xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision c50e55d0e63db1e740e95de1246272332d3bca5e)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 /// Analyze 'Val', seeing if it is a simple linear expression.
27 /// If so, decompose it, returning some value X, such that Val is
28 /// X*Scale+Offset.
29 ///
30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
31                                         uint64_t &Offset) {
32   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
33     Offset = CI->getZExtValue();
34     Scale  = 0;
35     return ConstantInt::get(Val->getType(), 0);
36   }
37 
38   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
39     // Cannot look past anything that might overflow.
40     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
41     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
42       Scale = 1;
43       Offset = 0;
44       return Val;
45     }
46 
47     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
48       if (I->getOpcode() == Instruction::Shl) {
49         // This is a value scaled by '1 << the shift amt'.
50         Scale = UINT64_C(1) << RHS->getZExtValue();
51         Offset = 0;
52         return I->getOperand(0);
53       }
54 
55       if (I->getOpcode() == Instruction::Mul) {
56         // This value is scaled by 'RHS'.
57         Scale = RHS->getZExtValue();
58         Offset = 0;
59         return I->getOperand(0);
60       }
61 
62       if (I->getOpcode() == Instruction::Add) {
63         // We have X+C.  Check to see if we really have (X*C2)+C1,
64         // where C1 is divisible by C2.
65         unsigned SubScale;
66         Value *SubVal =
67           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
68         Offset += RHS->getZExtValue();
69         Scale = SubScale;
70         return SubVal;
71       }
72     }
73   }
74 
75   // Otherwise, we can't look past this.
76   Scale = 1;
77   Offset = 0;
78   return Val;
79 }
80 
81 /// If we find a cast of an allocation instruction, try to eliminate the cast by
82 /// moving the type information into the alloc.
83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
84                                                    AllocaInst &AI) {
85   PointerType *PTy = cast<PointerType>(CI.getType());
86 
87   BuilderTy AllocaBuilder(Builder);
88   AllocaBuilder.SetInsertPoint(&AI);
89 
90   // Get the type really allocated and the type casted to.
91   Type *AllocElTy = AI.getAllocatedType();
92   Type *CastElTy = PTy->getElementType();
93   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
94 
95   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
96   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
97   if (CastElTyAlign < AllocElTyAlign) return nullptr;
98 
99   // If the allocation has multiple uses, only promote it if we are strictly
100   // increasing the alignment of the resultant allocation.  If we keep it the
101   // same, we open the door to infinite loops of various kinds.
102   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
103 
104   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
105   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
106   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
107 
108   // If the allocation has multiple uses, only promote it if we're not
109   // shrinking the amount of memory being allocated.
110   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
111   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
112   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
113 
114   // See if we can satisfy the modulus by pulling a scale out of the array
115   // size argument.
116   unsigned ArraySizeScale;
117   uint64_t ArrayOffset;
118   Value *NumElements = // See if the array size is a decomposable linear expr.
119     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
120 
121   // If we can now satisfy the modulus, by using a non-1 scale, we really can
122   // do the xform.
123   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
124       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
125 
126   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
127   Value *Amt = nullptr;
128   if (Scale == 1) {
129     Amt = NumElements;
130   } else {
131     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
132     // Insert before the alloca, not before the cast.
133     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
134   }
135 
136   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
137     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
138                                   Offset, true);
139     Amt = AllocaBuilder.CreateAdd(Amt, Off);
140   }
141 
142   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
143   New->setAlignment(AI.getAlignment());
144   New->takeName(&AI);
145   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
146 
147   // If the allocation has multiple real uses, insert a cast and change all
148   // things that used it to use the new cast.  This will also hack on CI, but it
149   // will die soon.
150   if (!AI.hasOneUse()) {
151     // New is the allocation instruction, pointer typed. AI is the original
152     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
153     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
154     replaceInstUsesWith(AI, NewCast);
155   }
156   return replaceInstUsesWith(CI, New);
157 }
158 
159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
160 /// true for, actually insert the code to evaluate the expression.
161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
162                                              bool isSigned) {
163   if (Constant *C = dyn_cast<Constant>(V)) {
164     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
165     // If we got a constantexpr back, try to simplify it with DL info.
166     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
167       C = FoldedC;
168     return C;
169   }
170 
171   // Otherwise, it must be an instruction.
172   Instruction *I = cast<Instruction>(V);
173   Instruction *Res = nullptr;
174   unsigned Opc = I->getOpcode();
175   switch (Opc) {
176   case Instruction::Add:
177   case Instruction::Sub:
178   case Instruction::Mul:
179   case Instruction::And:
180   case Instruction::Or:
181   case Instruction::Xor:
182   case Instruction::AShr:
183   case Instruction::LShr:
184   case Instruction::Shl:
185   case Instruction::UDiv:
186   case Instruction::URem: {
187     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190     break;
191   }
192   case Instruction::Trunc:
193   case Instruction::ZExt:
194   case Instruction::SExt:
195     // If the source type of the cast is the type we're trying for then we can
196     // just return the source.  There's no need to insert it because it is not
197     // new.
198     if (I->getOperand(0)->getType() == Ty)
199       return I->getOperand(0);
200 
201     // Otherwise, must be the same type of cast, so just reinsert a new one.
202     // This also handles the case of zext(trunc(x)) -> zext(x).
203     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204                                       Opc == Instruction::SExt);
205     break;
206   case Instruction::Select: {
207     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209     Res = SelectInst::Create(I->getOperand(0), True, False);
210     break;
211   }
212   case Instruction::PHI: {
213     PHINode *OPN = cast<PHINode>(I);
214     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216       Value *V =
217           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218       NPN->addIncoming(V, OPN->getIncomingBlock(i));
219     }
220     Res = NPN;
221     break;
222   }
223   default:
224     // TODO: Can handle more cases here.
225     llvm_unreachable("Unreachable!");
226   }
227 
228   Res->takeName(I);
229   return InsertNewInstWith(Res, *I);
230 }
231 
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233                                                         const CastInst *CI2) {
234   Type *SrcTy = CI1->getSrcTy();
235   Type *MidTy = CI1->getDestTy();
236   Type *DstTy = CI2->getDestTy();
237 
238   Instruction::CastOps firstOp = CI1->getOpcode();
239   Instruction::CastOps secondOp = CI2->getOpcode();
240   Type *SrcIntPtrTy =
241       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242   Type *MidIntPtrTy =
243       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244   Type *DstIntPtrTy =
245       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
248                                                 DstIntPtrTy);
249 
250   // We don't want to form an inttoptr or ptrtoint that converts to an integer
251   // type that differs from the pointer size.
252   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254     Res = 0;
255 
256   return Instruction::CastOps(Res);
257 }
258 
259 /// @brief Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261   Value *Src = CI.getOperand(0);
262 
263   // Try to eliminate a cast of a cast.
264   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
265     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266       // The first cast (CSrc) is eliminable so we need to fix up or replace
267       // the second cast (CI). CSrc will then have a good chance of being dead.
268       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
269     }
270   }
271 
272   // If we are casting a select, then fold the cast into the select.
273   if (auto *SI = dyn_cast<SelectInst>(Src))
274     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
275       return NV;
276 
277   // If we are casting a PHI, then fold the cast into the PHI.
278   if (auto *PN = dyn_cast<PHINode>(Src)) {
279     // Don't do this if it would create a PHI node with an illegal type from a
280     // legal type.
281     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
282         shouldChangeType(CI.getType(), Src->getType()))
283       if (Instruction *NV = foldOpIntoPhi(CI, PN))
284         return NV;
285   }
286 
287   return nullptr;
288 }
289 
290 /// Return true if we can evaluate the specified expression tree as type Ty
291 /// instead of its larger type, and arrive with the same value.
292 /// This is used by code that tries to eliminate truncates.
293 ///
294 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
295 /// can be computed by computing V in the smaller type.  If V is an instruction,
296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
297 /// makes sense if x and y can be efficiently truncated.
298 ///
299 /// This function works on both vectors and scalars.
300 ///
301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
302                                  Instruction *CxtI) {
303   // We can always evaluate constants in another type.
304   if (isa<Constant>(V))
305     return true;
306 
307   Instruction *I = dyn_cast<Instruction>(V);
308   if (!I) return false;
309 
310   Type *OrigTy = V->getType();
311 
312   // If this is an extension from the dest type, we can eliminate it, even if it
313   // has multiple uses.
314   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
315       I->getOperand(0)->getType() == Ty)
316     return true;
317 
318   // We can't extend or shrink something that has multiple uses: doing so would
319   // require duplicating the instruction in general, which isn't profitable.
320   if (!I->hasOneUse()) return false;
321 
322   unsigned Opc = I->getOpcode();
323   switch (Opc) {
324   case Instruction::Add:
325   case Instruction::Sub:
326   case Instruction::Mul:
327   case Instruction::And:
328   case Instruction::Or:
329   case Instruction::Xor:
330     // These operators can all arbitrarily be extended or truncated.
