1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 25 /// expression. If so, decompose it, returning some value X, such that Val is 26 /// X*Scale+Offset. 27 /// 28 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 29 uint64_t &Offset) { 30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 31 Offset = CI->getZExtValue(); 32 Scale = 0; 33 return ConstantInt::get(Val->getType(), 0); 34 } 35 36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 37 // Cannot look past anything that might overflow. 38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 40 Scale = 1; 41 Offset = 0; 42 return Val; 43 } 44 45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 46 if (I->getOpcode() == Instruction::Shl) { 47 // This is a value scaled by '1 << the shift amt'. 48 Scale = UINT64_C(1) << RHS->getZExtValue(); 49 Offset = 0; 50 return I->getOperand(0); 51 } 52 53 if (I->getOpcode() == Instruction::Mul) { 54 // This value is scaled by 'RHS'. 55 Scale = RHS->getZExtValue(); 56 Offset = 0; 57 return I->getOperand(0); 58 } 59 60 if (I->getOpcode() == Instruction::Add) { 61 // We have X+C. Check to see if we really have (X*C2)+C1, 62 // where C1 is divisible by C2. 63 unsigned SubScale; 64 Value *SubVal = 65 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 66 Offset += RHS->getZExtValue(); 67 Scale = SubScale; 68 return SubVal; 69 } 70 } 71 } 72 73 // Otherwise, we can't look past this. 74 Scale = 1; 75 Offset = 0; 76 return Val; 77 } 78 79 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 80 /// try to eliminate the cast by moving the type information into the alloc. 81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 82 AllocaInst &AI) { 83 PointerType *PTy = cast<PointerType>(CI.getType()); 84 85 BuilderTy AllocaBuilder(*Builder); 86 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 87 88 // Get the type really allocated and the type casted to. 89 Type *AllocElTy = AI.getAllocatedType(); 90 Type *CastElTy = PTy->getElementType(); 91 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 92 93 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 94 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 95 if (CastElTyAlign < AllocElTyAlign) return nullptr; 96 97 // If the allocation has multiple uses, only promote it if we are strictly 98 // increasing the alignment of the resultant allocation. If we keep it the 99 // same, we open the door to infinite loops of various kinds. 100 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 101 102 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 103 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 104 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 105 106 // If the allocation has multiple uses, only promote it if we're not 107 // shrinking the amount of memory being allocated. 108 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 109 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 110 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 111 112 // See if we can satisfy the modulus by pulling a scale out of the array 113 // size argument. 114 unsigned ArraySizeScale; 115 uint64_t ArrayOffset; 116 Value *NumElements = // See if the array size is a decomposable linear expr. 117 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 118 119 // If we can now satisfy the modulus, by using a non-1 scale, we really can 120 // do the xform. 121 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 122 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 123 124 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 125 Value *Amt = nullptr; 126 if (Scale == 1) { 127 Amt = NumElements; 128 } else { 129 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 130 // Insert before the alloca, not before the cast. 131 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 132 } 133 134 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 135 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 136 Offset, true); 137 Amt = AllocaBuilder.CreateAdd(Amt, Off); 138 } 139 140 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 141 New->setAlignment(AI.getAlignment()); 142 New->takeName(&AI); 143 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 144 145 // If the allocation has multiple real uses, insert a cast and change all 146 // things that used it to use the new cast. This will also hack on CI, but it 147 // will die soon. 148 if (!AI.hasOneUse()) { 149 // New is the allocation instruction, pointer typed. AI is the original 150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 152 ReplaceInstUsesWith(AI, NewCast); 153 } 154 return ReplaceInstUsesWith(CI, New); 155 } 156 157 /// EvaluateInDifferentType - Given an expression that 158 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 159 /// insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with DL info. 165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 166 C = ConstantFoldConstantExpression(CE, DL, TLI); 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = nullptr; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V = 216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 217 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 218 } 219 Res = NPN; 220 break; 221 } 222 default: 223 // TODO: Can handle more cases here. 224 llvm_unreachable("Unreachable!"); 225 } 226 227 Res->takeName(I); 228 return InsertNewInstWith(Res, *I); 229 } 230 231 232 /// This function is a wrapper around CastInst::isEliminableCastPair. It 233 /// simply extracts arguments and returns what that function returns. 234 static Instruction::CastOps 235 isEliminableCastPair(const CastInst *CI, ///< First cast instruction 236 unsigned opcode, ///< Opcode for the second cast 237 Type *DstTy, ///< Target type for the second cast 238 const DataLayout &DL) { 239 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 240 Type *MidTy = CI->getType(); // B from above 241 242 // Get the opcodes of the two Cast instructions 243 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 244 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 245 Type *SrcIntPtrTy = 246 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 247 Type *MidIntPtrTy = 248 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 249 Type *DstIntPtrTy = 250 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 251 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 252 DstTy, SrcIntPtrTy, MidIntPtrTy, 253 DstIntPtrTy); 254 255 // We don't want to form an inttoptr or ptrtoint that converts to an integer 256 // type that differs from the pointer size. 257 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 258 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 259 Res = 0; 260 261 return Instruction::CastOps(Res); 262 } 263 264 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 265 /// results in any code being generated and is interesting to optimize out. If 266 /// the cast can be eliminated by some other simple transformation, we prefer 267 /// to do the simplification first. 268 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 269 Type *Ty) { 270 // Noop casts and casts of constants should be eliminated trivially. 271 if (V->getType() == Ty || isa<Constant>(V)) return false; 272 273 // If this is another cast that can be eliminated, we prefer to have it 274 // eliminated. 275 if (const CastInst *CI = dyn_cast<CastInst>(V)) 276 if (isEliminableCastPair(CI, opc, Ty, DL)) 277 return false; 278 279 // If this is a vector sext from a compare, then we don't want to break the 280 // idiom where each element of the extended vector is either zero or all ones. 281 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 282 return false; 283 284 return true; 285 } 286 287 288 /// @brief Implement the transforms common to all CastInst visitors. 289 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 290 Value *Src = CI.getOperand(0); 291 292 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 293 // eliminate it now. 294 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 295 if (Instruction::CastOps opc = 296 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) { 297 // The first cast (CSrc) is eliminable so we need to fix up or replace 298 // the second cast (CI). CSrc will then have a good chance of being dead. 299 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 300 } 301 } 302 303 // If we are casting a select then fold the cast into the select 304 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 305 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 306 return NV; 307 308 // If we are casting a PHI then fold the cast into the PHI 309 if (isa<PHINode>(Src)) { 310 // We don't do this if this would create a PHI node with an illegal type if 311 // it is currently legal. 