < dest size. 816 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 817 !match(A, m_Shr(m_Value(), m_Constant()))) { 818 // Skip shifts of shift by constants. It undoes a combine in 819 // FoldShiftByConstant and is the extend in reg pattern. 820 const unsigned DestSize = DestTy->getScalarSizeInBits(); 821 if (Cst->getValue().ult(DestSize)) { 822 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 823 824 return BinaryOperator::Create( 825 Instruction::Shl, NewTrunc, 826 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 827 } 828 } 829 } 830 831 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 832 return I; 833 834 return nullptr; 835 } 836 837 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 838 bool DoTransform) { 839 // If we are just checking for a icmp eq of a single bit and zext'ing it 840 // to an integer, then shift the bit to the appropriate place and then 841 // cast to integer to avoid the comparison. 842 const APInt *Op1CV; 843 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 844 845 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 846 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 847 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 848 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 849 if (!DoTransform) return ICI; 850 851 Value *In = ICI->getOperand(0); 852 Value *Sh = ConstantInt::get(In->getType(), 853 In->getType()->getScalarSizeInBits() - 1); 854 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 855 if (In->getType() != CI.getType()) 856 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 857 858 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 859 Constant *One = ConstantInt::get(In->getType(), 1); 860 In = Builder.CreateXor(In, One, In->getName() + ".not"); 861 } 862 863 return replaceInstUsesWith(CI, In); 864 } 865 866 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 867 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 868 // zext (X == 1) to i32 --> X iff X has only the low bit set. 869 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 870 // zext (X != 0) to i32 --> X iff X has only the low bit set. 871 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 872 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 873 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 874 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 875 // This only works for EQ and NE 876 ICI->isEquality()) { 877 // If Op1C some other power of two, convert: 878 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 879 880 APInt KnownZeroMask(~Known.Zero); 881 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 882 if (!DoTransform) return ICI; 883 884 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 885 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 886 // (X&4) == 2 --> false 887 // (X&4) != 2 --> true 888 Constant *Res = ConstantInt::get(CI.getType(), isNE); 889 return replaceInstUsesWith(CI, Res); 890 } 891 892 uint32_t ShAmt = KnownZeroMask.logBase2(); 893 Value *In = ICI->getOperand(0); 894 if (ShAmt) { 895 // Perform a logical shr by shiftamt. 896 // Insert the shift to put the result in the low bit. 897 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 898 In->getName() + ".lobit"); 899 } 900 901 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 902 Constant *One = ConstantInt::get(In->getType(), 1); 903 In = Builder.CreateXor(In, One); 904 } 905 906 if (CI.getType() == In->getType()) 907 return replaceInstUsesWith(CI, In); 908 909 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 910 return replaceInstUsesWith(CI, IntCast); 911 } 912 } 913 } 914 915 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 916 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 917 // may lead to additional simplifications. 918 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 919 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 920 Value *LHS = ICI->getOperand(0); 921 Value *RHS = ICI->getOperand(1); 922 923 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 924 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 925 926 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 927 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 928 APInt UnknownBit = ~KnownBits; 929 if (UnknownBit.countPopulation() == 1) { 930 if (!DoTransform) return ICI; 931 932 Value *Result = Builder.CreateXor(LHS, RHS); 933 934 // Mask off any bits that are set and won't be shifted away. 935 if (KnownLHS.One.uge(UnknownBit)) 936 Result = Builder.CreateAnd(Result, 937 ConstantInt::get(ITy, UnknownBit)); 938 939 // Shift the bit we're testing down to the lsb. 940 Result = Builder.CreateLShr( 941 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 942 943 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 944 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 945 Result->takeName(ICI); 946 return replaceInstUsesWith(CI, Result); 947 } 948 } 949 } 950 } 951 952 return nullptr; 953 } 954 955 /// Determine if the specified value can be computed in the specified wider type 956 /// and produce the same low bits. If not, return false. 957 /// 958 /// If this function returns true, it can also return a non-zero number of bits 959 /// (in BitsToClear) which indicates that the value it computes is correct for 960 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 961 /// out. For example, to promote something like: 962 /// 963 /// %B = trunc i64 %A to i32 964 /// %C = lshr i32 %B, 8 965 /// %E = zext i32 %C to i64 966 /// 967 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 968 /// set to 8 to indicate that the promoted value needs to have bits 24-31 969 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 970 /// clear the top bits anyway, doing this has no extra cost. 971 /// 972 /// This function works on both vectors and scalars. 973 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 974 InstCombiner &IC, Instruction *CxtI) { 975 BitsToClear = 0; 976 if (canAlwaysEvaluateInType(V, Ty)) 977 return true; 978 if (canNotEvaluateInType(V, Ty)) 979 return false; 980 981 auto *I = cast<Instruction>(V); 982 unsigned Tmp; 983 switch (I->getOpcode()) { 984 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 985 case Instruction::SExt: // zext(sext(x)) -> sext(x). 986 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 987 return true; 988 case Instruction::And: 989 case Instruction::Or: 990 case Instruction::Xor: 991 case Instruction::Add: 992 case Instruction::Sub: 993 case Instruction::Mul: 994 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 995 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 996 return false; 997 // These can all be promoted if neither operand has 'bits to clear'. 998 if (BitsToClear == 0 && Tmp == 0) 999 return true; 1000 1001 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1002 // other side, BitsToClear is ok. 1003 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1004 // We use MaskedValueIsZero here for generality, but the case we care 1005 // about the most is constant RHS. 1006 unsigned VSize = V->getType()->getScalarSizeInBits(); 1007 if (IC.MaskedValueIsZero(I->getOperand(1), 1008 APInt::getHighBitsSet(VSize, BitsToClear), 1009 0, CxtI)) { 1010 // If this is an And instruction and all of the BitsToClear are 1011 // known to be zero we can reset BitsToClear. 1012 if (I->getOpcode() == Instruction::And) 1013 BitsToClear = 0; 1014 return true; 1015 } 1016 } 1017 1018 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1019 return false; 1020 1021 case Instruction::Shl: { 1022 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1023 // upper bits we can reduce BitsToClear by the shift amount. 