xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision cc255bcd7720c77a931e239f13f72bae37a90e8d)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 /// Analyze 'Val', seeing if it is a simple linear expression.
27 /// If so, decompose it, returning some value X, such that Val is
28 /// X*Scale+Offset.
29 ///
30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
31                                         uint64_t &Offset) {
32   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
33     Offset = CI->getZExtValue();
34     Scale  = 0;
35     return ConstantInt::get(Val->getType(), 0);
36   }
37 
38   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
39     // Cannot look past anything that might overflow.
40     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
41     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
42       Scale = 1;
43       Offset = 0;
44       return Val;
45     }
46 
47     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
48       if (I->getOpcode() == Instruction::Shl) {
49         // This is a value scaled by '1 << the shift amt'.
50         Scale = UINT64_C(1) << RHS->getZExtValue();
51         Offset = 0;
52         return I->getOperand(0);
53       }
54 
55       if (I->getOpcode() == Instruction::Mul) {
56         // This value is scaled by 'RHS'.
57         Scale = RHS->getZExtValue();
58         Offset = 0;
59         return I->getOperand(0);
60       }
61 
62       if (I->getOpcode() == Instruction::Add) {
63         // We have X+C.  Check to see if we really have (X*C2)+C1,
64         // where C1 is divisible by C2.
65         unsigned SubScale;
66         Value *SubVal =
67           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
68         Offset += RHS->getZExtValue();
69         Scale = SubScale;
70         return SubVal;
71       }
72     }
73   }
74 
75   // Otherwise, we can't look past this.
76   Scale = 1;
77   Offset = 0;
78   return Val;
79 }
80 
81 /// If we find a cast of an allocation instruction, try to eliminate the cast by
82 /// moving the type information into the alloc.
83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
84                                                    AllocaInst &AI) {
85   PointerType *PTy = cast<PointerType>(CI.getType());
86 
87   BuilderTy AllocaBuilder(Builder);
88   AllocaBuilder.SetInsertPoint(&AI);
89 
90   // Get the type really allocated and the type casted to.
91   Type *AllocElTy = AI.getAllocatedType();
92   Type *CastElTy = PTy->getElementType();
93   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
94 
95   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
96   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
97   if (CastElTyAlign < AllocElTyAlign) return nullptr;
98 
99   // If the allocation has multiple uses, only promote it if we are strictly
100   // increasing the alignment of the resultant allocation.  If we keep it the
101   // same, we open the door to infinite loops of various kinds.
102   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
103 
104   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
105   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
106   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
107 
108   // If the allocation has multiple uses, only promote it if we're not
109   // shrinking the amount of memory being allocated.
110   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
111   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
112   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
113 
114   // See if we can satisfy the modulus by pulling a scale out of the array
115   // size argument.
116   unsigned ArraySizeScale;
117   uint64_t ArrayOffset;
118   Value *NumElements = // See if the array size is a decomposable linear expr.
119     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
120 
121   // If we can now satisfy the modulus, by using a non-1 scale, we really can
122   // do the xform.
123   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
124       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
125 
126   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
127   Value *Amt = nullptr;
128   if (Scale == 1) {
129     Amt = NumElements;
130   } else {
131     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
132     // Insert before the alloca, not before the cast.
133     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
134   }
135 
136   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
137     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
138                                   Offset, true);
139     Amt = AllocaBuilder.CreateAdd(Amt, Off);
140   }
141 
142   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
143   New->setAlignment(AI.getAlignment());
144   New->takeName(&AI);
145   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
146 
147   // If the allocation has multiple real uses, insert a cast and change all
148   // things that used it to use the new cast.  This will also hack on CI, but it
149   // will die soon.
150   if (!AI.hasOneUse()) {
151     // New is the allocation instruction, pointer typed. AI is the original
152     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
153     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
154     replaceInstUsesWith(AI, NewCast);
155   }
156   return replaceInstUsesWith(CI, New);
157 }
158 
159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
160 /// true for, actually insert the code to evaluate the expression.
161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
162                                              bool isSigned) {
163   if (Constant *C = dyn_cast<Constant>(V)) {
164     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
165     // If we got a constantexpr back, try to simplify it with DL info.
166     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
167       C = FoldedC;
168     return C;
169   }
170 
171   // Otherwise, it must be an instruction.
172   Instruction *I = cast<Instruction>(V);
173   Instruction *Res = nullptr;
174   unsigned Opc = I->getOpcode();
175   switch (Opc) {
176   case Instruction::Add:
177   case Instruction::Sub:
178   case Instruction::Mul:
179   case Instruction::And:
180   case Instruction::Or:
181   case Instruction::Xor:
182   case Instruction::AShr:
183   case Instruction::LShr:
184   case Instruction::Shl:
185   case Instruction::UDiv:
186   case Instruction::URem: {
187     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190     break;
191   }
192   case Instruction::Trunc:
193   case Instruction::ZExt:
194   case Instruction::SExt:
195     // If the source type of the cast is the type we're trying for then we can
196     // just return the source.  There's no need to insert it because it is not
197     // new.
198     if (I->getOperand(0)->getType() == Ty)
199       return I->getOperand(0);
200 
201     // Otherwise, must be the same type of cast, so just reinsert a new one.
202     // This also handles the case of zext(trunc(x)) -> zext(x).
203     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204                                       Opc == Instruction::SExt);
205     break;
206   case Instruction::Select: {
207     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209     Res = SelectInst::Create(I->getOperand(0), True, False);
210     break;
211   }
212   case Instruction::PHI: {
213     PHINode *OPN = cast<PHINode>(I);
214     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216       Value *V =
217           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218       NPN->addIncoming(V, OPN->getIncomingBlock(i));
219     }
220     Res = NPN;
221     break;
222   }
223   default:
224     // TODO: Can handle more cases here.
225     llvm_unreachable("Unreachable!");
226   }
227 
228   Res->takeName(I);
229   return InsertNewInstWith(Res, *I);
230 }
231 
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233                                                         const CastInst *CI2) {
234   Type *SrcTy = CI1->getSrcTy();
235   Type *MidTy = CI1->getDestTy();
236   Type *DstTy = CI2->getDestTy();
237 
238   Instruction::CastOps firstOp = CI1->getOpcode();
239   Instruction::CastOps secondOp = CI2->getOpcode();
240   Type *SrcIntPtrTy =
241       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242   Type *MidIntPtrTy =
243       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244   Type *DstIntPtrTy =
245       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
248                                                 DstIntPtrTy);
249 
250   // We don't want to form an inttoptr or ptrtoint that converts to an integer
251   // type that differs from the pointer size.
252   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254     Res = 0;
255 
256   return Instruction::CastOps(Res);
257 }
258 
259 /// @brief Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261   Value *Src = CI.getOperand(0);
262 
263   // Try to eliminate a cast of a cast.
264   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
265     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266       // The first cast (CSrc) is eliminable so we need to fix up or replace
267       // the second cast (CI). CSrc will then have a good chance of being dead.
268       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
269     }
270   }
271 
272   // If we are casting a select, then fold the cast into the select.
273   if (auto *SI = dyn_cast<SelectInst>(Src))
274     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
275       return NV;
276 
277   // If we are casting a PHI, then fold the cast into the PHI.
278   if (auto *PN = dyn_cast<PHINode>(Src)) {
279     // Don't do this if it would create a PHI node with an illegal type from a
280     // legal type.
281     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
282         shouldChangeType(CI.getType(), Src->getType()))
283       if (Instruction *NV = foldOpIntoPhi(CI, PN))
284         return NV;
285   }
286 
287   return nullptr;
288 }
289 
290 /// Return true if we can evaluate the specified expression tree as type Ty
291 /// instead of its larger type, and arrive with the same value.
292 /// This is used by code that tries to eliminate truncates.
293 ///
294 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
295 /// can be computed by computing V in the smaller type.  If V is an instruction,
296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
297 /// makes sense if x and y can be efficiently truncated.
298 ///
299 /// This function works on both vectors and scalars.
300 ///
301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
302                                  Instruction *CxtI) {
303   // We can always evaluate constants in another type.
304   if (isa<Constant>(V))
305     return true;
306 
307   Instruction *I = dyn_cast<Instruction>(V);
308   if (!I) return false;
309 
310   Type *OrigTy = V->getType();
311 
312   // If this is an extension from the dest type, we can eliminate it, even if it
313   // has multiple uses.
314   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
315       I->getOperand(0)->getType() == Ty)
316     return true;
317 
318   // We can't extend or shrink something that has multiple uses: doing so would
319   // require duplicating the instruction in general, which isn't profitable.
320   if (!I->hasOneUse()) return false;
321 
322   unsigned Opc = I->getOpcode();
323   switch (Opc) {
324   case Instruction::Add:
325   case Instruction::Sub:
326   case Instruction::Mul:
327   case Instruction::And:
328   case Instruction::Or:
329   case Instruction::Xor:
330     // These operators can all arbitrarily be extended or truncated.