331     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
332            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
333 
334   case Instruction::UDiv:
335   case Instruction::URem: {
336     // UDiv and URem can be truncated if all the truncated bits are zero.
337     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
338     uint32_t BitWidth = Ty->getScalarSizeInBits();
339     if (BitWidth < OrigBitWidth) {
340       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
341       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
342           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
343         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345       }
346     }
347     break;
348   }
349   case Instruction::Shl:
350     // If we are truncating the result of this SHL, and if it's a shift of a
351     // constant amount, we can always perform a SHL in a smaller type.
352     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
353       uint32_t BitWidth = Ty->getScalarSizeInBits();
354       if (CI->getLimitedValue(BitWidth) < BitWidth)
355         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
356     }
357     break;
358   case Instruction::LShr:
359     // If this is a truncate of a logical shr, we can truncate it to a smaller
360     // lshr iff we know that the bits we would otherwise be shifting in are
361     // already zeros.
362     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
363       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
364       uint32_t BitWidth = Ty->getScalarSizeInBits();
365       if (IC.MaskedValueIsZero(I->getOperand(0),
366             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
367           CI->getLimitedValue(BitWidth) < BitWidth) {
368         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
369       }
370     }
371     break;
372   case Instruction::Trunc:
373     // trunc(trunc(x)) -> trunc(x)
374     return true;
375   case Instruction::ZExt:
376   case Instruction::SExt:
377     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
378     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
379     return true;
380   case Instruction::Select: {
381     SelectInst *SI = cast<SelectInst>(I);
382     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
383            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
384   }
385   case Instruction::PHI: {
386     // We can change a phi if we can change all operands.  Note that we never
387     // get into trouble with cyclic PHIs here because we only consider
388     // instructions with a single use.
389     PHINode *PN = cast<PHINode>(I);
390     for (Value *IncValue : PN->incoming_values())
391       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
392         return false;
393     return true;
394   }
395   default:
396     // TODO: Can handle more cases here.
397     break;
398   }
399 
400   return false;
401 }
402 
403 /// Given a vector that is bitcast to an integer, optionally logically
404 /// right-shifted, and truncated, convert it to an extractelement.
405 /// Example (big endian):
406 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
407 ///   --->
408 ///   extractelement <4 x i32> %X, 1
409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
410   Value *TruncOp = Trunc.getOperand(0);
411   Type *DestType = Trunc.getType();
412   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
413     return nullptr;
414 
415   Value *VecInput = nullptr;
416   ConstantInt *ShiftVal = nullptr;
417   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
418                                   m_LShr(m_BitCast(m_Value(VecInput)),
419                                          m_ConstantInt(ShiftVal)))) ||
420       !isa<VectorType>(VecInput->getType()))
421     return nullptr;
422 
423   VectorType *VecType = cast<VectorType>(VecInput->getType());
424   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
425   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
426   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
427 
428   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
429     return nullptr;
430 
431   // If the element type of the vector doesn't match the result type,
432   // bitcast it to a vector type that we can extract from.
433   unsigned NumVecElts = VecWidth / DestWidth;
434   if (VecType->getElementType() != DestType) {
435     VecType = VectorType::get(DestType, NumVecElts);
436     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
437   }
438 
439   unsigned Elt = ShiftAmount / DestWidth;
440   if (IC.getDataLayout().isBigEndian())
441     Elt = NumVecElts - 1 - Elt;
442 
443   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
444 }
445 
446 /// Rotate left/right may occur in a wider type than necessary because of type
447 /// promotion rules. Try to narrow all of the component instructions.
448 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
449   assert((isa<VectorType>(Trunc.getSrcTy()) ||
450           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
451          "Don't narrow to an illegal scalar type");
452 
453   // First, find an or'd pair of opposite shifts with the same shifted operand:
454   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
455   Value *Or0, *Or1;
456   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
457     return nullptr;
458 
459   Value *ShVal, *ShAmt0, *ShAmt1;
460   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
461       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
462     return nullptr;
463 
464   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
465   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
466   if (ShiftOpcode0 == ShiftOpcode1)
467     return nullptr;
468 
469   // The shift amounts must add up to the narrow bit width.
470   Value *ShAmt;
471   bool SubIsOnLHS;
472   Type *DestTy = Trunc.getType();
473   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
474   if (match(ShAmt0,
475             m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
476     ShAmt = ShAmt1;
477     SubIsOnLHS = true;
478   } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
479                                           m_Specific(ShAmt0))))) {
480     ShAmt = ShAmt0;
481     SubIsOnLHS = false;
482   } else {
483     return nullptr;
484   }
485 
486   // The shifted value must have high zeros in the wide type. Typically, this
487   // will be a zext, but it could also be the result of an 'and' or 'shift'.
488   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
489   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
490   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
491     return nullptr;
492 
493   // We have an unnecessarily wide rotate!
494   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
495   // Narrow it down to eliminate the zext/trunc:
496   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
497   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
498   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
499 
500   // Mask both shift amounts to ensure there's no UB from oversized shifts.
501   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
502   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
503   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
504 
505   // Truncate the original value and use narrow ops.
506   Value *X = Builder.CreateTrunc(ShVal, DestTy);
507   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
508   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
509   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
510   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
511   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
512 }
513 
514 /// Try to narrow the width of math or bitwise logic instructions by pulling a
515 /// truncate ahead of binary operators.
516 /// TODO: Transforms for truncated shifts should be moved into here.
517 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
518   Type *SrcTy = Trunc.getSrcTy();
519   Type *DestTy = Trunc.getType();
520   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
521     return nullptr;
522 
523   BinaryOperator *BinOp;
524   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
525     return nullptr;
526 
527   switch (BinOp->getOpcode()) {
528   case Instruction::And:
529   case Instruction::Or:
530   case Instruction::Xor:
531   case Instruction::Add:
532   case Instruction::Mul: {
533     Constant *C;
534     if (match(BinOp->getOperand(1), m_Constant(C))) {
535       // trunc (binop X, C) --> binop (trunc X, C')
536       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
537       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy);
538       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
539     }
540     break;
541   }
542   case Instruction::Sub: {
543     Constant *C;
544     if (match(BinOp->getOperand(0), m_Constant(C))) {
545       // trunc (binop C, X) --> binop (trunc C', X)
546       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
547       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy);
548       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
549     }
550     break;
551   }
552 
553   default: break;
554   }
555 
556   if (Instruction *NarrowOr = narrowRotate(Trunc))
557     return NarrowOr;
558 
559   return nullptr;
560 }
561 
562 /// Try to narrow the width of a splat shuffle. This could be generalized to any
563 /// shuffle with a constant operand, but we limit the transform to avoid
564 /// creating a shuffle type that targets may not be able to lower effectively.
565 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
566                                        InstCombiner::BuilderTy &Builder) {
567   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
568   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
569       Shuf->getMask()->getSplatValue() &&
570       Shuf->getType() == Shuf->getOperand(0)->getType()) {
571     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
572     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
573     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
574     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
575   }
576 
577   return nullptr;
578 }
579 
580 /// Try to narrow the width of an insert element. This could be generalized for
581 /// any vector constant, but we limit the transform to insertion into undef to
582 /// avoid potential backend problems from unsupported insertion widths. This
583 /// could also be extended to handle the case of inserting a scalar constant
584 /// into a vector variable.
585 static Instruction *shrinkInsertElt(CastInst &Trunc,
586                                     InstCombiner::BuilderTy &Builder) {
587   Instruction::CastOps Opcode = Trunc.getOpcode();
588   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
589          "Unexpected instruction for shrinking");
590 
591   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
592   if (!InsElt || !InsElt->hasOneUse())
593     return nullptr;
594 
595   Type *DestTy = Trunc.getType();
596   Type *DestScalarTy = DestTy->getScalarType();
597   Value *VecOp = InsElt->getOperand(0);
598   Value *ScalarOp = InsElt->getOperand(1);
599   Value *Index = InsElt->getOperand(2);
600 
601   if (isa<UndefValue>(VecOp)) {
602     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
603     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
604     UndefValue *NarrowUndef = UndefValue::get(DestTy);
605     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
606     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
607   }
608 
609   return nullptr;
610 }
611 
612 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
613   if (Instruction *Result = commonCastTransforms(CI))
614     return Result;
615 
616   // Test if the trunc is the user of a select which is part of a
617   // minimum or maximum operation. If so, don't do any more simplification.
618   // Even simplifying demanded bits can break the canonical form of a
619   // min/max.
620   Value *LHS, *RHS;
621   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
622     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
623       return nullptr;
624 
625   // See if we can simplify any instructions used by the input whose sole
626   // purpose is to compute bits we don't care about.
