1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Analyze 'Val', seeing if it is a simple linear expression. 27 /// If so, decompose it, returning some value X, such that Val is 28 /// X*Scale+Offset. 29 /// 30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 31 uint64_t &Offset) { 32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 33 Offset = CI->getZExtValue(); 34 Scale = 0; 35 return ConstantInt::get(Val->getType(), 0); 36 } 37 38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 39 // Cannot look past anything that might overflow. 40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 42 Scale = 1; 43 Offset = 0; 44 return Val; 45 } 46 47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 48 if (I->getOpcode() == Instruction::Shl) { 49 // This is a value scaled by '1 << the shift amt'. 50 Scale = UINT64_C(1) << RHS->getZExtValue(); 51 Offset = 0; 52 return I->getOperand(0); 53 } 54 55 if (I->getOpcode() == Instruction::Mul) { 56 // This value is scaled by 'RHS'. 57 Scale = RHS->getZExtValue(); 58 Offset = 0; 59 return I->getOperand(0); 60 } 61 62 if (I->getOpcode() == Instruction::Add) { 63 // We have X+C. Check to see if we really have (X*C2)+C1, 64 // where C1 is divisible by C2. 65 unsigned SubScale; 66 Value *SubVal = 67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 68 Offset += RHS->getZExtValue(); 69 Scale = SubScale; 70 return SubVal; 71 } 72 } 73 } 74 75 // Otherwise, we can't look past this. 76 Scale = 1; 77 Offset = 0; 78 return Val; 79 } 80 81 /// If we find a cast of an allocation instruction, try to eliminate the cast by 82 /// moving the type information into the alloc. 83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 84 AllocaInst &AI) { 85 PointerType *PTy = cast<PointerType>(CI.getType()); 86 87 BuilderTy AllocaBuilder(Builder); 88 AllocaBuilder.SetInsertPoint(&AI); 89 90 // Get the type really allocated and the type casted to. 91 Type *AllocElTy = AI.getAllocatedType(); 92 Type *CastElTy = PTy->getElementType(); 93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 94 95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 97 if (CastElTyAlign < AllocElTyAlign) return nullptr; 98 99 // If the allocation has multiple uses, only promote it if we are strictly 100 // increasing the alignment of the resultant allocation. If we keep it the 101 // same, we open the door to infinite loops of various kinds. 102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 103 104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 107 108 // If the allocation has multiple uses, only promote it if we're not 109 // shrinking the amount of memory being allocated. 110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 113 114 // See if we can satisfy the modulus by pulling a scale out of the array 115 // size argument. 116 unsigned ArraySizeScale; 117 uint64_t ArrayOffset; 118 Value *NumElements = // See if the array size is a decomposable linear expr. 119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 120 121 // If we can now satisfy the modulus, by using a non-1 scale, we really can 122 // do the xform. 123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 125 126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 127 Value *Amt = nullptr; 128 if (Scale == 1) { 129 Amt = NumElements; 130 } else { 131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 132 // Insert before the alloca, not before the cast. 133 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 134 } 135 136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 138 Offset, true); 139 Amt = AllocaBuilder.CreateAdd(Amt, Off); 140 } 141 142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 143 New->setAlignment(AI.getAlignment()); 144 New->takeName(&AI); 145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 146 147 // If the allocation has multiple real uses, insert a cast and change all 148 // things that used it to use the new cast. This will also hack on CI, but it 149 // will die soon. 150 if (!AI.hasOneUse()) { 151 // New is the allocation instruction, pointer typed. AI is the original 152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 154 replaceInstUsesWith(AI, NewCast); 155 } 156 return replaceInstUsesWith(CI, New); 157 } 158 159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 160 /// true for, actually insert the code to evaluate the expression. 161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 162 bool isSigned) { 163 if (Constant *C = dyn_cast<Constant>(V)) { 164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 165 // If we got a constantexpr back, try to simplify it with DL info. 166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 167 C = FoldedC; 168 return C; 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = CI1->getOpcode(); 239 Instruction::CastOps secondOp = CI2->getOpcode(); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// @brief Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 269 } 270 } 271 272 // If we are casting a select, then fold the cast into the select. 273 if (auto *SI = dyn_cast<SelectInst>(Src)) 274 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 275 return NV; 276 277 // If we are casting a PHI, then fold the cast into the PHI. 278 if (auto *PN = dyn_cast<PHINode>(Src)) { 279 // Don't do this if it would create a PHI node with an illegal type from a 280 // legal type. 281 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 282 shouldChangeType(CI.getType(), Src->getType())) 283 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 284 return NV; 285 } 286 287 return nullptr; 288 } 289 290 /// Return true if we can evaluate the specified expression tree as type Ty 291 /// instead of its larger type, and arrive with the same value. 292 /// This is used by code that tries to eliminate truncates. 293 /// 294 /// Ty will always be a type smaller than V. We should return true if trunc(V) 295 /// can be computed by computing V in the smaller type. If V is an instruction, 296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 297 /// makes sense if x and y can be efficiently truncated. 298 /// 299 /// This function works on both vectors and scalars. 300 /// 301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 302 Instruction *CxtI) { 303 // We can always evaluate constants in another type. 304 if (isa<Constant>(V)) 305 return true; 306 307 Instruction *I = dyn_cast<Instruction>(V); 308 if (!I) return false; 309 310 Type *OrigTy = V->getType(); 311 312 // If this is an extension from the dest type, we can eliminate it, even if it 313 // has multiple uses. 314 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 315 I->getOperand(0)->getType() == Ty) 316 return true; 317 318 // We can't extend or shrink something that has multiple uses: doing so would 319 // require duplicating the instruction in general, which isn't profitable. 320 if (!I->hasOneUse()) return false; 321 322 unsigned Opc = I->getOpcode(); 323 switch (Opc) { 324 case Instruction::Add: 325 case Instruction::Sub: 326 case Instruction::Mul: 327 case Instruction::And: 328 case Instruction::Or: 329 case Instruction::Xor: 330 // These operators can all arbitrarily be extended or truncated. 331 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 332 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 333 334 case Instruction::UDiv: 335 case Instruction::URem: { 336 // UDiv and URem can be truncated if all the truncated bits are zero. 337 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 338 uint32_t BitWidth = Ty->getScalarSizeInBits(); 339 if (BitWidth < OrigBitWidth) { 340 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 341 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 342 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 345 } 346 } 347 break; 348 } 349 case Instruction::Shl: 350 // If we are truncating the result of this SHL, and if it's a shift of a 351 // constant amount, we can always perform a SHL in a smaller type. 352 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 353 uint32_t BitWidth = Ty->getScalarSizeInBits(); 354 if (CI->getLimitedValue(BitWidth) < BitWidth) 355 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 356 } 357 break; 358 case Instruction::LShr: 359 // If this is a truncate of a logical shr, we can truncate it to a smaller 360 // lshr iff we know that the bits we would otherwise be shifting in are 361 // already zeros. 362 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 363 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 364 uint32_t BitWidth = Ty->getScalarSizeInBits(); 365 if (IC.MaskedValueIsZero(I->getOperand(0), 366 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 367 CI->getLimitedValue(BitWidth) < BitWidth) { 368 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 369 } 370 } 371 break; 372 case Instruction::Trunc: 373 // trunc(trunc(x)) -> trunc(x) 374 return true; 375 case Instruction::ZExt: 376 case Instruction::SExt: 377 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 378 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 379 return true; 380 case Instruction::Select: { 381 SelectInst *SI = cast<SelectInst>(I); 382 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 383 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 384 } 385 case Instruction::PHI: { 386 // We can change a phi if we can change all operands. Note that we never 387 // get into trouble with cyclic PHIs here because we only consider 388 // instructions with a single use. 389 PHINode *PN = cast<PHINode>(I); 390 for (Value *IncValue : PN->incoming_values()) 391 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 392 return false; 393 return true; 394 } 395 default: 396 // TODO: Can handle more cases here. 397 break; 398 } 399 400 return false; 401 } 402 403 /// Given a vector that is bitcast to an integer, optionally logically 404 /// right-shifted, and truncated, convert it to an extractelement. 