331     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
332            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
333 
334   case Instruction::UDiv:
335   case Instruction::URem: {
336     // UDiv and URem can be truncated if all the truncated bits are zero.
337     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
338     uint32_t BitWidth = Ty->getScalarSizeInBits();
339     if (BitWidth < OrigBitWidth) {
340       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
341       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
342           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
343         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345       }
346     }
347     break;
348   }
349   case Instruction::Shl: {
350     // If we are truncating the result of this SHL, and if it's a shift of a
351     // constant amount, we can always perform a SHL in a smaller type.
352     const APInt *Amt;
353     if (match(I->getOperand(1), m_APInt(Amt))) {
354       uint32_t BitWidth = Ty->getScalarSizeInBits();
355       if (Amt->getLimitedValue(BitWidth) < BitWidth)
356         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
357     }
358     break;
359   }
360   case Instruction::LShr: {
361     // If this is a truncate of a logical shr, we can truncate it to a smaller
362     // lshr iff we know that the bits we would otherwise be shifting in are
363     // already zeros.
364     const APInt *Amt;
365     if (match(I->getOperand(1), m_APInt(Amt))) {
366       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
367       uint32_t BitWidth = Ty->getScalarSizeInBits();
368       if (IC.MaskedValueIsZero(I->getOperand(0),
369             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
370           Amt->getLimitedValue(BitWidth) < BitWidth) {
371         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
372       }
373     }
374     break;
375   }
376   case Instruction::AShr: {
377     // If this is a truncate of an arithmetic shr, we can truncate it to a
378     // smaller ashr iff we know that all the bits from the sign bit of the
379     // original type and the sign bit of the truncate type are similar.
380     // TODO: It is enough to check that the bits we would be shifting in are
381     //       similar to sign bit of the truncate type.
382     const APInt *Amt;
383     if (match(I->getOperand(1), m_APInt(Amt))) {
384       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
385       uint32_t BitWidth = Ty->getScalarSizeInBits();
386       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
387           OrigBitWidth - BitWidth <
388               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
389         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
390     }
391     break;
392   }
393   case Instruction::Trunc:
394     // trunc(trunc(x)) -> trunc(x)
395     return true;
396   case Instruction::ZExt:
397   case Instruction::SExt:
398     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
399     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
400     return true;
401   case Instruction::Select: {
402     SelectInst *SI = cast<SelectInst>(I);
403     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
404            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
405   }
406   case Instruction::PHI: {
407     // We can change a phi if we can change all operands.  Note that we never
408     // get into trouble with cyclic PHIs here because we only consider
409     // instructions with a single use.
410     PHINode *PN = cast<PHINode>(I);
411     for (Value *IncValue : PN->incoming_values())
412       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
413         return false;
414     return true;
415   }
416   default:
417     // TODO: Can handle more cases here.
418     break;
419   }
420 
421   return false;
422 }
423 
424 /// Given a vector that is bitcast to an integer, optionally logically
425 /// right-shifted, and truncated, convert it to an extractelement.
426 /// Example (big endian):
427 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
428 ///   --->
429 ///   extractelement <4 x i32> %X, 1
430 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
431   Value *TruncOp = Trunc.getOperand(0);
432   Type *DestType = Trunc.getType();
433   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
434     return nullptr;
435 
436   Value *VecInput = nullptr;
437   ConstantInt *ShiftVal = nullptr;
438   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
439                                   m_LShr(m_BitCast(m_Value(VecInput)),
440                                          m_ConstantInt(ShiftVal)))) ||
441       !isa<VectorType>(VecInput->getType()))
442     return nullptr;
443 
444   VectorType *VecType = cast<VectorType>(VecInput->getType());
445   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
446   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
447   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
448 
449   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
450     return nullptr;
451 
452   // If the element type of the vector doesn't match the result type,
453   // bitcast it to a vector type that we can extract from.
454   unsigned NumVecElts = VecWidth / DestWidth;
455   if (VecType->getElementType() != DestType) {
456     VecType = VectorType::get(DestType, NumVecElts);
457     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
458   }
459 
460   unsigned Elt = ShiftAmount / DestWidth;
461   if (IC.getDataLayout().isBigEndian())
462     Elt = NumVecElts - 1 - Elt;
463 
464   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
465 }
466 
467 /// Rotate left/right may occur in a wider type than necessary because of type
468 /// promotion rules. Try to narrow all of the component instructions.
469 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
470   assert((isa<VectorType>(Trunc.getSrcTy()) ||
471           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
472          "Don't narrow to an illegal scalar type");
473 
474   // First, find an or'd pair of opposite shifts with the same shifted operand:
475   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
476   Value *Or0, *Or1;
477   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
478     return nullptr;
479 
480   Value *ShVal, *ShAmt0, *ShAmt1;
481   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
482       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
483     return nullptr;
484 
485   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
486   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
487   if (ShiftOpcode0 == ShiftOpcode1)
488     return nullptr;
489 
490   // The shift amounts must add up to the narrow bit width.
491   Value *ShAmt;
492   bool SubIsOnLHS;
493   Type *DestTy = Trunc.getType();
494   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
495   if (match(ShAmt0,
496             m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
497     ShAmt = ShAmt1;
498     SubIsOnLHS = true;
499   } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
500                                           m_Specific(ShAmt0))))) {
501     ShAmt = ShAmt0;
502     SubIsOnLHS = false;
503   } else {
504     return nullptr;
505   }
506 
507   // The shifted value must have high zeros in the wide type. Typically, this
508   // will be a zext, but it could also be the result of an 'and' or 'shift'.
509   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
510   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
511   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
512     return nullptr;
513 
514   // We have an unnecessarily wide rotate!
515   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
516   // Narrow it down to eliminate the zext/trunc:
517   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
518   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
519   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
520 
521   // Mask both shift amounts to ensure there's no UB from oversized shifts.
522   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
523   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
524   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
525 
526   // Truncate the original value and use narrow ops.
527   Value *X = Builder.CreateTrunc(ShVal, DestTy);
528   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
529   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
530   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
531   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
532   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
533 }
534 
535 /// Try to narrow the width of math or bitwise logic instructions by pulling a
536 /// truncate ahead of binary operators.
537 /// TODO: Transforms for truncated shifts should be moved into here.
538 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
539   Type *SrcTy = Trunc.getSrcTy();
540   Type *DestTy = Trunc.getType();
541   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
542     return nullptr;
543 
544   BinaryOperator *BinOp;
545   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
546     return nullptr;
547 
548   switch (BinOp->getOpcode()) {
549   case Instruction::And:
550   case Instruction::Or:
551   case Instruction::Xor:
552   case Instruction::Add:
553   case Instruction::Mul: {
554     Constant *C;
555     if (match(BinOp->getOperand(1), m_Constant(C))) {
556       // trunc (binop X, C) --> binop (trunc X, C')
557       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
558       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy);
559       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
560     }
561     break;
562   }
563   case Instruction::Sub: {
564     Constant *C;
565     if (match(BinOp->getOperand(0), m_Constant(C))) {
566       // trunc (binop C, X) --> binop (trunc C', X)
567       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
568       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy);
569       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
570     }
571     break;
572   }
573 
574   default: break;
575   }
576 
577   if (Instruction *NarrowOr = narrowRotate(Trunc))
578     return NarrowOr;
579 
580   return nullptr;
581 }
582 
583 /// Try to narrow the width of a splat shuffle. This could be generalized to any
584 /// shuffle with a constant operand, but we limit the transform to avoid
585 /// creating a shuffle type that targets may not be able to lower effectively.
586 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
587                                        InstCombiner::BuilderTy &Builder) {
588   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
589   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
590       Shuf->getMask()->getSplatValue() &&
591       Shuf->getType() == Shuf->getOperand(0)->getType()) {
592     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
593     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
594     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
595     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
596   }
597 
598   return nullptr;
599 }
600 
601 /// Try to narrow the width of an insert element. This could be generalized for
602 /// any vector constant, but we limit the transform to insertion into undef to
603 /// avoid potential backend problems from unsupported insertion widths. This
604 /// could also be extended to handle the case of inserting a scalar constant
605 /// into a vector variable.
606 static Instruction *shrinkInsertElt(CastInst &Trunc,
607                                     InstCombiner::BuilderTy &Builder) {
608   Instruction::CastOps Opcode = Trunc.getOpcode();
609   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
610          "Unexpected instruction for shrinking");
611 
612   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
613   if (!InsElt || !InsElt->hasOneUse())
614     return nullptr;
615 
616   Type *DestTy = Trunc.getType();
617   Type *DestScalarTy = DestTy->getScalarType();
618   Value *VecOp = InsElt->getOperand(0);
619   Value *ScalarOp = InsElt->getOperand(1);
620   Value *Index = InsElt->getOperand(2);
621 
622   if (isa<UndefValue>(VecOp)) {
623     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
624     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
625     UndefValue *NarrowUndef = UndefValue::get(DestTy);
626     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
627     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
628   }
629 
630   return nullptr;
631 }
632 
633 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
634   if (Instruction *Result = commonCastTransforms(CI))
635     return Result;
636 
637   // Test if the trunc is the user of a select which is part of a
638   // minimum or maximum operation. If so, don't do any more simplification.