627   if (SimplifyDemandedInstructionBits(CI))
628     return &CI;
629 
630   Value *Src = CI.getOperand(0);
631   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
632 
633   // Attempt to truncate the entire input expression tree to the destination
634   // type.   Only do this if the dest type is a simple type, don't convert the
635   // expression tree to something weird like i93 unless the source is also
636   // strange.
637   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
638       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
639 
640     // If this cast is a truncate, evaluting in a different type always
641     // eliminates the cast, so it is always a win.
642     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
643           " to avoid cast: " << CI << '\n');
644     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
645     assert(Res->getType() == DestTy);
646     return replaceInstUsesWith(CI, Res);
647   }
648 
649   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
650   if (DestTy->getScalarSizeInBits() == 1) {
651     Constant *One = ConstantInt::get(SrcTy, 1);
652     Src = Builder.CreateAnd(Src, One);
653     Value *Zero = Constant::getNullValue(Src->getType());
654     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
655   }
656 
657   // FIXME: Maybe combine the next two transforms to handle the no cast case
658   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
659 
660   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
661   Value *A = nullptr; ConstantInt *Cst = nullptr;
662   if (Src->hasOneUse() &&
663       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
664     // We have three types to worry about here, the type of A, the source of
665     // the truncate (MidSize), and the destination of the truncate. We know that
666     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
667     // between ASize and ResultSize.
668     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
669 
670     // If the shift amount is larger than the size of A, then the result is
671     // known to be zero because all the input bits got shifted out.
672     if (Cst->getZExtValue() >= ASize)
673       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
674 
675     // Since we're doing an lshr and a zero extend, and know that the shift
676     // amount is smaller than ASize, it is always safe to do the shift in A's
677     // type, then zero extend or truncate to the result.
678     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
679     Shift->takeName(Src);
680     return CastInst::CreateIntegerCast(Shift, DestTy, false);
681   }
682 
683   // FIXME: We should canonicalize to zext/trunc and remove this transform.
684   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
685   // conversion.
686   // It works because bits coming from sign extension have the same value as
687   // the sign bit of the original value; performing ashr instead of lshr
688   // generates bits of the same value as the sign bit.
689   if (Src->hasOneUse() &&
690       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
691     Value *SExt = cast<Instruction>(Src)->getOperand(0);
692     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
693     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
694     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
695     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
696     unsigned ShiftAmt = Cst->getZExtValue();
697 
698     // This optimization can be only performed when zero bits generated by
699     // the original lshr aren't pulled into the value after truncation, so we
700     // can only shift by values no larger than the number of extension bits.
701     // FIXME: Instead of bailing when the shift is too large, use and to clear
702     // the extra bits.
703     if (ShiftAmt <= MaxAmt) {
704       if (CISize == ASize)
705         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
706                                           std::min(ShiftAmt, ASize - 1)));
707       if (SExt->hasOneUse()) {
708         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
709         Shift->takeName(Src);
710         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
711       }
712     }
713   }
714 
715   if (Instruction *I = narrowBinOp(CI))
716     return I;
717 
718   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
719     return I;
720 
721   if (Instruction *I = shrinkInsertElt(CI, Builder))
722     return I;
723 
724   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
725       shouldChangeType(SrcTy, DestTy)) {
726     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
727     // dest type is native and cst < dest size.
728     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
729         !match(A, m_Shr(m_Value(), m_Constant()))) {
730       // Skip shifts of shift by constants. It undoes a combine in
731       // FoldShiftByConstant and is the extend in reg pattern.
732       const unsigned DestSize = DestTy->getScalarSizeInBits();
733       if (Cst->getValue().ult(DestSize)) {
734         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
735 
736         return BinaryOperator::Create(
737           Instruction::Shl, NewTrunc,
738           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
739       }
740     }
741   }
742 
743   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
744     return I;
745 
746   return nullptr;
747 }
748 
749 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
750                                              bool DoTransform) {
751   // If we are just checking for a icmp eq of a single bit and zext'ing it
752   // to an integer, then shift the bit to the appropriate place and then
753   // cast to integer to avoid the comparison.
754   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
755     const APInt &Op1CV = Op1C->getValue();
756 
757     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
758     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
759     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
760         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
761       if (!DoTransform) return ICI;
762 
763       Value *In = ICI->getOperand(0);
764       Value *Sh = ConstantInt::get(In->getType(),
765                                    In->getType()->getScalarSizeInBits() - 1);
766       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
767       if (In->getType() != CI.getType())
768         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
769 
770       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
771         Constant *One = ConstantInt::get(In->getType(), 1);
772         In = Builder.CreateXor(In, One, In->getName() + ".not");
773       }
774 
775       return replaceInstUsesWith(CI, In);
776     }
777 
778     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
779     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
780     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
781     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
782     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
783     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
784     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
785     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
786     if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
787         // This only works for EQ and NE
788         ICI->isEquality()) {
789       // If Op1C some other power of two, convert:
790       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
791 
792       APInt KnownZeroMask(~Known.Zero);
793       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
794         if (!DoTransform) return ICI;
795 
796         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
797         if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
798           // (X&4) == 2 --> false
799           // (X&4) != 2 --> true
800           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
801                                            isNE);
802           Res = ConstantExpr::getZExt(Res, CI.getType());
803           return replaceInstUsesWith(CI, Res);
804         }
805 
806         uint32_t ShAmt = KnownZeroMask.logBase2();
807         Value *In = ICI->getOperand(0);
808         if (ShAmt) {
809           // Perform a logical shr by shiftamt.
810           // Insert the shift to put the result in the low bit.
811           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
812                                   In->getName() + ".lobit");
813         }
814 
815         if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
816           Constant *One = ConstantInt::get(In->getType(), 1);
817           In = Builder.CreateXor(In, One);
818         }
819 
820         if (CI.getType() == In->getType())
821           return replaceInstUsesWith(CI, In);
822 
823         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
824         return replaceInstUsesWith(CI, IntCast);
825       }
826     }
827   }
828 
829   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
830   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
831   // may lead to additional simplifications.
832   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
833     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
834       Value *LHS = ICI->getOperand(0);
835       Value *RHS = ICI->getOperand(1);
836 
837       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
838       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
839 
840       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
841         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
842         APInt UnknownBit = ~KnownBits;
843         if (UnknownBit.countPopulation() == 1) {
844           if (!DoTransform) return ICI;
845 
846           Value *Result = Builder.CreateXor(LHS, RHS);
847 
848           // Mask off any bits that are set and won't be shifted away.
849           if (KnownLHS.One.uge(UnknownBit))
850             Result = Builder.CreateAnd(Result,
851                                         ConstantInt::get(ITy, UnknownBit));
852 
853           // Shift the bit we're testing down to the lsb.
854           Result = Builder.CreateLShr(
855                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
856 
857           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
858             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
859           Result->takeName(ICI);
860           return replaceInstUsesWith(CI, Result);
861         }
862       }
863     }
864   }
865 
866   return nullptr;
867 }
868 
869 /// Determine if the specified value can be computed in the specified wider type
870 /// and produce the same low bits. If not, return false.
871 ///
872 /// If this function returns true, it can also return a non-zero number of bits
873 /// (in BitsToClear) which indicates that the value it computes is correct for
874 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
875 /// out.  For example, to promote something like:
876 ///
877 ///   %B = trunc i64 %A to i32
878 ///   %C = lshr i32 %B, 8
879 ///   %E = zext i32 %C to i64
880 ///
881 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
882 /// set to 8 to indicate that the promoted value needs to have bits 24-31
883 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
884 /// clear the top bits anyway, doing this has no extra cost.
885 ///
886 /// This function works on both vectors and scalars.
887 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
888                              InstCombiner &IC, Instruction *CxtI) {
889   BitsToClear = 0;
890   if (isa<Constant>(V))
891     return true;
892 
893   Instruction *I = dyn_cast<Instruction>(V);
894   if (!I) return false;
895 
896   // If the input is a truncate from the destination type, we can trivially
897   // eliminate it.
898   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
899     return true;
900 
901   // We can't extend or shrink something that has multiple uses: doing so would
902   // require duplicating the instruction in general, which isn't profitable.
903   if (!I->hasOneUse()) return false;
904 
905   unsigned Opc = I->getOpcode(), Tmp;
906   switch (Opc) {
907   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
908   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
909   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
910     return true;
911   case Instruction::And:
912   case Instruction::Or:
913   case Instruction::Xor:
914   case Instruction::Add:
915   case Instruction::Sub:
916   case Instruction::Mul:
917     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
918         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
919       return false;
920     // These can all be promoted if neither operand has 'bits to clear'.
921     if (BitsToClear == 0 && Tmp == 0)
922       return true;
923 
924     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
925     // other side, BitsToClear is ok.
