1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Analyze 'Val', seeing if it is a simple linear expression. 27 /// If so, decompose it, returning some value X, such that Val is 28 /// X*Scale+Offset. 29 /// 30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 31 uint64_t &Offset) { 32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 33 Offset = CI->getZExtValue(); 34 Scale = 0; 35 return ConstantInt::get(Val->getType(), 0); 36 } 37 38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 39 // Cannot look past anything that might overflow. 40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 42 Scale = 1; 43 Offset = 0; 44 return Val; 45 } 46 47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 48 if (I->getOpcode() == Instruction::Shl) { 49 // This is a value scaled by '1 << the shift amt'. 50 Scale = UINT64_C(1) << RHS->getZExtValue(); 51 Offset = 0; 52 return I->getOperand(0); 53 } 54 55 if (I->getOpcode() == Instruction::Mul) { 56 // This value is scaled by 'RHS'. 57 Scale = RHS->getZExtValue(); 58 Offset = 0; 59 return I->getOperand(0); 60 } 61 62 if (I->getOpcode() == Instruction::Add) { 63 // We have X+C. Check to see if we really have (X*C2)+C1, 64 // where C1 is divisible by C2. 65 unsigned SubScale; 66 Value *SubVal = 67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 68 Offset += RHS->getZExtValue(); 69 Scale = SubScale; 70 return SubVal; 71 } 72 } 73 } 74 75 // Otherwise, we can't look past this. 76 Scale = 1; 77 Offset = 0; 78 return Val; 79 } 80 81 /// If we find a cast of an allocation instruction, try to eliminate the cast by 82 /// moving the type information into the alloc. 83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 84 AllocaInst &AI) { 85 PointerType *PTy = cast<PointerType>(CI.getType()); 86 87 BuilderTy AllocaBuilder(Builder); 88 AllocaBuilder.SetInsertPoint(&AI); 89 90 // Get the type really allocated and the type casted to. 91 Type *AllocElTy = AI.getAllocatedType(); 92 Type *CastElTy = PTy->getElementType(); 93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 94 95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 97 if (CastElTyAlign < AllocElTyAlign) return nullptr; 98 99 // If the allocation has multiple uses, only promote it if we are strictly 100 // increasing the alignment of the resultant allocation. If we keep it the 101 // same, we open the door to infinite loops of various kinds. 102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 103 104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 107 108 // If the allocation has multiple uses, only promote it if we're not 109 // shrinking the amount of memory being allocated. 110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 113 114 // See if we can satisfy the modulus by pulling a scale out of the array 115 // size argument. 116 unsigned ArraySizeScale; 117 uint64_t ArrayOffset; 118 Value *NumElements = // See if the array size is a decomposable linear expr. 119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 120 121 // If we can now satisfy the modulus, by using a non-1 scale, we really can 122 // do the xform. 123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 125 126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 127 Value *Amt = nullptr; 128 if (Scale == 1) { 129 Amt = NumElements; 130 } else { 131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 132 // Insert before the alloca, not before the cast. 133 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 134 } 135 136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 138 Offset, true); 139 Amt = AllocaBuilder.CreateAdd(Amt, Off); 140 } 141 142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 143 New->setAlignment(AI.getAlignment()); 144 New->takeName(&AI); 145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 146 147 // If the allocation has multiple real uses, insert a cast and change all 148 // things that used it to use the new cast. This will also hack on CI, but it 149 // will die soon. 150 if (!AI.hasOneUse()) { 151 // New is the allocation instruction, pointer typed. AI is the original 152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 154 replaceInstUsesWith(AI, NewCast); 155 } 156 return replaceInstUsesWith(CI, New); 157 } 158 159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 160 /// true for, actually insert the code to evaluate the expression. 161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 162 bool isSigned) { 163 if (Constant *C = dyn_cast<Constant>(V)) { 164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 165 // If we got a constantexpr back, try to simplify it with DL info. 166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 167 C = FoldedC; 168 return C; 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = CI1->getOpcode(); 239 Instruction::CastOps secondOp = CI2->getOpcode(); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// @brief Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 269 } 270 } 271 272 // If we are casting a select, then fold the cast into the select. 273 if (auto *SI = dyn_cast<SelectInst>(Src)) 274 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 275 return NV; 276 277 // If we are casting a PHI, then fold the cast into the PHI. 278 if (auto *PN = dyn_cast<PHINode>(Src)) { 279 // Don't do this if it would create a PHI node with an illegal type from a 280 // legal type. 281 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 282 shouldChangeType(CI.getType(), Src->getType())) 283 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 284 return NV; 285 } 286 287 return nullptr; 288 } 289 290 /// Return true if we can evaluate the specified expression tree as type Ty 291 /// instead of its larger type, and arrive with the same value. 292 /// This is used by code that tries to eliminate truncates. 293 /// 294 /// Ty will always be a type smaller than V. We should return true if trunc(V) 295 /// can be computed by computing V in the smaller type. If V is an instruction, 296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 297 /// makes sense if x and y can be efficiently truncated. 298 /// 299 /// This function works on both vectors and scalars. 300 /// 301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 302 Instruction *CxtI) { 303 // We can always evaluate constants in another type. 304 if (isa<Constant>(V)) 305 return true; 306 307 Instruction *I = dyn_cast<Instruction>(V); 308 if (!I) return false; 309 310 Type *OrigTy = V->getType(); 311 312 // If this is an extension from the dest type, we can eliminate it, even if it 313 // has multiple uses. 314 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 315 I->getOperand(0)->getType() == Ty) 316 return true; 317 318 // We can't extend or shrink something that has multiple uses: doing so would 319 // require duplicating the instruction in general, which isn't profitable. 320 if (!I->hasOneUse()) return false; 321 322 unsigned Opc = I->getOpcode(); 323 switch (Opc) { 324 case Instruction::Add: 325 case Instruction::Sub: 326 case Instruction::Mul: 327 case Instruction::And: 328 case Instruction::Or: 329 case Instruction::Xor: 330 // These operators can all arbitrarily be extended or truncated. 331 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 332 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 333 334 case Instruction::UDiv: 335 case Instruction::URem: { 336 // UDiv and URem can be truncated if all the truncated bits are zero. 337 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 338 uint32_t BitWidth = Ty->getScalarSizeInBits(); 339 if (BitWidth < OrigBitWidth) { 340 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 341 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 342 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 345 } 346 } 347 break; 348 } 349 case Instruction::Shl: { 350 // If we are truncating the result of this SHL, and if it's a shift of a 351 // constant amount, we can always perform a SHL in a smaller type. 352 const APInt *Amt; 353 if (match(I->getOperand(1), m_APInt(Amt))) { 354 uint32_t BitWidth = Ty->getScalarSizeInBits(); 355 if (Amt->getLimitedValue(BitWidth) < BitWidth) 356 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 357 } 358 break; 359 } 360 case Instruction::LShr: { 361 // If this is a truncate of a logical shr, we can truncate it to a smaller 362 // lshr iff we know that the bits we would otherwise be shifting in are 363 // already zeros. 364 const APInt *Amt; 365 if (match(I->getOperand(1), m_APInt(Amt))) { 366 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 367 uint32_t BitWidth = Ty->getScalarSizeInBits(); 368 if (IC.MaskedValueIsZero(I->getOperand(0), 369 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 370 Amt->getLimitedValue(BitWidth) < BitWidth) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 372 } 373 } 374 break; 375 } 376 case Instruction::AShr: { 377 // If this is a truncate of an arithmetic shr, we can truncate it to a 378 // smaller ashr iff we know that all the bits from the sign bit of the 379 // original type and the sign bit of the truncate type are similar. 380 // TODO: It is enough to check that the bits we would be shifting in are 381 // similar to sign bit of the truncate type. 382 const APInt *Amt; 383 if (match(I->getOperand(1), m_APInt(Amt))) { 384 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 385 uint32_t BitWidth = Ty->getScalarSizeInBits(); 386 if (Amt->getLimitedValue(BitWidth) < BitWidth && 387 OrigBitWidth - BitWidth < 388 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 389 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 390 } 391 break; 392 } 393 case Instruction::Trunc: 394 // trunc(trunc(x)) -> trunc(x) 395 return true; 396 case Instruction::ZExt: 397 case Instruction::SExt: 398 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 399 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 400 return true; 401 case Instruction::Select: { 402 SelectInst *SI = cast<SelectInst>(I); 403 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 404 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 405 } 406 case Instruction::PHI: { 407 // We can change a phi if we can change all operands. Note that we never 408 // get into trouble with cyclic PHIs here because we only consider 409 // instructions with a single use. 410 PHINode *PN = cast<PHINode>(I); 411 for (Value *IncValue : PN->incoming_values()) 412 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 413 return false; 414 return true; 415 } 416 default: 417 // TODO: Can handle more cases here. 418 break; 419 } 420 421 return false; 422 } 423 424 /// Given a vector that is bitcast to an integer, optionally logically 425 /// right-shifted, and truncated, convert it to an extractelement. 