1024 const APInt *Amt; 1025 if (match(I->getOperand(1), m_APInt(Amt))) { 1026 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1027 return false; 1028 uint64_t ShiftAmt = Amt->getZExtValue(); 1029 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1030 return true; 1031 } 1032 return false; 1033 } 1034 case Instruction::LShr: { 1035 // We can promote lshr(x, cst) if we can promote x. This requires the 1036 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1037 const APInt *Amt; 1038 if (match(I->getOperand(1), m_APInt(Amt))) { 1039 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1040 return false; 1041 BitsToClear += Amt->getZExtValue(); 1042 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1043 BitsToClear = V->getType()->getScalarSizeInBits(); 1044 return true; 1045 } 1046 // Cannot promote variable LSHR. 1047 return false; 1048 } 1049 case Instruction::Select: 1050 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1051 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1052 // TODO: If important, we could handle the case when the BitsToClear are 1053 // known zero in the disagreeing side. 1054 Tmp != BitsToClear) 1055 return false; 1056 return true; 1057 1058 case Instruction::PHI: { 1059 // We can change a phi if we can change all operands. Note that we never 1060 // get into trouble with cyclic PHIs here because we only consider 1061 // instructions with a single use. 1062 PHINode *PN = cast<PHINode>(I); 1063 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1064 return false; 1065 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1066 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1067 // TODO: If important, we could handle the case when the BitsToClear 1068 // are known zero in the disagreeing input. 1069 Tmp != BitsToClear) 1070 return false; 1071 return true; 1072 } 1073 default: 1074 // TODO: Can handle more cases here. 1075 return false; 1076 } 1077 } 1078 1079 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1080 // If this zero extend is only used by a truncate, let the truncate be 1081 // eliminated before we try to optimize this zext. 1082 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1083 return nullptr; 1084 1085 // If one of the common conversion will work, do it. 1086 if (Instruction *Result = commonCastTransforms(CI)) 1087 return Result; 1088 1089 Value *Src = CI.getOperand(0); 1090 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1091 1092 // Attempt to extend the entire input expression tree to the destination 1093 // type. Only do this if the dest type is a simple type, don't convert the 1094 // expression tree to something weird like i93 unless the source is also 1095 // strange. 1096 unsigned BitsToClear; 1097 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1098 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1099 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1100 "Can't clear more bits than in SrcTy"); 1101 1102 // Okay, we can transform this! Insert the new expression now. 1103 LLVM_DEBUG( 1104 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1105 " to avoid zero extend: " 1106 << CI << '\n'); 1107 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1108 assert(Res->getType() == DestTy); 1109 1110 // Preserve debug values referring to Src if the zext is its last use. 1111 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1112 if (SrcOp->hasOneUse()) 1113 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1114 1115 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1116 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1117 1118 // If the high bits are already filled with zeros, just replace this 1119 // cast with the result. 1120 if (MaskedValueIsZero(Res, 1121 APInt::getHighBitsSet(DestBitSize, 1122 DestBitSize-SrcBitsKept), 1123 0, &CI)) 1124 return replaceInstUsesWith(CI, Res); 1125 1126 // We need to emit an AND to clear the high bits. 1127 Constant *C = ConstantInt::get(Res->getType(), 1128 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1129 return BinaryOperator::CreateAnd(Res, C); 1130 } 1131 1132 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1133 // types and if the sizes are just right we can convert this into a logical 1134 // 'and' which will be much cheaper than the pair of casts. 1135 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1136 // TODO: Subsume this into EvaluateInDifferentType. 1137 1138 // Get the sizes of the types involved. We know that the intermediate type 1139 // will be smaller than A or C, but don't know the relation between A and C. 1140 Value *A = CSrc->getOperand(0); 1141 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1142 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1143 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1144 // If we're actually extending zero bits, then if 1145 // SrcSize < DstSize: zext(a & mask) 1146 // SrcSize == DstSize: a & mask 1147 // SrcSize > DstSize: trunc(a) & mask 1148 if (SrcSize < DstSize) { 1149 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1150 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1151 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1152 return new ZExtInst(And, CI.getType()); 1153 } 1154 1155 if (SrcSize == DstSize) { 1156 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1157 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1158 AndValue)); 1159 } 1160 if (SrcSize > DstSize) { 1161 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1162 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1163 return BinaryOperator::CreateAnd(Trunc, 1164 ConstantInt::get(Trunc->getType(), 1165 AndValue)); 1166 } 1167 } 1168 1169 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1170 return transformZExtICmp(ICI, CI); 1171 1172 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1173 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1174 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1175 // of the (zext icmp) can be eliminated. If so, immediately perform the 1176 // according elimination. 1177 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1178 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1179 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1180 (transformZExtICmp(LHS, CI, false) || 1181 transformZExtICmp(RHS, CI, false))) { 1182 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1183 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1184 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1185 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1186 1187 // Perform the elimination. 1188 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1189 transformZExtICmp(LHS, *LZExt); 1190 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1191 transformZExtICmp(RHS, *RZExt); 1192 1193 return Or; 1194 } 1195 } 1196 1197 // zext(trunc(X) & C) -> (X & zext(C)). 1198 Constant *C; 1199 Value *X; 1200 if (SrcI && 1201 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1202 X->getType() == CI.getType()) 1203 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1204 1205 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1206 Value *And; 1207 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1208 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1209 X->getType() == CI.getType()) { 1210 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1211 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1212 } 1213 1214 return nullptr; 1215 } 1216 1217 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1218 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1219 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1220 ICmpInst::Predicate Pred = ICI->getPredicate(); 1221 1222 // Don't bother if Op1 isn't of vector or integer type. 1223 if (!Op1->getType()->isIntOrIntVectorTy()) 1224 return nullptr; 1225 1226 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1227 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1228 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1229 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1230 Value *Sh = ConstantInt::get(Op0->getType(), 1231 Op0->getType()->getScalarSizeInBits() - 1); 1232 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1233 if (In->getType() != CI.getType()) 1234 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1235 1236 if (Pred == ICmpInst::ICMP_SGT) 1237 In = Builder.CreateNot(In, In->getName() + ".not"); 1238 return replaceInstUsesWith(CI, In); 1239 } 1240 1241 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1242 // If we know that only one bit of the LHS of the icmp can be set and we 1243 // have an equality comparison with zero or a power of 2, we can transform 1244 // the icmp and sext into bitwise/integer operations. 