926     if (Tmp == 0 && I->isBitwiseLogicOp()) {
927       // We use MaskedValueIsZero here for generality, but the case we care
928       // about the most is constant RHS.
929       unsigned VSize = V->getType()->getScalarSizeInBits();
930       if (IC.MaskedValueIsZero(I->getOperand(1),
931                                APInt::getHighBitsSet(VSize, BitsToClear),
932                                0, CxtI))
933         return true;
934     }
935 
936     // Otherwise, we don't know how to analyze this BitsToClear case yet.
937     return false;
938 
939   case Instruction::Shl:
940     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
941     // upper bits we can reduce BitsToClear by the shift amount.
942     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
943       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
944         return false;
945       uint64_t ShiftAmt = Amt->getZExtValue();
946       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
947       return true;
948     }
949     return false;
950   case Instruction::LShr:
951     // We can promote lshr(x, cst) if we can promote x.  This requires the
952     // ultimate 'and' to clear out the high zero bits we're clearing out though.
953     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
954       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
955         return false;
956       BitsToClear += Amt->getZExtValue();
957       if (BitsToClear > V->getType()->getScalarSizeInBits())
958         BitsToClear = V->getType()->getScalarSizeInBits();
959       return true;
960     }
961     // Cannot promote variable LSHR.
962     return false;
963   case Instruction::Select:
964     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
965         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
966         // TODO: If important, we could handle the case when the BitsToClear are
967         // known zero in the disagreeing side.
968         Tmp != BitsToClear)
969       return false;
970     return true;
971 
972   case Instruction::PHI: {
973     // We can change a phi if we can change all operands.  Note that we never
974     // get into trouble with cyclic PHIs here because we only consider
975     // instructions with a single use.
976     PHINode *PN = cast<PHINode>(I);
977     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
978       return false;
979     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
980       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
981           // TODO: If important, we could handle the case when the BitsToClear
982           // are known zero in the disagreeing input.
983           Tmp != BitsToClear)
984         return false;
985     return true;
986   }
987   default:
988     // TODO: Can handle more cases here.
989     return false;
990   }
991 }
992 
993 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
994   // If this zero extend is only used by a truncate, let the truncate be
995   // eliminated before we try to optimize this zext.
996   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
997     return nullptr;
998 
999   // If one of the common conversion will work, do it.
1000   if (Instruction *Result = commonCastTransforms(CI))
1001     return Result;
1002 
1003   Value *Src = CI.getOperand(0);
1004   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1005 
1006   // Attempt to extend the entire input expression tree to the destination
1007   // type.   Only do this if the dest type is a simple type, don't convert the
1008   // expression tree to something weird like i93 unless the source is also
1009   // strange.
1010   unsigned BitsToClear;
1011   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1012       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1013     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1014            "Can't clear more bits than in SrcTy");
1015 
1016     // Okay, we can transform this!  Insert the new expression now.
1017     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1018           " to avoid zero extend: " << CI << '\n');
1019     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1020     assert(Res->getType() == DestTy);
1021 
1022     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1023     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1024 
1025     // If the high bits are already filled with zeros, just replace this
1026     // cast with the result.
1027     if (MaskedValueIsZero(Res,
1028                           APInt::getHighBitsSet(DestBitSize,
1029                                                 DestBitSize-SrcBitsKept),
1030                              0, &CI))
1031       return replaceInstUsesWith(CI, Res);
1032 
1033     // We need to emit an AND to clear the high bits.
1034     Constant *C = ConstantInt::get(Res->getType(),
1035                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1036     return BinaryOperator::CreateAnd(Res, C);
1037   }
1038 
1039   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1040   // types and if the sizes are just right we can convert this into a logical
1041   // 'and' which will be much cheaper than the pair of casts.
1042   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1043     // TODO: Subsume this into EvaluateInDifferentType.
1044 
1045     // Get the sizes of the types involved.  We know that the intermediate type
1046     // will be smaller than A or C, but don't know the relation between A and C.
1047     Value *A = CSrc->getOperand(0);
1048     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1049     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1050     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1051     // If we're actually extending zero bits, then if
1052     // SrcSize <  DstSize: zext(a & mask)
1053     // SrcSize == DstSize: a & mask
1054     // SrcSize  > DstSize: trunc(a) & mask
1055     if (SrcSize < DstSize) {
1056       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1057       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1058       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1059       return new ZExtInst(And, CI.getType());
1060     }
1061 
1062     if (SrcSize == DstSize) {
1063       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1064       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1065                                                            AndValue));
1066     }
1067     if (SrcSize > DstSize) {
1068       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1069       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1070       return BinaryOperator::CreateAnd(Trunc,
1071                                        ConstantInt::get(Trunc->getType(),
1072                                                         AndValue));
1073     }
1074   }
1075 
1076   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1077     return transformZExtICmp(ICI, CI);
1078 
1079   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1080   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1081     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1082     // of the (zext icmp) can be eliminated. If so, immediately perform the
1083     // according elimination.
1084     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1085     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1086     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1087         (transformZExtICmp(LHS, CI, false) ||
1088          transformZExtICmp(RHS, CI, false))) {
1089       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1090       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1091       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1092       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1093 
1094       // Perform the elimination.
1095       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1096         transformZExtICmp(LHS, *LZExt);
1097       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1098         transformZExtICmp(RHS, *RZExt);
1099 
1100       return Or;
1101     }
1102   }
1103 
1104   // zext(trunc(X) & C) -> (X & zext(C)).
1105   Constant *C;
1106   Value *X;
1107   if (SrcI &&
1108       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1109       X->getType() == CI.getType())
1110     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1111 
1112   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1113   Value *And;
1114   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1115       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1116       X->getType() == CI.getType()) {
1117     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1118     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1119   }
1120 
1121   return nullptr;
1122 }
1123 
1124 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1125 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1126   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1127   ICmpInst::Predicate Pred = ICI->getPredicate();
1128 
1129   // Don't bother if Op1 isn't of vector or integer type.
1130   if (!Op1->getType()->isIntOrIntVectorTy())
1131     return nullptr;
1132 
1133   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1134     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1135     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1136     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
1137         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
1138 
1139       Value *Sh = ConstantInt::get(Op0->getType(),
1140                                    Op0->getType()->getScalarSizeInBits()-1);
1141       Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1142       if (In->getType() != CI.getType())
1143         In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1144 
1145       if (Pred == ICmpInst::ICMP_SGT)
1146         In = Builder.CreateNot(In, In->getName() + ".not");
1147       return replaceInstUsesWith(CI, In);
1148     }
1149   }
1150 
1151   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1152     // If we know that only one bit of the LHS of the icmp can be set and we
1153     // have an equality comparison with zero or a power of 2, we can transform
1154     // the icmp and sext into bitwise/integer operations.
1155     if (ICI->hasOneUse() &&
1156         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1157       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1158 
1159       APInt KnownZeroMask(~Known.Zero);
1160       if (KnownZeroMask.isPowerOf2()) {
1161         Value *In = ICI->getOperand(0);
1162 
1163         // If the icmp tests for a known zero bit we can constant fold it.
1164         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1165           Value *V = Pred == ICmpInst::ICMP_NE ?
1166                        ConstantInt::getAllOnesValue(CI.getType()) :
1167                        ConstantInt::getNullValue(CI.getType());
1168           return replaceInstUsesWith(CI, V);
1169         }
1170 
1171         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1172           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1173           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1174           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1175           // Perform a right shift to place the desired bit in the LSB.
1176           if (ShiftAmt)
1177             In = Builder.CreateLShr(In,
1178                                     ConstantInt::get(In->getType(), ShiftAmt));
1179 
1180           // At this point "In" is either 1 or 0. Subtract 1 to turn
1181           // {1, 0} -> {0, -1}.
1182           In = Builder.CreateAdd(In,
1183                                  ConstantInt::getAllOnesValue(In->getType()),
1184                                  "sext");
1185         } else {
1186           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1187           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1188           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1189           // Perform a left shift to place the desired bit in the MSB.
1190           if (ShiftAmt)
1191             In = Builder.CreateShl(In,
1192                                    ConstantInt::get(In->getType(), ShiftAmt));
1193 
1194           // Distribute the bit over the whole bit width.
1195           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1196                                   KnownZeroMask.getBitWidth() - 1), "sext");
1197         }
1198 
1199         if (CI.getType() == In->getType())
1200           return replaceInstUsesWith(CI, In);
1201         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1202       }
1203     }
1204   }
1205 
1206   return nullptr;
1207 }
1208 
1209 /// Return true if we can take the specified value and return it as type Ty
1210 /// without inserting any new casts and without changing the value of the common
1211 /// low bits.  This is used by code that tries to promote integer operations to
1212 /// a wider types will allow us to eliminate the extension.
1213 ///
1214 /// This function works on both vectors and scalars.
1215 ///
1216 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1217   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1218          "Can't sign extend type to a smaller type");
1219   // If this is a constant, it can be trivially promoted.