426 /// Example (big endian): 427 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 428 /// ---> 429 /// extractelement <4 x i32> %X, 1 430 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 431 Value *TruncOp = Trunc.getOperand(0); 432 Type *DestType = Trunc.getType(); 433 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 434 return nullptr; 435 436 Value *VecInput = nullptr; 437 ConstantInt *ShiftVal = nullptr; 438 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 439 m_LShr(m_BitCast(m_Value(VecInput)), 440 m_ConstantInt(ShiftVal)))) || 441 !isa<VectorType>(VecInput->getType())) 442 return nullptr; 443 444 VectorType *VecType = cast<VectorType>(VecInput->getType()); 445 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 446 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 447 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 448 449 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 450 return nullptr; 451 452 // If the element type of the vector doesn't match the result type, 453 // bitcast it to a vector type that we can extract from. 454 unsigned NumVecElts = VecWidth / DestWidth; 455 if (VecType->getElementType() != DestType) { 456 VecType = VectorType::get(DestType, NumVecElts); 457 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 458 } 459 460 unsigned Elt = ShiftAmount / DestWidth; 461 if (IC.getDataLayout().isBigEndian()) 462 Elt = NumVecElts - 1 - Elt; 463 464 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 465 } 466 467 /// Rotate left/right may occur in a wider type than necessary because of type 468 /// promotion rules. Try to narrow all of the component instructions. 469 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 470 assert((isa<VectorType>(Trunc.getSrcTy()) || 471 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 472 "Don't narrow to an illegal scalar type"); 473 474 // First, find an or'd pair of opposite shifts with the same shifted operand: 475 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 476 Value *Or0, *Or1; 477 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 478 return nullptr; 479 480 Value *ShVal, *ShAmt0, *ShAmt1; 481 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 482 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 483 return nullptr; 484 485 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 486 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 487 if (ShiftOpcode0 == ShiftOpcode1) 488 return nullptr; 489 490 // The shift amounts must add up to the narrow bit width. 491 Value *ShAmt; 492 bool SubIsOnLHS; 493 Type *DestTy = Trunc.getType(); 494 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 495 if (match(ShAmt0, 496 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { 497 ShAmt = ShAmt1; 498 SubIsOnLHS = true; 499 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), 500 m_Specific(ShAmt0))))) { 501 ShAmt = ShAmt0; 502 SubIsOnLHS = false; 503 } else { 504 return nullptr; 505 } 506 507 // The shifted value must have high zeros in the wide type. Typically, this 508 // will be a zext, but it could also be the result of an 'and' or 'shift'. 509 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 510 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 511 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 512 return nullptr; 513 514 // We have an unnecessarily wide rotate! 515 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 516 // Narrow it down to eliminate the zext/trunc: 517 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 518 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 519 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 520 521 // Mask both shift amounts to ensure there's no UB from oversized shifts. 522 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 523 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 524 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 525 526 // Truncate the original value and use narrow ops. 527 Value *X = Builder.CreateTrunc(ShVal, DestTy); 528 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 529 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 530 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 531 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 532 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 533 } 534 535 /// Try to narrow the width of math or bitwise logic instructions by pulling a 536 /// truncate ahead of binary operators. 537 /// TODO: Transforms for truncated shifts should be moved into here. 538 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 539 Type *SrcTy = Trunc.getSrcTy(); 540 Type *DestTy = Trunc.getType(); 541 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 542 return nullptr; 543 544 BinaryOperator *BinOp; 545 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 546 return nullptr; 547 548 Value *BinOp0 = BinOp->getOperand(0); 549 Value *BinOp1 = BinOp->getOperand(1); 550 switch (BinOp->getOpcode()) { 551 case Instruction::And: 552 case Instruction::Or: 553 case Instruction::Xor: 554 case Instruction::Add: 555 case Instruction::Sub: 556 case Instruction::Mul: { 557 Constant *C; 558 if (match(BinOp0, m_Constant(C))) { 559 // trunc (binop C, X) --> binop (trunc C', X) 560 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 561 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 562 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 563 } 564 if (match(BinOp1, m_Constant(C))) { 565 // trunc (binop X, C) --> binop (trunc X, C') 566 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 567 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 568 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 569 } 570 Value *X; 571 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 572 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 573 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 574 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 575 } 576 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 577 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 578 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 579 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 580 } 581 break; 582 } 583 584 default: break; 585 } 586 587 if (Instruction *NarrowOr = narrowRotate(Trunc)) 588 return NarrowOr; 589 590 return nullptr; 591 } 592 593 /// Try to narrow the width of a splat shuffle. This could be generalized to any 594 /// shuffle with a constant operand, but we limit the transform to avoid 595 /// creating a shuffle type that targets may not be able to lower effectively. 596 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 597 InstCombiner::BuilderTy &Builder) { 598 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 599 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 600 Shuf->getMask()->getSplatValue() && 601 Shuf->getType() == Shuf->getOperand(0)->getType()) { 602 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 603 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 604 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 605 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 606 } 607 608 return nullptr; 609 } 610 611 /// Try to narrow the width of an insert element. This could be generalized for 612 /// any vector constant, but we limit the transform to insertion into undef to 613 /// avoid potential backend problems from unsupported insertion widths. This 614 /// could also be extended to handle the case of inserting a scalar constant 615 /// into a vector variable. 616 static Instruction *shrinkInsertElt(CastInst &Trunc, 617 InstCombiner::BuilderTy &Builder) { 618 Instruction::CastOps Opcode = Trunc.getOpcode(); 619 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 620 "Unexpected instruction for shrinking"); 621 622 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 623 if (!InsElt || !InsElt->hasOneUse()) 624 return nullptr; 625 626 Type *DestTy = Trunc.getType(); 627 Type *DestScalarTy = DestTy->getScalarType(); 628 Value *VecOp = InsElt->getOperand(0); 629 Value *ScalarOp = InsElt->getOperand(1); 630 Value *Index = InsElt->getOperand(2); 631 632 if (isa<UndefValue>(VecOp)) { 633 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 634 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 635 UndefValue *NarrowUndef = UndefValue::get(DestTy); 636 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 637 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 638 } 639 640 return nullptr; 641 } 642 643 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 644 if (Instruction *Result = commonCastTransforms(CI)) 645 return Result; 646 647 // Test if the trunc is the user of a select which is part of a 648 // minimum or maximum operation. If so, don't do any more simplification. 649 // Even simplifying demanded bits can break the canonical form of a 650 // min/max. 651 Value *LHS, *RHS; 652 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 653 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 654 return nullptr; 655 656 // See if we can simplify any instructions used by the input whose sole 657 // purpose is to compute bits we don't care about. 658 if (SimplifyDemandedInstructionBits(CI)) 659 return &CI; 660 661 Value *Src = CI.getOperand(0); 662 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 663 664 // Attempt to truncate the entire input expression tree to the destination 665 // type. Only do this if the dest type is a simple type, don't convert the 666 // expression tree to something weird like i93 unless the source is also 667 // strange. 668 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 669 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 670 671 // If this cast is a truncate, evaluting in a different type always 672 // eliminates the cast, so it is always a win. 673 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 674 " to avoid cast: " << CI << '\n'); 675 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 676 assert(Res->getType() == DestTy); 677 return replaceInstUsesWith(CI, Res); 678 } 679 680 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 681 if (DestTy->getScalarSizeInBits() == 1) { 682 Constant *One = ConstantInt::get(SrcTy, 1); 683 Src = Builder.CreateAnd(Src, One); 684 Value *Zero = Constant::getNullValue(Src->getType()); 685 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 686 } 687 688 // FIXME: Maybe combine the next two transforms to handle the no cast case 689 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 690 691 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 692 Value *A = nullptr; ConstantInt *Cst = nullptr; 693 if (Src->hasOneUse() && 694 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 695 // We have three types to worry about here, the type of A, the source of 696 // the truncate (MidSize), and the destination of the truncate. We know that 697 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 698 // between ASize and ResultSize. 