1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 191 break; 192 } 193 case Instruction::Trunc: 194 case Instruction::ZExt: 195 case Instruction::SExt: 196 // If the source type of the cast is the type we're trying for then we can 197 // just return the source. There's no need to insert it because it is not 198 // new. 199 if (I->getOperand(0)->getType() == Ty) 200 return I->getOperand(0); 201 202 // Otherwise, must be the same type of cast, so just reinsert a new one. 203 // This also handles the case of zext(trunc(x)) -> zext(x). 204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 205 Opc == Instruction::SExt); 206 break; 207 case Instruction::Select: { 208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 210 Res = SelectInst::Create(I->getOperand(0), True, False); 211 break; 212 } 213 case Instruction::PHI: { 214 PHINode *OPN = cast<PHINode>(I); 215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 217 Value *V = 218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 234 const CastInst *CI2) { 235 Type *SrcTy = CI1->getSrcTy(); 236 Type *MidTy = CI1->getDestTy(); 237 Type *DstTy = CI2->getDestTy(); 238 239 Instruction::CastOps firstOp = CI1->getOpcode(); 240 Instruction::CastOps secondOp = CI2->getOpcode(); 241 Type *SrcIntPtrTy = 242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 243 Type *MidIntPtrTy = 244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 245 Type *DstIntPtrTy = 246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 248 DstTy, SrcIntPtrTy, MidIntPtrTy, 249 DstIntPtrTy); 250 251 // We don't want to form an inttoptr or ptrtoint that converts to an integer 252 // type that differs from the pointer size. 253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 255 Res = 0; 256 257 return Instruction::CastOps(Res); 258 } 259 260 /// Implement the transforms common to all CastInst visitors. 261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 262 Value *Src = CI.getOperand(0); 263 264 // Try to eliminate a cast of a cast. 265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 267 // The first cast (CSrc) is eliminable so we need to fix up or replace 268 // the second cast (CI). CSrc will then have a good chance of being dead. 269 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 270 271 // If the eliminable cast has debug users, insert a debug value after the 272 // cast pointing to the new Value. 273 SmallVector<DbgInfoIntrinsic *, 1> CSrcDbgInsts; 274 findDbgUsers(CSrcDbgInsts, CSrc); 275 if (CSrcDbgInsts.size()) { 276 DIBuilder DIB(*CI.getModule()); 277 for (auto *DII : CSrcDbgInsts) 278 DIB.insertDbgValueIntrinsic( 279 Res, DII->getVariable(), DII->getExpression(), 280 DII->getDebugLoc().get(), &*std::next(CI.getIterator())); 281 } 282 return Res; 283 } 284 } 285 286 // If we are casting a select, then fold the cast into the select. 287 if (auto *SI = dyn_cast<SelectInst>(Src)) 288 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 289 return NV; 290 291 // If we are casting a PHI, then fold the cast into the PHI. 292 if (auto *PN = dyn_cast<PHINode>(Src)) { 293 // Don't do this if it would create a PHI node with an illegal type from a 294 // legal type. 295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 296 shouldChangeType(CI.getType(), Src->getType())) 297 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 298 return NV; 299 } 300 301 return nullptr; 302 } 303 304 /// Constants and extensions/truncates from the destination type are always 305 /// free to be evaluated in that type. This is a helper for canEvaluate*. 306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 307 if (isa<Constant>(V)) 308 return true; 309 Value *X; 310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 311 X->getType() == Ty) 312 return true; 313 314 return false; 315 } 316 317 /// Filter out values that we can not evaluate in the destination type for free. 318 /// This is a helper for canEvaluate*. 319 static bool canNotEvaluateInType(Value *V, Type *Ty) { 320 assert(!isa<Constant>(V) && "Constant should already be handled."); 321 if (!isa<Instruction>(V)) 322 return true; 323 // We don't extend or shrink something that has multiple uses -- doing so 324 // would require duplicating the instruction which isn't profitable. 325 if (!V->hasOneUse()) 326 return true; 327 328 return false; 329 } 330 331 /// Return true if we can evaluate the specified expression tree as type Ty 332 /// instead of its larger type, and arrive with the same value. 333 /// This is used by code that tries to eliminate truncates. 334 /// 335 /// Ty will always be a type smaller than V. We should return true if trunc(V) 336 /// can be computed by computing V in the smaller type. If V is an instruction, 337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 338 /// makes sense if x and y can be efficiently truncated. 339 /// 340 /// This function works on both vectors and scalars. 341 /// 342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 343 Instruction *CxtI) { 344 if (canAlwaysEvaluateInType(V, Ty)) 345 return true; 346 if (canNotEvaluateInType(V, Ty)) 347 return false; 348 349 auto *I = cast<Instruction>(V); 350 Type *OrigTy = V->getType(); 351 switch (I->getOpcode()) { 352 case Instruction::Add: 353 case Instruction::Sub: 354 case Instruction::Mul: 355 case Instruction::And: 356 case Instruction::Or: 357 case Instruction::Xor: 358 // These operators can all arbitrarily be extended or truncated. 359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 361 362 case Instruction::UDiv: 363 case Instruction::URem: { 364 // UDiv and URem can be truncated if all the truncated bits are zero. 365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 366 uint32_t BitWidth = Ty->getScalarSizeInBits(); 367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 373 } 374 break; 375 } 376 case Instruction::Shl: { 377 // If we are truncating the result of this SHL, and if it's a shift of a 378 // constant amount, we can always perform a SHL in a smaller type. 379 const APInt *Amt; 380 if (match(I->getOperand(1), m_APInt(Amt))) { 381 uint32_t BitWidth = Ty->getScalarSizeInBits(); 382 if (Amt->getLimitedValue(BitWidth) < BitWidth) 383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 384 } 385 break; 386 } 387 case Instruction::LShr: { 388 // If this is a truncate of a logical shr, we can truncate it to a smaller 389 // lshr iff we know that the bits we would otherwise be shifting in are 390 // already zeros. 391 const APInt *Amt; 392 if (match(I->getOperand(1), m_APInt(Amt))) { 393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 394 uint32_t BitWidth = Ty->getScalarSizeInBits(); 395 if (Amt->getLimitedValue(BitWidth) < BitWidth && 396 IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 399 } 400 } 401 break; 402 } 403 case Instruction::AShr: { 404 // If this is a truncate of an arithmetic shr, we can truncate it to a 405 // smaller ashr iff we know that all the bits from the sign bit of the 406 // original type and the sign bit of the truncate type are similar. 407 // TODO: It is enough to check that the bits we would be shifting in are 408 // similar to sign bit of the truncate type. 409 const APInt *Amt; 410 if (match(I->getOperand(1), m_APInt(Amt))) { 411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 412 uint32_t BitWidth = Ty->getScalarSizeInBits(); 413 if (Amt->getLimitedValue(BitWidth) < BitWidth && 414 OrigBitWidth - BitWidth < 415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 417 } 418 break; 419 } 420 case Instruction::Trunc: 421 // trunc(trunc(x)) -> trunc(x) 422 return true; 423 case Instruction::ZExt: 424 case Instruction::SExt: 425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 427 return true; 428 case Instruction::Select: { 429 SelectInst *SI = cast<SelectInst>(I); 430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 432 } 433 case Instruction::PHI: { 434 // We can change a phi if we can change all operands. Note that we never 435 // get into trouble with cyclic PHIs here because we only consider 436 // instructions with a single use. 437 PHINode *PN = cast<PHINode>(I); 438 for (Value *IncValue : PN->incoming_values()) 439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 440 return false; 441 return true; 442 } 443 default: 444 // TODO: Can handle more cases here. 445 break; 446 } 447 448 return false; 449 } 450 451 /// Given a vector that is bitcast to an integer, optionally logically 452 /// right-shifted, and truncated, convert it to an extractelement. 453 /// Example (big endian): 454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 455 /// ---> 456 /// extractelement <4 x i32> %X, 1 457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 458 Value *TruncOp = Trunc.getOperand(0); 459 Type *DestType = Trunc.getType(); 460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 461 return nullptr; 462 463 Value *VecInput = nullptr; 464 ConstantInt *ShiftVal = nullptr; 465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 466 m_LShr(m_BitCast(m_Value(VecInput)), 467 m_ConstantInt(ShiftVal)))) || 468 !isa<VectorType>(VecInput->getType())) 469 return nullptr; 470 471 VectorType *VecType = cast<VectorType>(VecInput->getType()); 472 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 473 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 475 476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 477 return nullptr; 478 479 // If the element type of the vector doesn't match the result type, 480 // bitcast it to a vector type that we can extract from. 481 unsigned NumVecElts = VecWidth / DestWidth; 482 if (VecType->getElementType() != DestType) { 483 VecType = VectorType::get(DestType, NumVecElts); 484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 485 } 486 487 unsigned Elt = ShiftAmount / DestWidth; 488 if (IC.getDataLayout().isBigEndian()) 489 Elt = NumVecElts - 1 - Elt; 490 491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 492 } 493 494 /// Rotate left/right may occur in a wider type than necessary because of type 495 /// promotion rules. Try to narrow all of the component instructions. 