1245 if (ICI->hasOneUse() && 1246 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1247 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1248 1249 APInt KnownZeroMask(~Known.Zero); 1250 if (KnownZeroMask.isPowerOf2()) { 1251 Value *In = ICI->getOperand(0); 1252 1253 // If the icmp tests for a known zero bit we can constant fold it. 1254 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1255 Value *V = Pred == ICmpInst::ICMP_NE ? 1256 ConstantInt::getAllOnesValue(CI.getType()) : 1257 ConstantInt::getNullValue(CI.getType()); 1258 return replaceInstUsesWith(CI, V); 1259 } 1260 1261 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1262 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1263 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1264 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1265 // Perform a right shift to place the desired bit in the LSB. 1266 if (ShiftAmt) 1267 In = Builder.CreateLShr(In, 1268 ConstantInt::get(In->getType(), ShiftAmt)); 1269 1270 // At this point "In" is either 1 or 0. Subtract 1 to turn 1271 // {1, 0} -> {0, -1}. 1272 In = Builder.CreateAdd(In, 1273 ConstantInt::getAllOnesValue(In->getType()), 1274 "sext"); 1275 } else { 1276 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1277 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1278 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1279 // Perform a left shift to place the desired bit in the MSB. 1280 if (ShiftAmt) 1281 In = Builder.CreateShl(In, 1282 ConstantInt::get(In->getType(), ShiftAmt)); 1283 1284 // Distribute the bit over the whole bit width. 1285 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1286 KnownZeroMask.getBitWidth() - 1), "sext"); 1287 } 1288 1289 if (CI.getType() == In->getType()) 1290 return replaceInstUsesWith(CI, In); 1291 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1292 } 1293 } 1294 } 1295 1296 return nullptr; 1297 } 1298 1299 /// Return true if we can take the specified value and return it as type Ty 1300 /// without inserting any new casts and without changing the value of the common 1301 /// low bits. This is used by code that tries to promote integer operations to 1302 /// a wider types will allow us to eliminate the extension. 1303 /// 1304 /// This function works on both vectors and scalars. 1305 /// 1306 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1307 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1308 "Can't sign extend type to a smaller type"); 1309 if (canAlwaysEvaluateInType(V, Ty)) 1310 return true; 1311 if (canNotEvaluateInType(V, Ty)) 1312 return false; 1313 1314 auto *I = cast<Instruction>(V); 1315 switch (I->getOpcode()) { 1316 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1317 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1318 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1319 return true; 1320 case Instruction::And: 1321 case Instruction::Or: 1322 case Instruction::Xor: 1323 case Instruction::Add: 1324 case Instruction::Sub: 1325 case Instruction::Mul: 1326 // These operators can all arbitrarily be extended if their inputs can. 1327 return canEvaluateSExtd(I->getOperand(0), Ty) && 1328 canEvaluateSExtd(I->getOperand(1), Ty); 1329 1330 //case Instruction::Shl: TODO 1331 //case Instruction::LShr: TODO 1332 1333 case Instruction::Select: 1334 return canEvaluateSExtd(I->getOperand(1), Ty) && 1335 canEvaluateSExtd(I->getOperand(2), Ty); 1336 1337 case Instruction::PHI: { 1338 // We can change a phi if we can change all operands. Note that we never 1339 // get into trouble with cyclic PHIs here because we only consider 1340 // instructions with a single use. 1341 PHINode *PN = cast<PHINode>(I); 1342 for (Value *IncValue : PN->incoming_values()) 1343 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1344 return true; 1345 } 1346 default: 1347 // TODO: Can handle more cases here. 1348 break; 1349 } 1350 1351 return false; 1352 } 1353 1354 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1355 // If this sign extend is only used by a truncate, let the truncate be 1356 // eliminated before we try to optimize this sext. 1357 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1358 return nullptr; 1359 1360 if (Instruction *I = commonCastTransforms(CI)) 1361 return I; 1362 1363 Value *Src = CI.getOperand(0); 1364 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1365 1366 // If we know that the value being extended is positive, we can use a zext 1367 // instead. 1368 KnownBits Known = computeKnownBits(Src, 0, &CI); 1369 if (Known.isNonNegative()) { 1370 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1371 return replaceInstUsesWith(CI, ZExt); 1372 } 1373 1374 // Attempt to extend the entire input expression tree to the destination 1375 // type. Only do this if the dest type is a simple type, don't convert the 1376 // expression tree to something weird like i93 unless the source is also 1377 // strange. 1378 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1379 canEvaluateSExtd(Src, DestTy)) { 1380 // Okay, we can transform this! Insert the new expression now. 1381 LLVM_DEBUG( 1382 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1383 " to avoid sign extend: " 1384 << CI << '\n'); 1385 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1386 assert(Res->getType() == DestTy); 1387 1388 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1389 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1390 1391 // If the high bits are already filled with sign bit, just replace this 1392 // cast with the result. 1393 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1394 return replaceInstUsesWith(CI, Res); 1395 1396 // We need to emit a shl + ashr to do the sign extend. 1397 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1398 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1399 ShAmt); 1400 } 1401 1402 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1403 // into shifts. 1404 Value *X; 1405 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1406 // sext(trunc(X)) --> ashr(shl(X, C), C) 1407 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1408 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1409 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1410 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1411 } 1412 1413 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1414 return transformSExtICmp(ICI, CI); 1415 1416 // If the input is a shl/ashr pair of a same constant, then this is a sign 1417 // extension from a smaller value. If we could trust arbitrary bitwidth 1418 // integers, we could turn this into a truncate to the smaller bit and then 1419 // use a sext for the whole extension. Since we don't, look deeper and check 1420 // for a truncate. If the source and dest are the same type, eliminate the 1421 // trunc and extend and just do shifts. For example, turn: 1422 // %a = trunc i32 %i to i8 1423 // %b = shl i8 %a, 6 1424 // %c = ashr i8 %b, 6 1425 // %d = sext i8 %c to i32 1426 // into: 1427 // %a = shl i32 %i, 30 1428 // %d = ashr i32 %a, 30 1429 Value *A = nullptr; 1430 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1431 ConstantInt *BA = nullptr, *CA = nullptr; 1432 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1433 m_ConstantInt(CA))) && 1434 BA == CA && A->getType() == CI.getType()) { 1435 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1436 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1437 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1438 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1439 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1440 return BinaryOperator::CreateAShr(A, ShAmtV); 1441 } 1442 1443 return nullptr; 1444 } 1445 1446 1447 /// Return a Constant* for the specified floating-point constant if it fits 1448 /// in the specified FP type without changing its value. 