639   // Even simplifying demanded bits can break the canonical form of a
640   // min/max.
641   Value *LHS, *RHS;
642   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
643     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
644       return nullptr;
645 
646   // See if we can simplify any instructions used by the input whose sole
647   // purpose is to compute bits we don't care about.
648   if (SimplifyDemandedInstructionBits(CI))
649     return &CI;
650 
651   Value *Src = CI.getOperand(0);
652   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
653 
654   // Attempt to truncate the entire input expression tree to the destination
655   // type.   Only do this if the dest type is a simple type, don't convert the
656   // expression tree to something weird like i93 unless the source is also
657   // strange.
658   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
659       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
660 
661     // If this cast is a truncate, evaluting in a different type always
662     // eliminates the cast, so it is always a win.
663     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
664           " to avoid cast: " << CI << '\n');
665     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
666     assert(Res->getType() == DestTy);
667     return replaceInstUsesWith(CI, Res);
668   }
669 
670   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
671   if (DestTy->getScalarSizeInBits() == 1) {
672     Constant *One = ConstantInt::get(SrcTy, 1);
673     Src = Builder.CreateAnd(Src, One);
674     Value *Zero = Constant::getNullValue(Src->getType());
675     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
676   }
677 
678   // FIXME: Maybe combine the next two transforms to handle the no cast case
679   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
680 
681   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
682   Value *A = nullptr; ConstantInt *Cst = nullptr;
683   if (Src->hasOneUse() &&
684       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
685     // We have three types to worry about here, the type of A, the source of
686     // the truncate (MidSize), and the destination of the truncate. We know that
687     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
688     // between ASize and ResultSize.
689     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
690 
691     // If the shift amount is larger than the size of A, then the result is
692     // known to be zero because all the input bits got shifted out.
693     if (Cst->getZExtValue() >= ASize)
694       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
695 
696     // Since we're doing an lshr and a zero extend, and know that the shift
697     // amount is smaller than ASize, it is always safe to do the shift in A's
698     // type, then zero extend or truncate to the result.
699     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
700     Shift->takeName(Src);
701     return CastInst::CreateIntegerCast(Shift, DestTy, false);
702   }
703 
704   // FIXME: We should canonicalize to zext/trunc and remove this transform.
705   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
706   // conversion.
707   // It works because bits coming from sign extension have the same value as
708   // the sign bit of the original value; performing ashr instead of lshr
709   // generates bits of the same value as the sign bit.
710   if (Src->hasOneUse() &&
711       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
712     Value *SExt = cast<Instruction>(Src)->getOperand(0);
713     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
714     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
715     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
716     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
717     unsigned ShiftAmt = Cst->getZExtValue();
718 
719     // This optimization can be only performed when zero bits generated by
720     // the original lshr aren't pulled into the value after truncation, so we
721     // can only shift by values no larger than the number of extension bits.
722     // FIXME: Instead of bailing when the shift is too large, use and to clear
723     // the extra bits.
724     if (ShiftAmt <= MaxAmt) {
725       if (CISize == ASize)
726         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
727                                           std::min(ShiftAmt, ASize - 1)));
728       if (SExt->hasOneUse()) {
729         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
730         Shift->takeName(Src);
731         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
732       }
733     }
734   }
735 
736   if (Instruction *I = narrowBinOp(CI))
737     return I;
738 
739   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
740     return I;
741 
742   if (Instruction *I = shrinkInsertElt(CI, Builder))
743     return I;
744 
745   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
746       shouldChangeType(SrcTy, DestTy)) {
747     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
748     // dest type is native and cst < dest size.
749     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
750         !match(A, m_Shr(m_Value(), m_Constant()))) {
751       // Skip shifts of shift by constants. It undoes a combine in
752       // FoldShiftByConstant and is the extend in reg pattern.
753       const unsigned DestSize = DestTy->getScalarSizeInBits();
754       if (Cst->getValue().ult(DestSize)) {
755         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
756 
757         return BinaryOperator::Create(
758           Instruction::Shl, NewTrunc,
759           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
760       }
761     }
762   }
763 
764   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
765     return I;
766 
767   return nullptr;
768 }
769 
770 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
771                                              bool DoTransform) {
772   // If we are just checking for a icmp eq of a single bit and zext'ing it
773   // to an integer, then shift the bit to the appropriate place and then
774   // cast to integer to avoid the comparison.
775   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
776     const APInt &Op1CV = Op1C->getValue();
777 
778     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
779     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
780     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
781         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
782       if (!DoTransform) return ICI;
783 
784       Value *In = ICI->getOperand(0);
785       Value *Sh = ConstantInt::get(In->getType(),
786                                    In->getType()->getScalarSizeInBits() - 1);
787       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
788       if (In->getType() != CI.getType())
789         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
790 
791       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
792         Constant *One = ConstantInt::get(In->getType(), 1);
793         In = Builder.CreateXor(In, One, In->getName() + ".not");
794       }
795 
796       return replaceInstUsesWith(CI, In);
797     }
798 
799     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
800     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
801     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
802     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
803     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
804     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
805     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
806     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
807     if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
808         // This only works for EQ and NE
809         ICI->isEquality()) {
810       // If Op1C some other power of two, convert:
811       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
812 
813       APInt KnownZeroMask(~Known.Zero);
814       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
815         if (!DoTransform) return ICI;
816 
817         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
818         if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
819           // (X&4) == 2 --> false
820           // (X&4) != 2 --> true
821           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
822                                            isNE);
823           Res = ConstantExpr::getZExt(Res, CI.getType());
824           return replaceInstUsesWith(CI, Res);
825         }
826 
827         uint32_t ShAmt = KnownZeroMask.logBase2();
828         Value *In = ICI->getOperand(0);
829         if (ShAmt) {
830           // Perform a logical shr by shiftamt.
831           // Insert the shift to put the result in the low bit.
832           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
833                                   In->getName() + ".lobit");
834         }
835 
836         if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
837           Constant *One = ConstantInt::get(In->getType(), 1);
838           In = Builder.CreateXor(In, One);
839         }
840 
841         if (CI.getType() == In->getType())
842           return replaceInstUsesWith(CI, In);
843 
844         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
845         return replaceInstUsesWith(CI, IntCast);
846       }
847     }
848   }
849 
850   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
851   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
852   // may lead to additional simplifications.
853   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
854     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
855       Value *LHS = ICI->getOperand(0);
856       Value *RHS = ICI->getOperand(1);
857 
858       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
859       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
860 
861       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
862         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
863         APInt UnknownBit = ~KnownBits;
864         if (UnknownBit.countPopulation() == 1) {
865           if (!DoTransform) return ICI;
866 
867           Value *Result = Builder.CreateXor(LHS, RHS);
868 
869           // Mask off any bits that are set and won't be shifted away.
870           if (KnownLHS.One.uge(UnknownBit))
871             Result = Builder.CreateAnd(Result,
872                                         ConstantInt::get(ITy, UnknownBit));
873 
874           // Shift the bit we're testing down to the lsb.
875           Result = Builder.CreateLShr(
876                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
877 
878           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
879             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
880           Result->takeName(ICI);
881           return replaceInstUsesWith(CI, Result);
882         }
883       }
884     }
885   }
886 
887   return nullptr;
888 }
889 
890 /// Determine if the specified value can be computed in the specified wider type
891 /// and produce the same low bits. If not, return false.
892 ///
893 /// If this function returns true, it can also return a non-zero number of bits
894 /// (in BitsToClear) which indicates that the value it computes is correct for
895 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
896 /// out.  For example, to promote something like:
897 ///
898 ///   %B = trunc i64 %A to i32
899 ///   %C = lshr i32 %B, 8
900 ///   %E = zext i32 %C to i64
901 ///
902 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
903 /// set to 8 to indicate that the promoted value needs to have bits 24-31
904 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
905 /// clear the top bits anyway, doing this has no extra cost.
906 ///
907 /// This function works on both vectors and scalars.
908 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
909                              InstCombiner &IC, Instruction *CxtI) {
910   BitsToClear = 0;
911   if (isa<Constant>(V))
912     return true;
913 
914   Instruction *I = dyn_cast<Instruction>(V);
915   if (!I) return false;
916 
917   // If the input is a truncate from the destination type, we can trivially
918   // eliminate it.
919   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
920     return true;
921 
922   // We can't extend or shrink something that has multiple uses: doing so would
923   // require duplicating the instruction in general, which isn't profitable.
924   if (!I->hasOneUse()) return false;
925 
926   unsigned Opc = I->getOpcode(), Tmp;
927   switch (Opc) {
928   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
929   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
930   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
931     return true;
932   case Instruction::And:
933   case Instruction::Or:
934   case Instruction::Xor:
935   case Instruction::Add:
936   case Instruction::Sub:
937   case Instruction::Mul:
938     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
939         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
940       return false;
941     // These can all be promoted if neither operand has 'bits to clear'.