405 /// Example (big endian): 406 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 407 /// ---> 408 /// extractelement <4 x i32> %X, 1 409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 410 Value *TruncOp = Trunc.getOperand(0); 411 Type *DestType = Trunc.getType(); 412 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 413 return nullptr; 414 415 Value *VecInput = nullptr; 416 ConstantInt *ShiftVal = nullptr; 417 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 418 m_LShr(m_BitCast(m_Value(VecInput)), 419 m_ConstantInt(ShiftVal)))) || 420 !isa<VectorType>(VecInput->getType())) 421 return nullptr; 422 423 VectorType *VecType = cast<VectorType>(VecInput->getType()); 424 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 425 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 426 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 427 428 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 429 return nullptr; 430 431 // If the element type of the vector doesn't match the result type, 432 // bitcast it to a vector type that we can extract from. 433 unsigned NumVecElts = VecWidth / DestWidth; 434 if (VecType->getElementType() != DestType) { 435 VecType = VectorType::get(DestType, NumVecElts); 436 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 437 } 438 439 unsigned Elt = ShiftAmount / DestWidth; 440 if (IC.getDataLayout().isBigEndian()) 441 Elt = NumVecElts - 1 - Elt; 442 443 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 444 } 445 446 /// Rotate left/right may occur in a wider type than necessary because of type 447 /// promotion rules. Try to narrow all of the component instructions. 448 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 449 assert((isa<VectorType>(Trunc.getSrcTy()) || 450 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 451 "Don't narrow to an illegal scalar type"); 452 453 // First, find an or'd pair of opposite shifts with the same shifted operand: 454 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 455 Value *Or0, *Or1; 456 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 457 return nullptr; 458 459 Value *ShVal, *ShAmt0, *ShAmt1; 460 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 461 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 462 return nullptr; 463 464 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 465 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 466 if (ShiftOpcode0 == ShiftOpcode1) 467 return nullptr; 468 469 // The shift amounts must add up to the narrow bit width. 470 Value *ShAmt; 471 bool SubIsOnLHS; 472 Type *DestTy = Trunc.getType(); 473 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 474 if (match(ShAmt0, 475 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { 476 ShAmt = ShAmt1; 477 SubIsOnLHS = true; 478 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), 479 m_Specific(ShAmt0))))) { 480 ShAmt = ShAmt0; 481 SubIsOnLHS = false; 482 } else { 483 return nullptr; 484 } 485 486 // The shifted value must have high zeros in the wide type. Typically, this 487 // will be a zext, but it could also be the result of an 'and' or 'shift'. 488 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 489 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 490 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 491 return nullptr; 492 493 // We have an unnecessarily wide rotate! 494 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 495 // Narrow it down to eliminate the zext/trunc: 496 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 497 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 498 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 499 500 // Mask both shift amounts to ensure there's no UB from oversized shifts. 501 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 502 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 503 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 504 505 // Truncate the original value and use narrow ops. 506 Value *X = Builder.CreateTrunc(ShVal, DestTy); 507 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 508 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 509 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 510 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 511 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 512 } 513 514 /// Try to narrow the width of math or bitwise logic instructions by pulling a 515 /// truncate ahead of binary operators. 516 /// TODO: Transforms for truncated shifts should be moved into here. 517 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 518 Type *SrcTy = Trunc.getSrcTy(); 519 Type *DestTy = Trunc.getType(); 520 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 521 return nullptr; 522 523 BinaryOperator *BinOp; 524 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 525 return nullptr; 526 527 switch (BinOp->getOpcode()) { 528 case Instruction::And: 529 case Instruction::Or: 530 case Instruction::Xor: 531 case Instruction::Add: 532 case Instruction::Mul: { 533 Constant *C; 534 if (match(BinOp->getOperand(1), m_Constant(C))) { 535 // trunc (binop X, C) --> binop (trunc X, C') 536 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 537 Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy); 538 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 539 } 540 break; 541 } 542 case Instruction::Sub: { 543 Constant *C; 544 if (match(BinOp->getOperand(0), m_Constant(C))) { 545 // trunc (binop C, X) --> binop (trunc C', X) 546 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 547 Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy); 548 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 549 } 550 break; 551 } 552 553 default: break; 554 } 555 556 if (Instruction *NarrowOr = narrowRotate(Trunc)) 557 return NarrowOr; 558 559 return nullptr; 560 } 561 562 /// Try to narrow the width of a splat shuffle. This could be generalized to any 563 /// shuffle with a constant operand, but we limit the transform to avoid 564 /// creating a shuffle type that targets may not be able to lower effectively. 565 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 566 InstCombiner::BuilderTy &Builder) { 567 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 568 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 569 Shuf->getMask()->getSplatValue() && 570 Shuf->getType() == Shuf->getOperand(0)->getType()) { 571 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 572 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 573 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 574 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 575 } 576 577 return nullptr; 578 } 579 580 /// Try to narrow the width of an insert element. This could be generalized for 581 /// any vector constant, but we limit the transform to insertion into undef to 582 /// avoid potential backend problems from unsupported insertion widths. This 583 /// could also be extended to handle the case of inserting a scalar constant 584 /// into a vector variable. 585 static Instruction *shrinkInsertElt(CastInst &Trunc, 586 InstCombiner::BuilderTy &Builder) { 587 Instruction::CastOps Opcode = Trunc.getOpcode(); 588 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 589 "Unexpected instruction for shrinking"); 590 591 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 592 if (!InsElt || !InsElt->hasOneUse()) 593 return nullptr; 594 595 Type *DestTy = Trunc.getType(); 596 Type *DestScalarTy = DestTy->getScalarType(); 597 Value *VecOp = InsElt->getOperand(0); 598 Value *ScalarOp = InsElt->getOperand(1); 599 Value *Index = InsElt->getOperand(2); 600 601 if (isa<UndefValue>(VecOp)) { 602 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 603 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 604 UndefValue *NarrowUndef = UndefValue::get(DestTy); 605 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 606 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 607 } 608 609 return nullptr; 610 } 611 612 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 613 if (Instruction *Result = commonCastTransforms(CI)) 614 return Result; 615 616 // Test if the trunc is the user of a select which is part of a 617 // minimum or maximum operation. If so, don't do any more simplification. 618 // Even simplifying demanded bits can break the canonical form of a 619 // min/max. 620 Value *LHS, *RHS; 621 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 622 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 623 return nullptr; 624 625 // See if we can simplify any instructions used by the input whose sole 626 // purpose is to compute bits we don't care about. 627 if (SimplifyDemandedInstructionBits(CI)) 628 return &CI; 629 630 Value *Src = CI.getOperand(0); 631 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 632 633 // Attempt to truncate the entire input expression tree to the destination 634 // type. Only do this if the dest type is a simple type, don't convert the 635 // expression tree to something weird like i93 unless the source is also 636 // strange. 637 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 638 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 639 640 // If this cast is a truncate, evaluting in a different type always 641 // eliminates the cast, so it is always a win. 642 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 643 " to avoid cast: " << CI << '\n'); 644 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 645 assert(Res->getType() == DestTy); 646 return replaceInstUsesWith(CI, Res); 647 } 648 649 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 650 if (DestTy->getScalarSizeInBits() == 1) { 651 Constant *One = ConstantInt::get(SrcTy, 1); 652 Src = Builder.CreateAnd(Src, One); 653 Value *Zero = Constant::getNullValue(Src->getType()); 654 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 655 } 656 657 // FIXME: Maybe combine the next two transforms to handle the no cast case 658 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 659 660 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 661 Value *A = nullptr; ConstantInt *Cst = nullptr; 662 if (Src->hasOneUse() && 663 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 664 // We have three types to worry about here, the type of A, the source of 665 // the truncate (MidSize), and the destination of the truncate. We know that 666 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 667 // between ASize and ResultSize. 668 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 669 670 // If the shift amount is larger than the size of A, then the result is 671 // known to be zero because all the input bits got shifted out. 672 if (Cst->getZExtValue() >= ASize) 673 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 674 675 // Since we're doing an lshr and a zero extend, and know that the shift 676 // amount is smaller than ASize, it is always safe to do the shift in A's 677 // type, then zero extend or truncate to the result. 678 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 679 Shift->takeName(Src); 680 return CastInst::CreateIntegerCast(Shift, DestTy, false); 681 } 682 683 // FIXME: We should canonicalize to zext/trunc and remove this transform. 684 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 685 // conversion. 