312 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 313 ShouldChangeType(CI.getType(), Src->getType())) 314 if (Instruction *NV = FoldOpIntoPhi(CI)) 315 return NV; 316 } 317 318 return nullptr; 319 } 320 321 /// CanEvaluateTruncated - Return true if we can evaluate the specified 322 /// expression tree as type Ty instead of its larger type, and arrive with the 323 /// same value. This is used by code that tries to eliminate truncates. 324 /// 325 /// Ty will always be a type smaller than V. We should return true if trunc(V) 326 /// can be computed by computing V in the smaller type. If V is an instruction, 327 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 328 /// makes sense if x and y can be efficiently truncated. 329 /// 330 /// This function works on both vectors and scalars. 331 /// 332 static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 333 Instruction *CxtI) { 334 // We can always evaluate constants in another type. 335 if (isa<Constant>(V)) 336 return true; 337 338 Instruction *I = dyn_cast<Instruction>(V); 339 if (!I) return false; 340 341 Type *OrigTy = V->getType(); 342 343 // If this is an extension from the dest type, we can eliminate it, even if it 344 // has multiple uses. 345 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 346 I->getOperand(0)->getType() == Ty) 347 return true; 348 349 // We can't extend or shrink something that has multiple uses: doing so would 350 // require duplicating the instruction in general, which isn't profitable. 351 if (!I->hasOneUse()) return false; 352 353 unsigned Opc = I->getOpcode(); 354 switch (Opc) { 355 case Instruction::Add: 356 case Instruction::Sub: 357 case Instruction::Mul: 358 case Instruction::And: 359 case Instruction::Or: 360 case Instruction::Xor: 361 // These operators can all arbitrarily be extended or truncated. 362 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 363 CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 364 365 case Instruction::UDiv: 366 case Instruction::URem: { 367 // UDiv and URem can be truncated if all the truncated bits are zero. 368 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 369 uint32_t BitWidth = Ty->getScalarSizeInBits(); 370 if (BitWidth < OrigBitWidth) { 371 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 372 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 373 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 374 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 375 CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 376 } 377 } 378 break; 379 } 380 case Instruction::Shl: 381 // If we are truncating the result of this SHL, and if it's a shift of a 382 // constant amount, we can always perform a SHL in a smaller type. 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 384 uint32_t BitWidth = Ty->getScalarSizeInBits(); 385 if (CI->getLimitedValue(BitWidth) < BitWidth) 386 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 387 } 388 break; 389 case Instruction::LShr: 390 // If this is a truncate of a logical shr, we can truncate it to a smaller 391 // lshr iff we know that the bits we would otherwise be shifting in are 392 // already zeros. 393 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 394 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 395 uint32_t BitWidth = Ty->getScalarSizeInBits(); 396 if (IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 398 CI->getLimitedValue(BitWidth) < BitWidth) { 399 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 400 } 401 } 402 break; 403 case Instruction::Trunc: 404 // trunc(trunc(x)) -> trunc(x) 405 return true; 406 case Instruction::ZExt: 407 case Instruction::SExt: 408 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 409 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 410 return true; 411 case Instruction::Select: { 412 SelectInst *SI = cast<SelectInst>(I); 413 return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 414 CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 415 } 416 case Instruction::PHI: { 417 // We can change a phi if we can change all operands. Note that we never 418 // get into trouble with cyclic PHIs here because we only consider 419 // instructions with a single use. 420 PHINode *PN = cast<PHINode>(I); 421 for (Value *IncValue : PN->incoming_values()) 422 if (!CanEvaluateTruncated(IncValue, Ty, IC, CxtI)) 423 return false; 424 return true; 425 } 426 default: 427 // TODO: Can handle more cases here. 428 break; 429 } 430 431 return false; 432 } 433 434 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 435 if (Instruction *Result = commonCastTransforms(CI)) 436 return Result; 437 438 // Test if the trunc is the user of a select which is part of a 439 // minimum or maximum operation. If so, don't do any more simplification. 440 // Even simplifying demanded bits can break the canonical form of a 441 // min/max. 442 Value *LHS, *RHS; 443 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 444 if (matchSelectPattern(SI, LHS, RHS) != SPF_UNKNOWN) 445 return nullptr; 446 447 // See if we can simplify any instructions used by the input whose sole 448 // purpose is to compute bits we don't care about. 449 if (SimplifyDemandedInstructionBits(CI)) 450 return &CI; 451 452 Value *Src = CI.getOperand(0); 453 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 454 455 // Attempt to truncate the entire input expression tree to the destination 456 // type. Only do this if the dest type is a simple type, don't convert the 457 // expression tree to something weird like i93 unless the source is also 458 // strange. 459 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 460 CanEvaluateTruncated(Src, DestTy, *this, &CI)) { 461 462 // If this cast is a truncate, evaluting in a different type always 463 // eliminates the cast, so it is always a win. 464 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 465 " to avoid cast: " << CI << '\n'); 466 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 467 assert(Res->getType() == DestTy); 468 return ReplaceInstUsesWith(CI, Res); 469 } 470 471 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 472 if (DestTy->getScalarSizeInBits() == 1) { 473 Constant *One = ConstantInt::get(Src->getType(), 1); 474 Src = Builder->CreateAnd(Src, One); 475 Value *Zero = Constant::getNullValue(Src->getType()); 476 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 477 } 478 479 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 480 Value *A = nullptr; ConstantInt *Cst = nullptr; 481 if (Src->hasOneUse() && 482 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 483 // We have three types to worry about here, the type of A, the source of 484 // the truncate (MidSize), and the destination of the truncate. We know that 485 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 486 // between ASize and ResultSize. 487 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 488 489 // If the shift amount is larger than the size of A, then the result is 490 // known to be zero because all the input bits got shifted out. 491 if (Cst->getZExtValue() >= ASize) 492 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 493 494 // Since we're doing an lshr and a zero extend, and know that the shift 495 // amount is smaller than ASize, it is always safe to do the shift in A's 496 // type, then zero extend or truncate to the result. 497 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 498 Shift->takeName(Src); 499 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 500 } 501 502 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 503 // type isn't non-native. 504 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 505 ShouldChangeType(Src->getType(), CI.getType()) && 506 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 507 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 508 return BinaryOperator::CreateAnd(NewTrunc, 509 ConstantExpr::getTrunc(Cst, CI.getType())); 510 } 511 512 return nullptr; 513 } 514 515 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 516 /// in order to eliminate the icmp. 517 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 518 bool DoXform) { 519 // If we are just checking for a icmp eq of a single bit and zext'ing it 520 // to an integer, then shift the bit to the appropriate place and then 521 // cast to integer to avoid the comparison. 