942     if (BitsToClear == 0 && Tmp == 0)
943       return true;
944 
945     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
946     // other side, BitsToClear is ok.
947     if (Tmp == 0 && I->isBitwiseLogicOp()) {
948       // We use MaskedValueIsZero here for generality, but the case we care
949       // about the most is constant RHS.
950       unsigned VSize = V->getType()->getScalarSizeInBits();
951       if (IC.MaskedValueIsZero(I->getOperand(1),
952                                APInt::getHighBitsSet(VSize, BitsToClear),
953                                0, CxtI)) {
954         // If this is an And instruction and all of the BitsToClear are
955         // known to be zero we can reset BitsToClear.
956         if (Opc == Instruction::And)
957           BitsToClear = 0;
958         return true;
959       }
960     }
961 
962     // Otherwise, we don't know how to analyze this BitsToClear case yet.
963     return false;
964 
965   case Instruction::Shl: {
966     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
967     // upper bits we can reduce BitsToClear by the shift amount.
968     const APInt *Amt;
969     if (match(I->getOperand(1), m_APInt(Amt))) {
970       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
971         return false;
972       uint64_t ShiftAmt = Amt->getZExtValue();
973       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
974       return true;
975     }
976     return false;
977   }
978   case Instruction::LShr: {
979     // We can promote lshr(x, cst) if we can promote x.  This requires the
980     // ultimate 'and' to clear out the high zero bits we're clearing out though.
981     const APInt *Amt;
982     if (match(I->getOperand(1), m_APInt(Amt))) {
983       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
984         return false;
985       BitsToClear += Amt->getZExtValue();
986       if (BitsToClear > V->getType()->getScalarSizeInBits())
987         BitsToClear = V->getType()->getScalarSizeInBits();
988       return true;
989     }
990     // Cannot promote variable LSHR.
991     return false;
992   }
993   case Instruction::Select:
994     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
995         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
996         // TODO: If important, we could handle the case when the BitsToClear are
997         // known zero in the disagreeing side.
998         Tmp != BitsToClear)
999       return false;
1000     return true;
1001 
1002   case Instruction::PHI: {
1003     // We can change a phi if we can change all operands.  Note that we never
1004     // get into trouble with cyclic PHIs here because we only consider
1005     // instructions with a single use.
1006     PHINode *PN = cast<PHINode>(I);
1007     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1008       return false;
1009     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1010       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1011           // TODO: If important, we could handle the case when the BitsToClear
1012           // are known zero in the disagreeing input.
1013           Tmp != BitsToClear)
1014         return false;
1015     return true;
1016   }
1017   default:
1018     // TODO: Can handle more cases here.
1019     return false;
1020   }
1021 }
1022 
1023 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1024   // If this zero extend is only used by a truncate, let the truncate be
1025   // eliminated before we try to optimize this zext.
1026   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1027     return nullptr;
1028 
1029   // If one of the common conversion will work, do it.
1030   if (Instruction *Result = commonCastTransforms(CI))
1031     return Result;
1032 
1033   Value *Src = CI.getOperand(0);
1034   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1035 
1036   // Attempt to extend the entire input expression tree to the destination
1037   // type.   Only do this if the dest type is a simple type, don't convert the
1038   // expression tree to something weird like i93 unless the source is also
1039   // strange.
1040   unsigned BitsToClear;
1041   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1042       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1043     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1044            "Can't clear more bits than in SrcTy");
1045 
1046     // Okay, we can transform this!  Insert the new expression now.
1047     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1048           " to avoid zero extend: " << CI << '\n');
1049     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1050     assert(Res->getType() == DestTy);
1051 
1052     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1053     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1054 
1055     // If the high bits are already filled with zeros, just replace this
1056     // cast with the result.
1057     if (MaskedValueIsZero(Res,
1058                           APInt::getHighBitsSet(DestBitSize,
1059                                                 DestBitSize-SrcBitsKept),
1060                              0, &CI))
1061       return replaceInstUsesWith(CI, Res);
1062 
1063     // We need to emit an AND to clear the high bits.
1064     Constant *C = ConstantInt::get(Res->getType(),
1065                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1066     return BinaryOperator::CreateAnd(Res, C);
1067   }
1068 
1069   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1070   // types and if the sizes are just right we can convert this into a logical
1071   // 'and' which will be much cheaper than the pair of casts.
1072   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1073     // TODO: Subsume this into EvaluateInDifferentType.
1074 
1075     // Get the sizes of the types involved.  We know that the intermediate type
1076     // will be smaller than A or C, but don't know the relation between A and C.
1077     Value *A = CSrc->getOperand(0);
1078     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1079     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1080     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1081     // If we're actually extending zero bits, then if
1082     // SrcSize <  DstSize: zext(a & mask)
1083     // SrcSize == DstSize: a & mask
1084     // SrcSize  > DstSize: trunc(a) & mask
1085     if (SrcSize < DstSize) {
1086       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1087       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1088       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1089       return new ZExtInst(And, CI.getType());
1090     }
1091 
1092     if (SrcSize == DstSize) {
1093       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1094       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1095                                                            AndValue));
1096     }
1097     if (SrcSize > DstSize) {
1098       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1099       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1100       return BinaryOperator::CreateAnd(Trunc,
1101                                        ConstantInt::get(Trunc->getType(),
1102                                                         AndValue));
1103     }
1104   }
1105 
1106   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1107     return transformZExtICmp(ICI, CI);
1108 
1109   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1110   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1111     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1112     // of the (zext icmp) can be eliminated. If so, immediately perform the
1113     // according elimination.
1114     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1115     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1116     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1117         (transformZExtICmp(LHS, CI, false) ||
1118          transformZExtICmp(RHS, CI, false))) {
1119       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1120       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1121       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1122       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1123 
1124       // Perform the elimination.
1125       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1126         transformZExtICmp(LHS, *LZExt);
1127       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1128         transformZExtICmp(RHS, *RZExt);
1129 
1130       return Or;
1131     }
1132   }
1133 
1134   // zext(trunc(X) & C) -> (X & zext(C)).
1135   Constant *C;
1136   Value *X;
1137   if (SrcI &&
1138       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1139       X->getType() == CI.getType())
1140     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1141 
1142   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1143   Value *And;
1144   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1145       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1146       X->getType() == CI.getType()) {
1147     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1148     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1149   }
1150 
1151   return nullptr;
1152 }
1153 
1154 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1155 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1156   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1157   ICmpInst::Predicate Pred = ICI->getPredicate();
1158 
1159   // Don't bother if Op1 isn't of vector or integer type.
1160   if (!Op1->getType()->isIntOrIntVectorTy())
1161     return nullptr;
1162 
1163   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1164     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1165     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1166     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
1167         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
1168 
1169       Value *Sh = ConstantInt::get(Op0->getType(),
1170                                    Op0->getType()->getScalarSizeInBits()-1);
1171       Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1172       if (In->getType() != CI.getType())
1173         In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1174 
1175       if (Pred == ICmpInst::ICMP_SGT)
1176         In = Builder.CreateNot(In, In->getName() + ".not");
1177       return replaceInstUsesWith(CI, In);
1178     }
1179   }
1180 
1181   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1182     // If we know that only one bit of the LHS of the icmp can be set and we
1183     // have an equality comparison with zero or a power of 2, we can transform
1184     // the icmp and sext into bitwise/integer operations.
1185     if (ICI->hasOneUse() &&
1186         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1187       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1188 
1189       APInt KnownZeroMask(~Known.Zero);
1190       if (KnownZeroMask.isPowerOf2()) {
1191         Value *In = ICI->getOperand(0);
1192 
1193         // If the icmp tests for a known zero bit we can constant fold it.
1194         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1195           Value *V = Pred == ICmpInst::ICMP_NE ?
1196                        ConstantInt::getAllOnesValue(CI.getType()) :
1197                        ConstantInt::getNullValue(CI.getType());
1198           return replaceInstUsesWith(CI, V);
1199         }
1200 
1201         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1202           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1203           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1204           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1205           // Perform a right shift to place the desired bit in the LSB.
1206           if (ShiftAmt)
1207             In = Builder.CreateLShr(In,
1208                                     ConstantInt::get(In->getType(), ShiftAmt));
1209 
1210           // At this point "In" is either 1 or 0. Subtract 1 to turn
1211           // {1, 0} -> {0, -1}.
1212           In = Builder.CreateAdd(In,
1213                                  ConstantInt::getAllOnesValue(In->getType()),
1214                                  "sext");
1215         } else {
1216           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1217           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1218           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1219           // Perform a left shift to place the desired bit in the MSB.
1220           if (ShiftAmt)
1221             In = Builder.CreateShl(In,
1222                                    ConstantInt::get(In->getType(), ShiftAmt));
1223 
1224           // Distribute the bit over the whole bit width.
