1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Analyze 'Val', seeing if it is a simple linear expression. 27 /// If so, decompose it, returning some value X, such that Val is 28 /// X*Scale+Offset. 29 /// 30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 31 uint64_t &Offset) { 32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 33 Offset = CI->getZExtValue(); 34 Scale = 0; 35 return ConstantInt::get(Val->getType(), 0); 36 } 37 38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 39 // Cannot look past anything that might overflow. 40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 42 Scale = 1; 43 Offset = 0; 44 return Val; 45 } 46 47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 48 if (I->getOpcode() == Instruction::Shl) { 49 // This is a value scaled by '1 << the shift amt'. 50 Scale = UINT64_C(1) << RHS->getZExtValue(); 51 Offset = 0; 52 return I->getOperand(0); 53 } 54 55 if (I->getOpcode() == Instruction::Mul) { 56 // This value is scaled by 'RHS'. 57 Scale = RHS->getZExtValue(); 58 Offset = 0; 59 return I->getOperand(0); 60 } 61 62 if (I->getOpcode() == Instruction::Add) { 63 // We have X+C. Check to see if we really have (X*C2)+C1, 64 // where C1 is divisible by C2. 65 unsigned SubScale; 66 Value *SubVal = 67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 68 Offset += RHS->getZExtValue(); 69 Scale = SubScale; 70 return SubVal; 71 } 72 } 73 } 74 75 // Otherwise, we can't look past this. 76 Scale = 1; 77 Offset = 0; 78 return Val; 79 } 80 81 /// If we find a cast of an allocation instruction, try to eliminate the cast by 82 /// moving the type information into the alloc. 83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 84 AllocaInst &AI) { 85 PointerType *PTy = cast<PointerType>(CI.getType()); 86 87 BuilderTy AllocaBuilder(Builder); 88 AllocaBuilder.SetInsertPoint(&AI); 89 90 // Get the type really allocated and the type casted to. 91 Type *AllocElTy = AI.getAllocatedType(); 92 Type *CastElTy = PTy->getElementType(); 93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 94 95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 97 if (CastElTyAlign < AllocElTyAlign) return nullptr; 98 99 // If the allocation has multiple uses, only promote it if we are strictly 100 // increasing the alignment of the resultant allocation. If we keep it the 101 // same, we open the door to infinite loops of various kinds. 102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 103 104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 107 108 // If the allocation has multiple uses, only promote it if we're not 109 // shrinking the amount of memory being allocated. 110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 113 114 // See if we can satisfy the modulus by pulling a scale out of the array 115 // size argument. 116 unsigned ArraySizeScale; 117 uint64_t ArrayOffset; 118 Value *NumElements = // See if the array size is a decomposable linear expr. 119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 120 121 // If we can now satisfy the modulus, by using a non-1 scale, we really can 122 // do the xform. 123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 125 126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 127 Value *Amt = nullptr; 128 if (Scale == 1) { 129 Amt = NumElements; 130 } else { 131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 132 // Insert before the alloca, not before the cast. 133 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 134 } 135 136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 138 Offset, true); 139 Amt = AllocaBuilder.CreateAdd(Amt, Off); 140 } 141 142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 143 New->setAlignment(AI.getAlignment()); 144 New->takeName(&AI); 145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 146 147 // If the allocation has multiple real uses, insert a cast and change all 148 // things that used it to use the new cast. This will also hack on CI, but it 149 // will die soon. 150 if (!AI.hasOneUse()) { 151 // New is the allocation instruction, pointer typed. AI is the original 152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 154 replaceInstUsesWith(AI, NewCast); 155 } 156 return replaceInstUsesWith(CI, New); 157 } 158 159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 160 /// true for, actually insert the code to evaluate the expression. 161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 162 bool isSigned) { 163 if (Constant *C = dyn_cast<Constant>(V)) { 164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 165 // If we got a constantexpr back, try to simplify it with DL info. 166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 167 C = FoldedC; 168 return C; 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = CI1->getOpcode(); 239 Instruction::CastOps secondOp = CI2->getOpcode(); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// @brief Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 269 } 270 } 271 272 // If we are casting a select, then fold the cast into the select. 273 if (auto *SI = dyn_cast<SelectInst>(Src)) 274 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 275 return NV; 276 277 // If we are casting a PHI, then fold the cast into the PHI. 278 if (auto *PN = dyn_cast<PHINode>(Src)) { 279 // Don't do this if it would create a PHI node with an illegal type from a 280 // legal type. 281 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 282 shouldChangeType(CI.getType(), Src->getType())) 283 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 284 return NV; 285 } 286 287 return nullptr; 288 } 289 290 /// Return true if we can evaluate the specified expression tree as type Ty 291 /// instead of its larger type, and arrive with the same value. 292 /// This is used by code that tries to eliminate truncates. 293 /// 294 /// Ty will always be a type smaller than V. We should return true if trunc(V) 295 /// can be computed by computing V in the smaller type. If V is an instruction, 296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 297 /// makes sense if x and y can be efficiently truncated. 298 /// 299 /// This function works on both vectors and scalars. 300 /// 301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 302 Instruction *CxtI) { 303 // We can always evaluate constants in another type. 304 if (isa<Constant>(V)) 305 return true; 306 307 Instruction *I = dyn_cast<Instruction>(V); 308 if (!I) return false; 309 310 Type *OrigTy = V->getType(); 311 312 // If this is an extension from the dest type, we can eliminate it, even if it 313 // has multiple uses. 314 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 315 I->getOperand(0)->getType() == Ty) 316 return true; 317 318 // We can't extend or shrink something that has multiple uses: doing so would 319 // require duplicating the instruction in general, which isn't profitable. 320 if (!I->hasOneUse()) return false; 321 322 unsigned Opc = I->getOpcode(); 323 switch (Opc) { 324 case Instruction::Add: 325 case Instruction::Sub: 326 case Instruction::Mul: 327 case Instruction::And: 328 case Instruction::Or: 329 case Instruction::Xor: 330 // These operators can all arbitrarily be extended or truncated. 331 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 332 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 333 334 case Instruction::UDiv: 335 case Instruction::URem: { 336 // UDiv and URem can be truncated if all the truncated bits are zero. 337 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 338 uint32_t BitWidth = Ty->getScalarSizeInBits(); 339 if (BitWidth < OrigBitWidth) { 340 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 341 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 342 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 345 } 346 } 347 break; 348 } 349 case Instruction::Shl: { 350 // If we are truncating the result of this SHL, and if it's a shift of a 351 // constant amount, we can always perform a SHL in a smaller type. 352 const APInt *Amt; 353 if (match(I->getOperand(1), m_APInt(Amt))) { 354 uint32_t BitWidth = Ty->getScalarSizeInBits(); 355 if (Amt->getLimitedValue(BitWidth) < BitWidth) 356 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 357 } 358 break; 359 } 360 case Instruction::LShr: { 361 // If this is a truncate of a logical shr, we can truncate it to a smaller 362 // lshr iff we know that the bits we would otherwise be shifting in are 363 // already zeros. 364 const APInt *Amt; 365 if (match(I->getOperand(1), m_APInt(Amt))) { 366 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 367 uint32_t BitWidth = Ty->getScalarSizeInBits(); 368 if (IC.MaskedValueIsZero(I->getOperand(0), 369 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 370 Amt->getLimitedValue(BitWidth) < BitWidth) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 372 } 373 } 374 break; 375 } 376 case Instruction::AShr: { 377 // If this is a truncate of an arithmetic shr, we can truncate it to a 378 // smaller ashr iff we know that all the bits from the sign bit of the 379 // original type and the sign bit of the truncate type are similar. 380 // TODO: It is enough to check that the bits we would be shifting in are 381 // similar to sign bit of the truncate type. 382 const APInt *Amt; 383 if (match(I->getOperand(1), m_APInt(Amt))) { 384 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 385 uint32_t BitWidth = Ty->getScalarSizeInBits(); 386 if (Amt->getLimitedValue(BitWidth) < BitWidth && 387 OrigBitWidth - BitWidth < 388 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 389 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 390 } 391 break; 392 } 393 case Instruction::Trunc: 394 // trunc(trunc(x)) -> trunc(x) 395 return true; 396 case Instruction::ZExt: 397 case Instruction::SExt: 398 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 399 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 400 return true; 401 case Instruction::Select: { 402 SelectInst *SI = cast<SelectInst>(I); 403 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 404 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 405 } 406 case Instruction::PHI: { 407 // We can change a phi if we can change all operands. Note that we never 408 // get into trouble with cyclic PHIs here because we only consider 409 // instructions with a single use. 410 PHINode *PN = cast<PHINode>(I); 411 for (Value *IncValue : PN->incoming_values()) 412 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 413 return false; 414 return true; 415 } 416 default: 417 // TODO: Can handle more cases here. 418 break; 419 } 420 421 return false; 422 } 423 424 /// Given a vector that is bitcast to an integer, optionally logically 425 /// right-shifted, and truncated, convert it to an extractelement. 