1220   if (isa<Constant>(V))
1221     return true;
1222 
1223   Instruction *I = dyn_cast<Instruction>(V);
1224   if (!I) return false;
1225 
1226   // If this is a truncate from the dest type, we can trivially eliminate it.
1227   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1228     return true;
1229 
1230   // We can't extend or shrink something that has multiple uses: doing so would
1231   // require duplicating the instruction in general, which isn't profitable.
1232   if (!I->hasOneUse()) return false;
1233 
1234   switch (I->getOpcode()) {
1235   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1236   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1237   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1238     return true;
1239   case Instruction::And:
1240   case Instruction::Or:
1241   case Instruction::Xor:
1242   case Instruction::Add:
1243   case Instruction::Sub:
1244   case Instruction::Mul:
1245     // These operators can all arbitrarily be extended if their inputs can.
1246     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1247            canEvaluateSExtd(I->getOperand(1), Ty);
1248 
1249   //case Instruction::Shl:   TODO
1250   //case Instruction::LShr:  TODO
1251 
1252   case Instruction::Select:
1253     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1254            canEvaluateSExtd(I->getOperand(2), Ty);
1255 
1256   case Instruction::PHI: {
1257     // We can change a phi if we can change all operands.  Note that we never
1258     // get into trouble with cyclic PHIs here because we only consider
1259     // instructions with a single use.
1260     PHINode *PN = cast<PHINode>(I);
1261     for (Value *IncValue : PN->incoming_values())
1262       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1263     return true;
1264   }
1265   default:
1266     // TODO: Can handle more cases here.
1267     break;
1268   }
1269 
1270   return false;
1271 }
1272 
1273 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1274   // If this sign extend is only used by a truncate, let the truncate be
1275   // eliminated before we try to optimize this sext.
1276   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1277     return nullptr;
1278 
1279   if (Instruction *I = commonCastTransforms(CI))
1280     return I;
1281 
1282   Value *Src = CI.getOperand(0);
1283   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1284 
1285   // If we know that the value being extended is positive, we can use a zext
1286   // instead.
1287   KnownBits Known = computeKnownBits(Src, 0, &CI);
1288   if (Known.isNonNegative()) {
1289     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1290     return replaceInstUsesWith(CI, ZExt);
1291   }
1292 
1293   // Attempt to extend the entire input expression tree to the destination
1294   // type.   Only do this if the dest type is a simple type, don't convert the
1295   // expression tree to something weird like i93 unless the source is also
1296   // strange.
1297   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1298       canEvaluateSExtd(Src, DestTy)) {
1299     // Okay, we can transform this!  Insert the new expression now.
1300     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1301           " to avoid sign extend: " << CI << '\n');
1302     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1303     assert(Res->getType() == DestTy);
1304 
1305     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1306     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1307 
1308     // If the high bits are already filled with sign bit, just replace this
1309     // cast with the result.
1310     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1311       return replaceInstUsesWith(CI, Res);
1312 
1313     // We need to emit a shl + ashr to do the sign extend.
1314     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1315     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1316                                       ShAmt);
1317   }
1318 
1319   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1320   // into shifts.
1321   Value *X;
1322   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1323     // sext(trunc(X)) --> ashr(shl(X, C), C)
1324     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1325     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1326     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1327     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1328   }
1329 
1330   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1331     return transformSExtICmp(ICI, CI);
1332 
1333   // If the input is a shl/ashr pair of a same constant, then this is a sign
1334   // extension from a smaller value.  If we could trust arbitrary bitwidth
1335   // integers, we could turn this into a truncate to the smaller bit and then
1336   // use a sext for the whole extension.  Since we don't, look deeper and check
1337   // for a truncate.  If the source and dest are the same type, eliminate the
1338   // trunc and extend and just do shifts.  For example, turn:
1339   //   %a = trunc i32 %i to i8
1340   //   %b = shl i8 %a, 6
1341   //   %c = ashr i8 %b, 6
1342   //   %d = sext i8 %c to i32
1343   // into:
1344   //   %a = shl i32 %i, 30
1345   //   %d = ashr i32 %a, 30
1346   Value *A = nullptr;
1347   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1348   ConstantInt *BA = nullptr, *CA = nullptr;
1349   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1350                         m_ConstantInt(CA))) &&
1351       BA == CA && A->getType() == CI.getType()) {
1352     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1353     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1354     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1355     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1356     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1357     return BinaryOperator::CreateAShr(A, ShAmtV);
1358   }
1359 
1360   return nullptr;
1361 }
1362 
1363 
1364 /// Return a Constant* for the specified floating-point constant if it fits
1365 /// in the specified FP type without changing its value.
1366 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1367   bool losesInfo;
1368   APFloat F = CFP->getValueAPF();
1369   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1370   if (!losesInfo)
1371     return ConstantFP::get(CFP->getContext(), F);
1372   return nullptr;
1373 }
1374 
1375 /// Look through floating-point extensions until we get the source value.
1376 static Value *lookThroughFPExtensions(Value *V) {
1377   while (auto *FPExt = dyn_cast<FPExtInst>(V))
1378     V = FPExt->getOperand(0);
1379 
1380   // If this value is a constant, return the constant in the smallest FP type
1381   // that can accurately represent it.  This allows us to turn
1382   // (float)((double)X+2.0) into x+2.0f.
1383   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
1384     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1385       return V;  // No constant folding of this.
1386     // See if the value can be truncated to half and then reextended.
1387     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
1388       return V;
1389     // See if the value can be truncated to float and then reextended.
1390     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
1391       return V;
1392     if (CFP->getType()->isDoubleTy())
1393       return V;  // Won't shrink.
1394     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
1395       return V;
1396     // Don't try to shrink to various long double types.
1397   }
1398 
1399   return V;
1400 }
1401 
1402 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1403   if (Instruction *I = commonCastTransforms(CI))
1404     return I;
1405   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1406   // simplify this expression to avoid one or more of the trunc/extend
1407   // operations if we can do so without changing the numerical results.
1408   //
1409   // The exact manner in which the widths of the operands interact to limit
1410   // what we can and cannot do safely varies from operation to operation, and
1411   // is explained below in the various case statements.
1412   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1413   if (OpI && OpI->hasOneUse()) {
1414     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1415     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1416     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1417     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1418     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1419     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1420     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1421     switch (OpI->getOpcode()) {
1422       default: break;
1423       case Instruction::FAdd:
1424       case Instruction::FSub:
1425         // For addition and subtraction, the infinitely precise result can
1426         // essentially be arbitrarily wide; proving that double rounding
1427         // will not occur because the result of OpI is exact (as we will for
1428         // FMul, for example) is hopeless.  However, we *can* nonetheless
1429         // frequently know that double rounding cannot occur (or that it is
1430         // innocuous) by taking advantage of the specific structure of
1431         // infinitely-precise results that admit double rounding.
1432         //
1433         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1434         // to represent both sources, we can guarantee that the double
1435         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1436         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1437         // for proof of this fact).
1438         //
1439         // Note: Figueroa does not consider the case where DstFormat !=
1440         // SrcFormat.  It's possible (likely even!) that this analysis
1441         // could be tightened for those cases, but they are rare (the main
1442         // case of interest here is (float)((double)float + float)).
1443         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1444           if (LHSOrig->getType() != CI.getType())
1445             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1446           if (RHSOrig->getType() != CI.getType())
1447             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1448           Instruction *RI =
1449             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1450           RI->copyFastMathFlags(OpI);
1451           return RI;
1452         }
1453         break;
1454       case Instruction::FMul:
1455         // For multiplication, the infinitely precise result has at most
1456         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1457         // that such a value can be exactly represented, then no double
1458         // rounding can possibly occur; we can safely perform the operation
1459         // in the destination format if it can represent both sources.
1460         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1461           if (LHSOrig->getType() != CI.getType())
1462             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1463           if (RHSOrig->getType() != CI.getType())
1464             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1465           Instruction *RI =
1466             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1467           RI->copyFastMathFlags(OpI);
1468           return RI;
1469         }
1470         break;
1471       case Instruction::FDiv:
1472         // For division, we use again use the bound from Figueroa's
1473         // dissertation.  I am entirely certain that this bound can be
1474         // tightened in the unbalanced operand case by an analysis based on
1475         // the diophantine rational approximation bound, but the well-known
1476         // condition used here is a good conservative first pass.
1477         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1478         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1479           if (LHSOrig->getType() != CI.getType())
1480             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1481           if (RHSOrig->getType() != CI.getType())
1482             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1483           Instruction *RI =
1484             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1485           RI->copyFastMathFlags(OpI);
1486           return RI;
1487         }
1488         break;
1489       case Instruction::FRem:
1490         // Remainder is straightforward.  Remainder is always exact, so the
1491         // type of OpI doesn't enter into things at all.  We simply evaluate
1492         // in whichever source type is larger, then convert to the
1493         // destination type.