522 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 523 const APInt &Op1CV = Op1C->getValue(); 524 525 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 526 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 527 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 528 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 529 if (!DoXform) return ICI; 530 531 Value *In = ICI->getOperand(0); 532 Value *Sh = ConstantInt::get(In->getType(), 533 In->getType()->getScalarSizeInBits()-1); 534 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 535 if (In->getType() != CI.getType()) 536 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 537 538 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 539 Constant *One = ConstantInt::get(In->getType(), 1); 540 In = Builder->CreateXor(In, One, In->getName()+".not"); 541 } 542 543 return ReplaceInstUsesWith(CI, In); 544 } 545 546 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 547 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 548 // zext (X == 1) to i32 --> X iff X has only the low bit set. 549 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 550 // zext (X != 0) to i32 --> X iff X has only the low bit set. 551 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 552 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 553 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 554 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 555 // This only works for EQ and NE 556 ICI->isEquality()) { 557 // If Op1C some other power of two, convert: 558 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 559 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 560 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 561 562 APInt KnownZeroMask(~KnownZero); 563 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 564 if (!DoXform) return ICI; 565 566 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 567 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 568 // (X&4) == 2 --> false 569 // (X&4) != 2 --> true 570 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 571 isNE); 572 Res = ConstantExpr::getZExt(Res, CI.getType()); 573 return ReplaceInstUsesWith(CI, Res); 574 } 575 576 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 577 Value *In = ICI->getOperand(0); 578 if (ShiftAmt) { 579 // Perform a logical shr by shiftamt. 580 // Insert the shift to put the result in the low bit. 581 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 582 In->getName()+".lobit"); 583 } 584 585 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 586 Constant *One = ConstantInt::get(In->getType(), 1); 587 In = Builder->CreateXor(In, One); 588 } 589 590 if (CI.getType() == In->getType()) 591 return ReplaceInstUsesWith(CI, In); 592 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 593 } 594 } 595 } 596 597 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 598 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 599 // may lead to additional simplifications. 600 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 601 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 602 uint32_t BitWidth = ITy->getBitWidth(); 603 Value *LHS = ICI->getOperand(0); 604 Value *RHS = ICI->getOperand(1); 605 606 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 607 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 608 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 609 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 610 611 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 612 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 613 APInt UnknownBit = ~KnownBits; 614 if (UnknownBit.countPopulation() == 1) { 615 if (!DoXform) return ICI; 616 617 Value *Result = Builder->CreateXor(LHS, RHS); 618 619 // Mask off any bits that are set and won't be shifted away. 620 if (KnownOneLHS.uge(UnknownBit)) 621 Result = Builder->CreateAnd(Result, 622 ConstantInt::get(ITy, UnknownBit)); 623 624 // Shift the bit we're testing down to the lsb. 625 Result = Builder->CreateLShr( 626 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 627 628 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 629 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 630 Result->takeName(ICI); 631 return ReplaceInstUsesWith(CI, Result); 632 } 633 } 634 } 635 } 636 637 return nullptr; 638 } 639 640 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 641 /// specified wider type and produce the same low bits. If not, return false. 642 /// 643 /// If this function returns true, it can also return a non-zero number of bits 644 /// (in BitsToClear) which indicates that the value it computes is correct for 645 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 646 /// out. For example, to promote something like: 647 /// 648 /// %B = trunc i64 %A to i32 649 /// %C = lshr i32 %B, 8 650 /// %E = zext i32 %C to i64 651 /// 652 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 653 /// set to 8 to indicate that the promoted value needs to have bits 24-31 654 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 655 /// clear the top bits anyway, doing this has no extra cost. 656 /// 657 /// This function works on both vectors and scalars. 658 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 659 InstCombiner &IC, Instruction *CxtI) { 660 BitsToClear = 0; 661 if (isa<Constant>(V)) 662 return true; 663 664 Instruction *I = dyn_cast<Instruction>(V); 665 if (!I) return false; 666 667 // If the input is a truncate from the destination type, we can trivially 668 // eliminate it. 669 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 670 return true; 671 672 // We can't extend or shrink something that has multiple uses: doing so would 673 // require duplicating the instruction in general, which isn't profitable. 674 if (!I->hasOneUse()) return false; 675 676 unsigned Opc = I->getOpcode(), Tmp; 677 switch (Opc) { 678 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 679 case Instruction::SExt: // zext(sext(x)) -> sext(x). 680 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 681 return true; 682 case Instruction::And: 683 case Instruction::Or: 684 case Instruction::Xor: 685 case Instruction::Add: 686 case Instruction::Sub: 687 case Instruction::Mul: 688 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 689 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 690 return false; 691 // These can all be promoted if neither operand has 'bits to clear'. 692 if (BitsToClear == 0 && Tmp == 0) 693 return true; 694 695 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 696 // other side, BitsToClear is ok. 697 if (Tmp == 0 && 698 (Opc == Instruction::And || Opc == Instruction::Or || 699 Opc == Instruction::Xor)) { 700 // We use MaskedValueIsZero here for generality, but the case we care 701 // about the most is constant RHS. 702 unsigned VSize = V->getType()->getScalarSizeInBits(); 703 if (IC.MaskedValueIsZero(I->getOperand(1), 704 APInt::getHighBitsSet(VSize, BitsToClear), 705 0, CxtI)) 706 return true; 707 } 708 709 // Otherwise, we don't know how to analyze this BitsToClear case yet. 710 return false; 711 712 case Instruction::Shl: 713 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 714 // upper bits we can reduce BitsToClear by the shift amount. 715 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 716 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 717 return false; 718 uint64_t ShiftAmt = Amt->getZExtValue(); 719 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 720 return true; 721 } 722 return false; 723 case Instruction::LShr: 724 // We can promote lshr(x, cst) if we can promote x. This requires the 725 // ultimate 'and' to clear out the high zero bits we're clearing out though. 726 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 727 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 728 return false; 729 BitsToClear += Amt->getZExtValue(); 730 if (BitsToClear > V->getType()->getScalarSizeInBits()) 731 BitsToClear = V->getType()->getScalarSizeInBits(); 732 return true; 733 } 734 // Cannot promote variable LSHR. 735 return false; 736 case Instruction::Select: 737 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 738 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 739 // TODO: If important, we could handle the case when the BitsToClear are 740 // known zero in the disagreeing side. 741 Tmp != BitsToClear) 742 return false; 743 return true; 744 745 case Instruction::PHI: { 746 // We can change a phi if we can change all operands. Note that we never 747 // get into trouble with cyclic PHIs here because we only consider 748 // instructions with a single use. 749 PHINode *PN = cast<PHINode>(I); 750 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 751 return false; 752 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 753 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 754 // TODO: If important, we could handle the case when the BitsToClear 755 // are known zero in the disagreeing input. 756 Tmp != BitsToClear) 757 return false; 758 return true; 759 } 760 default: 761 // TODO: Can handle more cases here. 762 return false; 763 } 764 } 765 766 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 767 // If this zero extend is only used by a truncate, let the truncate be 768 // eliminated before we try to optimize this zext. 769 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 770 return nullptr; 771 772 // If one of the common conversion will work, do it. 773 if (Instruction *Result = commonCastTransforms(CI)) 774 return Result; 775 776 // See if we can simplify any instructions used by the input whose sole 777 // purpose is to compute bits we don't care about. 