1449 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1450 bool losesInfo; 1451 APFloat F = CFP->getValueAPF(); 1452 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1453 return !losesInfo; 1454 } 1455 1456 static Type *shrinkFPConstant(ConstantFP *CFP) { 1457 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1458 return nullptr; // No constant folding of this. 1459 // See if the value can be truncated to half and then reextended. 1460 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1461 return Type::getHalfTy(CFP->getContext()); 1462 // See if the value can be truncated to float and then reextended. 1463 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1464 return Type::getFloatTy(CFP->getContext()); 1465 if (CFP->getType()->isDoubleTy()) 1466 return nullptr; // Won't shrink. 1467 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1468 return Type::getDoubleTy(CFP->getContext()); 1469 // Don't try to shrink to various long double types. 1470 return nullptr; 1471 } 1472 1473 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1474 // type we can safely truncate all elements to. 1475 // TODO: Make these support undef elements. 1476 static Type *shrinkFPConstantVector(Value *V) { 1477 auto *CV = dyn_cast<Constant>(V); 1478 if (!CV || !CV->getType()->isVectorTy()) 1479 return nullptr; 1480 1481 Type *MinType = nullptr; 1482 1483 unsigned NumElts = CV->getType()->getVectorNumElements(); 1484 for (unsigned i = 0; i != NumElts; ++i) { 1485 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1486 if (!CFP) 1487 return nullptr; 1488 1489 Type *T = shrinkFPConstant(CFP); 1490 if (!T) 1491 return nullptr; 1492 1493 // If we haven't found a type yet or this type has a larger mantissa than 1494 // our previous type, this is our new minimal type. 1495 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1496 MinType = T; 1497 } 1498 1499 // Make a vector type from the minimal type. 1500 return VectorType::get(MinType, NumElts); 1501 } 1502 1503 /// Find the minimum FP type we can safely truncate to. 1504 static Type *getMinimumFPType(Value *V) { 1505 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1506 return FPExt->getOperand(0)->getType(); 1507 1508 // If this value is a constant, return the constant in the smallest FP type 1509 // that can accurately represent it. This allows us to turn 1510 // (float)((double)X+2.0) into x+2.0f. 1511 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1512 if (Type *T = shrinkFPConstant(CFP)) 1513 return T; 1514 1515 // Try to shrink a vector of FP constants. 1516 if (Type *T = shrinkFPConstantVector(V)) 1517 return T; 1518 1519 return V->getType(); 1520 } 1521 1522 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1523 if (Instruction *I = commonCastTransforms(FPT)) 1524 return I; 1525 1526 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1527 // simplify this expression to avoid one or more of the trunc/extend 1528 // operations if we can do so without changing the numerical results. 1529 // 1530 // The exact manner in which the widths of the operands interact to limit 1531 // what we can and cannot do safely varies from operation to operation, and 1532 // is explained below in the various case statements. 1533 Type *Ty = FPT.getType(); 1534 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1535 if (OpI && OpI->hasOneUse()) { 1536 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0)); 1537 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1)); 1538 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1539 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1540 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1541 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1542 unsigned DstWidth = Ty->getFPMantissaWidth(); 1543 switch (OpI->getOpcode()) { 1544 default: break; 1545 case Instruction::FAdd: 1546 case Instruction::FSub: 1547 // For addition and subtraction, the infinitely precise result can 1548 // essentially be arbitrarily wide; proving that double rounding 1549 // will not occur because the result of OpI is exact (as we will for 1550 // FMul, for example) is hopeless. However, we *can* nonetheless 1551 // frequently know that double rounding cannot occur (or that it is 1552 // innocuous) by taking advantage of the specific structure of 1553 // infinitely-precise results that admit double rounding. 1554 // 1555 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1556 // to represent both sources, we can guarantee that the double 1557 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1558 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1559 // for proof of this fact). 1560 // 1561 // Note: Figueroa does not consider the case where DstFormat != 1562 // SrcFormat. It's possible (likely even!) that this analysis 1563 // could be tightened for those cases, but they are rare (the main 1564 // case of interest here is (float)((double)float + float)). 1565 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1566 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1567 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1568 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS); 1569 RI->copyFastMathFlags(OpI); 1570 return RI; 1571 } 1572 break; 1573 case Instruction::FMul: 1574 // For multiplication, the infinitely precise result has at most 1575 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1576 // that such a value can be exactly represented, then no double 1577 // rounding can possibly occur; we can safely perform the operation 1578 // in the destination format if it can represent both sources. 1579 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1580 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1581 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1582 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI); 1583 } 1584 break; 1585 case Instruction::FDiv: 1586 // For division, we use again use the bound from Figueroa's 1587 // dissertation. I am entirely certain that this bound can be 1588 // tightened in the unbalanced operand case by an analysis based on 1589 // the diophantine rational approximation bound, but the well-known 1590 // condition used here is a good conservative first pass. 1591 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1592 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1593 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1594 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1595 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI); 1596 } 1597 break; 1598 case Instruction::FRem: { 1599 // Remainder is straightforward. Remainder is always exact, so the 1600 // type of OpI doesn't enter into things at all. We simply evaluate 1601 // in whichever source type is larger, then convert to the 1602 // destination type. 1603 if (SrcWidth == OpWidth) 1604 break; 1605 Value *LHS, *RHS; 1606 if (LHSWidth == SrcWidth) { 1607 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType); 