1494         if (SrcWidth == OpWidth)
1495           break;
1496         if (LHSWidth < SrcWidth)
1497           LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
1498         else if (RHSWidth <= SrcWidth)
1499           RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
1500         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1501           Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
1502           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1503             RI->copyFastMathFlags(OpI);
1504           return CastInst::CreateFPCast(ExactResult, CI.getType());
1505         }
1506     }
1507 
1508     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1509     if (BinaryOperator::isFNeg(OpI)) {
1510       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
1511                                                 CI.getType());
1512       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1513       RI->copyFastMathFlags(OpI);
1514       return RI;
1515     }
1516   }
1517 
1518   // (fptrunc (select cond, R1, Cst)) -->
1519   // (select cond, (fptrunc R1), (fptrunc Cst))
1520   //
1521   //  - but only if this isn't part of a min/max operation, else we'll
1522   // ruin min/max canonical form which is to have the select and
1523   // compare's operands be of the same type with no casts to look through.
1524   Value *LHS, *RHS;
1525   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1526   if (SI &&
1527       (isa<ConstantFP>(SI->getOperand(1)) ||
1528        isa<ConstantFP>(SI->getOperand(2))) &&
1529       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1530     Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
1531     Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
1532     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1533   }
1534 
1535   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1536   if (II) {
1537     switch (II->getIntrinsicID()) {
1538     default: break;
1539     case Intrinsic::fabs:
1540     case Intrinsic::ceil:
1541     case Intrinsic::floor:
1542     case Intrinsic::rint:
1543     case Intrinsic::round:
1544     case Intrinsic::nearbyint:
1545     case Intrinsic::trunc: {
1546       Value *Src = II->getArgOperand(0);
1547       if (!Src->hasOneUse())
1548         break;
1549 
1550       // Except for fabs, this transformation requires the input of the unary FP
1551       // operation to be itself an fpext from the type to which we're
1552       // truncating.
1553       if (II->getIntrinsicID() != Intrinsic::fabs) {
1554         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1555         if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
1556           break;
1557       }
1558 
1559       // Do unary FP operation on smaller type.
1560       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1561       Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
1562       Type *IntrinsicType[] = { CI.getType() };
1563       Function *Overload = Intrinsic::getDeclaration(
1564         CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1565 
1566       SmallVector<OperandBundleDef, 1> OpBundles;
1567       II->getOperandBundlesAsDefs(OpBundles);
1568 
1569       Value *Args[] = { InnerTrunc };
1570       CallInst *NewCI =  CallInst::Create(Overload, Args,
1571                                           OpBundles, II->getName());
1572       NewCI->copyFastMathFlags(II);
1573       return NewCI;
1574     }
1575     }
1576   }
1577 
1578   if (Instruction *I = shrinkInsertElt(CI, Builder))
1579     return I;
1580 
1581   return nullptr;
1582 }
1583 
1584 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1585   return commonCastTransforms(CI);
1586 }
1587 
1588 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1589 // This is safe if the intermediate type has enough bits in its mantissa to
1590 // accurately represent all values of X.  For example, this won't work with
1591 // i64 -> float -> i64.
1592 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1593   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1594     return nullptr;
1595   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1596 
1597   Value *SrcI = OpI->getOperand(0);
1598   Type *FITy = FI.getType();
1599   Type *OpITy = OpI->getType();
1600   Type *SrcTy = SrcI->getType();
1601   bool IsInputSigned = isa<SIToFPInst>(OpI);
1602   bool IsOutputSigned = isa<FPToSIInst>(FI);
1603 
1604   // We can safely assume the conversion won't overflow the output range,
1605   // because (for example) (uint8_t)18293.f is undefined behavior.
1606 
1607   // Since we can assume the conversion won't overflow, our decision as to
1608   // whether the input will fit in the float should depend on the minimum
1609   // of the input range and output range.
1610 
1611   // This means this is also safe for a signed input and unsigned output, since
1612   // a negative input would lead to undefined behavior.
1613   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1614   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1615   int ActualSize = std::min(InputSize, OutputSize);
1616 
1617   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1618     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1619       if (IsInputSigned && IsOutputSigned)
1620         return new SExtInst(SrcI, FITy);
1621       return new ZExtInst(SrcI, FITy);
1622     }
1623     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1624       return new TruncInst(SrcI, FITy);
1625     if (SrcTy == FITy)
1626       return replaceInstUsesWith(FI, SrcI);
1627     return new BitCastInst(SrcI, FITy);
1628   }
1629   return nullptr;
1630 }
1631 
1632 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1633   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1634   if (!OpI)
1635     return commonCastTransforms(FI);
1636 
1637   if (Instruction *I = FoldItoFPtoI(FI))
1638     return I;
1639 
1640   return commonCastTransforms(FI);
1641 }
1642 
1643 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1644   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1645   if (!OpI)
1646     return commonCastTransforms(FI);
1647 
1648   if (Instruction *I = FoldItoFPtoI(FI))
1649     return I;
1650 
1651   return commonCastTransforms(FI);
1652 }
1653 
1654 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1655   return commonCastTransforms(CI);
1656 }
1657 
1658 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1659   return commonCastTransforms(CI);
1660 }
1661 
1662 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1663   // If the source integer type is not the intptr_t type for this target, do a
1664   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1665   // cast to be exposed to other transforms.
1666   unsigned AS = CI.getAddressSpace();
1667   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1668       DL.getPointerSizeInBits(AS)) {
1669     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1670     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1671       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1672 
1673     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1674     return new IntToPtrInst(P, CI.getType());
1675   }
1676 
1677   if (Instruction *I = commonCastTransforms(CI))
1678     return I;
1679 
1680   return nullptr;
1681 }
1682 
1683 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1684 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1685   Value *Src = CI.getOperand(0);
1686 
1687   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1688     // If casting the result of a getelementptr instruction with no offset, turn
1689     // this into a cast of the original pointer!
1690     if (GEP->hasAllZeroIndices() &&
1691         // If CI is an addrspacecast and GEP changes the poiner type, merging
1692         // GEP into CI would undo canonicalizing addrspacecast with different
1693         // pointer types, causing infinite loops.
1694         (!isa<AddrSpaceCastInst>(CI) ||
1695          GEP->getType() == GEP->getPointerOperandType())) {
1696       // Changing the cast operand is usually not a good idea but it is safe
1697       // here because the pointer operand is being replaced with another
1698       // pointer operand so the opcode doesn't need to change.
1699       Worklist.Add(GEP);
1700       CI.setOperand(0, GEP->getOperand(0));
1701       return &CI;
1702     }
1703   }
1704 
1705   return commonCastTransforms(CI);
1706 }
1707 
1708 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1709   // If the destination integer type is not the intptr_t type for this target,
1710   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1711   // to be exposed to other transforms.
1712 
1713   Type *Ty = CI.getType();
1714   unsigned AS = CI.getPointerAddressSpace();
1715 
1716   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1717     return commonPointerCastTransforms(CI);
1718 
1719   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1720   if (Ty->isVectorTy()) // Handle vectors of pointers.
1721     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1722 
1723   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1724   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1725 }
1726 
1727 /// This input value (which is known to have vector type) is being zero extended
1728 /// or truncated to the specified vector type.
1729 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1730 ///
1731 /// The source and destination vector types may have different element types.
1732 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1733                                          InstCombiner &IC) {
1734   // We can only do this optimization if the output is a multiple of the input
1735   // element size, or the input is a multiple of the output element size.
1736   // Convert the input type to have the same element type as the output.
1737   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1738 
1739   if (SrcTy->getElementType() != DestTy->getElementType()) {
1740     // The input types don't need to be identical, but for now they must be the
1741     // same size.  There is no specific reason we couldn't handle things like
1742     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1743     // there yet.
1744     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1745         DestTy->getElementType()->getPrimitiveSizeInBits())
1746       return nullptr;
1747 
1748     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1749     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1750   }
1751 
1752   // Now that the element types match, get the shuffle mask and RHS of the
1753   // shuffle to use, which depends on whether we're increasing or decreasing the
1754   // size of the input.
1755   SmallVector<uint32_t, 16> ShuffleMask;
1756   Value *V2;
1757 
1758   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1759     // If we're shrinking the number of elements, just shuffle in the low
1760     // elements from the input and use undef as the second shuffle input.
1761     V2 = UndefValue::get(SrcTy);
1762     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1763       ShuffleMask.push_back(i);
1764 
1765   } else {
1766     // If we're increasing the number of elements, shuffle in all of the
1767     // elements from InVal and fill the rest of the result elements with zeros
1768     // from a constant zero.