699 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 700 701 // If the shift amount is larger than the size of A, then the result is 702 // known to be zero because all the input bits got shifted out. 703 if (Cst->getZExtValue() >= ASize) 704 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 705 706 // Since we're doing an lshr and a zero extend, and know that the shift 707 // amount is smaller than ASize, it is always safe to do the shift in A's 708 // type, then zero extend or truncate to the result. 709 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 710 Shift->takeName(Src); 711 return CastInst::CreateIntegerCast(Shift, DestTy, false); 712 } 713 714 // FIXME: We should canonicalize to zext/trunc and remove this transform. 715 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 716 // conversion. 717 // It works because bits coming from sign extension have the same value as 718 // the sign bit of the original value; performing ashr instead of lshr 719 // generates bits of the same value as the sign bit. 720 if (Src->hasOneUse() && 721 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 722 Value *SExt = cast<Instruction>(Src)->getOperand(0); 723 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 724 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 725 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 726 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 727 unsigned ShiftAmt = Cst->getZExtValue(); 728 729 // This optimization can be only performed when zero bits generated by 730 // the original lshr aren't pulled into the value after truncation, so we 731 // can only shift by values no larger than the number of extension bits. 732 // FIXME: Instead of bailing when the shift is too large, use and to clear 733 // the extra bits. 734 if (ShiftAmt <= MaxAmt) { 735 if (CISize == ASize) 736 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 737 std::min(ShiftAmt, ASize - 1))); 738 if (SExt->hasOneUse()) { 739 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 740 Shift->takeName(Src); 741 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 742 } 743 } 744 } 745 746 if (Instruction *I = narrowBinOp(CI)) 747 return I; 748 749 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 750 return I; 751 752 if (Instruction *I = shrinkInsertElt(CI, Builder)) 753 return I; 754 755 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 756 shouldChangeType(SrcTy, DestTy)) { 757 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 758 // dest type is native and cst < dest size. 759 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 760 !match(A, m_Shr(m_Value(), m_Constant()))) { 761 // Skip shifts of shift by constants. It undoes a combine in 762 // FoldShiftByConstant and is the extend in reg pattern. 763 const unsigned DestSize = DestTy->getScalarSizeInBits(); 764 if (Cst->getValue().ult(DestSize)) { 765 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 766 767 return BinaryOperator::Create( 768 Instruction::Shl, NewTrunc, 769 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 770 } 771 } 772 } 773 774 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 775 return I; 776 777 return nullptr; 778 } 779 780 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 781 bool DoTransform) { 782 // If we are just checking for a icmp eq of a single bit and zext'ing it 783 // to an integer, then shift the bit to the appropriate place and then 784 // cast to integer to avoid the comparison. 785 const APInt *Op1CV; 786 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 787 788 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 789 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 790 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 791 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 792 if (!DoTransform) return ICI; 793 794 Value *In = ICI->getOperand(0); 795 Value *Sh = ConstantInt::get(In->getType(), 796 In->getType()->getScalarSizeInBits() - 1); 797 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 798 if (In->getType() != CI.getType()) 799 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 800 801 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 802 Constant *One = ConstantInt::get(In->getType(), 1); 803 In = Builder.CreateXor(In, One, In->getName() + ".not"); 804 } 805 806 return replaceInstUsesWith(CI, In); 807 } 808 809 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 810 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 811 // zext (X == 1) to i32 --> X iff X has only the low bit set. 812 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 813 // zext (X != 0) to i32 --> X iff X has only the low bit set. 814 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 815 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 816 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 817 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 818 // This only works for EQ and NE 819 ICI->isEquality()) { 820 // If Op1C some other power of two, convert: 821 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 822 823 APInt KnownZeroMask(~Known.Zero); 824 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 825 if (!DoTransform) return ICI; 826 827 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 828 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 829 // (X&4) == 2 --> false 830 // (X&4) != 2 --> true 831 Constant *Res = ConstantInt::get(CI.getType(), isNE); 832 return replaceInstUsesWith(CI, Res); 833 } 834 835 uint32_t ShAmt = KnownZeroMask.logBase2(); 836 Value *In = ICI->getOperand(0); 837 if (ShAmt) { 838 // Perform a logical shr by shiftamt. 839 // Insert the shift to put the result in the low bit. 840 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 841 In->getName() + ".lobit"); 842 } 843 844 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 845 Constant *One = ConstantInt::get(In->getType(), 1); 846 In = Builder.CreateXor(In, One); 847 } 848 849 if (CI.getType() == In->getType()) 850 return replaceInstUsesWith(CI, In); 851 852 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 853 return replaceInstUsesWith(CI, IntCast); 854 } 855 } 856 } 857 858 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 859 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 860 // may lead to additional simplifications. 861 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 862 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 863 Value *LHS = ICI->getOperand(0); 864 Value *RHS = ICI->getOperand(1); 865 866 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 867 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 868 869 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 870 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 871 APInt UnknownBit = ~KnownBits; 872 if (UnknownBit.countPopulation() == 1) { 873 if (!DoTransform) return ICI; 874 875 Value *Result = Builder.CreateXor(LHS, RHS); 876 877 // Mask off any bits that are set and won't be shifted away. 878 if (KnownLHS.One.uge(UnknownBit)) 879 Result = Builder.CreateAnd(Result, 880 ConstantInt::get(ITy, UnknownBit)); 881 882 // Shift the bit we're testing down to the lsb. 883 Result = Builder.CreateLShr( 884 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 885 886 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 887 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 888 Result->takeName(ICI); 889 return replaceInstUsesWith(CI, Result); 890 } 891 } 892 } 893 } 894 895 return nullptr; 896 } 897 898 /// Determine if the specified value can be computed in the specified wider type 899 /// and produce the same low bits. If not, return false. 900 /// 901 /// If this function returns true, it can also return a non-zero number of bits 902 /// (in BitsToClear) which indicates that the value it computes is correct for 903 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 904 /// out. For example, to promote something like: 905 /// 906 /// %B = trunc i64 %A to i32 907 /// %C = lshr i32 %B, 8 908 /// %E = zext i32 %C to i64 909 /// 910 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 911 /// set to 8 to indicate that the promoted value needs to have bits 24-31 912 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 913 /// clear the top bits anyway, doing this has no extra cost. 914 /// 915 /// This function works on both vectors and scalars. 916 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 917 InstCombiner &IC, Instruction *CxtI) { 918 BitsToClear = 0; 919 if (isa<Constant>(V)) 920 return true; 921 922 Instruction *I = dyn_cast<Instruction>(V); 923 if (!I) return false; 924 925 // If the input is a truncate from the destination type, we can trivially 926 // eliminate it. 927 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 928 return true; 929 930 // We can't extend or shrink something that has multiple uses: doing so would 931 // require duplicating the instruction in general, which isn't profitable. 932 if (!I->hasOneUse()) return false; 933 934 unsigned Opc = I->getOpcode(), Tmp; 935 switch (Opc) { 936 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 937 case Instruction::SExt: // zext(sext(x)) -> sext(x). 938 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 939 return true; 940 case Instruction::And: 941 case Instruction::Or: 942 case Instruction::Xor: 943 case Instruction::Add: 944 case Instruction::Sub: 945 case Instruction::Mul: 946 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 947 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 948 return false; 949 // These can all be promoted if neither operand has 'bits to clear'. 950 if (BitsToClear == 0 && Tmp == 0) 951 return true; 952 953 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 954 // other side, BitsToClear is ok. 955 if (Tmp == 0 && I->isBitwiseLogicOp()) { 956 // We use MaskedValueIsZero here for generality, but the case we care 957 // about the most is constant RHS. 958 unsigned VSize = V->getType()->getScalarSizeInBits(); 959 if (IC.MaskedValueIsZero(I->getOperand(1), 960 APInt::getHighBitsSet(VSize, BitsToClear), 961 0, CxtI)) { 962 // If this is an And instruction and all of the BitsToClear are 963 // known to be zero we can reset BitsToClear. 964 if (Opc == Instruction::And) 965 BitsToClear = 0; 966 return true; 967 } 968 } 969 970 // Otherwise, we don't know how to analyze this BitsToClear case yet. 971 return false; 972 973 case Instruction::Shl: { 974 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 975 // upper bits we can reduce BitsToClear by the shift amount. 976 const APInt *Amt; 977 if (match(I->getOperand(1), m_APInt(Amt))) { 978 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 979 return false; 980 uint64_t ShiftAmt = Amt->getZExtValue(); 981 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 982 return true; 983 } 984 return false; 985 } 986 case Instruction::LShr: { 987 // We can promote lshr(x, cst) if we can promote x. This requires the 988 // ultimate 'and' to clear out the high zero bits we're clearing out though. 