496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 497 assert((isa<VectorType>(Trunc.getSrcTy()) || 498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 499 "Don't narrow to an illegal scalar type"); 500 501 // First, find an or'd pair of opposite shifts with the same shifted operand: 502 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 503 Value *Or0, *Or1; 504 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 505 return nullptr; 506 507 Value *ShVal, *ShAmt0, *ShAmt1; 508 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 509 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 510 return nullptr; 511 512 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 513 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 514 if (ShiftOpcode0 == ShiftOpcode1) 515 return nullptr; 516 517 // The shift amounts must add up to the narrow bit width. 518 Value *ShAmt; 519 bool SubIsOnLHS; 520 Type *DestTy = Trunc.getType(); 521 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 522 if (match(ShAmt0, 523 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { 524 ShAmt = ShAmt1; 525 SubIsOnLHS = true; 526 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), 527 m_Specific(ShAmt0))))) { 528 ShAmt = ShAmt0; 529 SubIsOnLHS = false; 530 } else { 531 return nullptr; 532 } 533 534 // The shifted value must have high zeros in the wide type. Typically, this 535 // will be a zext, but it could also be the result of an 'and' or 'shift'. 536 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 537 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 538 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 539 return nullptr; 540 541 // We have an unnecessarily wide rotate! 542 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 543 // Narrow it down to eliminate the zext/trunc: 544 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 545 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 546 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 547 548 // Mask both shift amounts to ensure there's no UB from oversized shifts. 549 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 550 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 551 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 552 553 // Truncate the original value and use narrow ops. 554 Value *X = Builder.CreateTrunc(ShVal, DestTy); 555 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 556 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 557 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 558 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 559 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 560 } 561 562 /// Try to narrow the width of math or bitwise logic instructions by pulling a 563 /// truncate ahead of binary operators. 564 /// TODO: Transforms for truncated shifts should be moved into here. 565 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 566 Type *SrcTy = Trunc.getSrcTy(); 567 Type *DestTy = Trunc.getType(); 568 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 569 return nullptr; 570 571 BinaryOperator *BinOp; 572 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 573 return nullptr; 574 575 Value *BinOp0 = BinOp->getOperand(0); 576 Value *BinOp1 = BinOp->getOperand(1); 577 switch (BinOp->getOpcode()) { 578 case Instruction::And: 579 case Instruction::Or: 580 case Instruction::Xor: 581 case Instruction::Add: 582 case Instruction::Sub: 583 case Instruction::Mul: { 584 Constant *C; 585 if (match(BinOp0, m_Constant(C))) { 586 // trunc (binop C, X) --> binop (trunc C', X) 587 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 588 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 589 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 590 } 591 if (match(BinOp1, m_Constant(C))) { 592 // trunc (binop X, C) --> binop (trunc X, C') 593 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 594 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 595 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 596 } 597 Value *X; 598 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 599 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 600 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 601 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 602 } 603 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 604 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 605 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 606 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 607 } 608 break; 609 } 610 611 default: break; 612 } 613 614 if (Instruction *NarrowOr = narrowRotate(Trunc)) 615 return NarrowOr; 616 617 return nullptr; 618 } 619 620 /// Try to narrow the width of a splat shuffle. This could be generalized to any 621 /// shuffle with a constant operand, but we limit the transform to avoid 622 /// creating a shuffle type that targets may not be able to lower effectively. 623 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 624 InstCombiner::BuilderTy &Builder) { 625 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 626 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 627 Shuf->getMask()->getSplatValue() && 628 Shuf->getType() == Shuf->getOperand(0)->getType()) { 629 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 630 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 631 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 632 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 633 } 634 635 return nullptr; 636 } 637 638 /// Try to narrow the width of an insert element. This could be generalized for 639 /// any vector constant, but we limit the transform to insertion into undef to 640 /// avoid potential backend problems from unsupported insertion widths. This 641 /// could also be extended to handle the case of inserting a scalar constant 642 /// into a vector variable. 643 static Instruction *shrinkInsertElt(CastInst &Trunc, 644 InstCombiner::BuilderTy &Builder) { 645 Instruction::CastOps Opcode = Trunc.getOpcode(); 646 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 647 "Unexpected instruction for shrinking"); 648 649 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 650 if (!InsElt || !InsElt->hasOneUse()) 651 return nullptr; 652 653 Type *DestTy = Trunc.getType(); 654 Type *DestScalarTy = DestTy->getScalarType(); 655 Value *VecOp = InsElt->getOperand(0); 656 Value *ScalarOp = InsElt->getOperand(1); 657 Value *Index = InsElt->getOperand(2); 658 659 if (isa<UndefValue>(VecOp)) { 660 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 661 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 662 UndefValue *NarrowUndef = UndefValue::get(DestTy); 663 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 664 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 665 } 666 667 return nullptr; 668 } 669 670 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 671 if (Instruction *Result = commonCastTransforms(CI)) 672 return Result; 673 674 // Test if the trunc is the user of a select which is part of a 675 // minimum or maximum operation. If so, don't do any more simplification. 676 // Even simplifying demanded bits can break the canonical form of a 677 // min/max. 678 Value *LHS, *RHS; 679 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 680 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 681 return nullptr; 682 683 // See if we can simplify any instructions used by the input whose sole 684 // purpose is to compute bits we don't care about. 685 if (SimplifyDemandedInstructionBits(CI)) 686 return &CI; 687 688 Value *Src = CI.getOperand(0); 689 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 690 691 // Attempt to truncate the entire input expression tree to the destination 692 // type. Only do this if the dest type is a simple type, don't convert the 693 // expression tree to something weird like i93 unless the source is also 694 // strange. 695 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 696 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 697 698 // If this cast is a truncate, evaluting in a different type always 699 // eliminates the cast, so it is always a win. 700 LLVM_DEBUG( 701 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 702 " to avoid cast: " 703 << CI << '\n'); 704 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 705 assert(Res->getType() == DestTy); 706 return replaceInstUsesWith(CI, Res); 707 } 708 709 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 710 if (DestTy->getScalarSizeInBits() == 1) { 711 Constant *One = ConstantInt::get(SrcTy, 1); 712 Src = Builder.CreateAnd(Src, One); 713 Value *Zero = Constant::getNullValue(Src->getType()); 714 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 715 } 716 717 // FIXME: Maybe combine the next two transforms to handle the no cast case 718 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 719 720 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 721 Value *A = nullptr; ConstantInt *Cst = nullptr; 722 if (Src->hasOneUse() && 723 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 724 // We have three types to worry about here, the type of A, the source of 725 // the truncate (MidSize), and the destination of the truncate. We know that 726 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 727 // between ASize and ResultSize. 728 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 729 730 // If the shift amount is larger than the size of A, then the result is 731 // known to be zero because all the input bits got shifted out. 732 if (Cst->getZExtValue() >= ASize) 733 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 734 735 // Since we're doing an lshr and a zero extend, and know that the shift 736 // amount is smaller than ASize, it is always safe to do the shift in A's 737 // type, then zero extend or truncate to the result. 738 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 739 Shift->takeName(Src); 740 return CastInst::CreateIntegerCast(Shift, DestTy, false); 741 } 742 743 // FIXME: We should canonicalize to zext/trunc and remove this transform. 744 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 745 // conversion. 