778 if (SimplifyDemandedInstructionBits(CI)) 779 return &CI; 780 781 Value *Src = CI.getOperand(0); 782 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 783 784 // Attempt to extend the entire input expression tree to the destination 785 // type. Only do this if the dest type is a simple type, don't convert the 786 // expression tree to something weird like i93 unless the source is also 787 // strange. 788 unsigned BitsToClear; 789 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 790 CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 791 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 792 "Unreasonable BitsToClear"); 793 794 // Okay, we can transform this! Insert the new expression now. 795 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 796 " to avoid zero extend: " << CI); 797 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 798 assert(Res->getType() == DestTy); 799 800 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 801 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 802 803 // If the high bits are already filled with zeros, just replace this 804 // cast with the result. 805 if (MaskedValueIsZero(Res, 806 APInt::getHighBitsSet(DestBitSize, 807 DestBitSize-SrcBitsKept), 808 0, &CI)) 809 return ReplaceInstUsesWith(CI, Res); 810 811 // We need to emit an AND to clear the high bits. 812 Constant *C = ConstantInt::get(Res->getType(), 813 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 814 return BinaryOperator::CreateAnd(Res, C); 815 } 816 817 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 818 // types and if the sizes are just right we can convert this into a logical 819 // 'and' which will be much cheaper than the pair of casts. 820 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 821 // TODO: Subsume this into EvaluateInDifferentType. 822 823 // Get the sizes of the types involved. We know that the intermediate type 824 // will be smaller than A or C, but don't know the relation between A and C. 825 Value *A = CSrc->getOperand(0); 826 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 827 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 828 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 829 // If we're actually extending zero bits, then if 830 // SrcSize < DstSize: zext(a & mask) 831 // SrcSize == DstSize: a & mask 832 // SrcSize > DstSize: trunc(a) & mask 833 if (SrcSize < DstSize) { 834 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 835 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 836 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 837 return new ZExtInst(And, CI.getType()); 838 } 839 840 if (SrcSize == DstSize) { 841 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 842 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 843 AndValue)); 844 } 845 if (SrcSize > DstSize) { 846 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 847 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 848 return BinaryOperator::CreateAnd(Trunc, 849 ConstantInt::get(Trunc->getType(), 850 AndValue)); 851 } 852 } 853 854 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 855 return transformZExtICmp(ICI, CI); 856 857 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 858 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 859 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 860 // of the (zext icmp) will be transformed. 861 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 862 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 863 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 864 (transformZExtICmp(LHS, CI, false) || 865 transformZExtICmp(RHS, CI, false))) { 866 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 867 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 868 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 869 } 870 } 871 872 // zext(trunc(X) & C) -> (X & zext(C)). 873 Constant *C; 874 Value *X; 875 if (SrcI && 876 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 877 X->getType() == CI.getType()) 878 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 879 880 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 881 Value *And; 882 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 883 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 884 X->getType() == CI.getType()) { 885 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 886 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 887 } 888 889 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 890 if (SrcI && SrcI->hasOneUse() && 891 SrcI->getType()->getScalarType()->isIntegerTy(1) && 892 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) { 893 Value *New = Builder->CreateZExt(X, CI.getType()); 894 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 895 } 896 897 return nullptr; 898 } 899 900 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 901 /// in order to eliminate the icmp. 902 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 903 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 904 ICmpInst::Predicate Pred = ICI->getPredicate(); 905 906 // Don't bother if Op1 isn't of vector or integer type. 907 if (!Op1->getType()->isIntOrIntVectorTy()) 908 return nullptr; 909 910 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 911 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 912 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 913 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 914 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 915 916 Value *Sh = ConstantInt::get(Op0->getType(), 917 Op0->getType()->getScalarSizeInBits()-1); 918 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 919 if (In->getType() != CI.getType()) 920 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 921 922 if (Pred == ICmpInst::ICMP_SGT) 923 In = Builder->CreateNot(In, In->getName()+".not"); 924 return ReplaceInstUsesWith(CI, In); 925 } 926 } 927 928 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 929 // If we know that only one bit of the LHS of the icmp can be set and we 930 // have an equality comparison with zero or a power of 2, we can transform 931 // the icmp and sext into bitwise/integer operations. 932 if (ICI->hasOneUse() && 933 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 934 unsigned BitWidth = Op1C->getType()->getBitWidth(); 935 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 936 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 937 938 APInt KnownZeroMask(~KnownZero); 939 if (KnownZeroMask.isPowerOf2()) { 940 Value *In = ICI->getOperand(0); 941 942 // If the icmp tests for a known zero bit we can constant fold it. 943 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 944 Value *V = Pred == ICmpInst::ICMP_NE ? 945 ConstantInt::getAllOnesValue(CI.getType()) : 946 ConstantInt::getNullValue(CI.getType()); 947 return ReplaceInstUsesWith(CI, V); 948 } 949 950 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 951 // sext ((x & 2^n) == 0) -> (x >> n) - 1 952 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 953 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 954 // Perform a right shift to place the desired bit in the LSB. 955 if (ShiftAmt) 956 In = Builder->CreateLShr(In, 957 ConstantInt::get(In->getType(), ShiftAmt)); 958 959 // At this point "In" is either 1 or 0. Subtract 1 to turn 960 // {1, 0} -> {0, -1}. 961 In = Builder->CreateAdd(In, 962 ConstantInt::getAllOnesValue(In->getType()), 963 "sext"); 964 } else { 965 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 966 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 967 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 968 // Perform a left shift to place the desired bit in the MSB. 969 if (ShiftAmt) 970 In = Builder->CreateShl(In, 971 ConstantInt::get(In->getType(), ShiftAmt)); 972 973 // Distribute the bit over the whole bit width. 974 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 975 BitWidth - 1), "sext"); 976 } 977 978 if (CI.getType() == In->getType()) 979 return ReplaceInstUsesWith(CI, In); 980 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 981 } 982 } 983 } 984 985 return nullptr; 986 } 987 988 /// CanEvaluateSExtd - Return true if we can take the specified value 989 /// and return it as type Ty without inserting any new casts and without 990 /// changing the value of the common low bits. This is used by code that tries 991 /// to promote integer operations to a wider types will allow us to eliminate 992 /// the extension. 993 /// 994 /// This function works on both vectors and scalars. 995 /// 996 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 997 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 998 "Can't sign extend type to a smaller type"); 999 // If this is a constant, it can be trivially promoted. 1000 if (isa<Constant>(V)) 1001 return true; 1002 1003 Instruction *I = dyn_cast<Instruction>(V); 1004 if (!I) return false; 1005 1006 // If this is a truncate from the dest type, we can trivially eliminate it. 1007 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1008 return true; 1009 1010 // We can't extend or shrink something that has multiple uses: doing so would 1011 // require duplicating the instruction in general, which isn't profitable. 