686 // It works because bits coming from sign extension have the same value as 687 // the sign bit of the original value; performing ashr instead of lshr 688 // generates bits of the same value as the sign bit. 689 if (Src->hasOneUse() && 690 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 691 Value *SExt = cast<Instruction>(Src)->getOperand(0); 692 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 693 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 694 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 695 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 696 unsigned ShiftAmt = Cst->getZExtValue(); 697 698 // This optimization can be only performed when zero bits generated by 699 // the original lshr aren't pulled into the value after truncation, so we 700 // can only shift by values no larger than the number of extension bits. 701 // FIXME: Instead of bailing when the shift is too large, use and to clear 702 // the extra bits. 703 if (ShiftAmt <= MaxAmt) { 704 if (CISize == ASize) 705 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 706 std::min(ShiftAmt, ASize - 1))); 707 if (SExt->hasOneUse()) { 708 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 709 Shift->takeName(Src); 710 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 711 } 712 } 713 } 714 715 if (Instruction *I = narrowBinOp(CI)) 716 return I; 717 718 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 719 return I; 720 721 if (Instruction *I = shrinkInsertElt(CI, Builder)) 722 return I; 723 724 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 725 shouldChangeType(SrcTy, DestTy)) { 726 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 727 // dest type is native and cst < dest size. 728 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 729 !match(A, m_Shr(m_Value(), m_Constant()))) { 730 // Skip shifts of shift by constants. It undoes a combine in 731 // FoldShiftByConstant and is the extend in reg pattern. 732 const unsigned DestSize = DestTy->getScalarSizeInBits(); 733 if (Cst->getValue().ult(DestSize)) { 734 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 735 736 return BinaryOperator::Create( 737 Instruction::Shl, NewTrunc, 738 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 739 } 740 } 741 } 742 743 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 744 return I; 745 746 return nullptr; 747 } 748 749 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 750 bool DoTransform) { 751 // If we are just checking for a icmp eq of a single bit and zext'ing it 752 // to an integer, then shift the bit to the appropriate place and then 753 // cast to integer to avoid the comparison. 754 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 755 const APInt &Op1CV = Op1C->getValue(); 756 757 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 758 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 759 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) || 760 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 761 if (!DoTransform) return ICI; 762 763 Value *In = ICI->getOperand(0); 764 Value *Sh = ConstantInt::get(In->getType(), 765 In->getType()->getScalarSizeInBits() - 1); 766 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 767 if (In->getType() != CI.getType()) 768 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 769 770 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 771 Constant *One = ConstantInt::get(In->getType(), 1); 772 In = Builder.CreateXor(In, One, In->getName() + ".not"); 773 } 774 775 return replaceInstUsesWith(CI, In); 776 } 777 778 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 779 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 780 // zext (X == 1) to i32 --> X iff X has only the low bit set. 781 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 782 // zext (X != 0) to i32 --> X iff X has only the low bit set. 783 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 784 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 785 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 786 if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) && 787 // This only works for EQ and NE 788 ICI->isEquality()) { 789 // If Op1C some other power of two, convert: 790 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 791 792 APInt KnownZeroMask(~Known.Zero); 793 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 794 if (!DoTransform) return ICI; 795 796 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 797 if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) { 798 // (X&4) == 2 --> false 799 // (X&4) != 2 --> true 800 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 801 isNE); 802 Res = ConstantExpr::getZExt(Res, CI.getType()); 803 return replaceInstUsesWith(CI, Res); 804 } 805 806 uint32_t ShAmt = KnownZeroMask.logBase2(); 807 Value *In = ICI->getOperand(0); 808 if (ShAmt) { 809 // Perform a logical shr by shiftamt. 810 // Insert the shift to put the result in the low bit. 811 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 812 In->getName() + ".lobit"); 813 } 814 815 if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit. 816 Constant *One = ConstantInt::get(In->getType(), 1); 817 In = Builder.CreateXor(In, One); 818 } 819 820 if (CI.getType() == In->getType()) 821 return replaceInstUsesWith(CI, In); 822 823 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 824 return replaceInstUsesWith(CI, IntCast); 825 } 826 } 827 } 828 829 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 830 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 831 // may lead to additional simplifications. 832 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 833 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 834 Value *LHS = ICI->getOperand(0); 835 Value *RHS = ICI->getOperand(1); 836 837 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 838 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 839 840 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 841 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 842 APInt UnknownBit = ~KnownBits; 843 if (UnknownBit.countPopulation() == 1) { 844 if (!DoTransform) return ICI; 845 846 Value *Result = Builder.CreateXor(LHS, RHS); 847 848 // Mask off any bits that are set and won't be shifted away. 849 if (KnownLHS.One.uge(UnknownBit)) 850 Result = Builder.CreateAnd(Result, 851 ConstantInt::get(ITy, UnknownBit)); 852 853 // Shift the bit we're testing down to the lsb. 854 Result = Builder.CreateLShr( 855 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 856 857 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 858 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 859 Result->takeName(ICI); 860 return replaceInstUsesWith(CI, Result); 861 } 862 } 863 } 864 } 865 866 return nullptr; 867 } 868 869 /// Determine if the specified value can be computed in the specified wider type 870 /// and produce the same low bits. If not, return false. 871 /// 872 /// If this function returns true, it can also return a non-zero number of bits 873 /// (in BitsToClear) which indicates that the value it computes is correct for 874 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 875 /// out. For example, to promote something like: 876 /// 877 /// %B = trunc i64 %A to i32 878 /// %C = lshr i32 %B, 8 879 /// %E = zext i32 %C to i64 880 /// 881 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 882 /// set to 8 to indicate that the promoted value needs to have bits 24-31 883 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 884 /// clear the top bits anyway, doing this has no extra cost. 885 /// 886 /// This function works on both vectors and scalars. 887 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 888 InstCombiner &IC, Instruction *CxtI) { 889 BitsToClear = 0; 890 if (isa<Constant>(V)) 891 return true; 892 893 Instruction *I = dyn_cast<Instruction>(V); 894 if (!I) return false; 895 896 // If the input is a truncate from the destination type, we can trivially 897 // eliminate it. 898 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 899 return true; 900 901 // We can't extend or shrink something that has multiple uses: doing so would 902 // require duplicating the instruction in general, which isn't profitable. 903 if (!I->hasOneUse()) return false; 904 905 unsigned Opc = I->getOpcode(), Tmp; 906 switch (Opc) { 907 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 908 case Instruction::SExt: // zext(sext(x)) -> sext(x). 909 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 910 return true; 911 case Instruction::And: 912 case Instruction::Or: 913 case Instruction::Xor: 914 case Instruction::Add: 915 case Instruction::Sub: 916 case Instruction::Mul: 917 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 918 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 919 return false; 920 // These can all be promoted if neither operand has 'bits to clear'. 921 if (BitsToClear == 0 && Tmp == 0) 922 return true; 923 924 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 925 // other side, BitsToClear is ok. 926 if (Tmp == 0 && I->isBitwiseLogicOp()) { 927 // We use MaskedValueIsZero here for generality, but the case we care 928 // about the most is constant RHS. 929 unsigned VSize = V->getType()->getScalarSizeInBits(); 930 if (IC.MaskedValueIsZero(I->getOperand(1), 931 APInt::getHighBitsSet(VSize, BitsToClear), 932 0, CxtI)) 933 return true; 934 } 935 936 // Otherwise, we don't know how to analyze this BitsToClear case yet. 937 return false; 938 939 case Instruction::Shl: 940 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 941 // upper bits we can reduce BitsToClear by the shift amount. 942 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 943 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 944 return false; 945 uint64_t ShiftAmt = Amt->getZExtValue(); 946 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 947 return true; 948 } 949 return false; 950 case Instruction::LShr: 951 // We can promote lshr(x, cst) if we can promote x. This requires the 952 // ultimate 'and' to clear out the high zero bits we're clearing out though. 953 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 954 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 955 return false; 956 BitsToClear += Amt->getZExtValue(); 957 if (BitsToClear > V->getType()->getScalarSizeInBits()) 958 BitsToClear = V->getType()->getScalarSizeInBits(); 959 return true; 960 } 961 // Cannot promote variable LSHR. 962 return false; 963 case Instruction::Select: 964 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 965 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 966 // TODO: If important, we could handle the case when the BitsToClear are 967 // known zero in the disagreeing side. 968 Tmp != BitsToClear) 969 return false; 970 return true; 971 972 case Instruction::PHI: { 973 // We can change a phi if we can change all operands. Note that we never 974 // get into trouble with cyclic PHIs here because we only consider 975 // instructions with a single use. 976 PHINode *PN = cast<PHINode>(I); 977 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 978 return false; 979 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 980 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 981 // TODO: If important, we could handle the case when the BitsToClear 982 // are known zero in the disagreeing input. 