989 const APInt *Amt; 990 if (match(I->getOperand(1), m_APInt(Amt))) { 991 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 992 return false; 993 BitsToClear += Amt->getZExtValue(); 994 if (BitsToClear > V->getType()->getScalarSizeInBits()) 995 BitsToClear = V->getType()->getScalarSizeInBits(); 996 return true; 997 } 998 // Cannot promote variable LSHR. 999 return false; 1000 } 1001 case Instruction::Select: 1002 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1003 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1004 // TODO: If important, we could handle the case when the BitsToClear are 1005 // known zero in the disagreeing side. 1006 Tmp != BitsToClear) 1007 return false; 1008 return true; 1009 1010 case Instruction::PHI: { 1011 // We can change a phi if we can change all operands. Note that we never 1012 // get into trouble with cyclic PHIs here because we only consider 1013 // instructions with a single use. 1014 PHINode *PN = cast<PHINode>(I); 1015 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1016 return false; 1017 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1018 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1019 // TODO: If important, we could handle the case when the BitsToClear 1020 // are known zero in the disagreeing input. 1021 Tmp != BitsToClear) 1022 return false; 1023 return true; 1024 } 1025 default: 1026 // TODO: Can handle more cases here. 1027 return false; 1028 } 1029 } 1030 1031 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1032 // If this zero extend is only used by a truncate, let the truncate be 1033 // eliminated before we try to optimize this zext. 1034 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1035 return nullptr; 1036 1037 // If one of the common conversion will work, do it. 1038 if (Instruction *Result = commonCastTransforms(CI)) 1039 return Result; 1040 1041 Value *Src = CI.getOperand(0); 1042 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1043 1044 // Attempt to extend the entire input expression tree to the destination 1045 // type. Only do this if the dest type is a simple type, don't convert the 1046 // expression tree to something weird like i93 unless the source is also 1047 // strange. 1048 unsigned BitsToClear; 1049 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1050 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1051 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1052 "Can't clear more bits than in SrcTy"); 1053 1054 // Okay, we can transform this! Insert the new expression now. 1055 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1056 " to avoid zero extend: " << CI << '\n'); 1057 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1058 assert(Res->getType() == DestTy); 1059 1060 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1061 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1062 1063 // If the high bits are already filled with zeros, just replace this 1064 // cast with the result. 1065 if (MaskedValueIsZero(Res, 1066 APInt::getHighBitsSet(DestBitSize, 1067 DestBitSize-SrcBitsKept), 1068 0, &CI)) 1069 return replaceInstUsesWith(CI, Res); 1070 1071 // We need to emit an AND to clear the high bits. 1072 Constant *C = ConstantInt::get(Res->getType(), 1073 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1074 return BinaryOperator::CreateAnd(Res, C); 1075 } 1076 1077 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1078 // types and if the sizes are just right we can convert this into a logical 1079 // 'and' which will be much cheaper than the pair of casts. 1080 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1081 // TODO: Subsume this into EvaluateInDifferentType. 1082 1083 // Get the sizes of the types involved. We know that the intermediate type 1084 // will be smaller than A or C, but don't know the relation between A and C. 1085 Value *A = CSrc->getOperand(0); 1086 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1087 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1088 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1089 // If we're actually extending zero bits, then if 1090 // SrcSize < DstSize: zext(a & mask) 1091 // SrcSize == DstSize: a & mask 1092 // SrcSize > DstSize: trunc(a) & mask 1093 if (SrcSize < DstSize) { 1094 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1095 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1096 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1097 return new ZExtInst(And, CI.getType()); 1098 } 1099 1100 if (SrcSize == DstSize) { 1101 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1102 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1103 AndValue)); 1104 } 1105 if (SrcSize > DstSize) { 1106 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1107 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1108 return BinaryOperator::CreateAnd(Trunc, 1109 ConstantInt::get(Trunc->getType(), 1110 AndValue)); 1111 } 1112 } 1113 1114 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1115 return transformZExtICmp(ICI, CI); 1116 1117 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1118 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1119 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1120 // of the (zext icmp) can be eliminated. If so, immediately perform the 1121 // according elimination. 1122 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1123 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1124 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1125 (transformZExtICmp(LHS, CI, false) || 1126 transformZExtICmp(RHS, CI, false))) { 1127 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1128 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1129 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1130 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1131 1132 // Perform the elimination. 1133 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1134 transformZExtICmp(LHS, *LZExt); 1135 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1136 transformZExtICmp(RHS, *RZExt); 1137 1138 return Or; 1139 } 1140 } 1141 1142 // zext(trunc(X) & C) -> (X & zext(C)). 1143 Constant *C; 1144 Value *X; 1145 if (SrcI && 1146 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1147 X->getType() == CI.getType()) 1148 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1149 1150 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1151 Value *And; 1152 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1153 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1154 X->getType() == CI.getType()) { 1155 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1156 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1157 } 1158 1159 return nullptr; 1160 } 1161 1162 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1163 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1164 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1165 ICmpInst::Predicate Pred = ICI->getPredicate(); 1166 1167 // Don't bother if Op1 isn't of vector or integer type. 1168 if (!Op1->getType()->isIntOrIntVectorTy()) 1169 return nullptr; 1170 1171 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1172 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1173 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1174 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1175 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1176 1177 Value *Sh = ConstantInt::get(Op0->getType(), 1178 Op0->getType()->getScalarSizeInBits()-1); 1179 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1180 if (In->getType() != CI.getType()) 1181 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1182 1183 if (Pred == ICmpInst::ICMP_SGT) 1184 In = Builder.CreateNot(In, In->getName() + ".not"); 1185 return replaceInstUsesWith(CI, In); 1186 } 1187 } 1188 1189 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1190 // If we know that only one bit of the LHS of the icmp can be set and we 1191 // have an equality comparison with zero or a power of 2, we can transform 1192 // the icmp and sext into bitwise/integer operations. 1193 if (ICI->hasOneUse() && 1194 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1195 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1196 1197 APInt KnownZeroMask(~Known.Zero); 1198 if (KnownZeroMask.isPowerOf2()) { 1199 Value *In = ICI->getOperand(0); 1200 1201 // If the icmp tests for a known zero bit we can constant fold it. 1202 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1203 Value *V = Pred == ICmpInst::ICMP_NE ? 1204 ConstantInt::getAllOnesValue(CI.getType()) : 1205 ConstantInt::getNullValue(CI.getType()); 1206 return replaceInstUsesWith(CI, V); 1207 } 1208 1209 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1210 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1211 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1212 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1213 // Perform a right shift to place the desired bit in the LSB. 1214 if (ShiftAmt) 1215 In = Builder.CreateLShr(In, 1216 ConstantInt::get(In->getType(), ShiftAmt)); 1217 1218 // At this point "In" is either 1 or 0. Subtract 1 to turn 1219 // {1, 0} -> {0, -1}. 1220 In = Builder.CreateAdd(In, 1221 ConstantInt::getAllOnesValue(In->getType()), 1222 "sext"); 1223 } else { 1224 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1225 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1226 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1227 // Perform a left shift to place the desired bit in the MSB. 1228 if (ShiftAmt) 1229 In = Builder.CreateShl(In, 1230 ConstantInt::get(In->getType(), ShiftAmt)); 1231 1232 // Distribute the bit over the whole bit width. 1233 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1234 KnownZeroMask.getBitWidth() - 1), "sext"); 1235 } 1236 1237 if (CI.getType() == In->getType()) 1238 return replaceInstUsesWith(CI, In); 1239 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1240 } 1241 } 1242 } 1243 1244 return nullptr; 1245 } 1246 1247 /// Return true if we can take the specified value and return it as type Ty 1248 /// without inserting any new casts and without changing the value of the common 1249 /// low bits. This is used by code that tries to promote integer operations to 1250 /// a wider types will allow us to eliminate the extension. 1251 /// 1252 /// This function works on both vectors and scalars. 1253 /// 1254 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1255 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1256 "Can't sign extend type to a smaller type"); 1257 // If this is a constant, it can be trivially promoted. 