1012 if (!I->hasOneUse()) return false; 1013 1014 switch (I->getOpcode()) { 1015 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1016 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1017 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1018 return true; 1019 case Instruction::And: 1020 case Instruction::Or: 1021 case Instruction::Xor: 1022 case Instruction::Add: 1023 case Instruction::Sub: 1024 case Instruction::Mul: 1025 // These operators can all arbitrarily be extended if their inputs can. 1026 return CanEvaluateSExtd(I->getOperand(0), Ty) && 1027 CanEvaluateSExtd(I->getOperand(1), Ty); 1028 1029 //case Instruction::Shl: TODO 1030 //case Instruction::LShr: TODO 1031 1032 case Instruction::Select: 1033 return CanEvaluateSExtd(I->getOperand(1), Ty) && 1034 CanEvaluateSExtd(I->getOperand(2), Ty); 1035 1036 case Instruction::PHI: { 1037 // We can change a phi if we can change all operands. Note that we never 1038 // get into trouble with cyclic PHIs here because we only consider 1039 // instructions with a single use. 1040 PHINode *PN = cast<PHINode>(I); 1041 for (Value *IncValue : PN->incoming_values()) 1042 if (!CanEvaluateSExtd(IncValue, Ty)) return false; 1043 return true; 1044 } 1045 default: 1046 // TODO: Can handle more cases here. 1047 break; 1048 } 1049 1050 return false; 1051 } 1052 1053 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1054 // If this sign extend is only used by a truncate, let the truncate be 1055 // eliminated before we try to optimize this sext. 1056 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1057 return nullptr; 1058 1059 if (Instruction *I = commonCastTransforms(CI)) 1060 return I; 1061 1062 // See if we can simplify any instructions used by the input whose sole 1063 // purpose is to compute bits we don't care about. 1064 if (SimplifyDemandedInstructionBits(CI)) 1065 return &CI; 1066 1067 Value *Src = CI.getOperand(0); 1068 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1069 1070 // If we know that the value being extended is positive, we can use a zext 1071 // instead. 1072 bool KnownZero, KnownOne; 1073 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1074 if (KnownZero) { 1075 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1076 return ReplaceInstUsesWith(CI, ZExt); 1077 } 1078 1079 // Attempt to extend the entire input expression tree to the destination 1080 // type. Only do this if the dest type is a simple type, don't convert the 1081 // expression tree to something weird like i93 unless the source is also 1082 // strange. 1083 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1084 CanEvaluateSExtd(Src, DestTy)) { 1085 // Okay, we can transform this! Insert the new expression now. 1086 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1087 " to avoid sign extend: " << CI); 1088 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1089 assert(Res->getType() == DestTy); 1090 1091 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1092 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1093 1094 // If the high bits are already filled with sign bit, just replace this 1095 // cast with the result. 1096 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1097 return ReplaceInstUsesWith(CI, Res); 1098 1099 // We need to emit a shl + ashr to do the sign extend. 1100 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1101 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1102 ShAmt); 1103 } 1104 1105 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1106 // into shifts. 1107 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1108 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1109 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1110 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1111 1112 // We need to emit a shl + ashr to do the sign extend. 1113 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1114 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1115 return BinaryOperator::CreateAShr(Res, ShAmt); 1116 } 1117 1118 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1119 return transformSExtICmp(ICI, CI); 1120 1121 // If the input is a shl/ashr pair of a same constant, then this is a sign 1122 // extension from a smaller value. If we could trust arbitrary bitwidth 1123 // integers, we could turn this into a truncate to the smaller bit and then 1124 // use a sext for the whole extension. Since we don't, look deeper and check 1125 // for a truncate. If the source and dest are the same type, eliminate the 1126 // trunc and extend and just do shifts. For example, turn: 1127 // %a = trunc i32 %i to i8 1128 // %b = shl i8 %a, 6 1129 // %c = ashr i8 %b, 6 1130 // %d = sext i8 %c to i32 1131 // into: 1132 // %a = shl i32 %i, 30 1133 // %d = ashr i32 %a, 30 1134 Value *A = nullptr; 1135 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1136 ConstantInt *BA = nullptr, *CA = nullptr; 1137 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1138 m_ConstantInt(CA))) && 1139 BA == CA && A->getType() == CI.getType()) { 1140 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1141 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1142 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1143 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1144 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1145 return BinaryOperator::CreateAShr(A, ShAmtV); 1146 } 1147 1148 return nullptr; 1149 } 1150 1151 1152 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 1153 /// in the specified FP type without changing its value. 1154 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1155 bool losesInfo; 1156 APFloat F = CFP->getValueAPF(); 1157 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1158 if (!losesInfo) 1159 return ConstantFP::get(CFP->getContext(), F); 1160 return nullptr; 1161 } 1162 1163 /// LookThroughFPExtensions - If this is an fp extension instruction, look 1164 /// through it until we get the source value. 1165 static Value *LookThroughFPExtensions(Value *V) { 1166 if (Instruction *I = dyn_cast<Instruction>(V)) 1167 if (I->getOpcode() == Instruction::FPExt) 1168 return LookThroughFPExtensions(I->getOperand(0)); 1169 1170 // If this value is a constant, return the constant in the smallest FP type 1171 // that can accurately represent it. This allows us to turn 1172 // (float)((double)X+2.0) into x+2.0f. 1173 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1174 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1175 return V; // No constant folding of this. 1176 // See if the value can be truncated to half and then reextended. 1177 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf)) 1178 return V; 1179 // See if the value can be truncated to float and then reextended. 1180 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 1181 return V; 1182 if (CFP->getType()->isDoubleTy()) 1183 return V; // Won't shrink. 1184 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 1185 return V; 1186 // Don't try to shrink to various long double types. 1187 } 1188 1189 return V; 1190 } 1191 1192 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1193 if (Instruction *I = commonCastTransforms(CI)) 1194 return I; 1195 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1196 // simpilify this expression to avoid one or more of the trunc/extend 1197 // operations if we can do so without changing the numerical results. 1198 // 1199 // The exact manner in which the widths of the operands interact to limit 1200 // what we can and cannot do safely varies from operation to operation, and 1201 // is explained below in the various case statements. 1202 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1203 if (OpI && OpI->hasOneUse()) { 1204 Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0)); 1205 Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1)); 1206 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1207 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1208 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1209 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1210 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1211 switch (OpI->getOpcode()) { 1212 default: break; 1213 case Instruction::FAdd: 1214 case Instruction::FSub: 1215 // For addition and subtraction, the infinitely precise result can 1216 // essentially be arbitrarily wide; proving that double rounding 1217 // will not occur because the result of OpI is exact (as we will for 1218 // FMul, for example) is hopeless. However, we *can* nonetheless 1219 // frequently know that double rounding cannot occur (or that it is 1220 // innocuous) by taking advantage of the specific structure of 1221 // infinitely-precise results that admit double rounding. 