983 Tmp != BitsToClear) 984 return false; 985 return true; 986 } 987 default: 988 // TODO: Can handle more cases here. 989 return false; 990 } 991 } 992 993 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 994 // If this zero extend is only used by a truncate, let the truncate be 995 // eliminated before we try to optimize this zext. 996 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 997 return nullptr; 998 999 // If one of the common conversion will work, do it. 1000 if (Instruction *Result = commonCastTransforms(CI)) 1001 return Result; 1002 1003 Value *Src = CI.getOperand(0); 1004 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1005 1006 // Attempt to extend the entire input expression tree to the destination 1007 // type. Only do this if the dest type is a simple type, don't convert the 1008 // expression tree to something weird like i93 unless the source is also 1009 // strange. 1010 unsigned BitsToClear; 1011 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1012 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1013 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1014 "Can't clear more bits than in SrcTy"); 1015 1016 // Okay, we can transform this! Insert the new expression now. 1017 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1018 " to avoid zero extend: " << CI << '\n'); 1019 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1020 assert(Res->getType() == DestTy); 1021 1022 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1023 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1024 1025 // If the high bits are already filled with zeros, just replace this 1026 // cast with the result. 1027 if (MaskedValueIsZero(Res, 1028 APInt::getHighBitsSet(DestBitSize, 1029 DestBitSize-SrcBitsKept), 1030 0, &CI)) 1031 return replaceInstUsesWith(CI, Res); 1032 1033 // We need to emit an AND to clear the high bits. 1034 Constant *C = ConstantInt::get(Res->getType(), 1035 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1036 return BinaryOperator::CreateAnd(Res, C); 1037 } 1038 1039 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1040 // types and if the sizes are just right we can convert this into a logical 1041 // 'and' which will be much cheaper than the pair of casts. 1042 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1043 // TODO: Subsume this into EvaluateInDifferentType. 1044 1045 // Get the sizes of the types involved. We know that the intermediate type 1046 // will be smaller than A or C, but don't know the relation between A and C. 1047 Value *A = CSrc->getOperand(0); 1048 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1049 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1050 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1051 // If we're actually extending zero bits, then if 1052 // SrcSize < DstSize: zext(a & mask) 1053 // SrcSize == DstSize: a & mask 1054 // SrcSize > DstSize: trunc(a) & mask 1055 if (SrcSize < DstSize) { 1056 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1057 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1058 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1059 return new ZExtInst(And, CI.getType()); 1060 } 1061 1062 if (SrcSize == DstSize) { 1063 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1064 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1065 AndValue)); 1066 } 1067 if (SrcSize > DstSize) { 1068 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1069 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1070 return BinaryOperator::CreateAnd(Trunc, 1071 ConstantInt::get(Trunc->getType(), 1072 AndValue)); 1073 } 1074 } 1075 1076 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1077 return transformZExtICmp(ICI, CI); 1078 1079 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1080 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1081 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1082 // of the (zext icmp) can be eliminated. If so, immediately perform the 1083 // according elimination. 1084 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1085 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1086 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1087 (transformZExtICmp(LHS, CI, false) || 1088 transformZExtICmp(RHS, CI, false))) { 1089 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1090 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1091 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1092 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1093 1094 // Perform the elimination. 1095 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1096 transformZExtICmp(LHS, *LZExt); 1097 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1098 transformZExtICmp(RHS, *RZExt); 1099 1100 return Or; 1101 } 1102 } 1103 1104 // zext(trunc(X) & C) -> (X & zext(C)). 1105 Constant *C; 1106 Value *X; 1107 if (SrcI && 1108 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1109 X->getType() == CI.getType()) 1110 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1111 1112 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1113 Value *And; 1114 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1115 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1116 X->getType() == CI.getType()) { 1117 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1118 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1119 } 1120 1121 return nullptr; 1122 } 1123 1124 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1125 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1126 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1127 ICmpInst::Predicate Pred = ICI->getPredicate(); 1128 1129 // Don't bother if Op1 isn't of vector or integer type. 1130 if (!Op1->getType()->isIntOrIntVectorTy()) 1131 return nullptr; 1132 1133 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1134 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1135 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1136 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1137 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1138 1139 Value *Sh = ConstantInt::get(Op0->getType(), 1140 Op0->getType()->getScalarSizeInBits()-1); 1141 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1142 if (In->getType() != CI.getType()) 1143 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1144 1145 if (Pred == ICmpInst::ICMP_SGT) 1146 In = Builder.CreateNot(In, In->getName() + ".not"); 1147 return replaceInstUsesWith(CI, In); 1148 } 1149 } 1150 1151 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1152 // If we know that only one bit of the LHS of the icmp can be set and we 1153 // have an equality comparison with zero or a power of 2, we can transform 1154 // the icmp and sext into bitwise/integer operations. 1155 if (ICI->hasOneUse() && 1156 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1157 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1158 1159 APInt KnownZeroMask(~Known.Zero); 1160 if (KnownZeroMask.isPowerOf2()) { 1161 Value *In = ICI->getOperand(0); 1162 1163 // If the icmp tests for a known zero bit we can constant fold it. 1164 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1165 Value *V = Pred == ICmpInst::ICMP_NE ? 1166 ConstantInt::getAllOnesValue(CI.getType()) : 1167 ConstantInt::getNullValue(CI.getType()); 1168 return replaceInstUsesWith(CI, V); 1169 } 1170 1171 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1172 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1173 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1174 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1175 // Perform a right shift to place the desired bit in the LSB. 1176 if (ShiftAmt) 1177 In = Builder.CreateLShr(In, 1178 ConstantInt::get(In->getType(), ShiftAmt)); 1179 1180 // At this point "In" is either 1 or 0. Subtract 1 to turn 1181 // {1, 0} -> {0, -1}. 1182 In = Builder.CreateAdd(In, 1183 ConstantInt::getAllOnesValue(In->getType()), 1184 "sext"); 1185 } else { 1186 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1187 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1188 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1189 // Perform a left shift to place the desired bit in the MSB. 1190 if (ShiftAmt) 1191 In = Builder.CreateShl(In, 1192 ConstantInt::get(In->getType(), ShiftAmt)); 1193 1194 // Distribute the bit over the whole bit width. 1195 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1196 KnownZeroMask.getBitWidth() - 1), "sext"); 1197 } 1198 1199 if (CI.getType() == In->getType()) 1200 return replaceInstUsesWith(CI, In); 1201 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1202 } 1203 } 1204 } 1205 1206 return nullptr; 1207 } 1208 1209 /// Return true if we can take the specified value and return it as type Ty 1210 /// without inserting any new casts and without changing the value of the common 1211 /// low bits. This is used by code that tries to promote integer operations to 1212 /// a wider types will allow us to eliminate the extension. 1213 /// 1214 /// This function works on both vectors and scalars. 1215 /// 1216 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1217 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1218 "Can't sign extend type to a smaller type"); 1219 // If this is a constant, it can be trivially promoted. 1220 if (isa<Constant>(V)) 1221 return true; 1222 1223 Instruction *I = dyn_cast<Instruction>(V); 1224 if (!I) return false; 1225 1226 // If this is a truncate from the dest type, we can trivially eliminate it. 1227 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1228 return true; 1229 1230 // We can't extend or shrink something that has multiple uses: doing so would 1231 // require duplicating the instruction in general, which isn't profitable. 