1608 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType); 1609 } else { 1610 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType); 1611 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType); 1612 } 1613 1614 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI); 1615 return CastInst::CreateFPCast(ExactResult, Ty); 1616 } 1617 } 1618 1619 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1620 Value *X; 1621 if (match(OpI, m_FNeg(m_Value(X)))) { 1622 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1623 return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI); 1624 } 1625 } 1626 1627 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1628 switch (II->getIntrinsicID()) { 1629 default: break; 1630 case Intrinsic::ceil: 1631 case Intrinsic::fabs: 1632 case Intrinsic::floor: 1633 case Intrinsic::nearbyint: 1634 case Intrinsic::rint: 1635 case Intrinsic::round: 1636 case Intrinsic::trunc: { 1637 Value *Src = II->getArgOperand(0); 1638 if (!Src->hasOneUse()) 1639 break; 1640 1641 // Except for fabs, this transformation requires the input of the unary FP 1642 // operation to be itself an fpext from the type to which we're 1643 // truncating. 1644 if (II->getIntrinsicID() != Intrinsic::fabs) { 1645 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1646 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1647 break; 1648 } 1649 1650 // Do unary FP operation on smaller type. 1651 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1652 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1653 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1654 II->getIntrinsicID(), Ty); 1655 SmallVector<OperandBundleDef, 1> OpBundles; 1656 II->getOperandBundlesAsDefs(OpBundles); 1657 CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles, 1658 II->getName()); 1659 NewCI->copyFastMathFlags(II); 1660 return NewCI; 1661 } 1662 } 1663 } 1664 1665 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1666 return I; 1667 1668 return nullptr; 1669 } 1670 1671 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1672 return commonCastTransforms(CI); 1673 } 1674 1675 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1676 // This is safe if the intermediate type has enough bits in its mantissa to 1677 // accurately represent all values of X. For example, this won't work with 1678 // i64 -> float -> i64. 1679 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1680 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1681 return nullptr; 1682 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1683 1684 Value *SrcI = OpI->getOperand(0); 1685 Type *FITy = FI.getType(); 1686 Type *OpITy = OpI->getType(); 1687 Type *SrcTy = SrcI->getType(); 1688 bool IsInputSigned = isa<SIToFPInst>(OpI); 1689 bool IsOutputSigned = isa<FPToSIInst>(FI); 1690 1691 // We can safely assume the conversion won't overflow the output range, 1692 // because (for example) (uint8_t)18293.f is undefined behavior. 1693 1694 // Since we can assume the conversion won't overflow, our decision as to 1695 // whether the input will fit in the float should depend on the minimum 1696 // of the input range and output range. 1697 1698 // This means this is also safe for a signed input and unsigned output, since 1699 // a negative input would lead to undefined behavior. 1700 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1701 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1702 int ActualSize = std::min(InputSize, OutputSize); 1703 1704 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1705 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1706 if (IsInputSigned && IsOutputSigned) 1707 return new SExtInst(SrcI, FITy); 1708 return new ZExtInst(SrcI, FITy); 1709 } 1710 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1711 return new TruncInst(SrcI, FITy); 1712 if (SrcTy == FITy) 1713 return replaceInstUsesWith(FI, SrcI); 1714 return new BitCastInst(SrcI, FITy); 1715 } 1716 return nullptr; 1717 } 1718 1719 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1720 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1721 if (!OpI) 1722 return commonCastTransforms(FI); 1723 1724 if (Instruction *I = FoldItoFPtoI(FI)) 1725 return I; 1726 1727 return commonCastTransforms(FI); 1728 } 1729 1730 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1731 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1732 if (!OpI) 1733 return commonCastTransforms(FI); 1734 1735 if (Instruction *I = FoldItoFPtoI(FI)) 1736 return I; 1737 1738 return commonCastTransforms(FI); 1739 } 1740 1741 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1742 return commonCastTransforms(CI); 1743 } 1744 1745 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1746 return commonCastTransforms(CI); 1747 } 1748 1749 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1750 // If the source integer type is not the intptr_t type for this target, do a 1751 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1752 // cast to be exposed to other transforms. 1753 unsigned AS = CI.getAddressSpace(); 1754 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1755 DL.getPointerSizeInBits(AS)) { 1756 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1757 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1758 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1759 1760 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1761 return new IntToPtrInst(P, CI.getType()); 1762 } 1763 1764 if (Instruction *I = commonCastTransforms(CI)) 1765 return I; 1766 1767 return nullptr; 1768 } 1769 1770 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1771 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1772 Value *Src = CI.getOperand(0); 1773 1774 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1775 // If casting the result of a getelementptr instruction with no offset, turn 1776 // this into a cast of the original pointer! 1777 if (GEP->hasAllZeroIndices() && 1778 // If CI is an addrspacecast and GEP changes the poiner type, merging 1779 // GEP into CI would undo canonicalizing addrspacecast with different 1780 // pointer types, causing infinite loops. 1781 (!isa<AddrSpaceCastInst>(CI) || 1782 GEP->getType() == GEP->getPointerOperandType())) { 1783 // Changing the cast operand is usually not a good idea but it is safe 1784 // here because the pointer operand is being replaced with another 1785 // pointer operand so the opcode doesn't need to change. 1786 Worklist.Add(GEP); 1787 CI.setOperand(0, GEP->getOperand(0)); 1788 return &CI; 1789 } 1790 } 1791 1792 return commonCastTransforms(CI); 1793 } 1794 1795 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1796 // If the destination integer type is not the intptr_t type for this target, 1797 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1798 // to be exposed to other transforms. 1799 1800 Type *Ty = CI.getType(); 1801 unsigned AS = CI.getPointerAddressSpace(); 1802 1803 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) 1804 return commonPointerCastTransforms(CI); 1805 1806 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1807 if (Ty->isVectorTy()) // Handle vectors of pointers. 1808 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1809 1810 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1811 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1812 } 1813 1814 /// This input value (which is known to have vector type) is being zero extended 1815 /// or truncated to the specified vector type. 1816 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1817 /// 1818 /// The source and destination vector types may have different element types. 1819 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1820 InstCombiner &IC) { 1821 // We can only do this optimization if the output is a multiple of the input 1822 // element size, or the input is a multiple of the output element size. 1823 // Convert the input type to have the same element type as the output. 