426 /// Example (big endian): 427 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 428 /// ---> 429 /// extractelement <4 x i32> %X, 1 430 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 431 Value *TruncOp = Trunc.getOperand(0); 432 Type *DestType = Trunc.getType(); 433 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 434 return nullptr; 435 436 Value *VecInput = nullptr; 437 ConstantInt *ShiftVal = nullptr; 438 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 439 m_LShr(m_BitCast(m_Value(VecInput)), 440 m_ConstantInt(ShiftVal)))) || 441 !isa<VectorType>(VecInput->getType())) 442 return nullptr; 443 444 VectorType *VecType = cast<VectorType>(VecInput->getType()); 445 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 446 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 447 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 448 449 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 450 return nullptr; 451 452 // If the element type of the vector doesn't match the result type, 453 // bitcast it to a vector type that we can extract from. 454 unsigned NumVecElts = VecWidth / DestWidth; 455 if (VecType->getElementType() != DestType) { 456 VecType = VectorType::get(DestType, NumVecElts); 457 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 458 } 459 460 unsigned Elt = ShiftAmount / DestWidth; 461 if (IC.getDataLayout().isBigEndian()) 462 Elt = NumVecElts - 1 - Elt; 463 464 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 465 } 466 467 /// Rotate left/right may occur in a wider type than necessary because of type 468 /// promotion rules. Try to narrow all of the component instructions. 469 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 470 assert((isa<VectorType>(Trunc.getSrcTy()) || 471 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 472 "Don't narrow to an illegal scalar type"); 473 474 // First, find an or'd pair of opposite shifts with the same shifted operand: 475 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 476 Value *Or0, *Or1; 477 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 478 return nullptr; 479 480 Value *ShVal, *ShAmt0, *ShAmt1; 481 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 482 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 483 return nullptr; 484 485 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 486 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 487 if (ShiftOpcode0 == ShiftOpcode1) 488 return nullptr; 489 490 // The shift amounts must add up to the narrow bit width. 491 Value *ShAmt; 492 bool SubIsOnLHS; 493 Type *DestTy = Trunc.getType(); 494 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 495 if (match(ShAmt0, 496 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { 497 ShAmt = ShAmt1; 498 SubIsOnLHS = true; 499 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), 500 m_Specific(ShAmt0))))) { 501 ShAmt = ShAmt0; 502 SubIsOnLHS = false; 503 } else { 504 return nullptr; 505 } 506 507 // The shifted value must have high zeros in the wide type. Typically, this 508 // will be a zext, but it could also be the result of an 'and' or 'shift'. 509 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 510 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 511 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 512 return nullptr; 513 514 // We have an unnecessarily wide rotate! 515 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 516 // Narrow it down to eliminate the zext/trunc: 517 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 518 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 519 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 520 521 // Mask both shift amounts to ensure there's no UB from oversized shifts. 522 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 523 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 524 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 525 526 // Truncate the original value and use narrow ops. 527 Value *X = Builder.CreateTrunc(ShVal, DestTy); 528 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 529 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 530 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 531 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 532 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 533 } 534 535 /// Try to narrow the width of math or bitwise logic instructions by pulling a 536 /// truncate ahead of binary operators. 537 /// TODO: Transforms for truncated shifts should be moved into here. 538 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 539 Type *SrcTy = Trunc.getSrcTy(); 540 Type *DestTy = Trunc.getType(); 541 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 542 return nullptr; 543 544 BinaryOperator *BinOp; 545 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 546 return nullptr; 547 548 switch (BinOp->getOpcode()) { 549 case Instruction::And: 550 case Instruction::Or: 551 case Instruction::Xor: 552 case Instruction::Add: 553 case Instruction::Mul: { 554 Constant *C; 555 if (match(BinOp->getOperand(1), m_Constant(C))) { 556 // trunc (binop X, C) --> binop (trunc X, C') 557 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 558 Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy); 559 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 560 } 561 break; 562 } 563 case Instruction::Sub: { 564 Constant *C; 565 if (match(BinOp->getOperand(0), m_Constant(C))) { 566 // trunc (binop C, X) --> binop (trunc C', X) 567 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 568 Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy); 569 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 570 } 571 break; 572 } 573 574 default: break; 575 } 576 577 if (Instruction *NarrowOr = narrowRotate(Trunc)) 578 return NarrowOr; 579 580 return nullptr; 581 } 582 583 /// Try to narrow the width of a splat shuffle. This could be generalized to any 584 /// shuffle with a constant operand, but we limit the transform to avoid 585 /// creating a shuffle type that targets may not be able to lower effectively. 586 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 587 InstCombiner::BuilderTy &Builder) { 588 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 589 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 590 Shuf->getMask()->getSplatValue() && 591 Shuf->getType() == Shuf->getOperand(0)->getType()) { 592 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 593 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 594 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 595 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 596 } 597 598 return nullptr; 599 } 600 601 /// Try to narrow the width of an insert element. This could be generalized for 602 /// any vector constant, but we limit the transform to insertion into undef to 603 /// avoid potential backend problems from unsupported insertion widths. This 604 /// could also be extended to handle the case of inserting a scalar constant 605 /// into a vector variable. 606 static Instruction *shrinkInsertElt(CastInst &Trunc, 607 InstCombiner::BuilderTy &Builder) { 608 Instruction::CastOps Opcode = Trunc.getOpcode(); 609 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 610 "Unexpected instruction for shrinking"); 611 612 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 613 if (!InsElt || !InsElt->hasOneUse()) 614 return nullptr; 615 616 Type *DestTy = Trunc.getType(); 617 Type *DestScalarTy = DestTy->getScalarType(); 618 Value *VecOp = InsElt->getOperand(0); 619 Value *ScalarOp = InsElt->getOperand(1); 620 Value *Index = InsElt->getOperand(2); 621 622 if (isa<UndefValue>(VecOp)) { 623 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 624 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 625 UndefValue *NarrowUndef = UndefValue::get(DestTy); 626 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 627 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 628 } 629 630 return nullptr; 631 } 632 633 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 634 if (Instruction *Result = commonCastTransforms(CI)) 635 return Result; 636 637 // Test if the trunc is the user of a select which is part of a 638 // minimum or maximum operation. If so, don't do any more simplification. 639 // Even simplifying demanded bits can break the canonical form of a 640 // min/max. 641 Value *LHS, *RHS; 642 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 643 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 644 return nullptr; 645 646 // See if we can simplify any instructions used by the input whose sole 647 // purpose is to compute bits we don't care about. 648 if (SimplifyDemandedInstructionBits(CI)) 649 return &CI; 650 651 Value *Src = CI.getOperand(0); 652 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 653 654 // Attempt to truncate the entire input expression tree to the destination 655 // type. Only do this if the dest type is a simple type, don't convert the 656 // expression tree to something weird like i93 unless the source is also 657 // strange. 658 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 659 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 660 661 // If this cast is a truncate, evaluting in a different type always 662 // eliminates the cast, so it is always a win. 663 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 664 " to avoid cast: " << CI << '\n'); 665 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 666 assert(Res->getType() == DestTy); 667 return replaceInstUsesWith(CI, Res); 668 } 669 670 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 671 if (DestTy->getScalarSizeInBits() == 1) { 672 Constant *One = ConstantInt::get(SrcTy, 1); 673 Src = Builder.CreateAnd(Src, One); 674 Value *Zero = Constant::getNullValue(Src->getType()); 675 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 676 } 677 678 // FIXME: Maybe combine the next two transforms to handle the no cast case 679 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 680 681 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 682 Value *A = nullptr; ConstantInt *Cst = nullptr; 683 if (Src->hasOneUse() && 684 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 685 // We have three types to worry about here, the type of A, the source of 686 // the truncate (MidSize), and the destination of the truncate. We know that 687 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 688 // between ASize and ResultSize. 689 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 690 691 // If the shift amount is larger than the size of A, then the result is 692 // known to be zero because all the input bits got shifted out. 693 if (Cst->getZExtValue() >= ASize) 694 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 695 696 // Since we're doing an lshr and a zero extend, and know that the shift 697 // amount is smaller than ASize, it is always safe to do the shift in A's 698 // type, then zero extend or truncate to the result. 