1222 // 1223 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1224 // to represent both sources, we can guarantee that the double 1225 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1226 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1227 // for proof of this fact). 1228 // 1229 // Note: Figueroa does not consider the case where DstFormat != 1230 // SrcFormat. It's possible (likely even!) that this analysis 1231 // could be tightened for those cases, but they are rare (the main 1232 // case of interest here is (float)((double)float + float)). 1233 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1234 if (LHSOrig->getType() != CI.getType()) 1235 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1236 if (RHSOrig->getType() != CI.getType()) 1237 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1238 Instruction *RI = 1239 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1240 RI->copyFastMathFlags(OpI); 1241 return RI; 1242 } 1243 break; 1244 case Instruction::FMul: 1245 // For multiplication, the infinitely precise result has at most 1246 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1247 // that such a value can be exactly represented, then no double 1248 // rounding can possibly occur; we can safely perform the operation 1249 // in the destination format if it can represent both sources. 1250 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1251 if (LHSOrig->getType() != CI.getType()) 1252 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1253 if (RHSOrig->getType() != CI.getType()) 1254 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1255 Instruction *RI = 1256 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1257 RI->copyFastMathFlags(OpI); 1258 return RI; 1259 } 1260 break; 1261 case Instruction::FDiv: 1262 // For division, we use again use the bound from Figueroa's 1263 // dissertation. I am entirely certain that this bound can be 1264 // tightened in the unbalanced operand case by an analysis based on 1265 // the diophantine rational approximation bound, but the well-known 1266 // condition used here is a good conservative first pass. 1267 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1268 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1269 if (LHSOrig->getType() != CI.getType()) 1270 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1271 if (RHSOrig->getType() != CI.getType()) 1272 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1273 Instruction *RI = 1274 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1275 RI->copyFastMathFlags(OpI); 1276 return RI; 1277 } 1278 break; 1279 case Instruction::FRem: 1280 // Remainder is straightforward. Remainder is always exact, so the 1281 // type of OpI doesn't enter into things at all. We simply evaluate 1282 // in whichever source type is larger, then convert to the 1283 // destination type. 1284 if (SrcWidth == OpWidth) 1285 break; 1286 if (LHSWidth < SrcWidth) 1287 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1288 else if (RHSWidth <= SrcWidth) 1289 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1290 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1291 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1292 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1293 RI->copyFastMathFlags(OpI); 1294 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1295 } 1296 } 1297 1298 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1299 if (BinaryOperator::isFNeg(OpI)) { 1300 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1301 CI.getType()); 1302 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1303 RI->copyFastMathFlags(OpI); 1304 return RI; 1305 } 1306 } 1307 1308 // (fptrunc (select cond, R1, Cst)) --> 1309 // (select cond, (fptrunc R1), (fptrunc Cst)) 1310 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1311 if (SI && 1312 (isa<ConstantFP>(SI->getOperand(1)) || 1313 isa<ConstantFP>(SI->getOperand(2)))) { 1314 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1315 CI.getType()); 1316 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1317 CI.getType()); 1318 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1319 } 1320 1321 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1322 if (II) { 1323 switch (II->getIntrinsicID()) { 1324 default: break; 1325 case Intrinsic::fabs: { 1326 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1327 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1328 CI.getType()); 1329 Type *IntrinsicType[] = { CI.getType() }; 1330 Function *Overload = 1331 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(), 1332 II->getIntrinsicID(), IntrinsicType); 1333 1334 Value *Args[] = { InnerTrunc }; 1335 return CallInst::Create(Overload, Args, II->getName()); 1336 } 1337 } 1338 } 1339 1340 return nullptr; 1341 } 1342 1343 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1344 return commonCastTransforms(CI); 1345 } 1346 1347 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1348 // This is safe if the intermediate type has enough bits in its mantissa to 1349 // accurately represent all values of X. For example, this won't work with 1350 // i64 -> float -> i64. 1351 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1352 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1353 return nullptr; 1354 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1355 1356 Value *SrcI = OpI->getOperand(0); 1357 Type *FITy = FI.getType(); 1358 Type *OpITy = OpI->getType(); 1359 Type *SrcTy = SrcI->getType(); 1360 bool IsInputSigned = isa<SIToFPInst>(OpI); 1361 bool IsOutputSigned = isa<FPToSIInst>(FI); 1362 1363 // We can safely assume the conversion won't overflow the output range, 1364 // because (for example) (uint8_t)18293.f is undefined behavior. 1365 1366 // Since we can assume the conversion won't overflow, our decision as to 1367 // whether the input will fit in the float should depend on the minimum 1368 // of the input range and output range. 1369 1370 // This means this is also safe for a signed input and unsigned output, since 1371 // a negative input would lead to undefined behavior. 1372 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1373 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1374 int ActualSize = std::min(InputSize, OutputSize); 1375 1376 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1377 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1378 if (IsInputSigned && IsOutputSigned) 1379 return new SExtInst(SrcI, FITy); 1380 return new ZExtInst(SrcI, FITy); 1381 } 1382 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1383 return new TruncInst(SrcI, FITy); 1384 if (SrcTy == FITy) 1385 return ReplaceInstUsesWith(FI, SrcI); 1386 return new BitCastInst(SrcI, FITy); 1387 } 1388 return nullptr; 1389 } 1390 1391 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1392 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1393 if (!OpI) 1394 return commonCastTransforms(FI); 1395 1396 if (Instruction *I = FoldItoFPtoI(FI)) 1397 return I; 1398 1399 return commonCastTransforms(FI); 1400 } 1401 1402 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1403 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1404 if (!OpI) 1405 return commonCastTransforms(FI); 1406 1407 if (Instruction *I = FoldItoFPtoI(FI)) 1408 return I; 1409 1410 return commonCastTransforms(FI); 1411 } 1412 1413 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1414 return commonCastTransforms(CI); 1415 } 1416 1417 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1418 return commonCastTransforms(CI); 1419 } 1420 1421 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1422 // If the source integer type is not the intptr_t type for this target, do a 1423 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1424 // cast to be exposed to other transforms. 1425 unsigned AS = CI.getAddressSpace(); 1426 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1427 DL.getPointerSizeInBits(AS)) { 1428 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1429 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1430 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1431 1432 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1433 return new IntToPtrInst(P, CI.getType()); 1434 } 1435 1436 if (Instruction *I = commonCastTransforms(CI)) 1437 return I; 1438 1439 return nullptr; 1440 } 1441 1442 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1443 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1444 Value *Src = CI.getOperand(0); 1445 1446 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1447 // If casting the result of a getelementptr instruction with no offset, turn 1448 // this into a cast of the original pointer! 1449 if (GEP->hasAllZeroIndices() && 1450 // If CI is an addrspacecast and GEP changes the poiner type, merging 1451 // GEP into CI would undo canonicalizing addrspacecast with different 1452 // pointer types, causing infinite loops. 1453 (!isa<AddrSpaceCastInst>(CI) || 1454 GEP->getType() == GEP->getPointerOperand()->getType())) { 1455 // Changing the cast operand is usually not a good idea but it is safe 1456 // here because the pointer operand is being replaced with another 1457 // pointer operand so the opcode doesn't need to change. 