746 // It works because bits coming from sign extension have the same value as 747 // the sign bit of the original value; performing ashr instead of lshr 748 // generates bits of the same value as the sign bit. 749 if (Src->hasOneUse() && 750 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 751 Value *SExt = cast<Instruction>(Src)->getOperand(0); 752 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 753 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 754 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 755 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 756 unsigned ShiftAmt = Cst->getZExtValue(); 757 758 // This optimization can be only performed when zero bits generated by 759 // the original lshr aren't pulled into the value after truncation, so we 760 // can only shift by values no larger than the number of extension bits. 761 // FIXME: Instead of bailing when the shift is too large, use and to clear 762 // the extra bits. 763 if (ShiftAmt <= MaxAmt) { 764 if (CISize == ASize) 765 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 766 std::min(ShiftAmt, ASize - 1))); 767 if (SExt->hasOneUse()) { 768 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 769 Shift->takeName(Src); 770 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 771 } 772 } 773 } 774 775 if (Instruction *I = narrowBinOp(CI)) 776 return I; 777 778 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 779 return I; 780 781 if (Instruction *I = shrinkInsertElt(CI, Builder)) 782 return I; 783 784 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 785 shouldChangeType(SrcTy, DestTy)) { 786 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 787 // dest type is native and cst < dest size. 788 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 789 !match(A, m_Shr(m_Value(), m_Constant()))) { 790 // Skip shifts of shift by constants. It undoes a combine in 791 // FoldShiftByConstant and is the extend in reg pattern. 792 const unsigned DestSize = DestTy->getScalarSizeInBits(); 793 if (Cst->getValue().ult(DestSize)) { 794 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 795 796 return BinaryOperator::Create( 797 Instruction::Shl, NewTrunc, 798 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 799 } 800 } 801 } 802 803 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 804 return I; 805 806 return nullptr; 807 } 808 809 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 810 bool DoTransform) { 811 // If we are just checking for a icmp eq of a single bit and zext'ing it 812 // to an integer, then shift the bit to the appropriate place and then 813 // cast to integer to avoid the comparison. 814 const APInt *Op1CV; 815 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 816 817 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 818 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 819 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 820 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 821 if (!DoTransform) return ICI; 822 823 Value *In = ICI->getOperand(0); 824 Value *Sh = ConstantInt::get(In->getType(), 825 In->getType()->getScalarSizeInBits() - 1); 826 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 827 if (In->getType() != CI.getType()) 828 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 829 830 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 831 Constant *One = ConstantInt::get(In->getType(), 1); 832 In = Builder.CreateXor(In, One, In->getName() + ".not"); 833 } 834 835 return replaceInstUsesWith(CI, In); 836 } 837 838 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 839 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 840 // zext (X == 1) to i32 --> X iff X has only the low bit set. 841 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 842 // zext (X != 0) to i32 --> X iff X has only the low bit set. 843 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 844 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 845 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 846 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 847 // This only works for EQ and NE 848 ICI->isEquality()) { 849 // If Op1C some other power of two, convert: 850 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 851 852 APInt KnownZeroMask(~Known.Zero); 853 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 854 if (!DoTransform) return ICI; 855 856 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 857 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 858 // (X&4) == 2 --> false 859 // (X&4) != 2 --> true 860 Constant *Res = ConstantInt::get(CI.getType(), isNE); 861 return replaceInstUsesWith(CI, Res); 862 } 863 864 uint32_t ShAmt = KnownZeroMask.logBase2(); 865 Value *In = ICI->getOperand(0); 866 if (ShAmt) { 867 // Perform a logical shr by shiftamt. 868 // Insert the shift to put the result in the low bit. 869 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 870 In->getName() + ".lobit"); 871 } 872 873 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 874 Constant *One = ConstantInt::get(In->getType(), 1); 875 In = Builder.CreateXor(In, One); 876 } 877 878 if (CI.getType() == In->getType()) 879 return replaceInstUsesWith(CI, In); 880 881 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 882 return replaceInstUsesWith(CI, IntCast); 883 } 884 } 885 } 886 887 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 888 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 889 // may lead to additional simplifications. 890 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 891 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 892 Value *LHS = ICI->getOperand(0); 893 Value *RHS = ICI->getOperand(1); 894 895 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 896 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 897 898 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 899 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 900 APInt UnknownBit = ~KnownBits; 901 if (UnknownBit.countPopulation() == 1) { 902 if (!DoTransform) return ICI; 903 904 Value *Result = Builder.CreateXor(LHS, RHS); 905 906 // Mask off any bits that are set and won't be shifted away. 907 if (KnownLHS.One.uge(UnknownBit)) 908 Result = Builder.CreateAnd(Result, 909 ConstantInt::get(ITy, UnknownBit)); 910 911 // Shift the bit we're testing down to the lsb. 912 Result = Builder.CreateLShr( 913 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 914 915 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 916 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 917 Result->takeName(ICI); 918 return replaceInstUsesWith(CI, Result); 919 } 920 } 921 } 922 } 923 924 return nullptr; 925 } 926 927 /// Determine if the specified value can be computed in the specified wider type 928 /// and produce the same low bits. If not, return false. 929 /// 930 /// If this function returns true, it can also return a non-zero number of bits 931 /// (in BitsToClear) which indicates that the value it computes is correct for 932 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 933 /// out. For example, to promote something like: 934 /// 935 /// %B = trunc i64 %A to i32 936 /// %C = lshr i32 %B, 8 937 /// %E = zext i32 %C to i64 938 /// 939 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 940 /// set to 8 to indicate that the promoted value needs to have bits 24-31 941 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 942 /// clear the top bits anyway, doing this has no extra cost. 943 /// 944 /// This function works on both vectors and scalars. 945 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 946 InstCombiner &IC, Instruction *CxtI) { 947 BitsToClear = 0; 948 if (canAlwaysEvaluateInType(V, Ty)) 949 return true; 950 if (canNotEvaluateInType(V, Ty)) 951 return false; 952 953 auto *I = cast<Instruction>(V); 954 unsigned Tmp; 955 switch (I->getOpcode()) { 956 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 957 case Instruction::SExt: // zext(sext(x)) -> sext(x). 958 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 959 return true; 960 case Instruction::And: 961 case Instruction::Or: 962 case Instruction::Xor: 963 case Instruction::Add: 964 case Instruction::Sub: 965 case Instruction::Mul: 966 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 967 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 968 return false; 969 // These can all be promoted if neither operand has 'bits to clear'. 970 if (BitsToClear == 0 && Tmp == 0) 971 return true; 972 973 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 974 // other side, BitsToClear is ok. 975 if (Tmp == 0 && I->isBitwiseLogicOp()) { 976 // We use MaskedValueIsZero here for generality, but the case we care 977 // about the most is constant RHS. 978 unsigned VSize = V->getType()->getScalarSizeInBits(); 979 if (IC.MaskedValueIsZero(I->getOperand(1), 980 APInt::getHighBitsSet(VSize, BitsToClear), 981 0, CxtI)) { 982 // If this is an And instruction and all of the BitsToClear are 983 // known to be zero we can reset BitsToClear. 984 if (I->getOpcode() == Instruction::And) 985 BitsToClear = 0; 986 return true; 987 } 988 } 989 990 // Otherwise, we don't know how to analyze this BitsToClear case yet. 991 return false; 992 993 case Instruction::Shl: { 994 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 995 // upper bits we can reduce BitsToClear by the shift amount. 996 const APInt *Amt; 997 if (match(I->getOperand(1), m_APInt(Amt))) { 998 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 999 return false; 1000 uint64_t ShiftAmt = Amt->getZExtValue(); 1001 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1002 return true; 1003 } 1004 return false; 1005 } 1006 case Instruction::LShr: { 1007 // We can promote lshr(x, cst) if we can promote x. This requires the 1008 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1009 const APInt *Amt; 1010 if (match(I->getOperand(1), m_APInt(Amt))) { 1011 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1012 return false; 1013 BitsToClear += Amt->getZExtValue(); 1014 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1015 BitsToClear = V->getType()->getScalarSizeInBits(); 1016 return true; 1017 } 1018 // Cannot promote variable LSHR. 1019 return false; 1020 } 1021 case Instruction::Select: 1022 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1023 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1024 // TODO: If important, we could handle the case when the BitsToClear are 1025 // known zero in the disagreeing side. 1026 Tmp != BitsToClear) 1027 return false; 1028 return true; 1029 1030 case Instruction::PHI: { 1031 // We can change a phi if we can change all operands. Note that we never 1032 // get into trouble with cyclic PHIs here because we only consider 1033 // instructions with a single use. 1034 PHINode *PN = cast<PHINode>(I); 1035 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1036 return false; 1037 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1038 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1039 // TODO: If important, we could handle the case when the BitsToClear 1040 // are known zero in the disagreeing input. 