699 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 700 Shift->takeName(Src); 701 return CastInst::CreateIntegerCast(Shift, DestTy, false); 702 } 703 704 // FIXME: We should canonicalize to zext/trunc and remove this transform. 705 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 706 // conversion. 707 // It works because bits coming from sign extension have the same value as 708 // the sign bit of the original value; performing ashr instead of lshr 709 // generates bits of the same value as the sign bit. 710 if (Src->hasOneUse() && 711 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 712 Value *SExt = cast<Instruction>(Src)->getOperand(0); 713 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 714 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 715 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 716 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 717 unsigned ShiftAmt = Cst->getZExtValue(); 718 719 // This optimization can be only performed when zero bits generated by 720 // the original lshr aren't pulled into the value after truncation, so we 721 // can only shift by values no larger than the number of extension bits. 722 // FIXME: Instead of bailing when the shift is too large, use and to clear 723 // the extra bits. 724 if (ShiftAmt <= MaxAmt) { 725 if (CISize == ASize) 726 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 727 std::min(ShiftAmt, ASize - 1))); 728 if (SExt->hasOneUse()) { 729 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 730 Shift->takeName(Src); 731 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 732 } 733 } 734 } 735 736 if (Instruction *I = narrowBinOp(CI)) 737 return I; 738 739 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 740 return I; 741 742 if (Instruction *I = shrinkInsertElt(CI, Builder)) 743 return I; 744 745 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 746 shouldChangeType(SrcTy, DestTy)) { 747 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 748 // dest type is native and cst < dest size. 749 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 750 !match(A, m_Shr(m_Value(), m_Constant()))) { 751 // Skip shifts of shift by constants. It undoes a combine in 752 // FoldShiftByConstant and is the extend in reg pattern. 753 const unsigned DestSize = DestTy->getScalarSizeInBits(); 754 if (Cst->getValue().ult(DestSize)) { 755 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 756 757 return BinaryOperator::Create( 758 Instruction::Shl, NewTrunc, 759 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 760 } 761 } 762 } 763 764 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 765 return I; 766 767 return nullptr; 768 } 769 770 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 771 bool DoTransform) { 772 // If we are just checking for a icmp eq of a single bit and zext'ing it 773 // to an integer, then shift the bit to the appropriate place and then 774 // cast to integer to avoid the comparison. 775 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 776 const APInt &Op1CV = Op1C->getValue(); 777 778 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 779 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 780 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) || 781 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 782 if (!DoTransform) return ICI; 783 784 Value *In = ICI->getOperand(0); 785 Value *Sh = ConstantInt::get(In->getType(), 786 In->getType()->getScalarSizeInBits() - 1); 787 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 788 if (In->getType() != CI.getType()) 789 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 790 791 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 792 Constant *One = ConstantInt::get(In->getType(), 1); 793 In = Builder.CreateXor(In, One, In->getName() + ".not"); 794 } 795 796 return replaceInstUsesWith(CI, In); 797 } 798 799 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 800 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 801 // zext (X == 1) to i32 --> X iff X has only the low bit set. 802 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 803 // zext (X != 0) to i32 --> X iff X has only the low bit set. 804 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 805 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 806 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 807 if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) && 808 // This only works for EQ and NE 809 ICI->isEquality()) { 810 // If Op1C some other power of two, convert: 811 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 812 813 APInt KnownZeroMask(~Known.Zero); 814 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 815 if (!DoTransform) return ICI; 816 817 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 818 if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) { 819 // (X&4) == 2 --> false 820 // (X&4) != 2 --> true 821 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 822 isNE); 823 Res = ConstantExpr::getZExt(Res, CI.getType()); 824 return replaceInstUsesWith(CI, Res); 825 } 826 827 uint32_t ShAmt = KnownZeroMask.logBase2(); 828 Value *In = ICI->getOperand(0); 829 if (ShAmt) { 830 // Perform a logical shr by shiftamt. 831 // Insert the shift to put the result in the low bit. 832 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 833 In->getName() + ".lobit"); 834 } 835 836 if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit. 837 Constant *One = ConstantInt::get(In->getType(), 1); 838 In = Builder.CreateXor(In, One); 839 } 840 841 if (CI.getType() == In->getType()) 842 return replaceInstUsesWith(CI, In); 843 844 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 845 return replaceInstUsesWith(CI, IntCast); 846 } 847 } 848 } 849 850 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 851 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 852 // may lead to additional simplifications. 853 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 854 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 855 Value *LHS = ICI->getOperand(0); 856 Value *RHS = ICI->getOperand(1); 857 858 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 859 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 860 861 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 862 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 863 APInt UnknownBit = ~KnownBits; 864 if (UnknownBit.countPopulation() == 1) { 865 if (!DoTransform) return ICI; 866 867 Value *Result = Builder.CreateXor(LHS, RHS); 868 869 // Mask off any bits that are set and won't be shifted away. 870 if (KnownLHS.One.uge(UnknownBit)) 871 Result = Builder.CreateAnd(Result, 872 ConstantInt::get(ITy, UnknownBit)); 873 874 // Shift the bit we're testing down to the lsb. 875 Result = Builder.CreateLShr( 876 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 877 878 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 879 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 880 Result->takeName(ICI); 881 return replaceInstUsesWith(CI, Result); 882 } 883 } 884 } 885 } 886 887 return nullptr; 888 } 889 890 /// Determine if the specified value can be computed in the specified wider type 891 /// and produce the same low bits. If not, return false. 892 /// 893 /// If this function returns true, it can also return a non-zero number of bits 894 /// (in BitsToClear) which indicates that the value it computes is correct for 895 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 896 /// out. For example, to promote something like: 897 /// 898 /// %B = trunc i64 %A to i32 899 /// %C = lshr i32 %B, 8 900 /// %E = zext i32 %C to i64 901 /// 902 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 903 /// set to 8 to indicate that the promoted value needs to have bits 24-31 904 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 905 /// clear the top bits anyway, doing this has no extra cost. 906 /// 907 /// This function works on both vectors and scalars. 908 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 909 InstCombiner &IC, Instruction *CxtI) { 910 BitsToClear = 0; 911 if (isa<Constant>(V)) 912 return true; 913 914 Instruction *I = dyn_cast<Instruction>(V); 915 if (!I) return false; 916 917 // If the input is a truncate from the destination type, we can trivially 918 // eliminate it. 919 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 920 return true; 921 922 // We can't extend or shrink something that has multiple uses: doing so would 923 // require duplicating the instruction in general, which isn't profitable. 924 if (!I->hasOneUse()) return false; 925 926 unsigned Opc = I->getOpcode(), Tmp; 927 switch (Opc) { 928 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 929 case Instruction::SExt: // zext(sext(x)) -> sext(x). 930 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 931 return true; 932 case Instruction::And: 933 case Instruction::Or: 934 case Instruction::Xor: 935 case Instruction::Add: 936 case Instruction::Sub: 937 case Instruction::Mul: 938 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 939 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 940 return false; 941 // These can all be promoted if neither operand has 'bits to clear'. 942 if (BitsToClear == 0 && Tmp == 0) 943 return true; 944 945 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 946 // other side, BitsToClear is ok. 947 if (Tmp == 0 && I->isBitwiseLogicOp()) { 948 // We use MaskedValueIsZero here for generality, but the case we care 949 // about the most is constant RHS. 950 unsigned VSize = V->getType()->getScalarSizeInBits(); 951 if (IC.MaskedValueIsZero(I->getOperand(1), 952 APInt::getHighBitsSet(VSize, BitsToClear), 953 0, CxtI)) { 954 // If this is an And instruction and all of the BitsToClear are 955 // known to be zero we can reset BitsToClear. 956 if (Opc == Instruction::And) 957 BitsToClear = 0; 958 return true; 959 } 960 } 961 962 // Otherwise, we don't know how to analyze this BitsToClear case yet. 963 return false; 964 965 case Instruction::Shl: { 966 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 967 // upper bits we can reduce BitsToClear by the shift amount. 968 const APInt *Amt; 969 if (match(I->getOperand(1), m_APInt(Amt))) { 970 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 971 return false; 972 uint64_t ShiftAmt = Amt->getZExtValue(); 973 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 974 return true; 975 } 976 return false; 977 } 978 case Instruction::LShr: { 979 // We can promote lshr(x, cst) if we can promote x. This requires the 980 // ultimate 'and' to clear out the high zero bits we're clearing out though. 