1232 if (!I->hasOneUse()) return false; 1233 1234 switch (I->getOpcode()) { 1235 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1236 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1237 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1238 return true; 1239 case Instruction::And: 1240 case Instruction::Or: 1241 case Instruction::Xor: 1242 case Instruction::Add: 1243 case Instruction::Sub: 1244 case Instruction::Mul: 1245 // These operators can all arbitrarily be extended if their inputs can. 1246 return canEvaluateSExtd(I->getOperand(0), Ty) && 1247 canEvaluateSExtd(I->getOperand(1), Ty); 1248 1249 //case Instruction::Shl: TODO 1250 //case Instruction::LShr: TODO 1251 1252 case Instruction::Select: 1253 return canEvaluateSExtd(I->getOperand(1), Ty) && 1254 canEvaluateSExtd(I->getOperand(2), Ty); 1255 1256 case Instruction::PHI: { 1257 // We can change a phi if we can change all operands. Note that we never 1258 // get into trouble with cyclic PHIs here because we only consider 1259 // instructions with a single use. 1260 PHINode *PN = cast<PHINode>(I); 1261 for (Value *IncValue : PN->incoming_values()) 1262 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1263 return true; 1264 } 1265 default: 1266 // TODO: Can handle more cases here. 1267 break; 1268 } 1269 1270 return false; 1271 } 1272 1273 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1274 // If this sign extend is only used by a truncate, let the truncate be 1275 // eliminated before we try to optimize this sext. 1276 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1277 return nullptr; 1278 1279 if (Instruction *I = commonCastTransforms(CI)) 1280 return I; 1281 1282 Value *Src = CI.getOperand(0); 1283 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1284 1285 // If we know that the value being extended is positive, we can use a zext 1286 // instead. 1287 KnownBits Known = computeKnownBits(Src, 0, &CI); 1288 if (Known.isNonNegative()) { 1289 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1290 return replaceInstUsesWith(CI, ZExt); 1291 } 1292 1293 // Attempt to extend the entire input expression tree to the destination 1294 // type. Only do this if the dest type is a simple type, don't convert the 1295 // expression tree to something weird like i93 unless the source is also 1296 // strange. 1297 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1298 canEvaluateSExtd(Src, DestTy)) { 1299 // Okay, we can transform this! Insert the new expression now. 1300 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1301 " to avoid sign extend: " << CI << '\n'); 1302 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1303 assert(Res->getType() == DestTy); 1304 1305 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1306 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1307 1308 // If the high bits are already filled with sign bit, just replace this 1309 // cast with the result. 1310 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1311 return replaceInstUsesWith(CI, Res); 1312 1313 // We need to emit a shl + ashr to do the sign extend. 1314 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1315 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1316 ShAmt); 1317 } 1318 1319 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1320 // into shifts. 1321 Value *X; 1322 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1323 // sext(trunc(X)) --> ashr(shl(X, C), C) 1324 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1325 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1326 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1327 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1328 } 1329 1330 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1331 return transformSExtICmp(ICI, CI); 1332 1333 // If the input is a shl/ashr pair of a same constant, then this is a sign 1334 // extension from a smaller value. If we could trust arbitrary bitwidth 1335 // integers, we could turn this into a truncate to the smaller bit and then 1336 // use a sext for the whole extension. Since we don't, look deeper and check 1337 // for a truncate. If the source and dest are the same type, eliminate the 1338 // trunc and extend and just do shifts. For example, turn: 1339 // %a = trunc i32 %i to i8 1340 // %b = shl i8 %a, 6 1341 // %c = ashr i8 %b, 6 1342 // %d = sext i8 %c to i32 1343 // into: 1344 // %a = shl i32 %i, 30 1345 // %d = ashr i32 %a, 30 1346 Value *A = nullptr; 1347 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1348 ConstantInt *BA = nullptr, *CA = nullptr; 1349 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1350 m_ConstantInt(CA))) && 1351 BA == CA && A->getType() == CI.getType()) { 1352 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1353 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1354 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1355 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1356 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1357 return BinaryOperator::CreateAShr(A, ShAmtV); 1358 } 1359 1360 return nullptr; 1361 } 1362 1363 1364 /// Return a Constant* for the specified floating-point constant if it fits 1365 /// in the specified FP type without changing its value. 1366 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1367 bool losesInfo; 1368 APFloat F = CFP->getValueAPF(); 1369 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1370 if (!losesInfo) 1371 return ConstantFP::get(CFP->getContext(), F); 1372 return nullptr; 1373 } 1374 1375 /// Look through floating-point extensions until we get the source value. 1376 static Value *lookThroughFPExtensions(Value *V) { 1377 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1378 V = FPExt->getOperand(0); 1379 1380 // If this value is a constant, return the constant in the smallest FP type 1381 // that can accurately represent it. This allows us to turn 1382 // (float)((double)X+2.0) into x+2.0f. 1383 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1384 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1385 return V; // No constant folding of this. 1386 // See if the value can be truncated to half and then reextended. 1387 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1388 return V; 1389 // See if the value can be truncated to float and then reextended. 1390 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1391 return V; 1392 if (CFP->getType()->isDoubleTy()) 1393 return V; // Won't shrink. 1394 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1395 return V; 1396 // Don't try to shrink to various long double types. 1397 } 1398 1399 return V; 1400 } 1401 1402 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1403 if (Instruction *I = commonCastTransforms(CI)) 1404 return I; 1405 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1406 // simplify this expression to avoid one or more of the trunc/extend 1407 // operations if we can do so without changing the numerical results. 1408 // 1409 // The exact manner in which the widths of the operands interact to limit 1410 // what we can and cannot do safely varies from operation to operation, and 1411 // is explained below in the various case statements. 1412 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1413 if (OpI && OpI->hasOneUse()) { 1414 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1415 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1416 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1417 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1418 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1419 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1420 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1421 switch (OpI->getOpcode()) { 1422 default: break; 1423 case Instruction::FAdd: 1424 case Instruction::FSub: 1425 // For addition and subtraction, the infinitely precise result can 1426 // essentially be arbitrarily wide; proving that double rounding 1427 // will not occur because the result of OpI is exact (as we will for 1428 // FMul, for example) is hopeless. However, we *can* nonetheless 1429 // frequently know that double rounding cannot occur (or that it is 1430 // innocuous) by taking advantage of the specific structure of 1431 // infinitely-precise results that admit double rounding. 1432 // 1433 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1434 // to represent both sources, we can guarantee that the double 1435 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1436 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1437 // for proof of this fact). 1438 // 1439 // Note: Figueroa does not consider the case where DstFormat != 1440 // SrcFormat. It's possible (likely even!) that this analysis 1441 // could be tightened for those cases, but they are rare (the main 1442 // case of interest here is (float)((double)float + float)). 1443 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1444 if (LHSOrig->getType() != CI.getType()) 1445 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1446 if (RHSOrig->getType() != CI.getType()) 1447 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1448 Instruction *RI = 1449 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1450 RI->copyFastMathFlags(OpI); 1451 return RI; 1452 } 1453 break; 1454 case Instruction::FMul: 1455 // For multiplication, the infinitely precise result has at most 1456 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1457 // that such a value can be exactly represented, then no double 1458 // rounding can possibly occur; we can safely perform the operation 1459 // in the destination format if it can represent both sources. 1460 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1461 if (LHSOrig->getType() != CI.getType()) 1462 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1463 if (RHSOrig->getType() != CI.getType()) 1464 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1465 Instruction *RI = 1466 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1467 RI->copyFastMathFlags(OpI); 1468 return RI; 1469 } 1470 break; 1471 case Instruction::FDiv: 1472 // For division, we use again use the bound from Figueroa's 1473 // dissertation. I am entirely certain that this bound can be 1474 // tightened in the unbalanced operand case by an analysis based on 1475 // the diophantine rational approximation bound, but the well-known 1476 // condition used here is a good conservative first pass. 1477 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1478 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1479 if (LHSOrig->getType() != CI.getType()) 1480 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1481 if (RHSOrig->getType() != CI.getType()) 1482 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1483 Instruction *RI = 1484 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1485 RI->copyFastMathFlags(OpI); 1486 return RI; 1487 } 1488 break; 1489 case Instruction::FRem: 1490 // Remainder is straightforward. Remainder is always exact, so the 1491 // type of OpI doesn't enter into things at all. We simply evaluate 1492 // in whichever source type is larger, then convert to the 1493 // destination type. 1494 if (SrcWidth == OpWidth) 1495 break; 1496 if (LHSWidth < SrcWidth) 1497 LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType()); 1498 else if (RHSWidth <= SrcWidth) 1499 RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType()); 1500 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1501 Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig); 1502 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1503 RI->copyFastMathFlags(OpI); 1504 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1505 } 1506 } 1507 1508 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1509 if (BinaryOperator::isFNeg(OpI)) { 1510 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), 1511 CI.getType()); 1512 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1513 RI->copyFastMathFlags(OpI); 1514 return RI; 1515 } 1516 } 1517 1518 // (fptrunc (select cond, R1, Cst)) --> 1519 // (select cond, (fptrunc R1), (fptrunc Cst)) 1520 // 1521 // - but only if this isn't part of a min/max operation, else we'll 1522 // ruin min/max canonical form which is to have the select and 1523 // compare's operands be of the same type with no casts to look through. 