1041 Tmp != BitsToClear) 1042 return false; 1043 return true; 1044 } 1045 default: 1046 // TODO: Can handle more cases here. 1047 return false; 1048 } 1049 } 1050 1051 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1052 // If this zero extend is only used by a truncate, let the truncate be 1053 // eliminated before we try to optimize this zext. 1054 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1055 return nullptr; 1056 1057 // If one of the common conversion will work, do it. 1058 if (Instruction *Result = commonCastTransforms(CI)) 1059 return Result; 1060 1061 Value *Src = CI.getOperand(0); 1062 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1063 1064 // Attempt to extend the entire input expression tree to the destination 1065 // type. Only do this if the dest type is a simple type, don't convert the 1066 // expression tree to something weird like i93 unless the source is also 1067 // strange. 1068 unsigned BitsToClear; 1069 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1070 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1071 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1072 "Can't clear more bits than in SrcTy"); 1073 1074 // Okay, we can transform this! Insert the new expression now. 1075 LLVM_DEBUG( 1076 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1077 " to avoid zero extend: " 1078 << CI << '\n'); 1079 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1080 assert(Res->getType() == DestTy); 1081 1082 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1083 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1084 1085 // If the high bits are already filled with zeros, just replace this 1086 // cast with the result. 1087 if (MaskedValueIsZero(Res, 1088 APInt::getHighBitsSet(DestBitSize, 1089 DestBitSize-SrcBitsKept), 1090 0, &CI)) 1091 return replaceInstUsesWith(CI, Res); 1092 1093 // We need to emit an AND to clear the high bits. 1094 Constant *C = ConstantInt::get(Res->getType(), 1095 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1096 return BinaryOperator::CreateAnd(Res, C); 1097 } 1098 1099 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1100 // types and if the sizes are just right we can convert this into a logical 1101 // 'and' which will be much cheaper than the pair of casts. 1102 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1103 // TODO: Subsume this into EvaluateInDifferentType. 1104 1105 // Get the sizes of the types involved. We know that the intermediate type 1106 // will be smaller than A or C, but don't know the relation between A and C. 1107 Value *A = CSrc->getOperand(0); 1108 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1109 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1110 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1111 // If we're actually extending zero bits, then if 1112 // SrcSize < DstSize: zext(a & mask) 1113 // SrcSize == DstSize: a & mask 1114 // SrcSize > DstSize: trunc(a) & mask 1115 if (SrcSize < DstSize) { 1116 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1117 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1118 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1119 return new ZExtInst(And, CI.getType()); 1120 } 1121 1122 if (SrcSize == DstSize) { 1123 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1124 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1125 AndValue)); 1126 } 1127 if (SrcSize > DstSize) { 1128 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1129 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1130 return BinaryOperator::CreateAnd(Trunc, 1131 ConstantInt::get(Trunc->getType(), 1132 AndValue)); 1133 } 1134 } 1135 1136 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1137 return transformZExtICmp(ICI, CI); 1138 1139 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1140 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1141 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1142 // of the (zext icmp) can be eliminated. If so, immediately perform the 1143 // according elimination. 1144 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1145 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1146 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1147 (transformZExtICmp(LHS, CI, false) || 1148 transformZExtICmp(RHS, CI, false))) { 1149 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1150 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1151 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1152 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1153 1154 // Perform the elimination. 1155 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1156 transformZExtICmp(LHS, *LZExt); 1157 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1158 transformZExtICmp(RHS, *RZExt); 1159 1160 return Or; 1161 } 1162 } 1163 1164 // zext(trunc(X) & C) -> (X & zext(C)). 1165 Constant *C; 1166 Value *X; 1167 if (SrcI && 1168 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1169 X->getType() == CI.getType()) 1170 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1171 1172 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1173 Value *And; 1174 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1175 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1176 X->getType() == CI.getType()) { 1177 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1178 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1179 } 1180 1181 return nullptr; 1182 } 1183 1184 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1185 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1186 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1187 ICmpInst::Predicate Pred = ICI->getPredicate(); 1188 1189 // Don't bother if Op1 isn't of vector or integer type. 1190 if (!Op1->getType()->isIntOrIntVectorTy()) 1191 return nullptr; 1192 1193 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1194 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1195 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1196 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1197 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1198 1199 Value *Sh = ConstantInt::get(Op0->getType(), 1200 Op0->getType()->getScalarSizeInBits()-1); 1201 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1202 if (In->getType() != CI.getType()) 1203 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1204 1205 if (Pred == ICmpInst::ICMP_SGT) 1206 In = Builder.CreateNot(In, In->getName() + ".not"); 1207 return replaceInstUsesWith(CI, In); 1208 } 1209 } 1210 1211 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1212 // If we know that only one bit of the LHS of the icmp can be set and we 1213 // have an equality comparison with zero or a power of 2, we can transform 1214 // the icmp and sext into bitwise/integer operations. 1215 if (ICI->hasOneUse() && 1216 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1217 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1218 1219 APInt KnownZeroMask(~Known.Zero); 1220 if (KnownZeroMask.isPowerOf2()) { 1221 Value *In = ICI->getOperand(0); 1222 1223 // If the icmp tests for a known zero bit we can constant fold it. 1224 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1225 Value *V = Pred == ICmpInst::ICMP_NE ? 1226 ConstantInt::getAllOnesValue(CI.getType()) : 1227 ConstantInt::getNullValue(CI.getType()); 1228 return replaceInstUsesWith(CI, V); 1229 } 1230 1231 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1232 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1233 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1234 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1235 // Perform a right shift to place the desired bit in the LSB. 1236 if (ShiftAmt) 1237 In = Builder.CreateLShr(In, 1238 ConstantInt::get(In->getType(), ShiftAmt)); 1239 1240 // At this point "In" is either 1 or 0. Subtract 1 to turn 1241 // {1, 0} -> {0, -1}. 1242 In = Builder.CreateAdd(In, 1243 ConstantInt::getAllOnesValue(In->getType()), 1244 "sext"); 1245 } else { 1246 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1247 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1248 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1249 // Perform a left shift to place the desired bit in the MSB. 1250 if (ShiftAmt) 1251 In = Builder.CreateShl(In, 1252 ConstantInt::get(In->getType(), ShiftAmt)); 1253 1254 // Distribute the bit over the whole bit width. 1255 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1256 KnownZeroMask.getBitWidth() - 1), "sext"); 1257 } 1258 1259 if (CI.getType() == In->getType()) 1260 return replaceInstUsesWith(CI, In); 1261 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1262 } 1263 } 1264 } 1265 1266 return nullptr; 1267 } 1268 1269 /// Return true if we can take the specified value and return it as type Ty 1270 /// without inserting any new casts and without changing the value of the common 1271 /// low bits. This is used by code that tries to promote integer operations to 1272 /// a wider types will allow us to eliminate the extension. 1273 /// 1274 /// This function works on both vectors and scalars. 1275 /// 1276 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1277 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1278 "Can't sign extend type to a smaller type"); 1279 if (canAlwaysEvaluateInType(V, Ty)) 1280 return true; 1281 if (canNotEvaluateInType(V, Ty)) 1282 return false; 1283 1284 auto *I = cast<Instruction>(V); 1285 switch (I->getOpcode()) { 1286 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1287 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1288 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1289 return true; 1290 case Instruction::And: 1291 case Instruction::Or: 1292 case Instruction::Xor: 1293 case Instruction::Add: 1294 case Instruction::Sub: 1295 case Instruction::Mul: 1296 // These operators can all arbitrarily be extended if their inputs can. 1297 return canEvaluateSExtd(I->getOperand(0), Ty) && 1298 canEvaluateSExtd(I->getOperand(1), Ty); 1299 1300 //case Instruction::Shl: TODO 1301 //case Instruction::LShr: TODO 1302 1303 case Instruction::Select: 1304 return canEvaluateSExtd(I->getOperand(1), Ty) && 1305 canEvaluateSExtd(I->getOperand(2), Ty); 1306 1307 case Instruction::PHI: { 1308 // We can change a phi if we can change all operands. Note that we never 1309 // get into trouble with cyclic PHIs here because we only consider 1310 // instructions with a single use. 1311 PHINode *PN = cast<PHINode>(I); 1312 for (Value *IncValue : PN->incoming_values()) 1313 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1314 return true; 1315 } 1316 default: 1317 // TODO: Can handle more cases here. 1318 break; 1319 } 1320 1321 return false; 1322 } 1323 1324 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1325 // If this sign extend is only used by a truncate, let the truncate be 1326 // eliminated before we try to optimize this sext. 1327 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1328 return nullptr; 1329 1330 if (Instruction *I = commonCastTransforms(CI)) 1331 return I; 1332 1333 Value *Src = CI.getOperand(0); 1334 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1335 1336 // If we know that the value being extended is positive, we can use a zext 1337 // instead. 