981 const APInt *Amt; 982 if (match(I->getOperand(1), m_APInt(Amt))) { 983 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 984 return false; 985 BitsToClear += Amt->getZExtValue(); 986 if (BitsToClear > V->getType()->getScalarSizeInBits()) 987 BitsToClear = V->getType()->getScalarSizeInBits(); 988 return true; 989 } 990 // Cannot promote variable LSHR. 991 return false; 992 } 993 case Instruction::Select: 994 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 995 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 996 // TODO: If important, we could handle the case when the BitsToClear are 997 // known zero in the disagreeing side. 998 Tmp != BitsToClear) 999 return false; 1000 return true; 1001 1002 case Instruction::PHI: { 1003 // We can change a phi if we can change all operands. Note that we never 1004 // get into trouble with cyclic PHIs here because we only consider 1005 // instructions with a single use. 1006 PHINode *PN = cast<PHINode>(I); 1007 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1008 return false; 1009 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1010 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1011 // TODO: If important, we could handle the case when the BitsToClear 1012 // are known zero in the disagreeing input. 1013 Tmp != BitsToClear) 1014 return false; 1015 return true; 1016 } 1017 default: 1018 // TODO: Can handle more cases here. 1019 return false; 1020 } 1021 } 1022 1023 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1024 // If this zero extend is only used by a truncate, let the truncate be 1025 // eliminated before we try to optimize this zext. 1026 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1027 return nullptr; 1028 1029 // If one of the common conversion will work, do it. 1030 if (Instruction *Result = commonCastTransforms(CI)) 1031 return Result; 1032 1033 Value *Src = CI.getOperand(0); 1034 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1035 1036 // Attempt to extend the entire input expression tree to the destination 1037 // type. Only do this if the dest type is a simple type, don't convert the 1038 // expression tree to something weird like i93 unless the source is also 1039 // strange. 1040 unsigned BitsToClear; 1041 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1042 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1043 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1044 "Can't clear more bits than in SrcTy"); 1045 1046 // Okay, we can transform this! Insert the new expression now. 1047 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1048 " to avoid zero extend: " << CI << '\n'); 1049 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1050 assert(Res->getType() == DestTy); 1051 1052 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1053 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1054 1055 // If the high bits are already filled with zeros, just replace this 1056 // cast with the result. 1057 if (MaskedValueIsZero(Res, 1058 APInt::getHighBitsSet(DestBitSize, 1059 DestBitSize-SrcBitsKept), 1060 0, &CI)) 1061 return replaceInstUsesWith(CI, Res); 1062 1063 // We need to emit an AND to clear the high bits. 1064 Constant *C = ConstantInt::get(Res->getType(), 1065 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1066 return BinaryOperator::CreateAnd(Res, C); 1067 } 1068 1069 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1070 // types and if the sizes are just right we can convert this into a logical 1071 // 'and' which will be much cheaper than the pair of casts. 1072 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1073 // TODO: Subsume this into EvaluateInDifferentType. 1074 1075 // Get the sizes of the types involved. We know that the intermediate type 1076 // will be smaller than A or C, but don't know the relation between A and C. 1077 Value *A = CSrc->getOperand(0); 1078 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1079 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1080 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1081 // If we're actually extending zero bits, then if 1082 // SrcSize < DstSize: zext(a & mask) 1083 // SrcSize == DstSize: a & mask 1084 // SrcSize > DstSize: trunc(a) & mask 1085 if (SrcSize < DstSize) { 1086 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1087 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1088 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1089 return new ZExtInst(And, CI.getType()); 1090 } 1091 1092 if (SrcSize == DstSize) { 1093 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1094 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1095 AndValue)); 1096 } 1097 if (SrcSize > DstSize) { 1098 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1099 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1100 return BinaryOperator::CreateAnd(Trunc, 1101 ConstantInt::get(Trunc->getType(), 1102 AndValue)); 1103 } 1104 } 1105 1106 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1107 return transformZExtICmp(ICI, CI); 1108 1109 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1110 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1111 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1112 // of the (zext icmp) can be eliminated. If so, immediately perform the 1113 // according elimination. 1114 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1115 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1116 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1117 (transformZExtICmp(LHS, CI, false) || 1118 transformZExtICmp(RHS, CI, false))) { 1119 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1120 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1121 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1122 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1123 1124 // Perform the elimination. 1125 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1126 transformZExtICmp(LHS, *LZExt); 1127 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1128 transformZExtICmp(RHS, *RZExt); 1129 1130 return Or; 1131 } 1132 } 1133 1134 // zext(trunc(X) & C) -> (X & zext(C)). 1135 Constant *C; 1136 Value *X; 1137 if (SrcI && 1138 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1139 X->getType() == CI.getType()) 1140 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1141 1142 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1143 Value *And; 1144 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1145 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1146 X->getType() == CI.getType()) { 1147 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1148 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1149 } 1150 1151 return nullptr; 1152 } 1153 1154 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1155 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1156 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1157 ICmpInst::Predicate Pred = ICI->getPredicate(); 1158 1159 // Don't bother if Op1 isn't of vector or integer type. 1160 if (!Op1->getType()->isIntOrIntVectorTy()) 1161 return nullptr; 1162 1163 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1164 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1165 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1166 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1167 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1168 1169 Value *Sh = ConstantInt::get(Op0->getType(), 1170 Op0->getType()->getScalarSizeInBits()-1); 1171 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1172 if (In->getType() != CI.getType()) 1173 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1174 1175 if (Pred == ICmpInst::ICMP_SGT) 1176 In = Builder.CreateNot(In, In->getName() + ".not"); 1177 return replaceInstUsesWith(CI, In); 1178 } 1179 } 1180 1181 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1182 // If we know that only one bit of the LHS of the icmp can be set and we 1183 // have an equality comparison with zero or a power of 2, we can transform 1184 // the icmp and sext into bitwise/integer operations. 1185 if (ICI->hasOneUse() && 1186 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1187 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1188 1189 APInt KnownZeroMask(~Known.Zero); 1190 if (KnownZeroMask.isPowerOf2()) { 1191 Value *In = ICI->getOperand(0); 1192 1193 // If the icmp tests for a known zero bit we can constant fold it. 1194 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1195 Value *V = Pred == ICmpInst::ICMP_NE ? 1196 ConstantInt::getAllOnesValue(CI.getType()) : 1197 ConstantInt::getNullValue(CI.getType()); 1198 return replaceInstUsesWith(CI, V); 1199 } 1200 1201 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1202 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1203 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1204 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1205 // Perform a right shift to place the desired bit in the LSB. 1206 if (ShiftAmt) 1207 In = Builder.CreateLShr(In, 1208 ConstantInt::get(In->getType(), ShiftAmt)); 1209 1210 // At this point "In" is either 1 or 0. Subtract 1 to turn 1211 // {1, 0} -> {0, -1}. 1212 In = Builder.CreateAdd(In, 1213 ConstantInt::getAllOnesValue(In->getType()), 1214 "sext"); 1215 } else { 1216 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1217 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1218 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1219 // Perform a left shift to place the desired bit in the MSB. 1220 if (ShiftAmt) 1221 In = Builder.CreateShl(In, 1222 ConstantInt::get(In->getType(), ShiftAmt)); 1223 1224 // Distribute the bit over the whole bit width. 1225 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1226 KnownZeroMask.getBitWidth() - 1), "sext"); 1227 } 1228 1229 if (CI.getType() == In->getType()) 1230 return replaceInstUsesWith(CI, In); 1231 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1232 } 1233 } 1234 } 1235 1236 return nullptr; 1237 } 1238 1239 /// Return true if we can take the specified value and return it as type Ty 1240 /// without inserting any new casts and without changing the value of the common 1241 /// low bits. This is used by code that tries to promote integer operations to 1242 /// a wider types will allow us to eliminate the extension. 1243 /// 1244 /// This function works on both vectors and scalars. 1245 /// 1246 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1247 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1248 "Can't sign extend type to a smaller type"); 1249 // If this is a constant, it can be trivially promoted. 1250 if (isa<Constant>(V)) 1251 return true; 1252 1253 Instruction *I = dyn_cast<Instruction>(V); 1254 if (!I) return false; 1255 1256 // If this is a truncate from the dest type, we can trivially eliminate it. 1257 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1258 return true; 1259 1260 // We can't extend or shrink something that has multiple uses: doing so would 1261 // require duplicating the instruction in general, which isn't profitable. 