1524 Value *LHS, *RHS; 1525 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1526 if (SI && 1527 (isa<ConstantFP>(SI->getOperand(1)) || 1528 isa<ConstantFP>(SI->getOperand(2))) && 1529 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1530 Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType()); 1531 Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType()); 1532 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1533 } 1534 1535 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1536 if (II) { 1537 switch (II->getIntrinsicID()) { 1538 default: break; 1539 case Intrinsic::fabs: 1540 case Intrinsic::ceil: 1541 case Intrinsic::floor: 1542 case Intrinsic::rint: 1543 case Intrinsic::round: 1544 case Intrinsic::nearbyint: 1545 case Intrinsic::trunc: { 1546 Value *Src = II->getArgOperand(0); 1547 if (!Src->hasOneUse()) 1548 break; 1549 1550 // Except for fabs, this transformation requires the input of the unary FP 1551 // operation to be itself an fpext from the type to which we're 1552 // truncating. 1553 if (II->getIntrinsicID() != Intrinsic::fabs) { 1554 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1555 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1556 break; 1557 } 1558 1559 // Do unary FP operation on smaller type. 1560 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1561 Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType()); 1562 Type *IntrinsicType[] = { CI.getType() }; 1563 Function *Overload = Intrinsic::getDeclaration( 1564 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1565 1566 SmallVector<OperandBundleDef, 1> OpBundles; 1567 II->getOperandBundlesAsDefs(OpBundles); 1568 1569 Value *Args[] = { InnerTrunc }; 1570 CallInst *NewCI = CallInst::Create(Overload, Args, 1571 OpBundles, II->getName()); 1572 NewCI->copyFastMathFlags(II); 1573 return NewCI; 1574 } 1575 } 1576 } 1577 1578 if (Instruction *I = shrinkInsertElt(CI, Builder)) 1579 return I; 1580 1581 return nullptr; 1582 } 1583 1584 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1585 return commonCastTransforms(CI); 1586 } 1587 1588 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1589 // This is safe if the intermediate type has enough bits in its mantissa to 1590 // accurately represent all values of X. For example, this won't work with 1591 // i64 -> float -> i64. 1592 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1593 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1594 return nullptr; 1595 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1596 1597 Value *SrcI = OpI->getOperand(0); 1598 Type *FITy = FI.getType(); 1599 Type *OpITy = OpI->getType(); 1600 Type *SrcTy = SrcI->getType(); 1601 bool IsInputSigned = isa<SIToFPInst>(OpI); 1602 bool IsOutputSigned = isa<FPToSIInst>(FI); 1603 1604 // We can safely assume the conversion won't overflow the output range, 1605 // because (for example) (uint8_t)18293.f is undefined behavior. 1606 1607 // Since we can assume the conversion won't overflow, our decision as to 1608 // whether the input will fit in the float should depend on the minimum 1609 // of the input range and output range. 1610 1611 // This means this is also safe for a signed input and unsigned output, since 1612 // a negative input would lead to undefined behavior. 1613 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1614 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1615 int ActualSize = std::min(InputSize, OutputSize); 1616 1617 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1618 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1619 if (IsInputSigned && IsOutputSigned) 1620 return new SExtInst(SrcI, FITy); 1621 return new ZExtInst(SrcI, FITy); 1622 } 1623 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1624 return new TruncInst(SrcI, FITy); 1625 if (SrcTy == FITy) 1626 return replaceInstUsesWith(FI, SrcI); 1627 return new BitCastInst(SrcI, FITy); 1628 } 1629 return nullptr; 1630 } 1631 1632 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1633 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1634 if (!OpI) 1635 return commonCastTransforms(FI); 1636 1637 if (Instruction *I = FoldItoFPtoI(FI)) 1638 return I; 1639 1640 return commonCastTransforms(FI); 1641 } 1642 1643 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1644 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1645 if (!OpI) 1646 return commonCastTransforms(FI); 1647 1648 if (Instruction *I = FoldItoFPtoI(FI)) 1649 return I; 1650 1651 return commonCastTransforms(FI); 1652 } 1653 1654 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1655 return commonCastTransforms(CI); 1656 } 1657 1658 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1659 return commonCastTransforms(CI); 1660 } 1661 1662 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1663 // If the source integer type is not the intptr_t type for this target, do a 1664 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1665 // cast to be exposed to other transforms. 1666 unsigned AS = CI.getAddressSpace(); 1667 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1668 DL.getPointerSizeInBits(AS)) { 1669 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1670 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1671 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1672 1673 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1674 return new IntToPtrInst(P, CI.getType()); 1675 } 1676 1677 if (Instruction *I = commonCastTransforms(CI)) 1678 return I; 1679 1680 return nullptr; 1681 } 1682 1683 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1684 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1685 Value *Src = CI.getOperand(0); 1686 1687 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1688 // If casting the result of a getelementptr instruction with no offset, turn 1689 // this into a cast of the original pointer! 1690 if (GEP->hasAllZeroIndices() && 1691 // If CI is an addrspacecast and GEP changes the poiner type, merging 1692 // GEP into CI would undo canonicalizing addrspacecast with different 1693 // pointer types, causing infinite loops. 1694 (!isa<AddrSpaceCastInst>(CI) || 1695 GEP->getType() == GEP->getPointerOperandType())) { 1696 // Changing the cast operand is usually not a good idea but it is safe 1697 // here because the pointer operand is being replaced with another 1698 // pointer operand so the opcode doesn't need to change. 1699 Worklist.Add(GEP); 1700 CI.setOperand(0, GEP->getOperand(0)); 1701 return &CI; 1702 } 1703 } 1704 1705 return commonCastTransforms(CI); 1706 } 1707 1708 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1709 // If the destination integer type is not the intptr_t type for this target, 1710 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1711 // to be exposed to other transforms. 1712 1713 Type *Ty = CI.getType(); 1714 unsigned AS = CI.getPointerAddressSpace(); 1715 1716 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1717 return commonPointerCastTransforms(CI); 1718 1719 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1720 if (Ty->isVectorTy()) // Handle vectors of pointers. 1721 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1722 1723 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1724 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1725 } 1726 1727 /// This input value (which is known to have vector type) is being zero extended 1728 /// or truncated to the specified vector type. 1729 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1730 /// 1731 /// The source and destination vector types may have different element types. 1732 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1733 InstCombiner &IC) { 1734 // We can only do this optimization if the output is a multiple of the input 1735 // element size, or the input is a multiple of the output element size. 1736 // Convert the input type to have the same element type as the output. 1737 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1738 1739 if (SrcTy->getElementType() != DestTy->getElementType()) { 1740 // The input types don't need to be identical, but for now they must be the 1741 // same size. There is no specific reason we couldn't handle things like 1742 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1743 // there yet. 1744 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1745 DestTy->getElementType()->getPrimitiveSizeInBits()) 1746 return nullptr; 1747 1748 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1749 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1750 } 1751 1752 // Now that the element types match, get the shuffle mask and RHS of the 1753 // shuffle to use, which depends on whether we're increasing or decreasing the 1754 // size of the input. 1755 SmallVector<uint32_t, 16> ShuffleMask; 1756 Value *V2; 1757 1758 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1759 // If we're shrinking the number of elements, just shuffle in the low 1760 // elements from the input and use undef as the second shuffle input. 1761 V2 = UndefValue::get(SrcTy); 1762 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1763 ShuffleMask.push_back(i); 1764 1765 } else { 1766 // If we're increasing the number of elements, shuffle in all of the 1767 // elements from InVal and fill the rest of the result elements with zeros 1768 // from a constant zero. 1769 V2 = Constant::getNullValue(SrcTy); 1770 unsigned SrcElts = SrcTy->getNumElements(); 1771 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1772 ShuffleMask.push_back(i); 1773 1774 // The excess elements reference the first element of the zero input. 