1338 KnownBits Known = computeKnownBits(Src, 0, &CI); 1339 if (Known.isNonNegative()) { 1340 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1341 return replaceInstUsesWith(CI, ZExt); 1342 } 1343 1344 // Attempt to extend the entire input expression tree to the destination 1345 // type. Only do this if the dest type is a simple type, don't convert the 1346 // expression tree to something weird like i93 unless the source is also 1347 // strange. 1348 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1349 canEvaluateSExtd(Src, DestTy)) { 1350 // Okay, we can transform this! Insert the new expression now. 1351 LLVM_DEBUG( 1352 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1353 " to avoid sign extend: " 1354 << CI << '\n'); 1355 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1356 assert(Res->getType() == DestTy); 1357 1358 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1359 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1360 1361 // If the high bits are already filled with sign bit, just replace this 1362 // cast with the result. 1363 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1364 return replaceInstUsesWith(CI, Res); 1365 1366 // We need to emit a shl + ashr to do the sign extend. 1367 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1368 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1369 ShAmt); 1370 } 1371 1372 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1373 // into shifts. 1374 Value *X; 1375 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1376 // sext(trunc(X)) --> ashr(shl(X, C), C) 1377 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1378 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1379 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1380 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1381 } 1382 1383 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1384 return transformSExtICmp(ICI, CI); 1385 1386 // If the input is a shl/ashr pair of a same constant, then this is a sign 1387 // extension from a smaller value. If we could trust arbitrary bitwidth 1388 // integers, we could turn this into a truncate to the smaller bit and then 1389 // use a sext for the whole extension. Since we don't, look deeper and check 1390 // for a truncate. If the source and dest are the same type, eliminate the 1391 // trunc and extend and just do shifts. For example, turn: 1392 // %a = trunc i32 %i to i8 1393 // %b = shl i8 %a, 6 1394 // %c = ashr i8 %b, 6 1395 // %d = sext i8 %c to i32 1396 // into: 1397 // %a = shl i32 %i, 30 1398 // %d = ashr i32 %a, 30 1399 Value *A = nullptr; 1400 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1401 ConstantInt *BA = nullptr, *CA = nullptr; 1402 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1403 m_ConstantInt(CA))) && 1404 BA == CA && A->getType() == CI.getType()) { 1405 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1406 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1407 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1408 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1409 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1410 return BinaryOperator::CreateAShr(A, ShAmtV); 1411 } 1412 1413 return nullptr; 1414 } 1415 1416 1417 /// Return a Constant* for the specified floating-point constant if it fits 1418 /// in the specified FP type without changing its value. 1419 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1420 bool losesInfo; 1421 APFloat F = CFP->getValueAPF(); 1422 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1423 return !losesInfo; 1424 } 1425 1426 static Type *shrinkFPConstant(ConstantFP *CFP) { 1427 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1428 return nullptr; // No constant folding of this. 1429 // See if the value can be truncated to half and then reextended. 1430 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1431 return Type::getHalfTy(CFP->getContext()); 1432 // See if the value can be truncated to float and then reextended. 1433 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1434 return Type::getFloatTy(CFP->getContext()); 1435 if (CFP->getType()->isDoubleTy()) 1436 return nullptr; // Won't shrink. 1437 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1438 return Type::getDoubleTy(CFP->getContext()); 1439 // Don't try to shrink to various long double types. 1440 return nullptr; 1441 } 1442 1443 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1444 // type we can safely truncate all elements to. 1445 // TODO: Make these support undef elements. 1446 static Type *shrinkFPConstantVector(Value *V) { 1447 auto *CV = dyn_cast<Constant>(V); 1448 if (!CV || !CV->getType()->isVectorTy()) 1449 return nullptr; 1450 1451 Type *MinType = nullptr; 1452 1453 unsigned NumElts = CV->getType()->getVectorNumElements(); 1454 for (unsigned i = 0; i != NumElts; ++i) { 1455 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1456 if (!CFP) 1457 return nullptr; 1458 1459 Type *T = shrinkFPConstant(CFP); 1460 if (!T) 1461 return nullptr; 1462 1463 // If we haven't found a type yet or this type has a larger mantissa than 1464 // our previous type, this is our new minimal type. 1465 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1466 MinType = T; 1467 } 1468 1469 // Make a vector type from the minimal type. 1470 return VectorType::get(MinType, NumElts); 1471 } 1472 1473 /// Find the minimum FP type we can safely truncate to. 1474 static Type *getMinimumFPType(Value *V) { 1475 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1476 return FPExt->getOperand(0)->getType(); 1477 1478 // If this value is a constant, return the constant in the smallest FP type 1479 // that can accurately represent it. This allows us to turn 1480 // (float)((double)X+2.0) into x+2.0f. 1481 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1482 if (Type *T = shrinkFPConstant(CFP)) 1483 return T; 1484 1485 // Try to shrink a vector of FP constants. 1486 if (Type *T = shrinkFPConstantVector(V)) 1487 return T; 1488 1489 return V->getType(); 1490 } 1491 1492 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1493 if (Instruction *I = commonCastTransforms(FPT)) 1494 return I; 1495 1496 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1497 // simplify this expression to avoid one or more of the trunc/extend 1498 // operations if we can do so without changing the numerical results. 1499 // 1500 // The exact manner in which the widths of the operands interact to limit 1501 // what we can and cannot do safely varies from operation to operation, and 1502 // is explained below in the various case statements. 1503 Type *Ty = FPT.getType(); 1504 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1505 if (OpI && OpI->hasOneUse()) { 1506 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0)); 1507 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1)); 1508 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1509 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1510 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1511 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1512 unsigned DstWidth = Ty->getFPMantissaWidth(); 1513 switch (OpI->getOpcode()) { 1514 default: break; 1515 case Instruction::FAdd: 1516 case Instruction::FSub: 1517 // For addition and subtraction, the infinitely precise result can 1518 // essentially be arbitrarily wide; proving that double rounding 1519 // will not occur because the result of OpI is exact (as we will for 1520 // FMul, for example) is hopeless. However, we *can* nonetheless 1521 // frequently know that double rounding cannot occur (or that it is 1522 // innocuous) by taking advantage of the specific structure of 1523 // infinitely-precise results that admit double rounding. 1524 // 1525 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1526 // to represent both sources, we can guarantee that the double 1527 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1528 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1529 // for proof of this fact). 1530 // 1531 // Note: Figueroa does not consider the case where DstFormat != 1532 // SrcFormat. It's possible (likely even!) that this analysis 1533 // could be tightened for those cases, but they are rare (the main 1534 // case of interest here is (float)((double)float + float)). 1535 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1536 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1537 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1538 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS); 1539 RI->copyFastMathFlags(OpI); 1540 return RI; 1541 } 1542 break; 1543 case Instruction::FMul: 1544 // For multiplication, the infinitely precise result has at most 1545 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1546 // that such a value can be exactly represented, then no double 1547 // rounding can possibly occur; we can safely perform the operation 1548 // in the destination format if it can represent both sources. 