1262 if (!I->hasOneUse()) return false; 1263 1264 switch (I->getOpcode()) { 1265 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1266 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1267 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1268 return true; 1269 case Instruction::And: 1270 case Instruction::Or: 1271 case Instruction::Xor: 1272 case Instruction::Add: 1273 case Instruction::Sub: 1274 case Instruction::Mul: 1275 // These operators can all arbitrarily be extended if their inputs can. 1276 return canEvaluateSExtd(I->getOperand(0), Ty) && 1277 canEvaluateSExtd(I->getOperand(1), Ty); 1278 1279 //case Instruction::Shl: TODO 1280 //case Instruction::LShr: TODO 1281 1282 case Instruction::Select: 1283 return canEvaluateSExtd(I->getOperand(1), Ty) && 1284 canEvaluateSExtd(I->getOperand(2), Ty); 1285 1286 case Instruction::PHI: { 1287 // We can change a phi if we can change all operands. Note that we never 1288 // get into trouble with cyclic PHIs here because we only consider 1289 // instructions with a single use. 1290 PHINode *PN = cast<PHINode>(I); 1291 for (Value *IncValue : PN->incoming_values()) 1292 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1293 return true; 1294 } 1295 default: 1296 // TODO: Can handle more cases here. 1297 break; 1298 } 1299 1300 return false; 1301 } 1302 1303 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1304 // If this sign extend is only used by a truncate, let the truncate be 1305 // eliminated before we try to optimize this sext. 1306 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1307 return nullptr; 1308 1309 if (Instruction *I = commonCastTransforms(CI)) 1310 return I; 1311 1312 Value *Src = CI.getOperand(0); 1313 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1314 1315 // If we know that the value being extended is positive, we can use a zext 1316 // instead. 1317 KnownBits Known = computeKnownBits(Src, 0, &CI); 1318 if (Known.isNonNegative()) { 1319 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1320 return replaceInstUsesWith(CI, ZExt); 1321 } 1322 1323 // Attempt to extend the entire input expression tree to the destination 1324 // type. Only do this if the dest type is a simple type, don't convert the 1325 // expression tree to something weird like i93 unless the source is also 1326 // strange. 1327 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1328 canEvaluateSExtd(Src, DestTy)) { 1329 // Okay, we can transform this! Insert the new expression now. 1330 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1331 " to avoid sign extend: " << CI << '\n'); 1332 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1333 assert(Res->getType() == DestTy); 1334 1335 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1336 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1337 1338 // If the high bits are already filled with sign bit, just replace this 1339 // cast with the result. 1340 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1341 return replaceInstUsesWith(CI, Res); 1342 1343 // We need to emit a shl + ashr to do the sign extend. 1344 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1345 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1346 ShAmt); 1347 } 1348 1349 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1350 // into shifts. 1351 Value *X; 1352 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1353 // sext(trunc(X)) --> ashr(shl(X, C), C) 1354 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1355 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1356 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1357 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1358 } 1359 1360 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1361 return transformSExtICmp(ICI, CI); 1362 1363 // If the input is a shl/ashr pair of a same constant, then this is a sign 1364 // extension from a smaller value. If we could trust arbitrary bitwidth 1365 // integers, we could turn this into a truncate to the smaller bit and then 1366 // use a sext for the whole extension. Since we don't, look deeper and check 1367 // for a truncate. If the source and dest are the same type, eliminate the 1368 // trunc and extend and just do shifts. For example, turn: 1369 // %a = trunc i32 %i to i8 1370 // %b = shl i8 %a, 6 1371 // %c = ashr i8 %b, 6 1372 // %d = sext i8 %c to i32 1373 // into: 1374 // %a = shl i32 %i, 30 1375 // %d = ashr i32 %a, 30 1376 Value *A = nullptr; 1377 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1378 ConstantInt *BA = nullptr, *CA = nullptr; 1379 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1380 m_ConstantInt(CA))) && 1381 BA == CA && A->getType() == CI.getType()) { 1382 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1383 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1384 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1385 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1386 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1387 return BinaryOperator::CreateAShr(A, ShAmtV); 1388 } 1389 1390 return nullptr; 1391 } 1392 1393 1394 /// Return a Constant* for the specified floating-point constant if it fits 1395 /// in the specified FP type without changing its value. 1396 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1397 bool losesInfo; 1398 APFloat F = CFP->getValueAPF(); 1399 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1400 if (!losesInfo) 1401 return ConstantFP::get(CFP->getContext(), F); 1402 return nullptr; 1403 } 1404 1405 /// Look through floating-point extensions until we get the source value. 1406 static Value *lookThroughFPExtensions(Value *V) { 1407 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1408 V = FPExt->getOperand(0); 1409 1410 // If this value is a constant, return the constant in the smallest FP type 1411 // that can accurately represent it. This allows us to turn 1412 // (float)((double)X+2.0) into x+2.0f. 1413 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1414 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1415 return V; // No constant folding of this. 1416 // See if the value can be truncated to half and then reextended. 1417 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1418 return V; 1419 // See if the value can be truncated to float and then reextended. 1420 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1421 return V; 1422 if (CFP->getType()->isDoubleTy()) 1423 return V; // Won't shrink. 1424 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1425 return V; 1426 // Don't try to shrink to various long double types. 1427 } 1428 1429 return V; 1430 } 1431 1432 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1433 if (Instruction *I = commonCastTransforms(CI)) 1434 return I; 1435 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1436 // simplify this expression to avoid one or more of the trunc/extend 1437 // operations if we can do so without changing the numerical results. 1438 // 1439 // The exact manner in which the widths of the operands interact to limit 1440 // what we can and cannot do safely varies from operation to operation, and 1441 // is explained below in the various case statements. 1442 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1443 if (OpI && OpI->hasOneUse()) { 1444 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1445 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1446 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1447 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1448 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1449 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1450 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1451 switch (OpI->getOpcode()) { 1452 default: break; 1453 case Instruction::FAdd: 1454 case Instruction::FSub: 1455 // For addition and subtraction, the infinitely precise result can 1456 // essentially be arbitrarily wide; proving that double rounding 1457 // will not occur because the result of OpI is exact (as we will for 1458 // FMul, for example) is hopeless. However, we *can* nonetheless 1459 // frequently know that double rounding cannot occur (or that it is 1460 // innocuous) by taking advantage of the specific structure of 1461 // infinitely-precise results that admit double rounding. 1462 // 1463 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1464 // to represent both sources, we can guarantee that the double 1465 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1466 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1467 // for proof of this fact). 1468 // 1469 // Note: Figueroa does not consider the case where DstFormat != 1470 // SrcFormat. It's possible (likely even!) that this analysis 1471 // could be tightened for those cases, but they are rare (the main 1472 // case of interest here is (float)((double)float + float)). 1473 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1474 if (LHSOrig->getType() != CI.getType()) 1475 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1476 if (RHSOrig->getType() != CI.getType()) 1477 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1478 Instruction *RI = 1479 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1480 RI->copyFastMathFlags(OpI); 1481 return RI; 1482 } 1483 break; 1484 case Instruction::FMul: 1485 // For multiplication, the infinitely precise result has at most 1486 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1487 // that such a value can be exactly represented, then no double 1488 // rounding can possibly occur; we can safely perform the operation 1489 // in the destination format if it can represent both sources. 