1824 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1825 1826 if (SrcTy->getElementType() != DestTy->getElementType()) { 1827 // The input types don't need to be identical, but for now they must be the 1828 // same size. There is no specific reason we couldn't handle things like 1829 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1830 // there yet. 1831 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1832 DestTy->getElementType()->getPrimitiveSizeInBits()) 1833 return nullptr; 1834 1835 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1836 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1837 } 1838 1839 // Now that the element types match, get the shuffle mask and RHS of the 1840 // shuffle to use, which depends on whether we're increasing or decreasing the 1841 // size of the input. 1842 SmallVector<uint32_t, 16> ShuffleMask; 1843 Value *V2; 1844 1845 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1846 // If we're shrinking the number of elements, just shuffle in the low 1847 // elements from the input and use undef as the second shuffle input. 1848 V2 = UndefValue::get(SrcTy); 1849 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1850 ShuffleMask.push_back(i); 1851 1852 } else { 1853 // If we're increasing the number of elements, shuffle in all of the 1854 // elements from InVal and fill the rest of the result elements with zeros 1855 // from a constant zero. 1856 V2 = Constant::getNullValue(SrcTy); 1857 unsigned SrcElts = SrcTy->getNumElements(); 1858 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1859 ShuffleMask.push_back(i); 1860 1861 // The excess elements reference the first element of the zero input. 1862 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1863 ShuffleMask.push_back(SrcElts); 1864 } 1865 1866 return new ShuffleVectorInst(InVal, V2, 1867 ConstantDataVector::get(V2->getContext(), 1868 ShuffleMask)); 1869 } 1870 1871 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1872 return Value % Ty->getPrimitiveSizeInBits() == 0; 1873 } 1874 1875 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1876 return Value / Ty->getPrimitiveSizeInBits(); 1877 } 1878 1879 /// V is a value which is inserted into a vector of VecEltTy. 1880 /// Look through the value to see if we can decompose it into 1881 /// insertions into the vector. See the example in the comment for 1882 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1883 /// The type of V is always a non-zero multiple of VecEltTy's size. 1884 /// Shift is the number of bits between the lsb of V and the lsb of 1885 /// the vector. 1886 /// 1887 /// This returns false if the pattern can't be matched or true if it can, 1888 /// filling in Elements with the elements found here. 1889 static bool collectInsertionElements(Value *V, unsigned Shift, 1890 SmallVectorImpl<Value *> &Elements, 1891 Type *VecEltTy, bool isBigEndian) { 1892 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1893 "Shift should be a multiple of the element type size"); 1894 1895 // Undef values never contribute useful bits to the result. 1896 if (isa<UndefValue>(V)) return true; 1897 1898 // If we got down to a value of the right type, we win, try inserting into the 1899 // right element. 1900 if (V->getType() == VecEltTy) { 1901 // Inserting null doesn't actually insert any elements. 1902 if (Constant *C = dyn_cast<Constant>(V)) 1903 if (C->isNullValue()) 1904 return true; 1905 1906 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1907 if (isBigEndian) 1908 ElementIndex = Elements.size() - ElementIndex - 1; 1909 1910 // Fail if multiple elements are inserted into this slot. 1911 if (Elements[ElementIndex]) 1912 return false; 1913 1914 Elements[ElementIndex] = V; 1915 return true; 1916 } 1917 1918 if (Constant *C = dyn_cast<Constant>(V)) { 1919 // Figure out the # elements this provides, and bitcast it or slice it up 1920 // as required. 1921 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1922 VecEltTy); 1923 // If the constant is the size of a vector element, we just need to bitcast 1924 // it to the right type so it gets properly inserted. 1925 if (NumElts == 1) 1926 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1927 Shift, Elements, VecEltTy, isBigEndian); 1928 1929 // Okay, this is a constant that covers multiple elements. Slice it up into 1930 // pieces and insert each element-sized piece into the vector. 1931 if (!isa<IntegerType>(C->getType())) 1932 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1933 C->getType()->getPrimitiveSizeInBits())); 1934 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1935 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1936 1937 for (unsigned i = 0; i != NumElts; ++i) { 1938 unsigned ShiftI = Shift+i*ElementSize; 1939 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1940 ShiftI)); 1941 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1942 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1943 isBigEndian)) 1944 return false; 1945 } 1946 return true; 1947 } 1948 1949 if (!V->hasOneUse()) return false; 1950 1951 Instruction *I = dyn_cast<Instruction>(V); 1952 if (!I) return false; 1953 switch (I->getOpcode()) { 1954 default: return false; // Unhandled case. 1955 case Instruction::BitCast: 1956 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1957 isBigEndian); 1958 case Instruction::ZExt: 1959 if (!isMultipleOfTypeSize( 1960 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1961 VecEltTy)) 1962 return false; 1963 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1964 isBigEndian); 1965 case Instruction::Or: 1966 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1967 isBigEndian) && 1968 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1969 isBigEndian); 1970 case Instruction::Shl: { 1971 // Must be shifting by a constant that is a multiple of the element size. 1972 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1973 if (!CI) return false; 1974 Shift += CI->getZExtValue(); 1975 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1976 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1977 isBigEndian); 1978 } 1979 1980 } 1981 } 1982 1983 1984 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1985 /// assemble the elements of the vector manually. 1986 /// Try to rip the code out and replace it with insertelements. This is to 1987 /// optimize code like this: 1988 /// 1989 /// %tmp37 = bitcast float %inc to i32 1990 /// %tmp38 = zext i32 %tmp37 to i64 1991 /// %tmp31 = bitcast float %inc5 to i32 1992 /// %tmp32 = zext i32 %tmp31 to i64 1993 /// %tmp33 = shl i64 %tmp32, 32 1994 /// %ins35 = or i64 %tmp33, %tmp38 1995 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1996 /// 1997 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1998 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1999 InstCombiner &IC) { 2000 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 2001 Value *IntInput = CI.getOperand(0); 2002 2003 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2004 if (!collectInsertionElements(IntInput, 0, Elements, 2005 DestVecTy->getElementType(), 2006 IC.getDataLayout().isBigEndian())) 2007 return nullptr; 2008 2009 // If we succeeded, we know that all of the element are specified by Elements 2010 // or are zero if Elements has a null entry. Recast this as a set of 2011 // insertions. 2012 Value *Result = Constant::getNullValue(CI.getType()); 2013 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2014 if (!Elements[i]) continue; // Unset element. 