1549 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1550 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1551 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1552 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI); 1553 } 1554 break; 1555 case Instruction::FDiv: 1556 // For division, we use again use the bound from Figueroa's 1557 // dissertation. I am entirely certain that this bound can be 1558 // tightened in the unbalanced operand case by an analysis based on 1559 // the diophantine rational approximation bound, but the well-known 1560 // condition used here is a good conservative first pass. 1561 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1562 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1563 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1564 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1565 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI); 1566 } 1567 break; 1568 case Instruction::FRem: { 1569 // Remainder is straightforward. Remainder is always exact, so the 1570 // type of OpI doesn't enter into things at all. We simply evaluate 1571 // in whichever source type is larger, then convert to the 1572 // destination type. 1573 if (SrcWidth == OpWidth) 1574 break; 1575 Value *LHS, *RHS; 1576 if (LHSWidth == SrcWidth) { 1577 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType); 1578 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType); 1579 } else { 1580 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType); 1581 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType); 1582 } 1583 1584 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI); 1585 return CastInst::CreateFPCast(ExactResult, Ty); 1586 } 1587 } 1588 1589 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1590 if (BinaryOperator::isFNeg(OpI)) { 1591 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1592 return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI); 1593 } 1594 } 1595 1596 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1597 switch (II->getIntrinsicID()) { 1598 default: break; 1599 case Intrinsic::ceil: 1600 case Intrinsic::fabs: 1601 case Intrinsic::floor: 1602 case Intrinsic::nearbyint: 1603 case Intrinsic::rint: 1604 case Intrinsic::round: 1605 case Intrinsic::trunc: { 1606 Value *Src = II->getArgOperand(0); 1607 if (!Src->hasOneUse()) 1608 break; 1609 1610 // Except for fabs, this transformation requires the input of the unary FP 1611 // operation to be itself an fpext from the type to which we're 1612 // truncating. 1613 if (II->getIntrinsicID() != Intrinsic::fabs) { 1614 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1615 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1616 break; 1617 } 1618 1619 // Do unary FP operation on smaller type. 1620 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1621 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1622 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1623 II->getIntrinsicID(), Ty); 1624 SmallVector<OperandBundleDef, 1> OpBundles; 1625 II->getOperandBundlesAsDefs(OpBundles); 1626 CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles, 1627 II->getName()); 1628 NewCI->copyFastMathFlags(II); 1629 return NewCI; 1630 } 1631 } 1632 } 1633 1634 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1635 return I; 1636 1637 return nullptr; 1638 } 1639 1640 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1641 return commonCastTransforms(CI); 1642 } 1643 1644 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1645 // This is safe if the intermediate type has enough bits in its mantissa to 1646 // accurately represent all values of X. For example, this won't work with 1647 // i64 -> float -> i64. 1648 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1649 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1650 return nullptr; 1651 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1652 1653 Value *SrcI = OpI->getOperand(0); 1654 Type *FITy = FI.getType(); 1655 Type *OpITy = OpI->getType(); 1656 Type *SrcTy = SrcI->getType(); 1657 bool IsInputSigned = isa<SIToFPInst>(OpI); 1658 bool IsOutputSigned = isa<FPToSIInst>(FI); 1659 1660 // We can safely assume the conversion won't overflow the output range, 1661 // because (for example) (uint8_t)18293.f is undefined behavior. 1662 1663 // Since we can assume the conversion won't overflow, our decision as to 1664 // whether the input will fit in the float should depend on the minimum 1665 // of the input range and output range. 1666 1667 // This means this is also safe for a signed input and unsigned output, since 1668 // a negative input would lead to undefined behavior. 1669 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1670 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1671 int ActualSize = std::min(InputSize, OutputSize); 1672 1673 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1674 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1675 if (IsInputSigned && IsOutputSigned) 1676 return new SExtInst(SrcI, FITy); 1677 return new ZExtInst(SrcI, FITy); 1678 } 1679 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1680 return new TruncInst(SrcI, FITy); 1681 if (SrcTy == FITy) 1682 return replaceInstUsesWith(FI, SrcI); 1683 return new BitCastInst(SrcI, FITy); 1684 } 1685 return nullptr; 1686 } 1687 1688 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1689 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1690 if (!OpI) 1691 return commonCastTransforms(FI); 1692 1693 if (Instruction *I = FoldItoFPtoI(FI)) 1694 return I; 1695 1696 return commonCastTransforms(FI); 1697 } 1698 1699 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1700 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1701 if (!OpI) 1702 return commonCastTransforms(FI); 1703 1704 if (Instruction *I = FoldItoFPtoI(FI)) 1705 return I; 1706 1707 return commonCastTransforms(FI); 1708 } 1709 1710 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1711 return commonCastTransforms(CI); 1712 } 1713 1714 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1715 return commonCastTransforms(CI); 1716 } 1717 1718 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1719 // If the source integer type is not the intptr_t type for this target, do a 1720 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1721 // cast to be exposed to other transforms. 1722 unsigned AS = CI.getAddressSpace(); 1723 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1724 DL.getPointerSizeInBits(AS)) { 1725 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1726 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1727 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1728 1729 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1730 return new IntToPtrInst(P, CI.getType()); 1731 } 1732 1733 if (Instruction *I = commonCastTransforms(CI)) 1734 return I; 1735 1736 return nullptr; 1737 } 1738 1739 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1740 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1741 Value *Src = CI.getOperand(0); 1742 1743 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1744 // If casting the result of a getelementptr instruction with no offset, turn 1745 // this into a cast of the original pointer! 1746 if (GEP->hasAllZeroIndices() && 1747 // If CI is an addrspacecast and GEP changes the poiner type, merging 1748 // GEP into CI would undo canonicalizing addrspacecast with different 1749 // pointer types, causing infinite loops. 1750 (!isa<AddrSpaceCastInst>(CI) || 1751 GEP->getType() == GEP->getPointerOperandType())) { 1752 // Changing the cast operand is usually not a good idea but it is safe 1753 // here because the pointer operand is being replaced with another 1754 // pointer operand so the opcode doesn't need to change. 1755 Worklist.Add(GEP); 1756 CI.setOperand(0, GEP->getOperand(0)); 1757 return &CI; 1758 } 1759 } 1760 1761 return commonCastTransforms(CI); 1762 } 1763 1764 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1765 // If the destination integer type is not the intptr_t type for this target, 1766 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1767 // to be exposed to other transforms. 1768 1769 Type *Ty = CI.getType(); 1770 unsigned AS = CI.getPointerAddressSpace(); 1771 1772 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) 1773 return commonPointerCastTransforms(CI); 1774 1775 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1776 if (Ty->isVectorTy()) // Handle vectors of pointers. 1777 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1778 1779 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1780 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1781 } 1782 1783 /// This input value (which is known to have vector type) is being zero extended 1784 /// or truncated to the specified vector type. 1785 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1786 /// 1787 /// The source and destination vector types may have different element types. 1788 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1789 InstCombiner &IC) { 1790 // We can only do this optimization if the output is a multiple of the input 1791 // element size, or the input is a multiple of the output element size. 1792 // Convert the input type to have the same element type as the output. 1793 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1794 1795 if (SrcTy->getElementType() != DestTy->getElementType()) { 1796 // The input types don't need to be identical, but for now they must be the 1797 // same size. There is no specific reason we couldn't handle things like 1798 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1799 // there yet. 1800 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1801 DestTy->getElementType()->getPrimitiveSizeInBits()) 1802 return nullptr; 1803 1804 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1805 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1806 } 1807 1808 // Now that the element types match, get the shuffle mask and RHS of the 1809 // shuffle to use, which depends on whether we're increasing or decreasing the 1810 // size of the input. 1811 SmallVector<uint32_t, 16> ShuffleMask; 1812 Value *V2; 1813 1814 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1815 // If we're shrinking the number of elements, just shuffle in the low 1816 // elements from the input and use undef as the second shuffle input. 1817 V2 = UndefValue::get(SrcTy); 1818 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1819 ShuffleMask.push_back(i); 1820 1821 } else { 1822 // If we're increasing the number of elements, shuffle in all of the 1823 // elements from InVal and fill the rest of the result elements with zeros 1824 // from a constant zero. 1825 V2 = Constant::getNullValue(SrcTy); 1826 unsigned SrcElts = SrcTy->getNumElements(); 1827 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1828 ShuffleMask.push_back(i); 1829 1830 // The excess elements reference the first element of the zero input. 1831 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1832 ShuffleMask.push_back(SrcElts); 1833 } 1834 1835 return new ShuffleVectorInst(InVal, V2, 1836 ConstantDataVector::get(V2->getContext(), 1837 ShuffleMask)); 1838 } 1839 1840 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1841 return Value % Ty->getPrimitiveSizeInBits() == 0; 1842 } 1843 1844 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1845 return Value / Ty->getPrimitiveSizeInBits(); 1846 } 1847 1848 /// V is a value which is inserted into a vector of VecEltTy. 