1490 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1491 if (LHSOrig->getType() != CI.getType()) 1492 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1493 if (RHSOrig->getType() != CI.getType()) 1494 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1495 Instruction *RI = 1496 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1497 RI->copyFastMathFlags(OpI); 1498 return RI; 1499 } 1500 break; 1501 case Instruction::FDiv: 1502 // For division, we use again use the bound from Figueroa's 1503 // dissertation. I am entirely certain that this bound can be 1504 // tightened in the unbalanced operand case by an analysis based on 1505 // the diophantine rational approximation bound, but the well-known 1506 // condition used here is a good conservative first pass. 1507 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1508 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1509 if (LHSOrig->getType() != CI.getType()) 1510 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1511 if (RHSOrig->getType() != CI.getType()) 1512 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1513 Instruction *RI = 1514 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1515 RI->copyFastMathFlags(OpI); 1516 return RI; 1517 } 1518 break; 1519 case Instruction::FRem: 1520 // Remainder is straightforward. Remainder is always exact, so the 1521 // type of OpI doesn't enter into things at all. We simply evaluate 1522 // in whichever source type is larger, then convert to the 1523 // destination type. 1524 if (SrcWidth == OpWidth) 1525 break; 1526 if (LHSWidth < SrcWidth) 1527 LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType()); 1528 else if (RHSWidth <= SrcWidth) 1529 RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType()); 1530 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1531 Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig); 1532 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1533 RI->copyFastMathFlags(OpI); 1534 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1535 } 1536 } 1537 1538 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1539 if (BinaryOperator::isFNeg(OpI)) { 1540 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), 1541 CI.getType()); 1542 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1543 RI->copyFastMathFlags(OpI); 1544 return RI; 1545 } 1546 } 1547 1548 // (fptrunc (select cond, R1, Cst)) --> 1549 // (select cond, (fptrunc R1), (fptrunc Cst)) 1550 // 1551 // - but only if this isn't part of a min/max operation, else we'll 1552 // ruin min/max canonical form which is to have the select and 1553 // compare's operands be of the same type with no casts to look through. 1554 Value *LHS, *RHS; 1555 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1556 if (SI && 1557 (isa<ConstantFP>(SI->getOperand(1)) || 1558 isa<ConstantFP>(SI->getOperand(2))) && 1559 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1560 Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType()); 1561 Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType()); 1562 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1563 } 1564 1565 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1566 if (II) { 1567 switch (II->getIntrinsicID()) { 1568 default: break; 1569 case Intrinsic::fabs: 1570 case Intrinsic::ceil: 1571 case Intrinsic::floor: 1572 case Intrinsic::rint: 1573 case Intrinsic::round: 1574 case Intrinsic::nearbyint: 1575 case Intrinsic::trunc: { 1576 Value *Src = II->getArgOperand(0); 1577 if (!Src->hasOneUse()) 1578 break; 1579 1580 // Except for fabs, this transformation requires the input of the unary FP 1581 // operation to be itself an fpext from the type to which we're 1582 // truncating. 1583 if (II->getIntrinsicID() != Intrinsic::fabs) { 1584 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1585 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1586 break; 1587 } 1588 1589 // Do unary FP operation on smaller type. 1590 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1591 Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType()); 1592 Type *IntrinsicType[] = { CI.getType() }; 1593 Function *Overload = Intrinsic::getDeclaration( 1594 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1595 1596 SmallVector<OperandBundleDef, 1> OpBundles; 1597 II->getOperandBundlesAsDefs(OpBundles); 1598 1599 Value *Args[] = { InnerTrunc }; 1600 CallInst *NewCI = CallInst::Create(Overload, Args, 1601 OpBundles, II->getName()); 1602 NewCI->copyFastMathFlags(II); 1603 return NewCI; 1604 } 1605 } 1606 } 1607 1608 if (Instruction *I = shrinkInsertElt(CI, Builder)) 1609 return I; 1610 1611 return nullptr; 1612 } 1613 1614 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1615 return commonCastTransforms(CI); 1616 } 1617 1618 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1619 // This is safe if the intermediate type has enough bits in its mantissa to 1620 // accurately represent all values of X. For example, this won't work with 1621 // i64 -> float -> i64. 1622 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1623 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1624 return nullptr; 1625 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1626 1627 Value *SrcI = OpI->getOperand(0); 1628 Type *FITy = FI.getType(); 1629 Type *OpITy = OpI->getType(); 1630 Type *SrcTy = SrcI->getType(); 1631 bool IsInputSigned = isa<SIToFPInst>(OpI); 1632 bool IsOutputSigned = isa<FPToSIInst>(FI); 1633 1634 // We can safely assume the conversion won't overflow the output range, 1635 // because (for example) (uint8_t)18293.f is undefined behavior. 1636 1637 // Since we can assume the conversion won't overflow, our decision as to 1638 // whether the input will fit in the float should depend on the minimum 1639 // of the input range and output range. 1640 1641 // This means this is also safe for a signed input and unsigned output, since 1642 // a negative input would lead to undefined behavior. 1643 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1644 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1645 int ActualSize = std::min(InputSize, OutputSize); 1646 1647 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1648 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1649 if (IsInputSigned && IsOutputSigned) 1650 return new SExtInst(SrcI, FITy); 1651 return new ZExtInst(SrcI, FITy); 1652 } 1653 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1654 return new TruncInst(SrcI, FITy); 1655 if (SrcTy == FITy) 1656 return replaceInstUsesWith(FI, SrcI); 1657 return new BitCastInst(SrcI, FITy); 1658 } 1659 return nullptr; 1660 } 1661 1662 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1663 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1664 if (!OpI) 1665 return commonCastTransforms(FI); 1666 1667 if (Instruction *I = FoldItoFPtoI(FI)) 1668 return I; 1669 1670 return commonCastTransforms(FI); 1671 } 1672 1673 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1674 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1675 if (!OpI) 1676 return commonCastTransforms(FI); 1677 1678 if (Instruction *I = FoldItoFPtoI(FI)) 1679 return I; 1680 1681 return commonCastTransforms(FI); 1682 } 1683 1684 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1685 return commonCastTransforms(CI); 1686 } 1687 1688 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1689 return commonCastTransforms(CI); 1690 } 1691 1692 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1693 // If the source integer type is not the intptr_t type for this target, do a 1694 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1695 // cast to be exposed to other transforms. 1696 unsigned AS = CI.getAddressSpace(); 1697 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1698 DL.getPointerSizeInBits(AS)) { 1699 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1700 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1701 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1702 1703 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1704 return new IntToPtrInst(P, CI.getType()); 1705 } 1706 1707 if (Instruction *I = commonCastTransforms(CI)) 1708 return I; 1709 1710 return nullptr; 1711 } 1712 1713 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1714 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1715 Value *Src = CI.getOperand(0); 1716 1717 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1718 // If casting the result of a getelementptr instruction with no offset, turn 1719 // this into a cast of the original pointer! 1720 if (GEP->hasAllZeroIndices() && 1721 // If CI is an addrspacecast and GEP changes the poiner type, merging 1722 // GEP into CI would undo canonicalizing addrspacecast with different 1723 // pointer types, causing infinite loops. 1724 (!isa<AddrSpaceCastInst>(CI) || 1725 GEP->getType() == GEP->getPointerOperandType())) { 1726 // Changing the cast operand is usually not a good idea but it is safe 1727 // here because the pointer operand is being replaced with another 1728 // pointer operand so the opcode doesn't need to change. 1729 Worklist.Add(GEP); 1730 CI.setOperand(0, GEP->getOperand(0)); 1731 return &CI; 1732 } 1733 } 1734 1735 return commonCastTransforms(CI); 1736 } 1737 1738 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1739 // If the destination integer type is not the intptr_t type for this target, 1740 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1741 // to be exposed to other transforms. 1742 1743 Type *Ty = CI.getType(); 1744 unsigned AS = CI.getPointerAddressSpace(); 1745 1746 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1747 return commonPointerCastTransforms(CI); 1748 1749 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1750 if (Ty->isVectorTy()) // Handle vectors of pointers. 1751 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1752 1753 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1754 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1755 } 1756 1757 /// This input value (which is known to have vector type) is being zero extended 1758 /// or truncated to the specified vector type. 1759 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1760 /// 1761 /// The source and destination vector types may have different element types. 1762 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1763 InstCombiner &IC) { 1764 // We can only do this optimization if the output is a multiple of the input 1765 // element size, or the input is a multiple of the output element size. 1766 // Convert the input type to have the same element type as the output. 1767 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1768 1769 if (SrcTy->getElementType() != DestTy->getElementType()) { 1770 // The input types don't need to be identical, but for now they must be the 1771 // same size. There is no specific reason we couldn't handle things like 1772 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1773 // there yet. 1774 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1775 DestTy->getElementType()->getPrimitiveSizeInBits()) 1776 return nullptr; 1777 1778 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1779 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1780 } 1781 1782 // Now that the element types match, get the shuffle mask and RHS of the 1783 // shuffle to use, which depends on whether we're increasing or decreasing the 1784 // size of the input. 1785 SmallVector<uint32_t, 16> ShuffleMask; 1786 Value *V2; 1787 1788 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1789 // If we're shrinking the number of elements, just shuffle in the low 1790 // elements from the input and use undef as the second shuffle input. 