1458 Worklist.Add(GEP); 1459 CI.setOperand(0, GEP->getOperand(0)); 1460 return &CI; 1461 } 1462 } 1463 1464 return commonCastTransforms(CI); 1465 } 1466 1467 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1468 // If the destination integer type is not the intptr_t type for this target, 1469 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1470 // to be exposed to other transforms. 1471 1472 Type *Ty = CI.getType(); 1473 unsigned AS = CI.getPointerAddressSpace(); 1474 1475 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1476 return commonPointerCastTransforms(CI); 1477 1478 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1479 if (Ty->isVectorTy()) // Handle vectors of pointers. 1480 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1481 1482 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1483 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1484 } 1485 1486 /// OptimizeVectorResize - This input value (which is known to have vector type) 1487 /// is being zero extended or truncated to the specified vector type. Try to 1488 /// replace it with a shuffle (and vector/vector bitcast) if possible. 1489 /// 1490 /// The source and destination vector types may have different element types. 1491 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 1492 InstCombiner &IC) { 1493 // We can only do this optimization if the output is a multiple of the input 1494 // element size, or the input is a multiple of the output element size. 1495 // Convert the input type to have the same element type as the output. 1496 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1497 1498 if (SrcTy->getElementType() != DestTy->getElementType()) { 1499 // The input types don't need to be identical, but for now they must be the 1500 // same size. There is no specific reason we couldn't handle things like 1501 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1502 // there yet. 1503 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1504 DestTy->getElementType()->getPrimitiveSizeInBits()) 1505 return nullptr; 1506 1507 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1508 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1509 } 1510 1511 // Now that the element types match, get the shuffle mask and RHS of the 1512 // shuffle to use, which depends on whether we're increasing or decreasing the 1513 // size of the input. 1514 SmallVector<uint32_t, 16> ShuffleMask; 1515 Value *V2; 1516 1517 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1518 // If we're shrinking the number of elements, just shuffle in the low 1519 // elements from the input and use undef as the second shuffle input. 1520 V2 = UndefValue::get(SrcTy); 1521 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1522 ShuffleMask.push_back(i); 1523 1524 } else { 1525 // If we're increasing the number of elements, shuffle in all of the 1526 // elements from InVal and fill the rest of the result elements with zeros 1527 // from a constant zero. 1528 V2 = Constant::getNullValue(SrcTy); 1529 unsigned SrcElts = SrcTy->getNumElements(); 1530 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1531 ShuffleMask.push_back(i); 1532 1533 // The excess elements reference the first element of the zero input. 1534 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1535 ShuffleMask.push_back(SrcElts); 1536 } 1537 1538 return new ShuffleVectorInst(InVal, V2, 1539 ConstantDataVector::get(V2->getContext(), 1540 ShuffleMask)); 1541 } 1542 1543 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1544 return Value % Ty->getPrimitiveSizeInBits() == 0; 1545 } 1546 1547 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1548 return Value / Ty->getPrimitiveSizeInBits(); 1549 } 1550 1551 /// CollectInsertionElements - V is a value which is inserted into a vector of 1552 /// VecEltTy. Look through the value to see if we can decompose it into 1553 /// insertions into the vector. See the example in the comment for 1554 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1555 /// The type of V is always a non-zero multiple of VecEltTy's size. 1556 /// Shift is the number of bits between the lsb of V and the lsb of 1557 /// the vector. 1558 /// 1559 /// This returns false if the pattern can't be matched or true if it can, 1560 /// filling in Elements with the elements found here. 1561 static bool CollectInsertionElements(Value *V, unsigned Shift, 1562 SmallVectorImpl<Value *> &Elements, 1563 Type *VecEltTy, bool isBigEndian) { 1564 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1565 "Shift should be a multiple of the element type size"); 1566 1567 // Undef values never contribute useful bits to the result. 1568 if (isa<UndefValue>(V)) return true; 1569 1570 // If we got down to a value of the right type, we win, try inserting into the 1571 // right element. 1572 if (V->getType() == VecEltTy) { 1573 // Inserting null doesn't actually insert any elements. 1574 if (Constant *C = dyn_cast<Constant>(V)) 1575 if (C->isNullValue()) 1576 return true; 1577 1578 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1579 if (isBigEndian) 1580 ElementIndex = Elements.size() - ElementIndex - 1; 1581 1582 // Fail if multiple elements are inserted into this slot. 1583 if (Elements[ElementIndex]) 1584 return false; 1585 1586 Elements[ElementIndex] = V; 1587 return true; 1588 } 1589 1590 if (Constant *C = dyn_cast<Constant>(V)) { 1591 // Figure out the # elements this provides, and bitcast it or slice it up 1592 // as required. 1593 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1594 VecEltTy); 1595 // If the constant is the size of a vector element, we just need to bitcast 1596 // it to the right type so it gets properly inserted. 1597 if (NumElts == 1) 1598 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1599 Shift, Elements, VecEltTy, isBigEndian); 1600 1601 // Okay, this is a constant that covers multiple elements. Slice it up into 1602 // pieces and insert each element-sized piece into the vector. 1603 if (!isa<IntegerType>(C->getType())) 1604 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1605 C->getType()->getPrimitiveSizeInBits())); 1606 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1607 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1608 1609 for (unsigned i = 0; i != NumElts; ++i) { 1610 unsigned ShiftI = Shift+i*ElementSize; 1611 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1612 ShiftI)); 1613 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1614 if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1615 isBigEndian)) 1616 return false; 1617 } 1618 return true; 1619 } 1620 1621 if (!V->hasOneUse()) return false; 1622 1623 Instruction *I = dyn_cast<Instruction>(V); 1624 if (!I) return false; 1625 switch (I->getOpcode()) { 1626 default: return false; // Unhandled case. 1627 case Instruction::BitCast: 1628 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1629 isBigEndian); 1630 case Instruction::ZExt: 1631 if (!isMultipleOfTypeSize( 1632 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1633 VecEltTy)) 1634 return false; 1635 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1636 isBigEndian); 1637 case Instruction::Or: 1638 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1639 isBigEndian) && 1640 CollectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1641 isBigEndian); 1642 case Instruction::Shl: { 1643 // Must be shifting by a constant that is a multiple of the element size. 1644 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1645 if (!CI) return false; 1646 Shift += CI->getZExtValue(); 1647 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1648 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1649 isBigEndian); 1650 } 1651 1652 } 1653 } 1654 1655 1656 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 1657 /// may be doing shifts and ors to assemble the elements of the vector manually. 1658 /// Try to rip the code out and replace it with insertelements. This is to 1659 /// optimize code like this: 1660 /// 1661 /// %tmp37 = bitcast float %inc to i32 1662 /// %tmp38 = zext i32 %tmp37 to i64 1663 /// %tmp31 = bitcast float %inc5 to i32 1664 /// %tmp32 = zext i32 %tmp31 to i64 1665 /// %tmp33 = shl i64 %tmp32, 32 1666 /// %ins35 = or i64 %tmp33, %tmp38 1667 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1668 /// 1669 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1670 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 1671 InstCombiner &IC) { 1672 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1673 Value *IntInput = CI.getOperand(0); 1674 1675 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1676 if (!CollectInsertionElements(IntInput, 0, Elements, 1677 DestVecTy->getElementType(), 1678 IC.getDataLayout().isBigEndian())) 1679 return nullptr; 1680 1681 // If we succeeded, we know that all of the element are specified by Elements 1682 // or are zero if Elements has a null entry. Recast this as a set of 1683 // insertions. 