1849 /// Look through the value to see if we can decompose it into 1850 /// insertions into the vector. See the example in the comment for 1851 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1852 /// The type of V is always a non-zero multiple of VecEltTy's size. 1853 /// Shift is the number of bits between the lsb of V and the lsb of 1854 /// the vector. 1855 /// 1856 /// This returns false if the pattern can't be matched or true if it can, 1857 /// filling in Elements with the elements found here. 1858 static bool collectInsertionElements(Value *V, unsigned Shift, 1859 SmallVectorImpl<Value *> &Elements, 1860 Type *VecEltTy, bool isBigEndian) { 1861 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1862 "Shift should be a multiple of the element type size"); 1863 1864 // Undef values never contribute useful bits to the result. 1865 if (isa<UndefValue>(V)) return true; 1866 1867 // If we got down to a value of the right type, we win, try inserting into the 1868 // right element. 1869 if (V->getType() == VecEltTy) { 1870 // Inserting null doesn't actually insert any elements. 1871 if (Constant *C = dyn_cast<Constant>(V)) 1872 if (C->isNullValue()) 1873 return true; 1874 1875 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1876 if (isBigEndian) 1877 ElementIndex = Elements.size() - ElementIndex - 1; 1878 1879 // Fail if multiple elements are inserted into this slot. 1880 if (Elements[ElementIndex]) 1881 return false; 1882 1883 Elements[ElementIndex] = V; 1884 return true; 1885 } 1886 1887 if (Constant *C = dyn_cast<Constant>(V)) { 1888 // Figure out the # elements this provides, and bitcast it or slice it up 1889 // as required. 1890 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1891 VecEltTy); 1892 // If the constant is the size of a vector element, we just need to bitcast 1893 // it to the right type so it gets properly inserted. 1894 if (NumElts == 1) 1895 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1896 Shift, Elements, VecEltTy, isBigEndian); 1897 1898 // Okay, this is a constant that covers multiple elements. Slice it up into 1899 // pieces and insert each element-sized piece into the vector. 1900 if (!isa<IntegerType>(C->getType())) 1901 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1902 C->getType()->getPrimitiveSizeInBits())); 1903 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1904 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1905 1906 for (unsigned i = 0; i != NumElts; ++i) { 1907 unsigned ShiftI = Shift+i*ElementSize; 1908 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1909 ShiftI)); 1910 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1911 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1912 isBigEndian)) 1913 return false; 1914 } 1915 return true; 1916 } 1917 1918 if (!V->hasOneUse()) return false; 1919 1920 Instruction *I = dyn_cast<Instruction>(V); 1921 if (!I) return false; 1922 switch (I->getOpcode()) { 1923 default: return false; // Unhandled case. 1924 case Instruction::BitCast: 1925 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1926 isBigEndian); 1927 case Instruction::ZExt: 1928 if (!isMultipleOfTypeSize( 1929 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1930 VecEltTy)) 1931 return false; 1932 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1933 isBigEndian); 1934 case Instruction::Or: 1935 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1936 isBigEndian) && 1937 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1938 isBigEndian); 1939 case Instruction::Shl: { 1940 // Must be shifting by a constant that is a multiple of the element size. 1941 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1942 if (!CI) return false; 1943 Shift += CI->getZExtValue(); 1944 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1945 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1946 isBigEndian); 1947 } 1948 1949 } 1950 } 1951 1952 1953 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1954 /// assemble the elements of the vector manually. 1955 /// Try to rip the code out and replace it with insertelements. This is to 1956 /// optimize code like this: 1957 /// 1958 /// %tmp37 = bitcast float %inc to i32 1959 /// %tmp38 = zext i32 %tmp37 to i64 1960 /// %tmp31 = bitcast float %inc5 to i32 1961 /// %tmp32 = zext i32 %tmp31 to i64 1962 /// %tmp33 = shl i64 %tmp32, 32 1963 /// %ins35 = or i64 %tmp33, %tmp38 1964 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1965 /// 1966 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1967 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1968 InstCombiner &IC) { 1969 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1970 Value *IntInput = CI.getOperand(0); 1971 1972 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1973 if (!collectInsertionElements(IntInput, 0, Elements, 1974 DestVecTy->getElementType(), 1975 IC.getDataLayout().isBigEndian())) 1976 return nullptr; 1977 1978 // If we succeeded, we know that all of the element are specified by Elements 1979 // or are zero if Elements has a null entry. Recast this as a set of 1980 // insertions. 1981 Value *Result = Constant::getNullValue(CI.getType()); 1982 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1983 if (!Elements[i]) continue; // Unset element. 1984 1985 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1986 IC.Builder.getInt32(i)); 1987 } 1988 1989 return Result; 1990 } 1991 1992 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1993 /// vector followed by extract element. The backend tends to handle bitcasts of 1994 /// vectors better than bitcasts of scalars because vector registers are 1995 /// usually not type-specific like scalar integer or scalar floating-point. 1996 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1997 InstCombiner &IC) { 1998 // TODO: Create and use a pattern matcher for ExtractElementInst. 1999 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2000 if (!ExtElt || !ExtElt->hasOneUse()) 2001 return nullptr; 2002 2003 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2004 // type to extract from. 2005 Type *DestType = BitCast.getType(); 2006 if (!VectorType::isValidElementType(DestType)) 2007 return nullptr; 2008 2009 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2010 auto *NewVecType = VectorType::get(DestType, NumElts); 2011 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2012 NewVecType, "bc"); 2013 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2014 } 2015 2016 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2017 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2018 InstCombiner::BuilderTy &Builder) { 2019 Type *DestTy = BitCast.getType(); 2020 BinaryOperator *BO; 2021 if (!DestTy->isIntOrIntVectorTy() || 2022 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2023 !BO->isBitwiseLogicOp()) 2024 return nullptr; 2025 2026 // FIXME: This transform is restricted to vector types to avoid backend 2027 // problems caused by creating potentially illegal operations. If a fix-up is 2028 // added to handle that situation, we can remove this check. 2029 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2030 return nullptr; 2031 2032 Value *X; 2033 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2034 X->getType() == DestTy && !isa<Constant>(X)) { 2035 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2036 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2037 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2038 } 2039 2040 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2041 X->getType() == DestTy && !isa<Constant>(X)) { 2042 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2043 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2044 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2045 } 2046 2047 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2048 // constant. This eases recognition of special constants for later ops. 2049 // Example: 2050 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2051 Constant *C; 2052 if (match(BO->getOperand(1), m_Constant(C))) { 2053 // bitcast (logic X, C) --> logic (bitcast X, C') 2054 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2055 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2056 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2057 } 2058 2059 return nullptr; 2060 } 2061 2062 /// Change the type of a select if we can eliminate a bitcast. 2063 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2064 InstCombiner::BuilderTy &Builder) { 2065 Value *Cond, *TVal, *FVal; 2066 if (!match(BitCast.getOperand(0), 2067 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2068 return nullptr; 2069 2070 // A vector select must maintain the same number of elements in its operands. 2071 Type *CondTy = Cond->getType(); 2072 Type *DestTy = BitCast.getType(); 2073 if (CondTy->isVectorTy()) { 2074 if (!DestTy->isVectorTy()) 2075 return nullptr; 2076 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2077 return nullptr; 2078 } 2079 2080 // FIXME: This transform is restricted from changing the select between 2081 // scalars and vectors to avoid backend problems caused by creating 2082 // potentially illegal operations. If a fix-up is added to handle that 2083 // situation, we can remove this check. 2084 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2085 return nullptr; 2086 2087 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2088 Value *X; 2089 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2090 !isa<Constant>(X)) { 2091 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2092 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2093 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2094 } 2095 2096 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2097 !isa<Constant>(X)) { 2098 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2099 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2100 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2101 } 2102 2103 return nullptr; 2104 } 2105 2106 /// Check if all users of CI are StoreInsts. 