1258 if (isa<Constant>(V)) 1259 return true; 1260 1261 Instruction *I = dyn_cast<Instruction>(V); 1262 if (!I) return false; 1263 1264 // If this is a truncate from the dest type, we can trivially eliminate it. 1265 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1266 return true; 1267 1268 // We can't extend or shrink something that has multiple uses: doing so would 1269 // require duplicating the instruction in general, which isn't profitable. 1270 if (!I->hasOneUse()) return false; 1271 1272 switch (I->getOpcode()) { 1273 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1274 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1275 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1276 return true; 1277 case Instruction::And: 1278 case Instruction::Or: 1279 case Instruction::Xor: 1280 case Instruction::Add: 1281 case Instruction::Sub: 1282 case Instruction::Mul: 1283 // These operators can all arbitrarily be extended if their inputs can. 1284 return canEvaluateSExtd(I->getOperand(0), Ty) && 1285 canEvaluateSExtd(I->getOperand(1), Ty); 1286 1287 //case Instruction::Shl: TODO 1288 //case Instruction::LShr: TODO 1289 1290 case Instruction::Select: 1291 return canEvaluateSExtd(I->getOperand(1), Ty) && 1292 canEvaluateSExtd(I->getOperand(2), Ty); 1293 1294 case Instruction::PHI: { 1295 // We can change a phi if we can change all operands. Note that we never 1296 // get into trouble with cyclic PHIs here because we only consider 1297 // instructions with a single use. 1298 PHINode *PN = cast<PHINode>(I); 1299 for (Value *IncValue : PN->incoming_values()) 1300 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1301 return true; 1302 } 1303 default: 1304 // TODO: Can handle more cases here. 1305 break; 1306 } 1307 1308 return false; 1309 } 1310 1311 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1312 // If this sign extend is only used by a truncate, let the truncate be 1313 // eliminated before we try to optimize this sext. 1314 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1315 return nullptr; 1316 1317 if (Instruction *I = commonCastTransforms(CI)) 1318 return I; 1319 1320 Value *Src = CI.getOperand(0); 1321 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1322 1323 // If we know that the value being extended is positive, we can use a zext 1324 // instead. 1325 KnownBits Known = computeKnownBits(Src, 0, &CI); 1326 if (Known.isNonNegative()) { 1327 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1328 return replaceInstUsesWith(CI, ZExt); 1329 } 1330 1331 // Attempt to extend the entire input expression tree to the destination 1332 // type. Only do this if the dest type is a simple type, don't convert the 1333 // expression tree to something weird like i93 unless the source is also 1334 // strange. 1335 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1336 canEvaluateSExtd(Src, DestTy)) { 1337 // Okay, we can transform this! Insert the new expression now. 1338 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1339 " to avoid sign extend: " << CI << '\n'); 1340 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1341 assert(Res->getType() == DestTy); 1342 1343 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1344 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1345 1346 // If the high bits are already filled with sign bit, just replace this 1347 // cast with the result. 1348 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1349 return replaceInstUsesWith(CI, Res); 1350 1351 // We need to emit a shl + ashr to do the sign extend. 1352 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1353 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1354 ShAmt); 1355 } 1356 1357 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1358 // into shifts. 1359 Value *X; 1360 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1361 // sext(trunc(X)) --> ashr(shl(X, C), C) 1362 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1363 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1364 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1365 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1366 } 1367 1368 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1369 return transformSExtICmp(ICI, CI); 1370 1371 // If the input is a shl/ashr pair of a same constant, then this is a sign 1372 // extension from a smaller value. If we could trust arbitrary bitwidth 1373 // integers, we could turn this into a truncate to the smaller bit and then 1374 // use a sext for the whole extension. Since we don't, look deeper and check 1375 // for a truncate. If the source and dest are the same type, eliminate the 1376 // trunc and extend and just do shifts. For example, turn: 1377 // %a = trunc i32 %i to i8 1378 // %b = shl i8 %a, 6 1379 // %c = ashr i8 %b, 6 1380 // %d = sext i8 %c to i32 1381 // into: 1382 // %a = shl i32 %i, 30 1383 // %d = ashr i32 %a, 30 1384 Value *A = nullptr; 1385 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1386 ConstantInt *BA = nullptr, *CA = nullptr; 1387 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1388 m_ConstantInt(CA))) && 1389 BA == CA && A->getType() == CI.getType()) { 1390 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1391 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1392 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1393 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1394 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1395 return BinaryOperator::CreateAShr(A, ShAmtV); 1396 } 1397 1398 return nullptr; 1399 } 1400 1401 1402 /// Return a Constant* for the specified floating-point constant if it fits 1403 /// in the specified FP type without changing its value. 1404 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1405 bool losesInfo; 1406 APFloat F = CFP->getValueAPF(); 1407 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1408 if (!losesInfo) 1409 return ConstantFP::get(CFP->getContext(), F); 1410 return nullptr; 1411 } 1412 1413 /// Look through floating-point extensions until we get the source value. 1414 static Value *lookThroughFPExtensions(Value *V) { 1415 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1416 V = FPExt->getOperand(0); 1417 1418 // If this value is a constant, return the constant in the smallest FP type 1419 // that can accurately represent it. This allows us to turn 1420 // (float)((double)X+2.0) into x+2.0f. 1421 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1422 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1423 return V; // No constant folding of this. 1424 // See if the value can be truncated to half and then reextended. 1425 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1426 return V; 1427 // See if the value can be truncated to float and then reextended. 1428 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1429 return V; 1430 if (CFP->getType()->isDoubleTy()) 1431 return V; // Won't shrink. 1432 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1433 return V; 1434 // Don't try to shrink to various long double types. 1435 } 1436 1437 return V; 1438 } 1439 1440 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1441 if (Instruction *I = commonCastTransforms(CI)) 1442 return I; 1443 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1444 // simplify this expression to avoid one or more of the trunc/extend 1445 // operations if we can do so without changing the numerical results. 1446 // 1447 // The exact manner in which the widths of the operands interact to limit 1448 // what we can and cannot do safely varies from operation to operation, and 1449 // is explained below in the various case statements. 1450 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1451 if (OpI && OpI->hasOneUse()) { 1452 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1453 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1454 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1455 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1456 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1457 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1458 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1459 switch (OpI->getOpcode()) { 1460 default: break; 1461 case Instruction::FAdd: 1462 case Instruction::FSub: 1463 // For addition and subtraction, the infinitely precise result can 1464 // essentially be arbitrarily wide; proving that double rounding 1465 // will not occur because the result of OpI is exact (as we will for 1466 // FMul, for example) is hopeless. However, we *can* nonetheless 1467 // frequently know that double rounding cannot occur (or that it is 1468 // innocuous) by taking advantage of the specific structure of 1469 // infinitely-precise results that admit double rounding. 1470 // 1471 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1472 // to represent both sources, we can guarantee that the double 1473 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1474 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1475 // for proof of this fact). 1476 // 1477 // Note: Figueroa does not consider the case where DstFormat != 1478 // SrcFormat. It's possible (likely even!) that this analysis 1479 // could be tightened for those cases, but they are rare (the main 1480 // case of interest here is (float)((double)float + float)). 1481 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1482 if (LHSOrig->getType() != CI.getType()) 1483 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1484 if (RHSOrig->getType() != CI.getType()) 1485 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1486 Instruction *RI = 1487 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1488 RI->copyFastMathFlags(OpI); 1489 return RI; 1490 } 1491 break; 1492 case Instruction::FMul: 1493 // For multiplication, the infinitely precise result has at most 1494 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1495 // that such a value can be exactly represented, then no double 1496 // rounding can possibly occur; we can safely perform the operation 1497 // in the destination format if it can represent both sources. 