2015 2016 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2017 IC.Builder.getInt32(i)); 2018 } 2019 2020 return Result; 2021 } 2022 2023 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2024 /// vector followed by extract element. The backend tends to handle bitcasts of 2025 /// vectors better than bitcasts of scalars because vector registers are 2026 /// usually not type-specific like scalar integer or scalar floating-point. 2027 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2028 InstCombiner &IC) { 2029 // TODO: Create and use a pattern matcher for ExtractElementInst. 2030 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2031 if (!ExtElt || !ExtElt->hasOneUse()) 2032 return nullptr; 2033 2034 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2035 // type to extract from. 2036 Type *DestType = BitCast.getType(); 2037 if (!VectorType::isValidElementType(DestType)) 2038 return nullptr; 2039 2040 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2041 auto *NewVecType = VectorType::get(DestType, NumElts); 2042 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2043 NewVecType, "bc"); 2044 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2045 } 2046 2047 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2048 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2049 InstCombiner::BuilderTy &Builder) { 2050 Type *DestTy = BitCast.getType(); 2051 BinaryOperator *BO; 2052 if (!DestTy->isIntOrIntVectorTy() || 2053 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2054 !BO->isBitwiseLogicOp()) 2055 return nullptr; 2056 2057 // FIXME: This transform is restricted to vector types to avoid backend 2058 // problems caused by creating potentially illegal operations. If a fix-up is 2059 // added to handle that situation, we can remove this check. 2060 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2061 return nullptr; 2062 2063 Value *X; 2064 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2065 X->getType() == DestTy && !isa<Constant>(X)) { 2066 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2067 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2068 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2069 } 2070 2071 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2072 X->getType() == DestTy && !isa<Constant>(X)) { 2073 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2074 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2075 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2076 } 2077 2078 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2079 // constant. This eases recognition of special constants for later ops. 2080 // Example: 2081 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2082 Constant *C; 2083 if (match(BO->getOperand(1), m_Constant(C))) { 2084 // bitcast (logic X, C) --> logic (bitcast X, C') 2085 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2086 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2087 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2088 } 2089 2090 return nullptr; 2091 } 2092 2093 /// Change the type of a select if we can eliminate a bitcast. 2094 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2095 InstCombiner::BuilderTy &Builder) { 2096 Value *Cond, *TVal, *FVal; 2097 if (!match(BitCast.getOperand(0), 2098 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2099 return nullptr; 2100 2101 // A vector select must maintain the same number of elements in its operands. 2102 Type *CondTy = Cond->getType(); 2103 Type *DestTy = BitCast.getType(); 2104 if (CondTy->isVectorTy()) { 2105 if (!DestTy->isVectorTy()) 2106 return nullptr; 2107 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2108 return nullptr; 2109 } 2110 2111 // FIXME: This transform is restricted from changing the select between 2112 // scalars and vectors to avoid backend problems caused by creating 2113 // potentially illegal operations. If a fix-up is added to handle that 2114 // situation, we can remove this check. 2115 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2116 return nullptr; 2117 2118 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2119 Value *X; 2120 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2121 !isa<Constant>(X)) { 2122 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2123 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2124 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2125 } 2126 2127 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2128 !isa<Constant>(X)) { 2129 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2130 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2131 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2132 } 2133 2134 return nullptr; 2135 } 2136 2137 /// Check if all users of CI are StoreInsts. 2138 static bool hasStoreUsersOnly(CastInst &CI) { 2139 for (User *U : CI.users()) { 2140 if (!isa<StoreInst>(U)) 2141 return false; 2142 } 2143 return true; 2144 } 2145 2146 /// This function handles following case 2147 /// 2148 /// A -> B cast 2149 /// PHI 2150 /// B -> A cast 2151 /// 2152 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2153 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2154 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2155 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2156 if (hasStoreUsersOnly(CI)) 2157 return nullptr; 2158 2159 Value *Src = CI.getOperand(0); 2160 Type *SrcTy = Src->getType(); // Type B 2161 Type *DestTy = CI.getType(); // Type A 2162 2163 SmallVector<PHINode *, 4> PhiWorklist; 2164 SmallSetVector<PHINode *, 4> OldPhiNodes; 2165 2166 // Find all of the A->B casts and PHI nodes. 2167 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2168 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2169 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2170 PhiWorklist.push_back(PN); 2171 OldPhiNodes.insert(PN); 2172 while (!PhiWorklist.empty()) { 2173 auto *OldPN = PhiWorklist.pop_back_val(); 2174 for (Value *IncValue : OldPN->incoming_values()) { 2175 if (isa<Constant>(IncValue)) 2176 continue; 2177 2178 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2179 // If there is a sequence of one or more load instructions, each loaded 2180 // value is used as address of later load instruction, bitcast is 2181 // necessary to change the value type, don't optimize it. For 2182 // simplicity we give up if the load address comes from another load. 2183 Value *Addr = LI->getOperand(0); 2184 if (Addr == &CI || isa<LoadInst>(Addr)) 2185 return nullptr; 2186 if (LI->hasOneUse() && LI->isSimple()) 2187 continue; 2188 // If a LoadInst has more than one use, changing the type of loaded 2189 // value may create another bitcast. 2190 return nullptr; 2191 } 2192 2193 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2194 if (OldPhiNodes.insert(PNode)) 2195 PhiWorklist.push_back(PNode); 2196 continue; 2197 } 2198 2199 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2200 // We can't handle other instructions. 2201 if (!BCI) 2202 return nullptr; 2203 2204 // Verify it's a A->B cast. 2205 Type *TyA = BCI->getOperand(0)->getType(); 2206 Type *TyB = BCI->getType(); 2207 if (TyA != DestTy || TyB != SrcTy) 2208 return nullptr; 2209 } 2210 } 2211 2212 // For each old PHI node, create a corresponding new PHI node with a type A. 2213 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2214 for (auto *OldPN : OldPhiNodes) { 2215 Builder.SetInsertPoint(OldPN); 2216 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2217 NewPNodes[OldPN] = NewPN; 2218 } 2219 2220 // Fill in the operands of new PHI nodes. 