1769     V2 = Constant::getNullValue(SrcTy);
1770     unsigned SrcElts = SrcTy->getNumElements();
1771     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1772       ShuffleMask.push_back(i);
1773 
1774     // The excess elements reference the first element of the zero input.
1775     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1776       ShuffleMask.push_back(SrcElts);
1777   }
1778 
1779   return new ShuffleVectorInst(InVal, V2,
1780                                ConstantDataVector::get(V2->getContext(),
1781                                                        ShuffleMask));
1782 }
1783 
1784 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1785   return Value % Ty->getPrimitiveSizeInBits() == 0;
1786 }
1787 
1788 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1789   return Value / Ty->getPrimitiveSizeInBits();
1790 }
1791 
1792 /// V is a value which is inserted into a vector of VecEltTy.
1793 /// Look through the value to see if we can decompose it into
1794 /// insertions into the vector.  See the example in the comment for
1795 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1796 /// The type of V is always a non-zero multiple of VecEltTy's size.
1797 /// Shift is the number of bits between the lsb of V and the lsb of
1798 /// the vector.
1799 ///
1800 /// This returns false if the pattern can't be matched or true if it can,
1801 /// filling in Elements with the elements found here.
1802 static bool collectInsertionElements(Value *V, unsigned Shift,
1803                                      SmallVectorImpl<Value *> &Elements,
1804                                      Type *VecEltTy, bool isBigEndian) {
1805   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1806          "Shift should be a multiple of the element type size");
1807 
1808   // Undef values never contribute useful bits to the result.
1809   if (isa<UndefValue>(V)) return true;
1810 
1811   // If we got down to a value of the right type, we win, try inserting into the
1812   // right element.
1813   if (V->getType() == VecEltTy) {
1814     // Inserting null doesn't actually insert any elements.
1815     if (Constant *C = dyn_cast<Constant>(V))
1816       if (C->isNullValue())
1817         return true;
1818 
1819     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1820     if (isBigEndian)
1821       ElementIndex = Elements.size() - ElementIndex - 1;
1822 
1823     // Fail if multiple elements are inserted into this slot.
1824     if (Elements[ElementIndex])
1825       return false;
1826 
1827     Elements[ElementIndex] = V;
1828     return true;
1829   }
1830 
1831   if (Constant *C = dyn_cast<Constant>(V)) {
1832     // Figure out the # elements this provides, and bitcast it or slice it up
1833     // as required.
1834     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1835                                         VecEltTy);
1836     // If the constant is the size of a vector element, we just need to bitcast
1837     // it to the right type so it gets properly inserted.
1838     if (NumElts == 1)
1839       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1840                                       Shift, Elements, VecEltTy, isBigEndian);
1841 
1842     // Okay, this is a constant that covers multiple elements.  Slice it up into
1843     // pieces and insert each element-sized piece into the vector.
1844     if (!isa<IntegerType>(C->getType()))
1845       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1846                                        C->getType()->getPrimitiveSizeInBits()));
1847     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1848     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1849 
1850     for (unsigned i = 0; i != NumElts; ++i) {
1851       unsigned ShiftI = Shift+i*ElementSize;
1852       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1853                                                                   ShiftI));
1854       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1855       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1856                                     isBigEndian))
1857         return false;
1858     }
1859     return true;
1860   }
1861 
1862   if (!V->hasOneUse()) return false;
1863 
1864   Instruction *I = dyn_cast<Instruction>(V);
1865   if (!I) return false;
1866   switch (I->getOpcode()) {
1867   default: return false; // Unhandled case.
1868   case Instruction::BitCast:
1869     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1870                                     isBigEndian);
1871   case Instruction::ZExt:
1872     if (!isMultipleOfTypeSize(
1873                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1874                               VecEltTy))
1875       return false;
1876     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1877                                     isBigEndian);
1878   case Instruction::Or:
1879     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1880                                     isBigEndian) &&
1881            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1882                                     isBigEndian);
1883   case Instruction::Shl: {
1884     // Must be shifting by a constant that is a multiple of the element size.
1885     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1886     if (!CI) return false;
1887     Shift += CI->getZExtValue();
1888     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1889     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1890                                     isBigEndian);
1891   }
1892 
1893   }
1894 }
1895 
1896 
1897 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1898 /// assemble the elements of the vector manually.
1899 /// Try to rip the code out and replace it with insertelements.  This is to
1900 /// optimize code like this:
1901 ///
1902 ///    %tmp37 = bitcast float %inc to i32
1903 ///    %tmp38 = zext i32 %tmp37 to i64
1904 ///    %tmp31 = bitcast float %inc5 to i32
1905 ///    %tmp32 = zext i32 %tmp31 to i64
1906 ///    %tmp33 = shl i64 %tmp32, 32
1907 ///    %ins35 = or i64 %tmp33, %tmp38
1908 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1909 ///
1910 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1911 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1912                                                 InstCombiner &IC) {
1913   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1914   Value *IntInput = CI.getOperand(0);
1915 
1916   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1917   if (!collectInsertionElements(IntInput, 0, Elements,
1918                                 DestVecTy->getElementType(),
1919                                 IC.getDataLayout().isBigEndian()))
1920     return nullptr;
1921 
1922   // If we succeeded, we know that all of the element are specified by Elements
1923   // or are zero if Elements has a null entry.  Recast this as a set of
1924   // insertions.
1925   Value *Result = Constant::getNullValue(CI.getType());
1926   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1927     if (!Elements[i]) continue;  // Unset element.
1928 
1929     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
1930                                             IC.Builder.getInt32(i));
1931   }
1932 
1933   return Result;
1934 }
1935 
1936 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1937 /// vector followed by extract element. The backend tends to handle bitcasts of
1938 /// vectors better than bitcasts of scalars because vector registers are
1939 /// usually not type-specific like scalar integer or scalar floating-point.
1940 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1941                                               InstCombiner &IC) {
1942   // TODO: Create and use a pattern matcher for ExtractElementInst.
1943   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1944   if (!ExtElt || !ExtElt->hasOneUse())
1945     return nullptr;
1946 
1947   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1948   // type to extract from.
1949   Type *DestType = BitCast.getType();
1950   if (!VectorType::isValidElementType(DestType))
1951     return nullptr;
1952 
1953   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1954   auto *NewVecType = VectorType::get(DestType, NumElts);
1955   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
1956                                          NewVecType, "bc");
1957   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1958 }
1959 
1960 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
1961 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
1962                                             InstCombiner::BuilderTy &Builder) {
1963   Type *DestTy = BitCast.getType();
1964   BinaryOperator *BO;
1965   if (!DestTy->isIntOrIntVectorTy() ||
1966       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
1967       !BO->isBitwiseLogicOp())
1968     return nullptr;
1969 
1970   // FIXME: This transform is restricted to vector types to avoid backend
1971   // problems caused by creating potentially illegal operations. If a fix-up is
1972   // added to handle that situation, we can remove this check.
1973   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
1974     return nullptr;
1975 
1976   Value *X;
1977   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
1978       X->getType() == DestTy && !isa<Constant>(X)) {
1979     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
1980     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
1981     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
1982   }
1983 
1984   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
1985       X->getType() == DestTy && !isa<Constant>(X)) {
1986     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
1987     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1988     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
1989   }
1990 
1991   // Canonicalize vector bitcasts to come before vector bitwise logic with a
1992   // constant. This eases recognition of special constants for later ops.
1993   // Example:
1994   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
1995   Constant *C;
1996   if (match(BO->getOperand(1), m_Constant(C))) {
1997     // bitcast (logic X, C) --> logic (bitcast X, C')
1998     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1999     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2000     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2001   }
2002 
2003   return nullptr;
2004 }
2005 
2006 /// Change the type of a select if we can eliminate a bitcast.
2007 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2008                                       InstCombiner::BuilderTy &Builder) {
2009   Value *Cond, *TVal, *FVal;
2010   if (!match(BitCast.getOperand(0),
2011              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2012     return nullptr;
2013 
2014   // A vector select must maintain the same number of elements in its operands.
2015   Type *CondTy = Cond->getType();
2016   Type *DestTy = BitCast.getType();
2017   if (CondTy->isVectorTy()) {
2018     if (!DestTy->isVectorTy())
2019       return nullptr;
2020     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2021       return nullptr;
2022   }
2023 
2024   // FIXME: This transform is restricted from changing the select between
2025   // scalars and vectors to avoid backend problems caused by creating
2026   // potentially illegal operations. If a fix-up is added to handle that
2027   // situation, we can remove this check.
2028   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2029     return nullptr;
2030 
2031   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2032   Value *X;
2033   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2034       !isa<Constant>(X)) {
2035     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2036     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2037     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2038   }
2039 
2040   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2041       !isa<Constant>(X)) {
2042     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2043     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2044     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2045   }
2046 
2047   return nullptr;
2048 }
2049 
2050 /// Check if all users of CI are StoreInsts.