2107 static bool hasStoreUsersOnly(CastInst &CI) { 2108 for (User *U : CI.users()) { 2109 if (!isa<StoreInst>(U)) 2110 return false; 2111 } 2112 return true; 2113 } 2114 2115 /// This function handles following case 2116 /// 2117 /// A -> B cast 2118 /// PHI 2119 /// B -> A cast 2120 /// 2121 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2122 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2123 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2124 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2125 if (hasStoreUsersOnly(CI)) 2126 return nullptr; 2127 2128 Value *Src = CI.getOperand(0); 2129 Type *SrcTy = Src->getType(); // Type B 2130 Type *DestTy = CI.getType(); // Type A 2131 2132 SmallVector<PHINode *, 4> PhiWorklist; 2133 SmallSetVector<PHINode *, 4> OldPhiNodes; 2134 2135 // Find all of the A->B casts and PHI nodes. 2136 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2137 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2138 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2139 PhiWorklist.push_back(PN); 2140 OldPhiNodes.insert(PN); 2141 while (!PhiWorklist.empty()) { 2142 auto *OldPN = PhiWorklist.pop_back_val(); 2143 for (Value *IncValue : OldPN->incoming_values()) { 2144 if (isa<Constant>(IncValue)) 2145 continue; 2146 2147 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2148 // If there is a sequence of one or more load instructions, each loaded 2149 // value is used as address of later load instruction, bitcast is 2150 // necessary to change the value type, don't optimize it. For 2151 // simplicity we give up if the load address comes from another load. 2152 Value *Addr = LI->getOperand(0); 2153 if (Addr == &CI || isa<LoadInst>(Addr)) 2154 return nullptr; 2155 if (LI->hasOneUse() && LI->isSimple()) 2156 continue; 2157 // If a LoadInst has more than one use, changing the type of loaded 2158 // value may create another bitcast. 2159 return nullptr; 2160 } 2161 2162 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2163 if (OldPhiNodes.insert(PNode)) 2164 PhiWorklist.push_back(PNode); 2165 continue; 2166 } 2167 2168 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2169 // We can't handle other instructions. 2170 if (!BCI) 2171 return nullptr; 2172 2173 // Verify it's a A->B cast. 2174 Type *TyA = BCI->getOperand(0)->getType(); 2175 Type *TyB = BCI->getType(); 2176 if (TyA != DestTy || TyB != SrcTy) 2177 return nullptr; 2178 } 2179 } 2180 2181 // For each old PHI node, create a corresponding new PHI node with a type A. 2182 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2183 for (auto *OldPN : OldPhiNodes) { 2184 Builder.SetInsertPoint(OldPN); 2185 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2186 NewPNodes[OldPN] = NewPN; 2187 } 2188 2189 // Fill in the operands of new PHI nodes. 2190 for (auto *OldPN : OldPhiNodes) { 2191 PHINode *NewPN = NewPNodes[OldPN]; 2192 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2193 Value *V = OldPN->getOperand(j); 2194 Value *NewV = nullptr; 2195 if (auto *C = dyn_cast<Constant>(V)) { 2196 NewV = ConstantExpr::getBitCast(C, DestTy); 2197 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2198 Builder.SetInsertPoint(LI->getNextNode()); 2199 NewV = Builder.CreateBitCast(LI, DestTy); 2200 Worklist.Add(LI); 2201 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2202 NewV = BCI->getOperand(0); 2203 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2204 NewV = NewPNodes[PrevPN]; 2205 } 2206 assert(NewV); 2207 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2208 } 2209 } 2210 2211 // If there is a store with type B, change it to type A. 2212 for (User *U : PN->users()) { 2213 auto *SI = dyn_cast<StoreInst>(U); 2214 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2215 Builder.SetInsertPoint(SI); 2216 auto *NewBC = 2217 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2218 SI->setOperand(0, NewBC); 2219 Worklist.Add(SI); 2220 assert(hasStoreUsersOnly(*NewBC)); 2221 } 2222 } 2223 2224 return replaceInstUsesWith(CI, NewPNodes[PN]); 2225 } 2226 2227 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2228 // If the operands are integer typed then apply the integer transforms, 2229 // otherwise just apply the common ones. 2230 Value *Src = CI.getOperand(0); 2231 Type *SrcTy = Src->getType(); 2232 Type *DestTy = CI.getType(); 2233 2234 // Get rid of casts from one type to the same type. These are useless and can 2235 // be replaced by the operand. 2236 if (DestTy == Src->getType()) 2237 return replaceInstUsesWith(CI, Src); 2238 2239 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2240 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2241 Type *DstElTy = DstPTy->getElementType(); 2242 Type *SrcElTy = SrcPTy->getElementType(); 2243 2244 // If we are casting a alloca to a pointer to a type of the same 2245 // size, rewrite the allocation instruction to allocate the "right" type. 2246 // There is no need to modify malloc calls because it is their bitcast that 2247 // needs to be cleaned up. 2248 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2249 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2250 return V; 2251 2252 // When the type pointed to is not sized the cast cannot be 2253 // turned into a gep. 2254 Type *PointeeType = 2255 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2256 if (!PointeeType->isSized()) 2257 return nullptr; 2258 2259 // If the source and destination are pointers, and this cast is equivalent 2260 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2261 // This can enhance SROA and other transforms that want type-safe pointers. 2262 unsigned NumZeros = 0; 2263 while (SrcElTy != DstElTy && 2264 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2265 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2266 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2267 ++NumZeros; 2268 } 2269 2270 // If we found a path from the src to dest, create the getelementptr now. 2271 if (SrcElTy == DstElTy) { 2272 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2273 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2274 } 2275 } 2276 2277 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2278 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2279 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2280 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2281 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2282 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2283 } 2284 2285 if (isa<IntegerType>(SrcTy)) { 2286 // If this is a cast from an integer to vector, check to see if the input 2287 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2288 // the casts with a shuffle and (potentially) a bitcast. 2289 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2290 CastInst *SrcCast = cast<CastInst>(Src); 2291 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2292 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2293 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2294 cast<VectorType>(DestTy), *this)) 2295 return I; 2296 } 2297 2298 // If the input is an 'or' instruction, we may be doing shifts and ors to 2299 // assemble the elements of the vector manually. Try to rip the code out 2300 // and replace it with insertelements. 2301 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2302 return replaceInstUsesWith(CI, V); 2303 } 2304 } 2305 2306 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2307 if (SrcVTy->getNumElements() == 1) { 2308 // If our destination is not a vector, then make this a straight 2309 // scalar-scalar cast. 2310 if (!DestTy->isVectorTy()) { 2311 Value *Elem = 2312 Builder.CreateExtractElement(Src, 2313 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2314 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2315 } 2316 2317 // Otherwise, see if our source is an insert. If so, then use the scalar 2318 // component directly. 2319 if (InsertElementInst *IEI = 2320 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2321 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2322 DestTy); 2323 } 2324 } 2325 2326 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2327 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2328 // a bitcast to a vector with the same # elts. 2329 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2330 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2331 SVI->getType()->getNumElements() == 2332 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2333 BitCastInst *Tmp; 2334 // If either of the operands is a cast from CI.getType(), then 2335 // evaluating the shuffle in the casted destination's type will allow 2336 // us to eliminate at least one cast. 2337 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2338 Tmp->getOperand(0)->getType() == DestTy) || 2339 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2340 Tmp->getOperand(0)->getType() == DestTy)) { 2341 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2342 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2343 // Return a new shuffle vector. Use the same element ID's, as we 2344 // know the vector types match #elts. 2345 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2346 } 2347 } 2348 } 2349 2350 // Handle the A->B->A cast, and there is an intervening PHI node. 2351 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2352 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2353 return I; 2354 2355 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2356 return I; 2357 2358 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2359 return I; 2360 2361 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2362 return I; 2363 2364 if (SrcTy->isPointerTy()) 2365 return commonPointerCastTransforms(CI); 2366 return commonCastTransforms(CI); 2367 } 2368 2369 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2370 // If the destination pointer element type is not the same as the source's 2371 // first do a bitcast to the destination type, and then the addrspacecast. 2372 // This allows the cast to be exposed to other transforms. 2373 Value *Src = CI.getOperand(0); 2374 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2375 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2376 2377 Type *DestElemTy = DestTy->getElementType(); 2378 if (SrcTy->getElementType() != DestElemTy) { 2379 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2380 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2381 // Handle vectors of pointers. 2382 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2383 } 2384 2385 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2386 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2387 } 2388 2389 return commonPointerCastTransforms(CI); 2390 } 2391