1775 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1776 ShuffleMask.push_back(SrcElts); 1777 } 1778 1779 return new ShuffleVectorInst(InVal, V2, 1780 ConstantDataVector::get(V2->getContext(), 1781 ShuffleMask)); 1782 } 1783 1784 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1785 return Value % Ty->getPrimitiveSizeInBits() == 0; 1786 } 1787 1788 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1789 return Value / Ty->getPrimitiveSizeInBits(); 1790 } 1791 1792 /// V is a value which is inserted into a vector of VecEltTy. 1793 /// Look through the value to see if we can decompose it into 1794 /// insertions into the vector. See the example in the comment for 1795 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1796 /// The type of V is always a non-zero multiple of VecEltTy's size. 1797 /// Shift is the number of bits between the lsb of V and the lsb of 1798 /// the vector. 1799 /// 1800 /// This returns false if the pattern can't be matched or true if it can, 1801 /// filling in Elements with the elements found here. 1802 static bool collectInsertionElements(Value *V, unsigned Shift, 1803 SmallVectorImpl<Value *> &Elements, 1804 Type *VecEltTy, bool isBigEndian) { 1805 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1806 "Shift should be a multiple of the element type size"); 1807 1808 // Undef values never contribute useful bits to the result. 1809 if (isa<UndefValue>(V)) return true; 1810 1811 // If we got down to a value of the right type, we win, try inserting into the 1812 // right element. 1813 if (V->getType() == VecEltTy) { 1814 // Inserting null doesn't actually insert any elements. 1815 if (Constant *C = dyn_cast<Constant>(V)) 1816 if (C->isNullValue()) 1817 return true; 1818 1819 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1820 if (isBigEndian) 1821 ElementIndex = Elements.size() - ElementIndex - 1; 1822 1823 // Fail if multiple elements are inserted into this slot. 1824 if (Elements[ElementIndex]) 1825 return false; 1826 1827 Elements[ElementIndex] = V; 1828 return true; 1829 } 1830 1831 if (Constant *C = dyn_cast<Constant>(V)) { 1832 // Figure out the # elements this provides, and bitcast it or slice it up 1833 // as required. 1834 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1835 VecEltTy); 1836 // If the constant is the size of a vector element, we just need to bitcast 1837 // it to the right type so it gets properly inserted. 1838 if (NumElts == 1) 1839 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1840 Shift, Elements, VecEltTy, isBigEndian); 1841 1842 // Okay, this is a constant that covers multiple elements. Slice it up into 1843 // pieces and insert each element-sized piece into the vector. 1844 if (!isa<IntegerType>(C->getType())) 1845 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1846 C->getType()->getPrimitiveSizeInBits())); 1847 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1848 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1849 1850 for (unsigned i = 0; i != NumElts; ++i) { 1851 unsigned ShiftI = Shift+i*ElementSize; 1852 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1853 ShiftI)); 1854 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1855 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1856 isBigEndian)) 1857 return false; 1858 } 1859 return true; 1860 } 1861 1862 if (!V->hasOneUse()) return false; 1863 1864 Instruction *I = dyn_cast<Instruction>(V); 1865 if (!I) return false; 1866 switch (I->getOpcode()) { 1867 default: return false; // Unhandled case. 1868 case Instruction::BitCast: 1869 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1870 isBigEndian); 1871 case Instruction::ZExt: 1872 if (!isMultipleOfTypeSize( 1873 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1874 VecEltTy)) 1875 return false; 1876 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1877 isBigEndian); 1878 case Instruction::Or: 1879 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1880 isBigEndian) && 1881 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1882 isBigEndian); 1883 case Instruction::Shl: { 1884 // Must be shifting by a constant that is a multiple of the element size. 1885 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1886 if (!CI) return false; 1887 Shift += CI->getZExtValue(); 1888 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1889 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1890 isBigEndian); 1891 } 1892 1893 } 1894 } 1895 1896 1897 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1898 /// assemble the elements of the vector manually. 1899 /// Try to rip the code out and replace it with insertelements. This is to 1900 /// optimize code like this: 1901 /// 1902 /// %tmp37 = bitcast float %inc to i32 1903 /// %tmp38 = zext i32 %tmp37 to i64 1904 /// %tmp31 = bitcast float %inc5 to i32 1905 /// %tmp32 = zext i32 %tmp31 to i64 1906 /// %tmp33 = shl i64 %tmp32, 32 1907 /// %ins35 = or i64 %tmp33, %tmp38 1908 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1909 /// 1910 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1911 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1912 InstCombiner &IC) { 1913 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1914 Value *IntInput = CI.getOperand(0); 1915 1916 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1917 if (!collectInsertionElements(IntInput, 0, Elements, 1918 DestVecTy->getElementType(), 1919 IC.getDataLayout().isBigEndian())) 1920 return nullptr; 1921 1922 // If we succeeded, we know that all of the element are specified by Elements 1923 // or are zero if Elements has a null entry. Recast this as a set of 1924 // insertions. 1925 Value *Result = Constant::getNullValue(CI.getType()); 1926 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1927 if (!Elements[i]) continue; // Unset element. 1928 1929 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1930 IC.Builder.getInt32(i)); 1931 } 1932 1933 return Result; 1934 } 1935 1936 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1937 /// vector followed by extract element. The backend tends to handle bitcasts of 1938 /// vectors better than bitcasts of scalars because vector registers are 1939 /// usually not type-specific like scalar integer or scalar floating-point. 1940 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1941 InstCombiner &IC) { 1942 // TODO: Create and use a pattern matcher for ExtractElementInst. 1943 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1944 if (!ExtElt || !ExtElt->hasOneUse()) 1945 return nullptr; 1946 1947 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1948 // type to extract from. 1949 Type *DestType = BitCast.getType(); 1950 if (!VectorType::isValidElementType(DestType)) 1951 return nullptr; 1952 1953 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1954 auto *NewVecType = VectorType::get(DestType, NumElts); 1955 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 1956 NewVecType, "bc"); 1957 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1958 } 1959 1960 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1961 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1962 InstCombiner::BuilderTy &Builder) { 1963 Type *DestTy = BitCast.getType(); 1964 BinaryOperator *BO; 1965 if (!DestTy->isIntOrIntVectorTy() || 1966 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 1967 !BO->isBitwiseLogicOp()) 1968 return nullptr; 1969 1970 // FIXME: This transform is restricted to vector types to avoid backend 1971 // problems caused by creating potentially illegal operations. If a fix-up is 1972 // added to handle that situation, we can remove this check. 1973 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 1974 return nullptr; 1975 1976 Value *X; 1977 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 1978 X->getType() == DestTy && !isa<Constant>(X)) { 1979 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 1980 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 1981 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 1982 } 1983 1984 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 1985 X->getType() == DestTy && !isa<Constant>(X)) { 1986 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 1987 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1988 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 1989 } 1990 1991 // Canonicalize vector bitcasts to come before vector bitwise logic with a 1992 // constant. This eases recognition of special constants for later ops. 1993 // Example: 1994 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 1995 Constant *C; 1996 if (match(BO->getOperand(1), m_Constant(C))) { 1997 // bitcast (logic X, C) --> logic (bitcast X, C') 1998 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1999 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2000 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2001 } 2002 2003 return nullptr; 2004 } 2005 2006 /// Change the type of a select if we can eliminate a bitcast. 2007 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2008 InstCombiner::BuilderTy &Builder) { 2009 Value *Cond, *TVal, *FVal; 2010 if (!match(BitCast.getOperand(0), 2011 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2012 return nullptr; 2013 2014 // A vector select must maintain the same number of elements in its operands. 2015 Type *CondTy = Cond->getType(); 2016 Type *DestTy = BitCast.getType(); 2017 if (CondTy->isVectorTy()) { 2018 if (!DestTy->isVectorTy()) 2019 return nullptr; 2020 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2021 return nullptr; 2022 } 2023 2024 // FIXME: This transform is restricted from changing the select between 2025 // scalars and vectors to avoid backend problems caused by creating 2026 // potentially illegal operations. If a fix-up is added to handle that 2027 // situation, we can remove this check. 2028 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2029 return nullptr; 2030 2031 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2032 Value *X; 2033 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2034 !isa<Constant>(X)) { 2035 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2036 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2037 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2038 } 2039 2040 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2041 !isa<Constant>(X)) { 2042 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2043 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2044 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2045 } 2046 2047 return nullptr; 2048 } 2049 2050 /// Check if all users of CI are StoreInsts. 