2051 static bool hasStoreUsersOnly(CastInst &CI) {
2052   for (User *U : CI.users()) {
2053     if (!isa<StoreInst>(U))
2054       return false;
2055   }
2056   return true;
2057 }
2058 
2059 /// This function handles following case
2060 ///
2061 ///     A  ->  B    cast
2062 ///     PHI
2063 ///     B  ->  A    cast
2064 ///
2065 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2066 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2067 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2068   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2069   if (hasStoreUsersOnly(CI))
2070     return nullptr;
2071 
2072   Value *Src = CI.getOperand(0);
2073   Type *SrcTy = Src->getType();         // Type B
2074   Type *DestTy = CI.getType();          // Type A
2075 
2076   SmallVector<PHINode *, 4> PhiWorklist;
2077   SmallSetVector<PHINode *, 4> OldPhiNodes;
2078 
2079   // Find all of the A->B casts and PHI nodes.
2080   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2081   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2082   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2083   PhiWorklist.push_back(PN);
2084   OldPhiNodes.insert(PN);
2085   while (!PhiWorklist.empty()) {
2086     auto *OldPN = PhiWorklist.pop_back_val();
2087     for (Value *IncValue : OldPN->incoming_values()) {
2088       if (isa<Constant>(IncValue))
2089         continue;
2090 
2091       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2092         // If there is a sequence of one or more load instructions, each loaded
2093         // value is used as address of later load instruction, bitcast is
2094         // necessary to change the value type, don't optimize it. For
2095         // simplicity we give up if the load address comes from another load.
2096         Value *Addr = LI->getOperand(0);
2097         if (Addr == &CI || isa<LoadInst>(Addr))
2098           return nullptr;
2099         if (LI->hasOneUse() && LI->isSimple())
2100           continue;
2101         // If a LoadInst has more than one use, changing the type of loaded
2102         // value may create another bitcast.
2103         return nullptr;
2104       }
2105 
2106       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2107         if (OldPhiNodes.insert(PNode))
2108           PhiWorklist.push_back(PNode);
2109         continue;
2110       }
2111 
2112       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2113       // We can't handle other instructions.
2114       if (!BCI)
2115         return nullptr;
2116 
2117       // Verify it's a A->B cast.
2118       Type *TyA = BCI->getOperand(0)->getType();
2119       Type *TyB = BCI->getType();
2120       if (TyA != DestTy || TyB != SrcTy)
2121         return nullptr;
2122     }
2123   }
2124 
2125   // For each old PHI node, create a corresponding new PHI node with a type A.
2126   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2127   for (auto *OldPN : OldPhiNodes) {
2128     Builder.SetInsertPoint(OldPN);
2129     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2130     NewPNodes[OldPN] = NewPN;
2131   }
2132 
2133   // Fill in the operands of new PHI nodes.
2134   for (auto *OldPN : OldPhiNodes) {
2135     PHINode *NewPN = NewPNodes[OldPN];
2136     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2137       Value *V = OldPN->getOperand(j);
2138       Value *NewV = nullptr;
2139       if (auto *C = dyn_cast<Constant>(V)) {
2140         NewV = ConstantExpr::getBitCast(C, DestTy);
2141       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2142         Builder.SetInsertPoint(LI->getNextNode());
2143         NewV = Builder.CreateBitCast(LI, DestTy);
2144         Worklist.Add(LI);
2145       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2146         NewV = BCI->getOperand(0);
2147       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2148         NewV = NewPNodes[PrevPN];
2149       }
2150       assert(NewV);
2151       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2152     }
2153   }
2154 
2155   // If there is a store with type B, change it to type A.
2156   for (User *U : PN->users()) {
2157     auto *SI = dyn_cast<StoreInst>(U);
2158     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2159       Builder.SetInsertPoint(SI);
2160       auto *NewBC =
2161           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2162       SI->setOperand(0, NewBC);
2163       Worklist.Add(SI);
2164       assert(hasStoreUsersOnly(*NewBC));
2165     }
2166   }
2167 
2168   return replaceInstUsesWith(CI, NewPNodes[PN]);
2169 }
2170 
2171 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2172   // If the operands are integer typed then apply the integer transforms,
2173   // otherwise just apply the common ones.
2174   Value *Src = CI.getOperand(0);
2175   Type *SrcTy = Src->getType();
2176   Type *DestTy = CI.getType();
2177 
2178   // Get rid of casts from one type to the same type. These are useless and can
2179   // be replaced by the operand.
2180   if (DestTy == Src->getType())
2181     return replaceInstUsesWith(CI, Src);
2182 
2183   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2184     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2185     Type *DstElTy = DstPTy->getElementType();
2186     Type *SrcElTy = SrcPTy->getElementType();
2187 
2188     // If we are casting a alloca to a pointer to a type of the same
2189     // size, rewrite the allocation instruction to allocate the "right" type.
2190     // There is no need to modify malloc calls because it is their bitcast that
2191     // needs to be cleaned up.
2192     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2193       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2194         return V;
2195 
2196     // When the type pointed to is not sized the cast cannot be
2197     // turned into a gep.
2198     Type *PointeeType =
2199         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2200     if (!PointeeType->isSized())
2201       return nullptr;
2202 
2203     // If the source and destination are pointers, and this cast is equivalent
2204     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2205     // This can enhance SROA and other transforms that want type-safe pointers.
2206     unsigned NumZeros = 0;
2207     while (SrcElTy != DstElTy &&
2208            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2209            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2210       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2211       ++NumZeros;
2212     }
2213 
2214     // If we found a path from the src to dest, create the getelementptr now.
2215     if (SrcElTy == DstElTy) {
2216       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2217       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2218     }
2219   }
2220 
2221   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2222     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2223       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2224       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2225                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2226       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2227     }
2228 
2229     if (isa<IntegerType>(SrcTy)) {
2230       // If this is a cast from an integer to vector, check to see if the input
2231       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2232       // the casts with a shuffle and (potentially) a bitcast.
2233       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2234         CastInst *SrcCast = cast<CastInst>(Src);
2235         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2236           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2237             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2238                                                cast<VectorType>(DestTy), *this))
2239               return I;
2240       }
2241 
2242       // If the input is an 'or' instruction, we may be doing shifts and ors to
2243       // assemble the elements of the vector manually.  Try to rip the code out
2244       // and replace it with insertelements.
2245       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2246         return replaceInstUsesWith(CI, V);
2247     }
2248   }
2249 
2250   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2251     if (SrcVTy->getNumElements() == 1) {
2252       // If our destination is not a vector, then make this a straight
2253       // scalar-scalar cast.
2254       if (!DestTy->isVectorTy()) {
2255         Value *Elem =
2256           Builder.CreateExtractElement(Src,
2257                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2258         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2259       }
2260 
2261       // Otherwise, see if our source is an insert. If so, then use the scalar
2262       // component directly.
2263       if (InsertElementInst *IEI =
2264             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2265         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2266                                 DestTy);
2267     }
2268   }
2269 
2270   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2271     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2272     // a bitcast to a vector with the same # elts.
2273     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2274         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2275         SVI->getType()->getNumElements() ==
2276         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2277       BitCastInst *Tmp;
2278       // If either of the operands is a cast from CI.getType(), then
2279       // evaluating the shuffle in the casted destination's type will allow
2280       // us to eliminate at least one cast.
2281       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2282            Tmp->getOperand(0)->getType() == DestTy) ||
2283           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2284            Tmp->getOperand(0)->getType() == DestTy)) {
2285         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2286         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2287         // Return a new shuffle vector.  Use the same element ID's, as we
2288         // know the vector types match #elts.
2289         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2290       }
2291     }
2292   }
2293 
2294   // Handle the A->B->A cast, and there is an intervening PHI node.
2295   if (PHINode *PN = dyn_cast<PHINode>(Src))
2296     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2297       return I;
2298 
2299   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2300     return I;
2301 
2302   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2303     return I;
2304 
2305   if (Instruction *I = foldBitCastSelect(CI, Builder))
2306     return I;
2307 
2308   if (SrcTy->isPointerTy())
2309     return commonPointerCastTransforms(CI);
2310   return commonCastTransforms(CI);
2311 }
2312 
2313 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2314   // If the destination pointer element type is not the same as the source's
2315   // first do a bitcast to the destination type, and then the addrspacecast.
2316   // This allows the cast to be exposed to other transforms.
2317   Value *Src = CI.getOperand(0);
2318   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2319   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2320 
2321   Type *DestElemTy = DestTy->getElementType();
2322   if (SrcTy->getElementType() != DestElemTy) {
2323     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2324     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2325       // Handle vectors of pointers.
2326       MidTy = VectorType::get(MidTy, VT->getNumElements());
2327     }
2328 
2329     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2330     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2331   }
2332 
2333   return commonPointerCastTransforms(CI);
2334 }
2335