1498 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1499 if (LHSOrig->getType() != CI.getType()) 1500 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1501 if (RHSOrig->getType() != CI.getType()) 1502 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1503 Instruction *RI = 1504 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1505 RI->copyFastMathFlags(OpI); 1506 return RI; 1507 } 1508 break; 1509 case Instruction::FDiv: 1510 // For division, we use again use the bound from Figueroa's 1511 // dissertation. I am entirely certain that this bound can be 1512 // tightened in the unbalanced operand case by an analysis based on 1513 // the diophantine rational approximation bound, but the well-known 1514 // condition used here is a good conservative first pass. 1515 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1516 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1517 if (LHSOrig->getType() != CI.getType()) 1518 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1519 if (RHSOrig->getType() != CI.getType()) 1520 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1521 Instruction *RI = 1522 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1523 RI->copyFastMathFlags(OpI); 1524 return RI; 1525 } 1526 break; 1527 case Instruction::FRem: 1528 // Remainder is straightforward. Remainder is always exact, so the 1529 // type of OpI doesn't enter into things at all. We simply evaluate 1530 // in whichever source type is larger, then convert to the 1531 // destination type. 1532 if (SrcWidth == OpWidth) 1533 break; 1534 if (LHSWidth < SrcWidth) 1535 LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType()); 1536 else if (RHSWidth <= SrcWidth) 1537 RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType()); 1538 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1539 Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig); 1540 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1541 RI->copyFastMathFlags(OpI); 1542 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1543 } 1544 } 1545 1546 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1547 if (BinaryOperator::isFNeg(OpI)) { 1548 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), 1549 CI.getType()); 1550 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1551 RI->copyFastMathFlags(OpI); 1552 return RI; 1553 } 1554 } 1555 1556 // (fptrunc (select cond, R1, Cst)) --> 1557 // (select cond, (fptrunc R1), (fptrunc Cst)) 1558 // 1559 // - but only if this isn't part of a min/max operation, else we'll 1560 // ruin min/max canonical form which is to have the select and 1561 // compare's operands be of the same type with no casts to look through. 1562 Value *LHS, *RHS; 1563 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1564 if (SI && 1565 (isa<ConstantFP>(SI->getOperand(1)) || 1566 isa<ConstantFP>(SI->getOperand(2))) && 1567 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1568 Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType()); 1569 Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType()); 1570 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1571 } 1572 1573 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1574 if (II) { 1575 switch (II->getIntrinsicID()) { 1576 default: break; 1577 case Intrinsic::fabs: 1578 case Intrinsic::ceil: 1579 case Intrinsic::floor: 1580 case Intrinsic::rint: 1581 case Intrinsic::round: 1582 case Intrinsic::nearbyint: 1583 case Intrinsic::trunc: { 1584 Value *Src = II->getArgOperand(0); 1585 if (!Src->hasOneUse()) 1586 break; 1587 1588 // Except for fabs, this transformation requires the input of the unary FP 1589 // operation to be itself an fpext from the type to which we're 1590 // truncating. 1591 if (II->getIntrinsicID() != Intrinsic::fabs) { 1592 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1593 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1594 break; 1595 } 1596 1597 // Do unary FP operation on smaller type. 1598 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1599 Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType()); 1600 Type *IntrinsicType[] = { CI.getType() }; 1601 Function *Overload = Intrinsic::getDeclaration( 1602 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1603 1604 SmallVector<OperandBundleDef, 1> OpBundles; 1605 II->getOperandBundlesAsDefs(OpBundles); 1606 1607 Value *Args[] = { InnerTrunc }; 1608 CallInst *NewCI = CallInst::Create(Overload, Args, 1609 OpBundles, II->getName()); 1610 NewCI->copyFastMathFlags(II); 1611 return NewCI; 1612 } 1613 } 1614 } 1615 1616 if (Instruction *I = shrinkInsertElt(CI, Builder)) 1617 return I; 1618 1619 return nullptr; 1620 } 1621 1622 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1623 return commonCastTransforms(CI); 1624 } 1625 1626 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1627 // This is safe if the intermediate type has enough bits in its mantissa to 1628 // accurately represent all values of X. For example, this won't work with 1629 // i64 -> float -> i64. 1630 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1631 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1632 return nullptr; 1633 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1634 1635 Value *SrcI = OpI->getOperand(0); 1636 Type *FITy = FI.getType(); 1637 Type *OpITy = OpI->getType(); 1638 Type *SrcTy = SrcI->getType(); 1639 bool IsInputSigned = isa<SIToFPInst>(OpI); 1640 bool IsOutputSigned = isa<FPToSIInst>(FI); 1641 1642 // We can safely assume the conversion won't overflow the output range, 1643 // because (for example) (uint8_t)18293.f is undefined behavior. 1644 1645 // Since we can assume the conversion won't overflow, our decision as to 1646 // whether the input will fit in the float should depend on the minimum 1647 // of the input range and output range. 1648 1649 // This means this is also safe for a signed input and unsigned output, since 1650 // a negative input would lead to undefined behavior. 1651 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1652 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1653 int ActualSize = std::min(InputSize, OutputSize); 1654 1655 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1656 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1657 if (IsInputSigned && IsOutputSigned) 1658 return new SExtInst(SrcI, FITy); 1659 return new ZExtInst(SrcI, FITy); 1660 } 1661 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1662 return new TruncInst(SrcI, FITy); 1663 if (SrcTy == FITy) 1664 return replaceInstUsesWith(FI, SrcI); 1665 return new BitCastInst(SrcI, FITy); 1666 } 1667 return nullptr; 1668 } 1669 1670 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1671 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1672 if (!OpI) 1673 return commonCastTransforms(FI); 1674 1675 if (Instruction *I = FoldItoFPtoI(FI)) 1676 return I; 1677 1678 return commonCastTransforms(FI); 1679 } 1680 1681 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1682 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1683 if (!OpI) 1684 return commonCastTransforms(FI); 1685 1686 if (Instruction *I = FoldItoFPtoI(FI)) 1687 return I; 1688 1689 return commonCastTransforms(FI); 1690 } 1691 1692 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1693 return commonCastTransforms(CI); 1694 } 1695 1696 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1697 return commonCastTransforms(CI); 1698 } 1699 1700 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1701 // If the source integer type is not the intptr_t type for this target, do a 1702 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1703 // cast to be exposed to other transforms. 1704 unsigned AS = CI.getAddressSpace(); 1705 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1706 DL.getPointerSizeInBits(AS)) { 1707 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1708 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1709 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1710 1711 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1712 return new IntToPtrInst(P, CI.getType()); 1713 } 1714 1715 if (Instruction *I = commonCastTransforms(CI)) 1716 return I; 1717 1718 return nullptr; 1719 } 1720 1721 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1722 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1723 Value *Src = CI.getOperand(0); 1724 1725 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1726 // If casting the result of a getelementptr instruction with no offset, turn 1727 // this into a cast of the original pointer! 1728 if (GEP->hasAllZeroIndices() && 1729 // If CI is an addrspacecast and GEP changes the poiner type, merging 1730 // GEP into CI would undo canonicalizing addrspacecast with different 1731 // pointer types, causing infinite loops. 1732 (!isa<AddrSpaceCastInst>(CI) || 1733 GEP->getType() == GEP->getPointerOperandType())) { 1734 // Changing the cast operand is usually not a good idea but it is safe 1735 // here because the pointer operand is being replaced with another 1736 // pointer operand so the opcode doesn't need to change. 1737 Worklist.Add(GEP); 1738 CI.setOperand(0, GEP->getOperand(0)); 1739 return &CI; 1740 } 1741 } 1742 1743 return commonCastTransforms(CI); 1744 } 1745 1746 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1747 // If the destination integer type is not the intptr_t type for this target, 1748 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1749 // to be exposed to other transforms. 1750 1751 Type *Ty = CI.getType(); 1752 unsigned AS = CI.getPointerAddressSpace(); 1753 1754 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1755 return commonPointerCastTransforms(CI); 1756 1757 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1758 if (Ty->isVectorTy()) // Handle vectors of pointers. 1759 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1760 1761 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1762 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1763 } 1764 1765 /// This input value (which is known to have vector type) is being zero extended 1766 /// or truncated to the specified vector type. 1767 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1768 /// 1769 /// The source and destination vector types may have different element types. 1770 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1771 InstCombiner &IC) { 1772 // We can only do this optimization if the output is a multiple of the input 1773 // element size, or the input is a multiple of the output element size. 1774 // Convert the input type to have the same element type as the output. 1775 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1776 1777 if (SrcTy->getElementType() != DestTy->getElementType()) { 1778 // The input types don't need to be identical, but for now they must be the 1779 // same size. There is no specific reason we couldn't handle things like 1780 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1781 // there yet. 1782 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1783 DestTy->getElementType()->getPrimitiveSizeInBits()) 1784 return nullptr; 1785 1786 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1787 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1788 } 1789 1790 // Now that the element types match, get the shuffle mask and RHS of the 1791 // shuffle to use, which depends on whether we're increasing or decreasing the 1792 // size of the input. 1793 SmallVector<uint32_t, 16> ShuffleMask; 1794 Value *V2; 1795 1796 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1797 // If we're shrinking the number of elements, just shuffle in the low 1798 // elements from the input and use undef as the second shuffle input. 