1225           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1226                                   KnownZeroMask.getBitWidth() - 1), "sext");
1227         }
1228 
1229         if (CI.getType() == In->getType())
1230           return replaceInstUsesWith(CI, In);
1231         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1232       }
1233     }
1234   }
1235 
1236   return nullptr;
1237 }
1238 
1239 /// Return true if we can take the specified value and return it as type Ty
1240 /// without inserting any new casts and without changing the value of the common
1241 /// low bits.  This is used by code that tries to promote integer operations to
1242 /// a wider types will allow us to eliminate the extension.
1243 ///
1244 /// This function works on both vectors and scalars.
1245 ///
1246 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1247   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1248          "Can't sign extend type to a smaller type");
1249   // If this is a constant, it can be trivially promoted.
1250   if (isa<Constant>(V))
1251     return true;
1252 
1253   Instruction *I = dyn_cast<Instruction>(V);
1254   if (!I) return false;
1255 
1256   // If this is a truncate from the dest type, we can trivially eliminate it.
1257   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1258     return true;
1259 
1260   // We can't extend or shrink something that has multiple uses: doing so would
1261   // require duplicating the instruction in general, which isn't profitable.
1262   if (!I->hasOneUse()) return false;
1263 
1264   switch (I->getOpcode()) {
1265   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1266   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1267   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1268     return true;
1269   case Instruction::And:
1270   case Instruction::Or:
1271   case Instruction::Xor:
1272   case Instruction::Add:
1273   case Instruction::Sub:
1274   case Instruction::Mul:
1275     // These operators can all arbitrarily be extended if their inputs can.
1276     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1277            canEvaluateSExtd(I->getOperand(1), Ty);
1278 
1279   //case Instruction::Shl:   TODO
1280   //case Instruction::LShr:  TODO
1281 
1282   case Instruction::Select:
1283     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1284            canEvaluateSExtd(I->getOperand(2), Ty);
1285 
1286   case Instruction::PHI: {
1287     // We can change a phi if we can change all operands.  Note that we never
1288     // get into trouble with cyclic PHIs here because we only consider
1289     // instructions with a single use.
1290     PHINode *PN = cast<PHINode>(I);
1291     for (Value *IncValue : PN->incoming_values())
1292       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1293     return true;
1294   }
1295   default:
1296     // TODO: Can handle more cases here.
1297     break;
1298   }
1299 
1300   return false;
1301 }
1302 
1303 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1304   // If this sign extend is only used by a truncate, let the truncate be
1305   // eliminated before we try to optimize this sext.
1306   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1307     return nullptr;
1308 
1309   if (Instruction *I = commonCastTransforms(CI))
1310     return I;
1311 
1312   Value *Src = CI.getOperand(0);
1313   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1314 
1315   // If we know that the value being extended is positive, we can use a zext
1316   // instead.
1317   KnownBits Known = computeKnownBits(Src, 0, &CI);
1318   if (Known.isNonNegative()) {
1319     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1320     return replaceInstUsesWith(CI, ZExt);
1321   }
1322 
1323   // Attempt to extend the entire input expression tree to the destination
1324   // type.   Only do this if the dest type is a simple type, don't convert the
1325   // expression tree to something weird like i93 unless the source is also
1326   // strange.
1327   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1328       canEvaluateSExtd(Src, DestTy)) {
1329     // Okay, we can transform this!  Insert the new expression now.
1330     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1331           " to avoid sign extend: " << CI << '\n');
1332     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1333     assert(Res->getType() == DestTy);
1334 
1335     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1336     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1337 
1338     // If the high bits are already filled with sign bit, just replace this
1339     // cast with the result.
1340     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1341       return replaceInstUsesWith(CI, Res);
1342 
1343     // We need to emit a shl + ashr to do the sign extend.
1344     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1345     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1346                                       ShAmt);
1347   }
1348 
1349   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1350   // into shifts.
1351   Value *X;
1352   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1353     // sext(trunc(X)) --> ashr(shl(X, C), C)
1354     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1355     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1356     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1357     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1358   }
1359 
1360   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1361     return transformSExtICmp(ICI, CI);
1362 
1363   // If the input is a shl/ashr pair of a same constant, then this is a sign
1364   // extension from a smaller value.  If we could trust arbitrary bitwidth
1365   // integers, we could turn this into a truncate to the smaller bit and then
1366   // use a sext for the whole extension.  Since we don't, look deeper and check
1367   // for a truncate.  If the source and dest are the same type, eliminate the
1368   // trunc and extend and just do shifts.  For example, turn:
1369   //   %a = trunc i32 %i to i8
1370   //   %b = shl i8 %a, 6
1371   //   %c = ashr i8 %b, 6
1372   //   %d = sext i8 %c to i32
1373   // into:
1374   //   %a = shl i32 %i, 30
1375   //   %d = ashr i32 %a, 30
1376   Value *A = nullptr;
1377   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1378   ConstantInt *BA = nullptr, *CA = nullptr;
1379   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1380                         m_ConstantInt(CA))) &&
1381       BA == CA && A->getType() == CI.getType()) {
1382     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1383     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1384     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1385     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1386     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1387     return BinaryOperator::CreateAShr(A, ShAmtV);
1388   }
1389 
1390   return nullptr;
1391 }
1392 
1393 
1394 /// Return a Constant* for the specified floating-point constant if it fits
1395 /// in the specified FP type without changing its value.
1396 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1397   bool losesInfo;
1398   APFloat F = CFP->getValueAPF();
1399   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1400   if (!losesInfo)
1401     return ConstantFP::get(CFP->getContext(), F);
1402   return nullptr;
1403 }
1404 
1405 /// Look through floating-point extensions until we get the source value.
1406 static Value *lookThroughFPExtensions(Value *V) {
1407   while (auto *FPExt = dyn_cast<FPExtInst>(V))
1408     V = FPExt->getOperand(0);
1409 
1410   // If this value is a constant, return the constant in the smallest FP type
1411   // that can accurately represent it.  This allows us to turn
1412   // (float)((double)X+2.0) into x+2.0f.
1413   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
1414     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1415       return V;  // No constant folding of this.
1416     // See if the value can be truncated to half and then reextended.
1417     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
1418       return V;
1419     // See if the value can be truncated to float and then reextended.
1420     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
1421       return V;
1422     if (CFP->getType()->isDoubleTy())
1423       return V;  // Won't shrink.
1424     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
1425       return V;
1426     // Don't try to shrink to various long double types.
1427   }
1428 
1429   return V;
1430 }
1431 
1432 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1433   if (Instruction *I = commonCastTransforms(CI))
1434     return I;
1435   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1436   // simplify this expression to avoid one or more of the trunc/extend
1437   // operations if we can do so without changing the numerical results.
1438   //
1439   // The exact manner in which the widths of the operands interact to limit
1440   // what we can and cannot do safely varies from operation to operation, and
1441   // is explained below in the various case statements.
1442   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1443   if (OpI && OpI->hasOneUse()) {
1444     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1445     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1446     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1447     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1448     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1449     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1450     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1451     switch (OpI->getOpcode()) {
1452       default: break;
1453       case Instruction::FAdd:
1454       case Instruction::FSub:
1455         // For addition and subtraction, the infinitely precise result can
1456         // essentially be arbitrarily wide; proving that double rounding
1457         // will not occur because the result of OpI is exact (as we will for
1458         // FMul, for example) is hopeless.  However, we *can* nonetheless
1459         // frequently know that double rounding cannot occur (or that it is
1460         // innocuous) by taking advantage of the specific structure of
1461         // infinitely-precise results that admit double rounding.
1462         //
1463         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1464         // to represent both sources, we can guarantee that the double
1465         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1466         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1467         // for proof of this fact).
1468         //
1469         // Note: Figueroa does not consider the case where DstFormat !=
1470         // SrcFormat.  It's possible (likely even!) that this analysis
1471         // could be tightened for those cases, but they are rare (the main
1472         // case of interest here is (float)((double)float + float)).
1473         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1474           if (LHSOrig->getType() != CI.getType())
1475             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1476           if (RHSOrig->getType() != CI.getType())
1477             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1478           Instruction *RI =
1479             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1480           RI->copyFastMathFlags(OpI);
1481           return RI;
1482         }
1483         break;
1484       case Instruction::FMul:
1485         // For multiplication, the infinitely precise result has at most
1486         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1487         // that such a value can be exactly represented, then no double
1488         // rounding can possibly occur; we can safely perform the operation
1489         // in the destination format if it can represent both sources.
1490         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1491           if (LHSOrig->getType() != CI.getType())
1492             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1493           if (RHSOrig->getType() != CI.getType())
1494             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1495           Instruction *RI =
1496             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1497           RI->copyFastMathFlags(OpI);
1498           return RI;
1499         }
1500         break;
1501       case Instruction::FDiv:
1502         // For division, we use again use the bound from Figueroa's
1503         // dissertation.  I am entirely certain that this bound can be
1504         // tightened in the unbalanced operand case by an analysis based on
1505         // the diophantine rational approximation bound, but the well-known
1506         // condition used here is a good conservative first pass.