2051 static bool hasStoreUsersOnly(CastInst &CI) { 2052 for (User *U : CI.users()) { 2053 if (!isa<StoreInst>(U)) 2054 return false; 2055 } 2056 return true; 2057 } 2058 2059 /// This function handles following case 2060 /// 2061 /// A -> B cast 2062 /// PHI 2063 /// B -> A cast 2064 /// 2065 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2066 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2067 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2068 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2069 if (hasStoreUsersOnly(CI)) 2070 return nullptr; 2071 2072 Value *Src = CI.getOperand(0); 2073 Type *SrcTy = Src->getType(); // Type B 2074 Type *DestTy = CI.getType(); // Type A 2075 2076 SmallVector<PHINode *, 4> PhiWorklist; 2077 SmallSetVector<PHINode *, 4> OldPhiNodes; 2078 2079 // Find all of the A->B casts and PHI nodes. 2080 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2081 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2082 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2083 PhiWorklist.push_back(PN); 2084 OldPhiNodes.insert(PN); 2085 while (!PhiWorklist.empty()) { 2086 auto *OldPN = PhiWorklist.pop_back_val(); 2087 for (Value *IncValue : OldPN->incoming_values()) { 2088 if (isa<Constant>(IncValue)) 2089 continue; 2090 2091 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2092 // If there is a sequence of one or more load instructions, each loaded 2093 // value is used as address of later load instruction, bitcast is 2094 // necessary to change the value type, don't optimize it. For 2095 // simplicity we give up if the load address comes from another load. 2096 Value *Addr = LI->getOperand(0); 2097 if (Addr == &CI || isa<LoadInst>(Addr)) 2098 return nullptr; 2099 if (LI->hasOneUse() && LI->isSimple()) 2100 continue; 2101 // If a LoadInst has more than one use, changing the type of loaded 2102 // value may create another bitcast. 2103 return nullptr; 2104 } 2105 2106 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2107 if (OldPhiNodes.insert(PNode)) 2108 PhiWorklist.push_back(PNode); 2109 continue; 2110 } 2111 2112 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2113 // We can't handle other instructions. 2114 if (!BCI) 2115 return nullptr; 2116 2117 // Verify it's a A->B cast. 2118 Type *TyA = BCI->getOperand(0)->getType(); 2119 Type *TyB = BCI->getType(); 2120 if (TyA != DestTy || TyB != SrcTy) 2121 return nullptr; 2122 } 2123 } 2124 2125 // For each old PHI node, create a corresponding new PHI node with a type A. 2126 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2127 for (auto *OldPN : OldPhiNodes) { 2128 Builder.SetInsertPoint(OldPN); 2129 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2130 NewPNodes[OldPN] = NewPN; 2131 } 2132 2133 // Fill in the operands of new PHI nodes. 2134 for (auto *OldPN : OldPhiNodes) { 2135 PHINode *NewPN = NewPNodes[OldPN]; 2136 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2137 Value *V = OldPN->getOperand(j); 2138 Value *NewV = nullptr; 2139 if (auto *C = dyn_cast<Constant>(V)) { 2140 NewV = ConstantExpr::getBitCast(C, DestTy); 2141 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2142 Builder.SetInsertPoint(LI->getNextNode()); 2143 NewV = Builder.CreateBitCast(LI, DestTy); 2144 Worklist.Add(LI); 2145 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2146 NewV = BCI->getOperand(0); 2147 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2148 NewV = NewPNodes[PrevPN]; 2149 } 2150 assert(NewV); 2151 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2152 } 2153 } 2154 2155 // If there is a store with type B, change it to type A. 2156 for (User *U : PN->users()) { 2157 auto *SI = dyn_cast<StoreInst>(U); 2158 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2159 Builder.SetInsertPoint(SI); 2160 auto *NewBC = 2161 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2162 SI->setOperand(0, NewBC); 2163 Worklist.Add(SI); 2164 assert(hasStoreUsersOnly(*NewBC)); 2165 } 2166 } 2167 2168 return replaceInstUsesWith(CI, NewPNodes[PN]); 2169 } 2170 2171 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2172 // If the operands are integer typed then apply the integer transforms, 2173 // otherwise just apply the common ones. 2174 Value *Src = CI.getOperand(0); 2175 Type *SrcTy = Src->getType(); 2176 Type *DestTy = CI.getType(); 2177 2178 // Get rid of casts from one type to the same type. These are useless and can 2179 // be replaced by the operand. 2180 if (DestTy == Src->getType()) 2181 return replaceInstUsesWith(CI, Src); 2182 2183 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2184 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2185 Type *DstElTy = DstPTy->getElementType(); 2186 Type *SrcElTy = SrcPTy->getElementType(); 2187 2188 // If we are casting a alloca to a pointer to a type of the same 2189 // size, rewrite the allocation instruction to allocate the "right" type. 2190 // There is no need to modify malloc calls because it is their bitcast that 2191 // needs to be cleaned up. 2192 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2193 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2194 return V; 2195 2196 // When the type pointed to is not sized the cast cannot be 2197 // turned into a gep. 2198 Type *PointeeType = 2199 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2200 if (!PointeeType->isSized()) 2201 return nullptr; 2202 2203 // If the source and destination are pointers, and this cast is equivalent 2204 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2205 // This can enhance SROA and other transforms that want type-safe pointers. 2206 unsigned NumZeros = 0; 2207 while (SrcElTy != DstElTy && 2208 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2209 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2210 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2211 ++NumZeros; 2212 } 2213 2214 // If we found a path from the src to dest, create the getelementptr now. 2215 if (SrcElTy == DstElTy) { 2216 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2217 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2218 } 2219 } 2220 2221 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2222 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2223 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2224 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2225 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2226 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2227 } 2228 2229 if (isa<IntegerType>(SrcTy)) { 2230 // If this is a cast from an integer to vector, check to see if the input 2231 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2232 // the casts with a shuffle and (potentially) a bitcast. 2233 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2234 CastInst *SrcCast = cast<CastInst>(Src); 2235 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2236 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2237 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2238 cast<VectorType>(DestTy), *this)) 2239 return I; 2240 } 2241 2242 // If the input is an 'or' instruction, we may be doing shifts and ors to 2243 // assemble the elements of the vector manually. Try to rip the code out 2244 // and replace it with insertelements. 2245 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2246 return replaceInstUsesWith(CI, V); 2247 } 2248 } 2249 2250 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2251 if (SrcVTy->getNumElements() == 1) { 2252 // If our destination is not a vector, then make this a straight 2253 // scalar-scalar cast. 2254 if (!DestTy->isVectorTy()) { 2255 Value *Elem = 2256 Builder.CreateExtractElement(Src, 2257 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2258 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2259 } 2260 2261 // Otherwise, see if our source is an insert. If so, then use the scalar 2262 // component directly. 2263 if (InsertElementInst *IEI = 2264 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2265 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2266 DestTy); 2267 } 2268 } 2269 2270 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2271 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2272 // a bitcast to a vector with the same # elts. 2273 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2274 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2275 SVI->getType()->getNumElements() == 2276 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2277 BitCastInst *Tmp; 2278 // If either of the operands is a cast from CI.getType(), then 2279 // evaluating the shuffle in the casted destination's type will allow 2280 // us to eliminate at least one cast. 2281 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2282 Tmp->getOperand(0)->getType() == DestTy) || 2283 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2284 Tmp->getOperand(0)->getType() == DestTy)) { 2285 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2286 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2287 // Return a new shuffle vector. Use the same element ID's, as we 2288 // know the vector types match #elts. 2289 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2290 } 2291 } 2292 } 2293 2294 // Handle the A->B->A cast, and there is an intervening PHI node. 2295 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2296 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2297 return I; 2298 2299 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2300 return I; 2301 2302 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2303 return I; 2304 2305 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2306 return I; 2307 2308 if (SrcTy->isPointerTy()) 2309 return commonPointerCastTransforms(CI); 2310 return commonCastTransforms(CI); 2311 } 2312 2313 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2314 // If the destination pointer element type is not the same as the source's 2315 // first do a bitcast to the destination type, and then the addrspacecast. 2316 // This allows the cast to be exposed to other transforms. 2317 Value *Src = CI.getOperand(0); 2318 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2319 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2320 2321 Type *DestElemTy = DestTy->getElementType(); 2322 if (SrcTy->getElementType() != DestElemTy) { 2323 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2324 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2325 // Handle vectors of pointers. 2326 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2327 } 2328 2329 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2330 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2331 } 2332 2333 return commonPointerCastTransforms(CI); 2334 } 2335