1799 V2 = UndefValue::get(SrcTy); 1800 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1801 ShuffleMask.push_back(i); 1802 1803 } else { 1804 // If we're increasing the number of elements, shuffle in all of the 1805 // elements from InVal and fill the rest of the result elements with zeros 1806 // from a constant zero. 1807 V2 = Constant::getNullValue(SrcTy); 1808 unsigned SrcElts = SrcTy->getNumElements(); 1809 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1810 ShuffleMask.push_back(i); 1811 1812 // The excess elements reference the first element of the zero input. 1813 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1814 ShuffleMask.push_back(SrcElts); 1815 } 1816 1817 return new ShuffleVectorInst(InVal, V2, 1818 ConstantDataVector::get(V2->getContext(), 1819 ShuffleMask)); 1820 } 1821 1822 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1823 return Value % Ty->getPrimitiveSizeInBits() == 0; 1824 } 1825 1826 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1827 return Value / Ty->getPrimitiveSizeInBits(); 1828 } 1829 1830 /// V is a value which is inserted into a vector of VecEltTy. 1831 /// Look through the value to see if we can decompose it into 1832 /// insertions into the vector. See the example in the comment for 1833 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1834 /// The type of V is always a non-zero multiple of VecEltTy's size. 1835 /// Shift is the number of bits between the lsb of V and the lsb of 1836 /// the vector. 1837 /// 1838 /// This returns false if the pattern can't be matched or true if it can, 1839 /// filling in Elements with the elements found here. 1840 static bool collectInsertionElements(Value *V, unsigned Shift, 1841 SmallVectorImpl<Value *> &Elements, 1842 Type *VecEltTy, bool isBigEndian) { 1843 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1844 "Shift should be a multiple of the element type size"); 1845 1846 // Undef values never contribute useful bits to the result. 1847 if (isa<UndefValue>(V)) return true; 1848 1849 // If we got down to a value of the right type, we win, try inserting into the 1850 // right element. 1851 if (V->getType() == VecEltTy) { 1852 // Inserting null doesn't actually insert any elements. 1853 if (Constant *C = dyn_cast<Constant>(V)) 1854 if (C->isNullValue()) 1855 return true; 1856 1857 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1858 if (isBigEndian) 1859 ElementIndex = Elements.size() - ElementIndex - 1; 1860 1861 // Fail if multiple elements are inserted into this slot. 1862 if (Elements[ElementIndex]) 1863 return false; 1864 1865 Elements[ElementIndex] = V; 1866 return true; 1867 } 1868 1869 if (Constant *C = dyn_cast<Constant>(V)) { 1870 // Figure out the # elements this provides, and bitcast it or slice it up 1871 // as required. 1872 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1873 VecEltTy); 1874 // If the constant is the size of a vector element, we just need to bitcast 1875 // it to the right type so it gets properly inserted. 1876 if (NumElts == 1) 1877 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1878 Shift, Elements, VecEltTy, isBigEndian); 1879 1880 // Okay, this is a constant that covers multiple elements. Slice it up into 1881 // pieces and insert each element-sized piece into the vector. 1882 if (!isa<IntegerType>(C->getType())) 1883 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1884 C->getType()->getPrimitiveSizeInBits())); 1885 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1886 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1887 1888 for (unsigned i = 0; i != NumElts; ++i) { 1889 unsigned ShiftI = Shift+i*ElementSize; 1890 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1891 ShiftI)); 1892 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1893 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1894 isBigEndian)) 1895 return false; 1896 } 1897 return true; 1898 } 1899 1900 if (!V->hasOneUse()) return false; 1901 1902 Instruction *I = dyn_cast<Instruction>(V); 1903 if (!I) return false; 1904 switch (I->getOpcode()) { 1905 default: return false; // Unhandled case. 1906 case Instruction::BitCast: 1907 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1908 isBigEndian); 1909 case Instruction::ZExt: 1910 if (!isMultipleOfTypeSize( 1911 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1912 VecEltTy)) 1913 return false; 1914 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1915 isBigEndian); 1916 case Instruction::Or: 1917 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1918 isBigEndian) && 1919 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1920 isBigEndian); 1921 case Instruction::Shl: { 1922 // Must be shifting by a constant that is a multiple of the element size. 1923 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1924 if (!CI) return false; 1925 Shift += CI->getZExtValue(); 1926 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1927 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1928 isBigEndian); 1929 } 1930 1931 } 1932 } 1933 1934 1935 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1936 /// assemble the elements of the vector manually. 1937 /// Try to rip the code out and replace it with insertelements. This is to 1938 /// optimize code like this: 1939 /// 1940 /// %tmp37 = bitcast float %inc to i32 1941 /// %tmp38 = zext i32 %tmp37 to i64 1942 /// %tmp31 = bitcast float %inc5 to i32 1943 /// %tmp32 = zext i32 %tmp31 to i64 1944 /// %tmp33 = shl i64 %tmp32, 32 1945 /// %ins35 = or i64 %tmp33, %tmp38 1946 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1947 /// 1948 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1949 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1950 InstCombiner &IC) { 1951 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1952 Value *IntInput = CI.getOperand(0); 1953 1954 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1955 if (!collectInsertionElements(IntInput, 0, Elements, 1956 DestVecTy->getElementType(), 1957 IC.getDataLayout().isBigEndian())) 1958 return nullptr; 1959 1960 // If we succeeded, we know that all of the element are specified by Elements 1961 // or are zero if Elements has a null entry. Recast this as a set of 1962 // insertions. 1963 Value *Result = Constant::getNullValue(CI.getType()); 1964 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1965 if (!Elements[i]) continue; // Unset element. 1966 1967 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1968 IC.Builder.getInt32(i)); 1969 } 1970 1971 return Result; 1972 } 1973 1974 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1975 /// vector followed by extract element. The backend tends to handle bitcasts of 1976 /// vectors better than bitcasts of scalars because vector registers are 1977 /// usually not type-specific like scalar integer or scalar floating-point. 1978 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1979 InstCombiner &IC) { 1980 // TODO: Create and use a pattern matcher for ExtractElementInst. 1981 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1982 if (!ExtElt || !ExtElt->hasOneUse()) 1983 return nullptr; 1984 1985 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1986 // type to extract from. 1987 Type *DestType = BitCast.getType(); 1988 if (!VectorType::isValidElementType(DestType)) 1989 return nullptr; 1990 1991 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1992 auto *NewVecType = VectorType::get(DestType, NumElts); 1993 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 1994 NewVecType, "bc"); 1995 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1996 } 1997 1998 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1999 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2000 InstCombiner::BuilderTy &Builder) { 2001 Type *DestTy = BitCast.getType(); 2002 BinaryOperator *BO; 2003 if (!DestTy->isIntOrIntVectorTy() || 2004 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2005 !BO->isBitwiseLogicOp()) 2006 return nullptr; 2007 2008 // FIXME: This transform is restricted to vector types to avoid backend 2009 // problems caused by creating potentially illegal operations. If a fix-up is 2010 // added to handle that situation, we can remove this check. 2011 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2012 return nullptr; 2013 2014 Value *X; 2015 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2016 X->getType() == DestTy && !isa<Constant>(X)) { 2017 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2018 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2019 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2020 } 2021 2022 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2023 X->getType() == DestTy && !isa<Constant>(X)) { 2024 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2025 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2026 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2027 } 2028 2029 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2030 // constant. This eases recognition of special constants for later ops. 2031 // Example: 2032 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2033 Constant *C; 2034 if (match(BO->getOperand(1), m_Constant(C))) { 2035 // bitcast (logic X, C) --> logic (bitcast X, C') 2036 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2037 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2038 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2039 } 2040 2041 return nullptr; 2042 } 2043 2044 /// Change the type of a select if we can eliminate a bitcast. 2045 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2046 InstCombiner::BuilderTy &Builder) { 2047 Value *Cond, *TVal, *FVal; 2048 if (!match(BitCast.getOperand(0), 2049 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2050 return nullptr; 2051 2052 // A vector select must maintain the same number of elements in its operands. 2053 Type *CondTy = Cond->getType(); 2054 Type *DestTy = BitCast.getType(); 2055 if (CondTy->isVectorTy()) { 2056 if (!DestTy->isVectorTy()) 2057 return nullptr; 2058 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2059 return nullptr; 2060 } 2061 2062 // FIXME: This transform is restricted from changing the select between 2063 // scalars and vectors to avoid backend problems caused by creating 2064 // potentially illegal operations. If a fix-up is added to handle that 2065 // situation, we can remove this check. 2066 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2067 return nullptr; 2068 2069 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2070 Value *X; 2071 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2072 !isa<Constant>(X)) { 2073 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2074 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2075 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2076 } 2077 2078 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2079 !isa<Constant>(X)) { 2080 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2081 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2082 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2083 } 2084 2085 return nullptr; 2086 } 2087 2088 /// Check if all users of CI are StoreInsts. 