1507         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1508         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1509           if (LHSOrig->getType() != CI.getType())
1510             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1511           if (RHSOrig->getType() != CI.getType())
1512             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1513           Instruction *RI =
1514             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1515           RI->copyFastMathFlags(OpI);
1516           return RI;
1517         }
1518         break;
1519       case Instruction::FRem:
1520         // Remainder is straightforward.  Remainder is always exact, so the
1521         // type of OpI doesn't enter into things at all.  We simply evaluate
1522         // in whichever source type is larger, then convert to the
1523         // destination type.
1524         if (SrcWidth == OpWidth)
1525           break;
1526         if (LHSWidth < SrcWidth)
1527           LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
1528         else if (RHSWidth <= SrcWidth)
1529           RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
1530         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1531           Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
1532           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1533             RI->copyFastMathFlags(OpI);
1534           return CastInst::CreateFPCast(ExactResult, CI.getType());
1535         }
1536     }
1537 
1538     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1539     if (BinaryOperator::isFNeg(OpI)) {
1540       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
1541                                                 CI.getType());
1542       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1543       RI->copyFastMathFlags(OpI);
1544       return RI;
1545     }
1546   }
1547 
1548   // (fptrunc (select cond, R1, Cst)) -->
1549   // (select cond, (fptrunc R1), (fptrunc Cst))
1550   //
1551   //  - but only if this isn't part of a min/max operation, else we'll
1552   // ruin min/max canonical form which is to have the select and
1553   // compare's operands be of the same type with no casts to look through.
1554   Value *LHS, *RHS;
1555   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1556   if (SI &&
1557       (isa<ConstantFP>(SI->getOperand(1)) ||
1558        isa<ConstantFP>(SI->getOperand(2))) &&
1559       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1560     Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
1561     Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
1562     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1563   }
1564 
1565   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1566   if (II) {
1567     switch (II->getIntrinsicID()) {
1568     default: break;
1569     case Intrinsic::fabs:
1570     case Intrinsic::ceil:
1571     case Intrinsic::floor:
1572     case Intrinsic::rint:
1573     case Intrinsic::round:
1574     case Intrinsic::nearbyint:
1575     case Intrinsic::trunc: {
1576       Value *Src = II->getArgOperand(0);
1577       if (!Src->hasOneUse())
1578         break;
1579 
1580       // Except for fabs, this transformation requires the input of the unary FP
1581       // operation to be itself an fpext from the type to which we're
1582       // truncating.
1583       if (II->getIntrinsicID() != Intrinsic::fabs) {
1584         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1585         if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
1586           break;
1587       }
1588 
1589       // Do unary FP operation on smaller type.
1590       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1591       Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
1592       Type *IntrinsicType[] = { CI.getType() };
1593       Function *Overload = Intrinsic::getDeclaration(
1594         CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1595 
1596       SmallVector<OperandBundleDef, 1> OpBundles;
1597       II->getOperandBundlesAsDefs(OpBundles);
1598 
1599       Value *Args[] = { InnerTrunc };
1600       CallInst *NewCI =  CallInst::Create(Overload, Args,
1601                                           OpBundles, II->getName());
1602       NewCI->copyFastMathFlags(II);
1603       return NewCI;
1604     }
1605     }
1606   }
1607 
1608   if (Instruction *I = shrinkInsertElt(CI, Builder))
1609     return I;
1610 
1611   return nullptr;
1612 }
1613 
1614 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1615   return commonCastTransforms(CI);
1616 }
1617 
1618 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1619 // This is safe if the intermediate type has enough bits in its mantissa to
1620 // accurately represent all values of X.  For example, this won't work with
1621 // i64 -> float -> i64.
1622 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1623   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1624     return nullptr;
1625   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1626 
1627   Value *SrcI = OpI->getOperand(0);
1628   Type *FITy = FI.getType();
1629   Type *OpITy = OpI->getType();
1630   Type *SrcTy = SrcI->getType();
1631   bool IsInputSigned = isa<SIToFPInst>(OpI);
1632   bool IsOutputSigned = isa<FPToSIInst>(FI);
1633 
1634   // We can safely assume the conversion won't overflow the output range,
1635   // because (for example) (uint8_t)18293.f is undefined behavior.
1636 
1637   // Since we can assume the conversion won't overflow, our decision as to
1638   // whether the input will fit in the float should depend on the minimum
1639   // of the input range and output range.
1640 
1641   // This means this is also safe for a signed input and unsigned output, since
1642   // a negative input would lead to undefined behavior.
1643   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1644   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1645   int ActualSize = std::min(InputSize, OutputSize);
1646 
1647   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1648     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1649       if (IsInputSigned && IsOutputSigned)
1650         return new SExtInst(SrcI, FITy);
1651       return new ZExtInst(SrcI, FITy);
1652     }
1653     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1654       return new TruncInst(SrcI, FITy);
1655     if (SrcTy == FITy)
1656       return replaceInstUsesWith(FI, SrcI);
1657     return new BitCastInst(SrcI, FITy);
1658   }
1659   return nullptr;
1660 }
1661 
1662 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1663   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1664   if (!OpI)
1665     return commonCastTransforms(FI);
1666 
1667   if (Instruction *I = FoldItoFPtoI(FI))
1668     return I;
1669 
1670   return commonCastTransforms(FI);
1671 }
1672 
1673 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1674   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1675   if (!OpI)
1676     return commonCastTransforms(FI);
1677 
1678   if (Instruction *I = FoldItoFPtoI(FI))
1679     return I;
1680 
1681   return commonCastTransforms(FI);
1682 }
1683 
1684 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1685   return commonCastTransforms(CI);
1686 }
1687 
1688 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1689   return commonCastTransforms(CI);
1690 }
1691 
1692 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1693   // If the source integer type is not the intptr_t type for this target, do a
1694   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1695   // cast to be exposed to other transforms.
1696   unsigned AS = CI.getAddressSpace();
1697   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1698       DL.getPointerSizeInBits(AS)) {
1699     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1700     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1701       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1702 
1703     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1704     return new IntToPtrInst(P, CI.getType());
1705   }
1706 
1707   if (Instruction *I = commonCastTransforms(CI))
1708     return I;
1709 
1710   return nullptr;
1711 }
1712 
1713 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1714 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1715   Value *Src = CI.getOperand(0);
1716 
1717   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1718     // If casting the result of a getelementptr instruction with no offset, turn
1719     // this into a cast of the original pointer!
1720     if (GEP->hasAllZeroIndices() &&
1721         // If CI is an addrspacecast and GEP changes the poiner type, merging
1722         // GEP into CI would undo canonicalizing addrspacecast with different
1723         // pointer types, causing infinite loops.
1724         (!isa<AddrSpaceCastInst>(CI) ||
1725          GEP->getType() == GEP->getPointerOperandType())) {
1726       // Changing the cast operand is usually not a good idea but it is safe
1727       // here because the pointer operand is being replaced with another
1728       // pointer operand so the opcode doesn't need to change.
1729       Worklist.Add(GEP);
1730       CI.setOperand(0, GEP->getOperand(0));
1731       return &CI;
1732     }
1733   }
1734 
1735   return commonCastTransforms(CI);
1736 }
1737 
1738 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1739   // If the destination integer type is not the intptr_t type for this target,
1740   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1741   // to be exposed to other transforms.
1742 
1743   Type *Ty = CI.getType();
1744   unsigned AS = CI.getPointerAddressSpace();
1745 
1746   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1747     return commonPointerCastTransforms(CI);
1748 
1749   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1750   if (Ty->isVectorTy()) // Handle vectors of pointers.
1751     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1752 
1753   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1754   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1755 }
1756 
1757 /// This input value (which is known to have vector type) is being zero extended
1758 /// or truncated to the specified vector type.
1759 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1760 ///
1761 /// The source and destination vector types may have different element types.
1762 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1763                                          InstCombiner &IC) {
1764   // We can only do this optimization if the output is a multiple of the input
1765   // element size, or the input is a multiple of the output element size.
1766   // Convert the input type to have the same element type as the output.
1767   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1768 
1769   if (SrcTy->getElementType() != DestTy->getElementType()) {
1770     // The input types don't need to be identical, but for now they must be the
1771     // same size.  There is no specific reason we couldn't handle things like
1772     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1773     // there yet.
1774     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1775         DestTy->getElementType()->getPrimitiveSizeInBits())
1776       return nullptr;
1777 
1778     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1779     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1780   }
1781 
1782   // Now that the element types match, get the shuffle mask and RHS of the
1783   // shuffle to use, which depends on whether we're increasing or decreasing the
1784   // size of the input.
1785   SmallVector<uint32_t, 16> ShuffleMask;
1786   Value *V2;
1787 
1788   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1789     // If we're shrinking the number of elements, just shuffle in the low
1790     // elements from the input and use undef as the second shuffle input.