2221 for (auto *OldPN : OldPhiNodes) { 2222 PHINode *NewPN = NewPNodes[OldPN]; 2223 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2224 Value *V = OldPN->getOperand(j); 2225 Value *NewV = nullptr; 2226 if (auto *C = dyn_cast<Constant>(V)) { 2227 NewV = ConstantExpr::getBitCast(C, DestTy); 2228 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2229 Builder.SetInsertPoint(LI->getNextNode()); 2230 NewV = Builder.CreateBitCast(LI, DestTy); 2231 Worklist.Add(LI); 2232 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2233 NewV = BCI->getOperand(0); 2234 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2235 NewV = NewPNodes[PrevPN]; 2236 } 2237 assert(NewV); 2238 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2239 } 2240 } 2241 2242 // If there is a store with type B, change it to type A. 2243 for (User *U : PN->users()) { 2244 auto *SI = dyn_cast<StoreInst>(U); 2245 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2246 Builder.SetInsertPoint(SI); 2247 auto *NewBC = 2248 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2249 SI->setOperand(0, NewBC); 2250 Worklist.Add(SI); 2251 assert(hasStoreUsersOnly(*NewBC)); 2252 } 2253 } 2254 2255 return replaceInstUsesWith(CI, NewPNodes[PN]); 2256 } 2257 2258 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2259 // If the operands are integer typed then apply the integer transforms, 2260 // otherwise just apply the common ones. 2261 Value *Src = CI.getOperand(0); 2262 Type *SrcTy = Src->getType(); 2263 Type *DestTy = CI.getType(); 2264 2265 // Get rid of casts from one type to the same type. These are useless and can 2266 // be replaced by the operand. 2267 if (DestTy == Src->getType()) 2268 return replaceInstUsesWith(CI, Src); 2269 2270 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2271 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2272 Type *DstElTy = DstPTy->getElementType(); 2273 Type *SrcElTy = SrcPTy->getElementType(); 2274 2275 // Casting pointers between the same type, but with different address spaces 2276 // is an addrspace cast rather than a bitcast. 2277 if ((DstElTy == SrcElTy) && 2278 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2279 return new AddrSpaceCastInst(Src, DestTy); 2280 2281 // If we are casting a alloca to a pointer to a type of the same 2282 // size, rewrite the allocation instruction to allocate the "right" type. 2283 // There is no need to modify malloc calls because it is their bitcast that 2284 // needs to be cleaned up. 2285 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2286 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2287 return V; 2288 2289 // When the type pointed to is not sized the cast cannot be 2290 // turned into a gep. 2291 Type *PointeeType = 2292 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2293 if (!PointeeType->isSized()) 2294 return nullptr; 2295 2296 // If the source and destination are pointers, and this cast is equivalent 2297 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2298 // This can enhance SROA and other transforms that want type-safe pointers. 2299 unsigned NumZeros = 0; 2300 while (SrcElTy != DstElTy && 2301 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2302 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2303 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2304 ++NumZeros; 2305 } 2306 2307 // If we found a path from the src to dest, create the getelementptr now. 2308 if (SrcElTy == DstElTy) { 2309 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2310 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2311 } 2312 } 2313 2314 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2315 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2316 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2317 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2318 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2319 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2320 } 2321 2322 if (isa<IntegerType>(SrcTy)) { 2323 // If this is a cast from an integer to vector, check to see if the input 2324 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2325 // the casts with a shuffle and (potentially) a bitcast. 2326 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2327 CastInst *SrcCast = cast<CastInst>(Src); 2328 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2329 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2330 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2331 cast<VectorType>(DestTy), *this)) 2332 return I; 2333 } 2334 2335 // If the input is an 'or' instruction, we may be doing shifts and ors to 2336 // assemble the elements of the vector manually. Try to rip the code out 2337 // and replace it with insertelements. 2338 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2339 return replaceInstUsesWith(CI, V); 2340 } 2341 } 2342 2343 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2344 if (SrcVTy->getNumElements() == 1) { 2345 // If our destination is not a vector, then make this a straight 2346 // scalar-scalar cast. 2347 if (!DestTy->isVectorTy()) { 2348 Value *Elem = 2349 Builder.CreateExtractElement(Src, 2350 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2351 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2352 } 2353 2354 // Otherwise, see if our source is an insert. If so, then use the scalar 2355 // component directly. 2356 if (InsertElementInst *IEI = 2357 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2358 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2359 DestTy); 2360 } 2361 } 2362 2363 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2364 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2365 // a bitcast to a vector with the same # elts. 2366 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2367 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2368 SVI->getType()->getNumElements() == 2369 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2370 BitCastInst *Tmp; 2371 // If either of the operands is a cast from CI.getType(), then 2372 // evaluating the shuffle in the casted destination's type will allow 2373 // us to eliminate at least one cast. 2374 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2375 Tmp->getOperand(0)->getType() == DestTy) || 2376 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2377 Tmp->getOperand(0)->getType() == DestTy)) { 2378 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2379 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2380 // Return a new shuffle vector. Use the same element ID's, as we 2381 // know the vector types match #elts. 2382 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2383 } 2384 } 2385 } 2386 2387 // Handle the A->B->A cast, and there is an intervening PHI node. 2388 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2389 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2390 return I; 2391 2392 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2393 return I; 2394 2395 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2396 return I; 2397 2398 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2399 return I; 2400 2401 if (SrcTy->isPointerTy()) 2402 return commonPointerCastTransforms(CI); 2403 return commonCastTransforms(CI); 2404 } 2405 2406 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2407 // If the destination pointer element type is not the same as the source's 2408 // first do a bitcast to the destination type, and then the addrspacecast. 2409 // This allows the cast to be exposed to other transforms. 2410 Value *Src = CI.getOperand(0); 2411 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2412 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2413 2414 Type *DestElemTy = DestTy->getElementType(); 2415 if (SrcTy->getElementType() != DestElemTy) { 2416 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2417 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2418 // Handle vectors of pointers. 2419 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2420 } 2421 2422 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2423 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2424 } 2425 2426 return commonPointerCastTransforms(CI); 2427 } 2428