1791 V2 = UndefValue::get(SrcTy); 1792 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1793 ShuffleMask.push_back(i); 1794 1795 } else { 1796 // If we're increasing the number of elements, shuffle in all of the 1797 // elements from InVal and fill the rest of the result elements with zeros 1798 // from a constant zero. 1799 V2 = Constant::getNullValue(SrcTy); 1800 unsigned SrcElts = SrcTy->getNumElements(); 1801 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1802 ShuffleMask.push_back(i); 1803 1804 // The excess elements reference the first element of the zero input. 1805 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1806 ShuffleMask.push_back(SrcElts); 1807 } 1808 1809 return new ShuffleVectorInst(InVal, V2, 1810 ConstantDataVector::get(V2->getContext(), 1811 ShuffleMask)); 1812 } 1813 1814 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1815 return Value % Ty->getPrimitiveSizeInBits() == 0; 1816 } 1817 1818 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1819 return Value / Ty->getPrimitiveSizeInBits(); 1820 } 1821 1822 /// V is a value which is inserted into a vector of VecEltTy. 1823 /// Look through the value to see if we can decompose it into 1824 /// insertions into the vector. See the example in the comment for 1825 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1826 /// The type of V is always a non-zero multiple of VecEltTy's size. 1827 /// Shift is the number of bits between the lsb of V and the lsb of 1828 /// the vector. 1829 /// 1830 /// This returns false if the pattern can't be matched or true if it can, 1831 /// filling in Elements with the elements found here. 1832 static bool collectInsertionElements(Value *V, unsigned Shift, 1833 SmallVectorImpl<Value *> &Elements, 1834 Type *VecEltTy, bool isBigEndian) { 1835 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1836 "Shift should be a multiple of the element type size"); 1837 1838 // Undef values never contribute useful bits to the result. 1839 if (isa<UndefValue>(V)) return true; 1840 1841 // If we got down to a value of the right type, we win, try inserting into the 1842 // right element. 1843 if (V->getType() == VecEltTy) { 1844 // Inserting null doesn't actually insert any elements. 1845 if (Constant *C = dyn_cast<Constant>(V)) 1846 if (C->isNullValue()) 1847 return true; 1848 1849 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1850 if (isBigEndian) 1851 ElementIndex = Elements.size() - ElementIndex - 1; 1852 1853 // Fail if multiple elements are inserted into this slot. 1854 if (Elements[ElementIndex]) 1855 return false; 1856 1857 Elements[ElementIndex] = V; 1858 return true; 1859 } 1860 1861 if (Constant *C = dyn_cast<Constant>(V)) { 1862 // Figure out the # elements this provides, and bitcast it or slice it up 1863 // as required. 1864 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1865 VecEltTy); 1866 // If the constant is the size of a vector element, we just need to bitcast 1867 // it to the right type so it gets properly inserted. 1868 if (NumElts == 1) 1869 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1870 Shift, Elements, VecEltTy, isBigEndian); 1871 1872 // Okay, this is a constant that covers multiple elements. Slice it up into 1873 // pieces and insert each element-sized piece into the vector. 1874 if (!isa<IntegerType>(C->getType())) 1875 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1876 C->getType()->getPrimitiveSizeInBits())); 1877 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1878 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1879 1880 for (unsigned i = 0; i != NumElts; ++i) { 1881 unsigned ShiftI = Shift+i*ElementSize; 1882 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1883 ShiftI)); 1884 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1885 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1886 isBigEndian)) 1887 return false; 1888 } 1889 return true; 1890 } 1891 1892 if (!V->hasOneUse()) return false; 1893 1894 Instruction *I = dyn_cast<Instruction>(V); 1895 if (!I) return false; 1896 switch (I->getOpcode()) { 1897 default: return false; // Unhandled case. 1898 case Instruction::BitCast: 1899 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1900 isBigEndian); 1901 case Instruction::ZExt: 1902 if (!isMultipleOfTypeSize( 1903 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1904 VecEltTy)) 1905 return false; 1906 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1907 isBigEndian); 1908 case Instruction::Or: 1909 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1910 isBigEndian) && 1911 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1912 isBigEndian); 1913 case Instruction::Shl: { 1914 // Must be shifting by a constant that is a multiple of the element size. 1915 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1916 if (!CI) return false; 1917 Shift += CI->getZExtValue(); 1918 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1919 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1920 isBigEndian); 1921 } 1922 1923 } 1924 } 1925 1926 1927 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1928 /// assemble the elements of the vector manually. 1929 /// Try to rip the code out and replace it with insertelements. This is to 1930 /// optimize code like this: 1931 /// 1932 /// %tmp37 = bitcast float %inc to i32 1933 /// %tmp38 = zext i32 %tmp37 to i64 1934 /// %tmp31 = bitcast float %inc5 to i32 1935 /// %tmp32 = zext i32 %tmp31 to i64 1936 /// %tmp33 = shl i64 %tmp32, 32 1937 /// %ins35 = or i64 %tmp33, %tmp38 1938 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1939 /// 1940 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1941 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1942 InstCombiner &IC) { 1943 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1944 Value *IntInput = CI.getOperand(0); 1945 1946 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1947 if (!collectInsertionElements(IntInput, 0, Elements, 1948 DestVecTy->getElementType(), 1949 IC.getDataLayout().isBigEndian())) 1950 return nullptr; 1951 1952 // If we succeeded, we know that all of the element are specified by Elements 1953 // or are zero if Elements has a null entry. Recast this as a set of 1954 // insertions. 1955 Value *Result = Constant::getNullValue(CI.getType()); 1956 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1957 if (!Elements[i]) continue; // Unset element. 1958 1959 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1960 IC.Builder.getInt32(i)); 1961 } 1962 1963 return Result; 1964 } 1965 1966 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1967 /// vector followed by extract element. The backend tends to handle bitcasts of 1968 /// vectors better than bitcasts of scalars because vector registers are 1969 /// usually not type-specific like scalar integer or scalar floating-point. 1970 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1971 InstCombiner &IC) { 1972 // TODO: Create and use a pattern matcher for ExtractElementInst. 1973 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1974 if (!ExtElt || !ExtElt->hasOneUse()) 1975 return nullptr; 1976 1977 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1978 // type to extract from. 1979 Type *DestType = BitCast.getType(); 1980 if (!VectorType::isValidElementType(DestType)) 1981 return nullptr; 1982 1983 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1984 auto *NewVecType = VectorType::get(DestType, NumElts); 1985 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 1986 NewVecType, "bc"); 1987 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1988 } 1989 1990 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1991 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1992 InstCombiner::BuilderTy &Builder) { 1993 Type *DestTy = BitCast.getType(); 1994 BinaryOperator *BO; 1995 if (!DestTy->isIntOrIntVectorTy() || 1996 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 1997 !BO->isBitwiseLogicOp()) 1998 return nullptr; 1999 2000 // FIXME: This transform is restricted to vector types to avoid backend 2001 // problems caused by creating potentially illegal operations. If a fix-up is 2002 // added to handle that situation, we can remove this check. 2003 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2004 return nullptr; 2005 2006 Value *X; 2007 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2008 X->getType() == DestTy && !isa<Constant>(X)) { 2009 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2010 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2011 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2012 } 2013 2014 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2015 X->getType() == DestTy && !isa<Constant>(X)) { 2016 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2017 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2018 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2019 } 2020 2021 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2022 // constant. This eases recognition of special constants for later ops. 2023 // Example: 2024 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2025 Constant *C; 2026 if (match(BO->getOperand(1), m_Constant(C))) { 2027 // bitcast (logic X, C) --> logic (bitcast X, C') 2028 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2029 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2030 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2031 } 2032 2033 return nullptr; 2034 } 2035 2036 /// Change the type of a select if we can eliminate a bitcast. 2037 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2038 InstCombiner::BuilderTy &Builder) { 2039 Value *Cond, *TVal, *FVal; 2040 if (!match(BitCast.getOperand(0), 2041 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2042 return nullptr; 2043 2044 // A vector select must maintain the same number of elements in its operands. 2045 Type *CondTy = Cond->getType(); 2046 Type *DestTy = BitCast.getType(); 2047 if (CondTy->isVectorTy()) { 2048 if (!DestTy->isVectorTy()) 2049 return nullptr; 2050 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2051 return nullptr; 2052 } 2053 2054 // FIXME: This transform is restricted from changing the select between 2055 // scalars and vectors to avoid backend problems caused by creating 2056 // potentially illegal operations. If a fix-up is added to handle that 2057 // situation, we can remove this check. 2058 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2059 return nullptr; 2060 2061 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2062 Value *X; 2063 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2064 !isa<Constant>(X)) { 2065 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2066 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2067 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2068 } 2069 2070 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2071 !isa<Constant>(X)) { 2072 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2073 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2074 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2075 } 2076 2077 return nullptr; 2078 } 2079 2080 /// Check if all users of CI are StoreInsts. 