1791     V2 = UndefValue::get(SrcTy);
1792     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1793       ShuffleMask.push_back(i);
1794 
1795   } else {
1796     // If we're increasing the number of elements, shuffle in all of the
1797     // elements from InVal and fill the rest of the result elements with zeros
1798     // from a constant zero.
1799     V2 = Constant::getNullValue(SrcTy);
1800     unsigned SrcElts = SrcTy->getNumElements();
1801     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1802       ShuffleMask.push_back(i);
1803 
1804     // The excess elements reference the first element of the zero input.
1805     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1806       ShuffleMask.push_back(SrcElts);
1807   }
1808 
1809   return new ShuffleVectorInst(InVal, V2,
1810                                ConstantDataVector::get(V2->getContext(),
1811                                                        ShuffleMask));
1812 }
1813 
1814 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1815   return Value % Ty->getPrimitiveSizeInBits() == 0;
1816 }
1817 
1818 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1819   return Value / Ty->getPrimitiveSizeInBits();
1820 }
1821 
1822 /// V is a value which is inserted into a vector of VecEltTy.
1823 /// Look through the value to see if we can decompose it into
1824 /// insertions into the vector.  See the example in the comment for
1825 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1826 /// The type of V is always a non-zero multiple of VecEltTy's size.
1827 /// Shift is the number of bits between the lsb of V and the lsb of
1828 /// the vector.
1829 ///
1830 /// This returns false if the pattern can't be matched or true if it can,
1831 /// filling in Elements with the elements found here.
1832 static bool collectInsertionElements(Value *V, unsigned Shift,
1833                                      SmallVectorImpl<Value *> &Elements,
1834                                      Type *VecEltTy, bool isBigEndian) {
1835   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1836          "Shift should be a multiple of the element type size");
1837 
1838   // Undef values never contribute useful bits to the result.
1839   if (isa<UndefValue>(V)) return true;
1840 
1841   // If we got down to a value of the right type, we win, try inserting into the
1842   // right element.
1843   if (V->getType() == VecEltTy) {
1844     // Inserting null doesn't actually insert any elements.
1845     if (Constant *C = dyn_cast<Constant>(V))
1846       if (C->isNullValue())
1847         return true;
1848 
1849     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1850     if (isBigEndian)
1851       ElementIndex = Elements.size() - ElementIndex - 1;
1852 
1853     // Fail if multiple elements are inserted into this slot.
1854     if (Elements[ElementIndex])
1855       return false;
1856 
1857     Elements[ElementIndex] = V;
1858     return true;
1859   }
1860 
1861   if (Constant *C = dyn_cast<Constant>(V)) {
1862     // Figure out the # elements this provides, and bitcast it or slice it up
1863     // as required.
1864     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1865                                         VecEltTy);
1866     // If the constant is the size of a vector element, we just need to bitcast
1867     // it to the right type so it gets properly inserted.
1868     if (NumElts == 1)
1869       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1870                                       Shift, Elements, VecEltTy, isBigEndian);
1871 
1872     // Okay, this is a constant that covers multiple elements.  Slice it up into
1873     // pieces and insert each element-sized piece into the vector.
1874     if (!isa<IntegerType>(C->getType()))
1875       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1876                                        C->getType()->getPrimitiveSizeInBits()));
1877     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1878     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1879 
1880     for (unsigned i = 0; i != NumElts; ++i) {
1881       unsigned ShiftI = Shift+i*ElementSize;
1882       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1883                                                                   ShiftI));
1884       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1885       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1886                                     isBigEndian))
1887         return false;
1888     }
1889     return true;
1890   }
1891 
1892   if (!V->hasOneUse()) return false;
1893 
1894   Instruction *I = dyn_cast<Instruction>(V);
1895   if (!I) return false;
1896   switch (I->getOpcode()) {
1897   default: return false; // Unhandled case.
1898   case Instruction::BitCast:
1899     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1900                                     isBigEndian);
1901   case Instruction::ZExt:
1902     if (!isMultipleOfTypeSize(
1903                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1904                               VecEltTy))
1905       return false;
1906     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1907                                     isBigEndian);
1908   case Instruction::Or:
1909     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1910                                     isBigEndian) &&
1911            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1912                                     isBigEndian);
1913   case Instruction::Shl: {
1914     // Must be shifting by a constant that is a multiple of the element size.
1915     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1916     if (!CI) return false;
1917     Shift += CI->getZExtValue();
1918     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1919     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1920                                     isBigEndian);
1921   }
1922 
1923   }
1924 }
1925 
1926 
1927 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1928 /// assemble the elements of the vector manually.
1929 /// Try to rip the code out and replace it with insertelements.  This is to
1930 /// optimize code like this:
1931 ///
1932 ///    %tmp37 = bitcast float %inc to i32
1933 ///    %tmp38 = zext i32 %tmp37 to i64
1934 ///    %tmp31 = bitcast float %inc5 to i32
1935 ///    %tmp32 = zext i32 %tmp31 to i64
1936 ///    %tmp33 = shl i64 %tmp32, 32
1937 ///    %ins35 = or i64 %tmp33, %tmp38
1938 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1939 ///
1940 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1941 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1942                                                 InstCombiner &IC) {
1943   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1944   Value *IntInput = CI.getOperand(0);
1945 
1946   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1947   if (!collectInsertionElements(IntInput, 0, Elements,
1948                                 DestVecTy->getElementType(),
1949                                 IC.getDataLayout().isBigEndian()))
1950     return nullptr;
1951 
1952   // If we succeeded, we know that all of the element are specified by Elements
1953   // or are zero if Elements has a null entry.  Recast this as a set of
1954   // insertions.
1955   Value *Result = Constant::getNullValue(CI.getType());
1956   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1957     if (!Elements[i]) continue;  // Unset element.
1958 
1959     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
1960                                             IC.Builder.getInt32(i));
1961   }
1962 
1963   return Result;
1964 }
1965 
1966 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1967 /// vector followed by extract element. The backend tends to handle bitcasts of
1968 /// vectors better than bitcasts of scalars because vector registers are
1969 /// usually not type-specific like scalar integer or scalar floating-point.
1970 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1971                                               InstCombiner &IC) {
1972   // TODO: Create and use a pattern matcher for ExtractElementInst.
1973   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1974   if (!ExtElt || !ExtElt->hasOneUse())
1975     return nullptr;
1976 
1977   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1978   // type to extract from.
1979   Type *DestType = BitCast.getType();
1980   if (!VectorType::isValidElementType(DestType))
1981     return nullptr;
1982 
1983   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1984   auto *NewVecType = VectorType::get(DestType, NumElts);
1985   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
1986                                          NewVecType, "bc");
1987   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1988 }
1989 
1990 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
1991 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
1992                                             InstCombiner::BuilderTy &Builder) {
1993   Type *DestTy = BitCast.getType();
1994   BinaryOperator *BO;
1995   if (!DestTy->isIntOrIntVectorTy() ||
1996       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
1997       !BO->isBitwiseLogicOp())
1998     return nullptr;
1999 
2000   // FIXME: This transform is restricted to vector types to avoid backend
2001   // problems caused by creating potentially illegal operations. If a fix-up is
2002   // added to handle that situation, we can remove this check.
2003   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2004     return nullptr;
2005 
2006   Value *X;
2007   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2008       X->getType() == DestTy && !isa<Constant>(X)) {
2009     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2010     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2011     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2012   }
2013 
2014   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2015       X->getType() == DestTy && !isa<Constant>(X)) {
2016     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2017     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2018     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2019   }
2020 
2021   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2022   // constant. This eases recognition of special constants for later ops.
2023   // Example:
2024   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2025   Constant *C;
2026   if (match(BO->getOperand(1), m_Constant(C))) {
2027     // bitcast (logic X, C) --> logic (bitcast X, C')
2028     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2029     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2030     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2031   }
2032 
2033   return nullptr;
2034 }
2035 
2036 /// Change the type of a select if we can eliminate a bitcast.
2037 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2038                                       InstCombiner::BuilderTy &Builder) {
2039   Value *Cond, *TVal, *FVal;
2040   if (!match(BitCast.getOperand(0),
2041              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2042     return nullptr;
2043 
2044   // A vector select must maintain the same number of elements in its operands.
2045   Type *CondTy = Cond->getType();
2046   Type *DestTy = BitCast.getType();
2047   if (CondTy->isVectorTy()) {
2048     if (!DestTy->isVectorTy())
2049       return nullptr;
2050     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2051       return nullptr;
2052   }
2053 
2054   // FIXME: This transform is restricted from changing the select between
2055   // scalars and vectors to avoid backend problems caused by creating
2056   // potentially illegal operations. If a fix-up is added to handle that
2057   // situation, we can remove this check.
2058   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2059     return nullptr;
2060 
2061   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2062   Value *X;
2063   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2064       !isa<Constant>(X)) {
2065     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2066     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2067     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2068   }
2069 
2070   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2071       !isa<Constant>(X)) {
2072     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2073     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2074     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2075   }
2076 
2077   return nullptr;
2078 }
2079 
2080 /// Check if all users of CI are StoreInsts.