1684 Value *Result = Constant::getNullValue(CI.getType()); 1685 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1686 if (!Elements[i]) continue; // Unset element. 1687 1688 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1689 IC.Builder->getInt32(i)); 1690 } 1691 1692 return Result; 1693 } 1694 1695 1696 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 1697 /// bitcast. The various long double bitcasts can't get in here. 1698 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC, 1699 const DataLayout &DL) { 1700 Value *Src = CI.getOperand(0); 1701 Type *DestTy = CI.getType(); 1702 1703 // If this is a bitcast from int to float, check to see if the int is an 1704 // extraction from a vector. 1705 Value *VecInput = nullptr; 1706 // bitcast(trunc(bitcast(somevector))) 1707 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1708 isa<VectorType>(VecInput->getType())) { 1709 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1710 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1711 1712 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 1713 // If the element type of the vector doesn't match the result type, 1714 // bitcast it to be a vector type we can extract from. 1715 if (VecTy->getElementType() != DestTy) { 1716 VecTy = VectorType::get(DestTy, 1717 VecTy->getPrimitiveSizeInBits() / DestWidth); 1718 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1719 } 1720 1721 unsigned Elt = 0; 1722 if (DL.isBigEndian()) 1723 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1; 1724 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1725 } 1726 } 1727 1728 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1729 ConstantInt *ShAmt = nullptr; 1730 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1731 m_ConstantInt(ShAmt)))) && 1732 isa<VectorType>(VecInput->getType())) { 1733 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1734 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1735 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 1736 ShAmt->getZExtValue() % DestWidth == 0) { 1737 // If the element type of the vector doesn't match the result type, 1738 // bitcast it to be a vector type we can extract from. 1739 if (VecTy->getElementType() != DestTy) { 1740 VecTy = VectorType::get(DestTy, 1741 VecTy->getPrimitiveSizeInBits() / DestWidth); 1742 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1743 } 1744 1745 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 1746 if (DL.isBigEndian()) 1747 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt; 1748 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1749 } 1750 } 1751 return nullptr; 1752 } 1753 1754 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1755 // If the operands are integer typed then apply the integer transforms, 1756 // otherwise just apply the common ones. 1757 Value *Src = CI.getOperand(0); 1758 Type *SrcTy = Src->getType(); 1759 Type *DestTy = CI.getType(); 1760 1761 // Get rid of casts from one type to the same type. These are useless and can 1762 // be replaced by the operand. 1763 if (DestTy == Src->getType()) 1764 return ReplaceInstUsesWith(CI, Src); 1765 1766 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1767 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1768 Type *DstElTy = DstPTy->getElementType(); 1769 Type *SrcElTy = SrcPTy->getElementType(); 1770 1771 // If we are casting a alloca to a pointer to a type of the same 1772 // size, rewrite the allocation instruction to allocate the "right" type. 1773 // There is no need to modify malloc calls because it is their bitcast that 1774 // needs to be cleaned up. 1775 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1776 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1777 return V; 1778 1779 // If the source and destination are pointers, and this cast is equivalent 1780 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1781 // This can enhance SROA and other transforms that want type-safe pointers. 1782 unsigned NumZeros = 0; 1783 while (SrcElTy != DstElTy && 1784 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1785 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1786 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 1787 ++NumZeros; 1788 } 1789 1790 // If we found a path from the src to dest, create the getelementptr now. 1791 if (SrcElTy == DstElTy) { 1792 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 1793 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1794 } 1795 } 1796 1797 // Try to optimize int -> float bitcasts. 1798 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1799 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this, DL)) 1800 return I; 1801 1802 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1803 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1804 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1805 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1806 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1807 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1808 } 1809 1810 if (isa<IntegerType>(SrcTy)) { 1811 // If this is a cast from an integer to vector, check to see if the input 1812 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1813 // the casts with a shuffle and (potentially) a bitcast. 1814 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1815 CastInst *SrcCast = cast<CastInst>(Src); 1816 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1817 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1818 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 1819 cast<VectorType>(DestTy), *this)) 1820 return I; 1821 } 1822 1823 // If the input is an 'or' instruction, we may be doing shifts and ors to 1824 // assemble the elements of the vector manually. Try to rip the code out 1825 // and replace it with insertelements. 1826 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 1827 return ReplaceInstUsesWith(CI, V); 1828 } 1829 } 1830 1831 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1832 if (SrcVTy->getNumElements() == 1) { 1833 // If our destination is not a vector, then make this a straight 1834 // scalar-scalar cast. 1835 if (!DestTy->isVectorTy()) { 1836 Value *Elem = 1837 Builder->CreateExtractElement(Src, 1838 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1839 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1840 } 1841 1842 // Otherwise, see if our source is an insert. If so, then use the scalar 1843 // component directly. 1844 if (InsertElementInst *IEI = 1845 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1846 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1847 DestTy); 1848 } 1849 } 1850 1851 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1852 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1853 // a bitcast to a vector with the same # elts. 1854 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1855 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 1856 SVI->getType()->getNumElements() == 1857 SVI->getOperand(0)->getType()->getVectorNumElements()) { 1858 BitCastInst *Tmp; 1859 // If either of the operands is a cast from CI.getType(), then 1860 // evaluating the shuffle in the casted destination's type will allow 1861 // us to eliminate at least one cast. 1862 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1863 Tmp->getOperand(0)->getType() == DestTy) || 1864 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1865 Tmp->getOperand(0)->getType() == DestTy)) { 1866 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1867 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1868 // Return a new shuffle vector. Use the same element ID's, as we 1869 // know the vector types match #elts. 1870 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1871 } 1872 } 1873 } 1874 1875 if (SrcTy->isPointerTy()) 1876 return commonPointerCastTransforms(CI); 1877 return commonCastTransforms(CI); 1878 } 1879 1880 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 1881 // If the destination pointer element type is not the same as the source's 1882 // first do a bitcast to the destination type, and then the addrspacecast. 1883 // This allows the cast to be exposed to other transforms. 1884 Value *Src = CI.getOperand(0); 1885 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 1886 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 1887 1888 Type *DestElemTy = DestTy->getElementType(); 1889 if (SrcTy->getElementType() != DestElemTy) { 1890 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 1891 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 1892 // Handle vectors of pointers. 1893 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1894 } 1895 1896 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 1897 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 1898 } 1899 1900 return commonPointerCastTransforms(CI); 1901 } 1902