2089 static bool hasStoreUsersOnly(CastInst &CI) { 2090 for (User *U : CI.users()) { 2091 if (!isa<StoreInst>(U)) 2092 return false; 2093 } 2094 return true; 2095 } 2096 2097 /// This function handles following case 2098 /// 2099 /// A -> B cast 2100 /// PHI 2101 /// B -> A cast 2102 /// 2103 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2104 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2105 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2106 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2107 if (hasStoreUsersOnly(CI)) 2108 return nullptr; 2109 2110 Value *Src = CI.getOperand(0); 2111 Type *SrcTy = Src->getType(); // Type B 2112 Type *DestTy = CI.getType(); // Type A 2113 2114 SmallVector<PHINode *, 4> PhiWorklist; 2115 SmallSetVector<PHINode *, 4> OldPhiNodes; 2116 2117 // Find all of the A->B casts and PHI nodes. 2118 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2119 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2120 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2121 PhiWorklist.push_back(PN); 2122 OldPhiNodes.insert(PN); 2123 while (!PhiWorklist.empty()) { 2124 auto *OldPN = PhiWorklist.pop_back_val(); 2125 for (Value *IncValue : OldPN->incoming_values()) { 2126 if (isa<Constant>(IncValue)) 2127 continue; 2128 2129 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2130 // If there is a sequence of one or more load instructions, each loaded 2131 // value is used as address of later load instruction, bitcast is 2132 // necessary to change the value type, don't optimize it. For 2133 // simplicity we give up if the load address comes from another load. 2134 Value *Addr = LI->getOperand(0); 2135 if (Addr == &CI || isa<LoadInst>(Addr)) 2136 return nullptr; 2137 if (LI->hasOneUse() && LI->isSimple()) 2138 continue; 2139 // If a LoadInst has more than one use, changing the type of loaded 2140 // value may create another bitcast. 2141 return nullptr; 2142 } 2143 2144 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2145 if (OldPhiNodes.insert(PNode)) 2146 PhiWorklist.push_back(PNode); 2147 continue; 2148 } 2149 2150 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2151 // We can't handle other instructions. 2152 if (!BCI) 2153 return nullptr; 2154 2155 // Verify it's a A->B cast. 2156 Type *TyA = BCI->getOperand(0)->getType(); 2157 Type *TyB = BCI->getType(); 2158 if (TyA != DestTy || TyB != SrcTy) 2159 return nullptr; 2160 } 2161 } 2162 2163 // For each old PHI node, create a corresponding new PHI node with a type A. 2164 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2165 for (auto *OldPN : OldPhiNodes) { 2166 Builder.SetInsertPoint(OldPN); 2167 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2168 NewPNodes[OldPN] = NewPN; 2169 } 2170 2171 // Fill in the operands of new PHI nodes. 2172 for (auto *OldPN : OldPhiNodes) { 2173 PHINode *NewPN = NewPNodes[OldPN]; 2174 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2175 Value *V = OldPN->getOperand(j); 2176 Value *NewV = nullptr; 2177 if (auto *C = dyn_cast<Constant>(V)) { 2178 NewV = ConstantExpr::getBitCast(C, DestTy); 2179 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2180 Builder.SetInsertPoint(LI->getNextNode()); 2181 NewV = Builder.CreateBitCast(LI, DestTy); 2182 Worklist.Add(LI); 2183 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2184 NewV = BCI->getOperand(0); 2185 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2186 NewV = NewPNodes[PrevPN]; 2187 } 2188 assert(NewV); 2189 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2190 } 2191 } 2192 2193 // If there is a store with type B, change it to type A. 2194 for (User *U : PN->users()) { 2195 auto *SI = dyn_cast<StoreInst>(U); 2196 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2197 Builder.SetInsertPoint(SI); 2198 auto *NewBC = 2199 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2200 SI->setOperand(0, NewBC); 2201 Worklist.Add(SI); 2202 assert(hasStoreUsersOnly(*NewBC)); 2203 } 2204 } 2205 2206 return replaceInstUsesWith(CI, NewPNodes[PN]); 2207 } 2208 2209 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2210 // If the operands are integer typed then apply the integer transforms, 2211 // otherwise just apply the common ones. 2212 Value *Src = CI.getOperand(0); 2213 Type *SrcTy = Src->getType(); 2214 Type *DestTy = CI.getType(); 2215 2216 // Get rid of casts from one type to the same type. These are useless and can 2217 // be replaced by the operand. 2218 if (DestTy == Src->getType()) 2219 return replaceInstUsesWith(CI, Src); 2220 2221 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2222 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2223 Type *DstElTy = DstPTy->getElementType(); 2224 Type *SrcElTy = SrcPTy->getElementType(); 2225 2226 // If we are casting a alloca to a pointer to a type of the same 2227 // size, rewrite the allocation instruction to allocate the "right" type. 2228 // There is no need to modify malloc calls because it is their bitcast that 2229 // needs to be cleaned up. 2230 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2231 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2232 return V; 2233 2234 // When the type pointed to is not sized the cast cannot be 2235 // turned into a gep. 2236 Type *PointeeType = 2237 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2238 if (!PointeeType->isSized()) 2239 return nullptr; 2240 2241 // If the source and destination are pointers, and this cast is equivalent 2242 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2243 // This can enhance SROA and other transforms that want type-safe pointers. 2244 unsigned NumZeros = 0; 2245 while (SrcElTy != DstElTy && 2246 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2247 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2248 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2249 ++NumZeros; 2250 } 2251 2252 // If we found a path from the src to dest, create the getelementptr now. 2253 if (SrcElTy == DstElTy) { 2254 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2255 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2256 } 2257 } 2258 2259 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2260 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2261 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2262 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2263 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2264 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2265 } 2266 2267 if (isa<IntegerType>(SrcTy)) { 2268 // If this is a cast from an integer to vector, check to see if the input 2269 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2270 // the casts with a shuffle and (potentially) a bitcast. 2271 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2272 CastInst *SrcCast = cast<CastInst>(Src); 2273 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2274 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2275 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2276 cast<VectorType>(DestTy), *this)) 2277 return I; 2278 } 2279 2280 // If the input is an 'or' instruction, we may be doing shifts and ors to 2281 // assemble the elements of the vector manually. Try to rip the code out 2282 // and replace it with insertelements. 2283 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2284 return replaceInstUsesWith(CI, V); 2285 } 2286 } 2287 2288 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2289 if (SrcVTy->getNumElements() == 1) { 2290 // If our destination is not a vector, then make this a straight 2291 // scalar-scalar cast. 2292 if (!DestTy->isVectorTy()) { 2293 Value *Elem = 2294 Builder.CreateExtractElement(Src, 2295 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2296 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2297 } 2298 2299 // Otherwise, see if our source is an insert. If so, then use the scalar 2300 // component directly. 2301 if (InsertElementInst *IEI = 2302 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2303 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2304 DestTy); 2305 } 2306 } 2307 2308 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2309 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2310 // a bitcast to a vector with the same # elts. 2311 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2312 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2313 SVI->getType()->getNumElements() == 2314 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2315 BitCastInst *Tmp; 2316 // If either of the operands is a cast from CI.getType(), then 2317 // evaluating the shuffle in the casted destination's type will allow 2318 // us to eliminate at least one cast. 2319 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2320 Tmp->getOperand(0)->getType() == DestTy) || 2321 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2322 Tmp->getOperand(0)->getType() == DestTy)) { 2323 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2324 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2325 // Return a new shuffle vector. Use the same element ID's, as we 2326 // know the vector types match #elts. 2327 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2328 } 2329 } 2330 } 2331 2332 // Handle the A->B->A cast, and there is an intervening PHI node. 2333 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2334 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2335 return I; 2336 2337 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2338 return I; 2339 2340 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2341 return I; 2342 2343 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2344 return I; 2345 2346 if (SrcTy->isPointerTy()) 2347 return commonPointerCastTransforms(CI); 2348 return commonCastTransforms(CI); 2349 } 2350 2351 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2352 // If the destination pointer element type is not the same as the source's 2353 // first do a bitcast to the destination type, and then the addrspacecast. 2354 // This allows the cast to be exposed to other transforms. 2355 Value *Src = CI.getOperand(0); 2356 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2357 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2358 2359 Type *DestElemTy = DestTy->getElementType(); 2360 if (SrcTy->getElementType() != DestElemTy) { 2361 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2362 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2363 // Handle vectors of pointers. 2364 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2365 } 2366 2367 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2368 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2369 } 2370 2371 return commonPointerCastTransforms(CI); 2372 } 2373