2081 static bool hasStoreUsersOnly(CastInst &CI) {
2082   for (User *U : CI.users()) {
2083     if (!isa<StoreInst>(U))
2084       return false;
2085   }
2086   return true;
2087 }
2088 
2089 /// This function handles following case
2090 ///
2091 ///     A  ->  B    cast
2092 ///     PHI
2093 ///     B  ->  A    cast
2094 ///
2095 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2096 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2097 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2098   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2099   if (hasStoreUsersOnly(CI))
2100     return nullptr;
2101 
2102   Value *Src = CI.getOperand(0);
2103   Type *SrcTy = Src->getType();         // Type B
2104   Type *DestTy = CI.getType();          // Type A
2105 
2106   SmallVector<PHINode *, 4> PhiWorklist;
2107   SmallSetVector<PHINode *, 4> OldPhiNodes;
2108 
2109   // Find all of the A->B casts and PHI nodes.
2110   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2111   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2112   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2113   PhiWorklist.push_back(PN);
2114   OldPhiNodes.insert(PN);
2115   while (!PhiWorklist.empty()) {
2116     auto *OldPN = PhiWorklist.pop_back_val();
2117     for (Value *IncValue : OldPN->incoming_values()) {
2118       if (isa<Constant>(IncValue))
2119         continue;
2120 
2121       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2122         // If there is a sequence of one or more load instructions, each loaded
2123         // value is used as address of later load instruction, bitcast is
2124         // necessary to change the value type, don't optimize it. For
2125         // simplicity we give up if the load address comes from another load.
2126         Value *Addr = LI->getOperand(0);
2127         if (Addr == &CI || isa<LoadInst>(Addr))
2128           return nullptr;
2129         if (LI->hasOneUse() && LI->isSimple())
2130           continue;
2131         // If a LoadInst has more than one use, changing the type of loaded
2132         // value may create another bitcast.
2133         return nullptr;
2134       }
2135 
2136       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2137         if (OldPhiNodes.insert(PNode))
2138           PhiWorklist.push_back(PNode);
2139         continue;
2140       }
2141 
2142       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2143       // We can't handle other instructions.
2144       if (!BCI)
2145         return nullptr;
2146 
2147       // Verify it's a A->B cast.
2148       Type *TyA = BCI->getOperand(0)->getType();
2149       Type *TyB = BCI->getType();
2150       if (TyA != DestTy || TyB != SrcTy)
2151         return nullptr;
2152     }
2153   }
2154 
2155   // For each old PHI node, create a corresponding new PHI node with a type A.
2156   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2157   for (auto *OldPN : OldPhiNodes) {
2158     Builder.SetInsertPoint(OldPN);
2159     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2160     NewPNodes[OldPN] = NewPN;
2161   }
2162 
2163   // Fill in the operands of new PHI nodes.
2164   for (auto *OldPN : OldPhiNodes) {
2165     PHINode *NewPN = NewPNodes[OldPN];
2166     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2167       Value *V = OldPN->getOperand(j);
2168       Value *NewV = nullptr;
2169       if (auto *C = dyn_cast<Constant>(V)) {
2170         NewV = ConstantExpr::getBitCast(C, DestTy);
2171       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2172         Builder.SetInsertPoint(LI->getNextNode());
2173         NewV = Builder.CreateBitCast(LI, DestTy);
2174         Worklist.Add(LI);
2175       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2176         NewV = BCI->getOperand(0);
2177       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2178         NewV = NewPNodes[PrevPN];
2179       }
2180       assert(NewV);
2181       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2182     }
2183   }
2184 
2185   // If there is a store with type B, change it to type A.
2186   for (User *U : PN->users()) {
2187     auto *SI = dyn_cast<StoreInst>(U);
2188     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2189       Builder.SetInsertPoint(SI);
2190       auto *NewBC =
2191           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2192       SI->setOperand(0, NewBC);
2193       Worklist.Add(SI);
2194       assert(hasStoreUsersOnly(*NewBC));
2195     }
2196   }
2197 
2198   return replaceInstUsesWith(CI, NewPNodes[PN]);
2199 }
2200 
2201 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2202   // If the operands are integer typed then apply the integer transforms,
2203   // otherwise just apply the common ones.
2204   Value *Src = CI.getOperand(0);
2205   Type *SrcTy = Src->getType();
2206   Type *DestTy = CI.getType();
2207 
2208   // Get rid of casts from one type to the same type. These are useless and can
2209   // be replaced by the operand.
2210   if (DestTy == Src->getType())
2211     return replaceInstUsesWith(CI, Src);
2212 
2213   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2214     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2215     Type *DstElTy = DstPTy->getElementType();
2216     Type *SrcElTy = SrcPTy->getElementType();
2217 
2218     // If we are casting a alloca to a pointer to a type of the same
2219     // size, rewrite the allocation instruction to allocate the "right" type.
2220     // There is no need to modify malloc calls because it is their bitcast that
2221     // needs to be cleaned up.
2222     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2223       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2224         return V;
2225 
2226     // When the type pointed to is not sized the cast cannot be
2227     // turned into a gep.
2228     Type *PointeeType =
2229         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2230     if (!PointeeType->isSized())
2231       return nullptr;
2232 
2233     // If the source and destination are pointers, and this cast is equivalent
2234     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2235     // This can enhance SROA and other transforms that want type-safe pointers.
2236     unsigned NumZeros = 0;
2237     while (SrcElTy != DstElTy &&
2238            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2239            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2240       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2241       ++NumZeros;
2242     }
2243 
2244     // If we found a path from the src to dest, create the getelementptr now.
2245     if (SrcElTy == DstElTy) {
2246       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2247       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2248     }
2249   }
2250 
2251   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2252     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2253       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2254       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2255                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2256       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2257     }
2258 
2259     if (isa<IntegerType>(SrcTy)) {
2260       // If this is a cast from an integer to vector, check to see if the input
2261       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2262       // the casts with a shuffle and (potentially) a bitcast.
2263       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2264         CastInst *SrcCast = cast<CastInst>(Src);
2265         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2266           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2267             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2268                                                cast<VectorType>(DestTy), *this))
2269               return I;
2270       }
2271 
2272       // If the input is an 'or' instruction, we may be doing shifts and ors to
2273       // assemble the elements of the vector manually.  Try to rip the code out
2274       // and replace it with insertelements.
2275       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2276         return replaceInstUsesWith(CI, V);
2277     }
2278   }
2279 
2280   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2281     if (SrcVTy->getNumElements() == 1) {
2282       // If our destination is not a vector, then make this a straight
2283       // scalar-scalar cast.
2284       if (!DestTy->isVectorTy()) {
2285         Value *Elem =
2286           Builder.CreateExtractElement(Src,
2287                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2288         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2289       }
2290 
2291       // Otherwise, see if our source is an insert. If so, then use the scalar
2292       // component directly.
2293       if (InsertElementInst *IEI =
2294             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2295         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2296                                 DestTy);
2297     }
2298   }
2299 
2300   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2301     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2302     // a bitcast to a vector with the same # elts.
2303     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2304         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2305         SVI->getType()->getNumElements() ==
2306         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2307       BitCastInst *Tmp;
2308       // If either of the operands is a cast from CI.getType(), then
2309       // evaluating the shuffle in the casted destination's type will allow
2310       // us to eliminate at least one cast.
2311       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2312            Tmp->getOperand(0)->getType() == DestTy) ||
2313           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2314            Tmp->getOperand(0)->getType() == DestTy)) {
2315         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2316         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2317         // Return a new shuffle vector.  Use the same element ID's, as we
2318         // know the vector types match #elts.
2319         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2320       }
2321     }
2322   }
2323 
2324   // Handle the A->B->A cast, and there is an intervening PHI node.
2325   if (PHINode *PN = dyn_cast<PHINode>(Src))
2326     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2327       return I;
2328 
2329   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2330     return I;
2331 
2332   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2333     return I;
2334 
2335   if (Instruction *I = foldBitCastSelect(CI, Builder))
2336     return I;
2337 
2338   if (SrcTy->isPointerTy())
2339     return commonPointerCastTransforms(CI);
2340   return commonCastTransforms(CI);
2341 }
2342 
2343 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2344   // If the destination pointer element type is not the same as the source's
2345   // first do a bitcast to the destination type, and then the addrspacecast.
2346   // This allows the cast to be exposed to other transforms.
2347   Value *Src = CI.getOperand(0);
2348   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2349   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2350 
2351   Type *DestElemTy = DestTy->getElementType();
2352   if (SrcTy->getElementType() != DestElemTy) {
2353     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2354     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2355       // Handle vectors of pointers.
2356       MidTy = VectorType::get(MidTy, VT->getNumElements());
2357     }
2358 
2359     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2360     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2361   }
2362 
2363   return commonPointerCastTransforms(CI);
2364 }
2365