2081 static bool hasStoreUsersOnly(CastInst &CI) { 2082 for (User *U : CI.users()) { 2083 if (!isa<StoreInst>(U)) 2084 return false; 2085 } 2086 return true; 2087 } 2088 2089 /// This function handles following case 2090 /// 2091 /// A -> B cast 2092 /// PHI 2093 /// B -> A cast 2094 /// 2095 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2096 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2097 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2098 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2099 if (hasStoreUsersOnly(CI)) 2100 return nullptr; 2101 2102 Value *Src = CI.getOperand(0); 2103 Type *SrcTy = Src->getType(); // Type B 2104 Type *DestTy = CI.getType(); // Type A 2105 2106 SmallVector<PHINode *, 4> PhiWorklist; 2107 SmallSetVector<PHINode *, 4> OldPhiNodes; 2108 2109 // Find all of the A->B casts and PHI nodes. 2110 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2111 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2112 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2113 PhiWorklist.push_back(PN); 2114 OldPhiNodes.insert(PN); 2115 while (!PhiWorklist.empty()) { 2116 auto *OldPN = PhiWorklist.pop_back_val(); 2117 for (Value *IncValue : OldPN->incoming_values()) { 2118 if (isa<Constant>(IncValue)) 2119 continue; 2120 2121 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2122 // If there is a sequence of one or more load instructions, each loaded 2123 // value is used as address of later load instruction, bitcast is 2124 // necessary to change the value type, don't optimize it. For 2125 // simplicity we give up if the load address comes from another load. 2126 Value *Addr = LI->getOperand(0); 2127 if (Addr == &CI || isa<LoadInst>(Addr)) 2128 return nullptr; 2129 if (LI->hasOneUse() && LI->isSimple()) 2130 continue; 2131 // If a LoadInst has more than one use, changing the type of loaded 2132 // value may create another bitcast. 2133 return nullptr; 2134 } 2135 2136 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2137 if (OldPhiNodes.insert(PNode)) 2138 PhiWorklist.push_back(PNode); 2139 continue; 2140 } 2141 2142 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2143 // We can't handle other instructions. 2144 if (!BCI) 2145 return nullptr; 2146 2147 // Verify it's a A->B cast. 2148 Type *TyA = BCI->getOperand(0)->getType(); 2149 Type *TyB = BCI->getType(); 2150 if (TyA != DestTy || TyB != SrcTy) 2151 return nullptr; 2152 } 2153 } 2154 2155 // For each old PHI node, create a corresponding new PHI node with a type A. 2156 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2157 for (auto *OldPN : OldPhiNodes) { 2158 Builder.SetInsertPoint(OldPN); 2159 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2160 NewPNodes[OldPN] = NewPN; 2161 } 2162 2163 // Fill in the operands of new PHI nodes. 2164 for (auto *OldPN : OldPhiNodes) { 2165 PHINode *NewPN = NewPNodes[OldPN]; 2166 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2167 Value *V = OldPN->getOperand(j); 2168 Value *NewV = nullptr; 2169 if (auto *C = dyn_cast<Constant>(V)) { 2170 NewV = ConstantExpr::getBitCast(C, DestTy); 2171 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2172 Builder.SetInsertPoint(LI->getNextNode()); 2173 NewV = Builder.CreateBitCast(LI, DestTy); 2174 Worklist.Add(LI); 2175 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2176 NewV = BCI->getOperand(0); 2177 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2178 NewV = NewPNodes[PrevPN]; 2179 } 2180 assert(NewV); 2181 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2182 } 2183 } 2184 2185 // If there is a store with type B, change it to type A. 2186 for (User *U : PN->users()) { 2187 auto *SI = dyn_cast<StoreInst>(U); 2188 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2189 Builder.SetInsertPoint(SI); 2190 auto *NewBC = 2191 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2192 SI->setOperand(0, NewBC); 2193 Worklist.Add(SI); 2194 assert(hasStoreUsersOnly(*NewBC)); 2195 } 2196 } 2197 2198 return replaceInstUsesWith(CI, NewPNodes[PN]); 2199 } 2200 2201 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2202 // If the operands are integer typed then apply the integer transforms, 2203 // otherwise just apply the common ones. 2204 Value *Src = CI.getOperand(0); 2205 Type *SrcTy = Src->getType(); 2206 Type *DestTy = CI.getType(); 2207 2208 // Get rid of casts from one type to the same type. These are useless and can 2209 // be replaced by the operand. 2210 if (DestTy == Src->getType()) 2211 return replaceInstUsesWith(CI, Src); 2212 2213 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2214 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2215 Type *DstElTy = DstPTy->getElementType(); 2216 Type *SrcElTy = SrcPTy->getElementType(); 2217 2218 // If we are casting a alloca to a pointer to a type of the same 2219 // size, rewrite the allocation instruction to allocate the "right" type. 2220 // There is no need to modify malloc calls because it is their bitcast that 2221 // needs to be cleaned up. 2222 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2223 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2224 return V; 2225 2226 // When the type pointed to is not sized the cast cannot be 2227 // turned into a gep. 2228 Type *PointeeType = 2229 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2230 if (!PointeeType->isSized()) 2231 return nullptr; 2232 2233 // If the source and destination are pointers, and this cast is equivalent 2234 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2235 // This can enhance SROA and other transforms that want type-safe pointers. 2236 unsigned NumZeros = 0; 2237 while (SrcElTy != DstElTy && 2238 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2239 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2240 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2241 ++NumZeros; 2242 } 2243 2244 // If we found a path from the src to dest, create the getelementptr now. 2245 if (SrcElTy == DstElTy) { 2246 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2247 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2248 } 2249 } 2250 2251 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2252 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2253 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2254 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2255 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2256 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2257 } 2258 2259 if (isa<IntegerType>(SrcTy)) { 2260 // If this is a cast from an integer to vector, check to see if the input 2261 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2262 // the casts with a shuffle and (potentially) a bitcast. 2263 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2264 CastInst *SrcCast = cast<CastInst>(Src); 2265 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2266 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2267 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2268 cast<VectorType>(DestTy), *this)) 2269 return I; 2270 } 2271 2272 // If the input is an 'or' instruction, we may be doing shifts and ors to 2273 // assemble the elements of the vector manually. Try to rip the code out 2274 // and replace it with insertelements. 2275 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2276 return replaceInstUsesWith(CI, V); 2277 } 2278 } 2279 2280 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2281 if (SrcVTy->getNumElements() == 1) { 2282 // If our destination is not a vector, then make this a straight 2283 // scalar-scalar cast. 2284 if (!DestTy->isVectorTy()) { 2285 Value *Elem = 2286 Builder.CreateExtractElement(Src, 2287 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2288 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2289 } 2290 2291 // Otherwise, see if our source is an insert. If so, then use the scalar 2292 // component directly. 2293 if (InsertElementInst *IEI = 2294 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2295 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2296 DestTy); 2297 } 2298 } 2299 2300 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2301 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2302 // a bitcast to a vector with the same # elts. 2303 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2304 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2305 SVI->getType()->getNumElements() == 2306 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2307 BitCastInst *Tmp; 2308 // If either of the operands is a cast from CI.getType(), then 2309 // evaluating the shuffle in the casted destination's type will allow 2310 // us to eliminate at least one cast. 2311 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2312 Tmp->getOperand(0)->getType() == DestTy) || 2313 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2314 Tmp->getOperand(0)->getType() == DestTy)) { 2315 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2316 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2317 // Return a new shuffle vector. Use the same element ID's, as we 2318 // know the vector types match #elts. 2319 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2320 } 2321 } 2322 } 2323 2324 // Handle the A->B->A cast, and there is an intervening PHI node. 2325 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2326 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2327 return I; 2328 2329 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2330 return I; 2331 2332 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2333 return I; 2334 2335 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2336 return I; 2337 2338 if (SrcTy->isPointerTy()) 2339 return commonPointerCastTransforms(CI); 2340 return commonCastTransforms(CI); 2341 } 2342 2343 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2344 // If the destination pointer element type is not the same as the source's 2345 // first do a bitcast to the destination type, and then the addrspacecast. 2346 // This allows the cast to be exposed to other transforms. 2347 Value *Src = CI.getOperand(0); 2348 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2349 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2350 2351 Type *DestElemTy = DestTy->getElementType(); 2352 if (SrcTy->getElementType() != DestElemTy) { 2353 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2354 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2355 // Handle vectors of pointers. 2356 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2357 } 2358 2359 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2360 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2361 } 2362 2363 return commonPointerCastTransforms(CI); 2364 } 2365