xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 94da1de1cecf21cbcbc47972d5b780d7fdc7c63b)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 /// Analyze 'Val', seeing if it is a simple linear expression.
27 /// If so, decompose it, returning some value X, such that Val is
28 /// X*Scale+Offset.
29 ///
30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
31                                         uint64_t &Offset) {
32   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
33     Offset = CI->getZExtValue();
34     Scale  = 0;
35     return ConstantInt::get(Val->getType(), 0);
36   }
37 
38   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
39     // Cannot look past anything that might overflow.
40     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
41     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
42       Scale = 1;
43       Offset = 0;
44       return Val;
45     }
46 
47     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
48       if (I->getOpcode() == Instruction::Shl) {
49         // This is a value scaled by '1 << the shift amt'.
50         Scale = UINT64_C(1) << RHS->getZExtValue();
51         Offset = 0;
52         return I->getOperand(0);
53       }
54 
55       if (I->getOpcode() == Instruction::Mul) {
56         // This value is scaled by 'RHS'.
57         Scale = RHS->getZExtValue();
58         Offset = 0;
59         return I->getOperand(0);
60       }
61 
62       if (I->getOpcode() == Instruction::Add) {
63         // We have X+C.  Check to see if we really have (X*C2)+C1,
64         // where C1 is divisible by C2.
65         unsigned SubScale;
66         Value *SubVal =
67           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
68         Offset += RHS->getZExtValue();
69         Scale = SubScale;
70         return SubVal;
71       }
72     }
73   }
74 
75   // Otherwise, we can't look past this.
76   Scale = 1;
77   Offset = 0;
78   return Val;
79 }
80 
81 /// If we find a cast of an allocation instruction, try to eliminate the cast by
82 /// moving the type information into the alloc.
83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
84                                                    AllocaInst &AI) {
85   PointerType *PTy = cast<PointerType>(CI.getType());
86 
87   BuilderTy AllocaBuilder(Builder);
88   AllocaBuilder.SetInsertPoint(&AI);
89 
90   // Get the type really allocated and the type casted to.
91   Type *AllocElTy = AI.getAllocatedType();
92   Type *CastElTy = PTy->getElementType();
93   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
94 
95   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
96   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
97   if (CastElTyAlign < AllocElTyAlign) return nullptr;
98 
99   // If the allocation has multiple uses, only promote it if we are strictly
100   // increasing the alignment of the resultant allocation.  If we keep it the
101   // same, we open the door to infinite loops of various kinds.
102   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
103 
104   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
105   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
106   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
107 
108   // If the allocation has multiple uses, only promote it if we're not
109   // shrinking the amount of memory being allocated.
110   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
111   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
112   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
113 
114   // See if we can satisfy the modulus by pulling a scale out of the array
115   // size argument.
116   unsigned ArraySizeScale;
117   uint64_t ArrayOffset;
118   Value *NumElements = // See if the array size is a decomposable linear expr.
119     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
120 
121   // If we can now satisfy the modulus, by using a non-1 scale, we really can
122   // do the xform.
123   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
124       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
125 
126   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
127   Value *Amt = nullptr;
128   if (Scale == 1) {
129     Amt = NumElements;
130   } else {
131     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
132     // Insert before the alloca, not before the cast.
133     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
134   }
135 
136   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
137     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
138                                   Offset, true);
139     Amt = AllocaBuilder.CreateAdd(Amt, Off);
140   }
141 
142   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
143   New->setAlignment(AI.getAlignment());
144   New->takeName(&AI);
145   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
146 
147   // If the allocation has multiple real uses, insert a cast and change all
148   // things that used it to use the new cast.  This will also hack on CI, but it
149   // will die soon.
150   if (!AI.hasOneUse()) {
151     // New is the allocation instruction, pointer typed. AI is the original
152     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
153     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
154     replaceInstUsesWith(AI, NewCast);
155   }
156   return replaceInstUsesWith(CI, New);
157 }
158 
159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
160 /// true for, actually insert the code to evaluate the expression.
161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
162                                              bool isSigned) {
163   if (Constant *C = dyn_cast<Constant>(V)) {
164     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
165     // If we got a constantexpr back, try to simplify it with DL info.
166     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
167       C = FoldedC;
168     return C;
169   }
170 
171   // Otherwise, it must be an instruction.
172   Instruction *I = cast<Instruction>(V);
173   Instruction *Res = nullptr;
174   unsigned Opc = I->getOpcode();
175   switch (Opc) {
176   case Instruction::Add:
177   case Instruction::Sub:
178   case Instruction::Mul:
179   case Instruction::And:
180   case Instruction::Or:
181   case Instruction::Xor:
182   case Instruction::AShr:
183   case Instruction::LShr:
184   case Instruction::Shl:
185   case Instruction::UDiv:
186   case Instruction::URem: {
187     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190     break;
191   }
192   case Instruction::Trunc:
193   case Instruction::ZExt:
194   case Instruction::SExt:
195     // If the source type of the cast is the type we're trying for then we can
196     // just return the source.  There's no need to insert it because it is not
197     // new.
198     if (I->getOperand(0)->getType() == Ty)
199       return I->getOperand(0);
200 
201     // Otherwise, must be the same type of cast, so just reinsert a new one.
202     // This also handles the case of zext(trunc(x)) -> zext(x).
203     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204                                       Opc == Instruction::SExt);
205     break;
206   case Instruction::Select: {
207     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209     Res = SelectInst::Create(I->getOperand(0), True, False);
210     break;
211   }
212   case Instruction::PHI: {
213     PHINode *OPN = cast<PHINode>(I);
214     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216       Value *V =
217           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218       NPN->addIncoming(V, OPN->getIncomingBlock(i));
219     }
220     Res = NPN;
221     break;
222   }
223   default:
224     // TODO: Can handle more cases here.
225     llvm_unreachable("Unreachable!");
226   }
227 
228   Res->takeName(I);
229   return InsertNewInstWith(Res, *I);
230 }
231 
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233                                                         const CastInst *CI2) {
234   Type *SrcTy = CI1->getSrcTy();
235   Type *MidTy = CI1->getDestTy();
236   Type *DstTy = CI2->getDestTy();
237 
238   Instruction::CastOps firstOp = CI1->getOpcode();
239   Instruction::CastOps secondOp = CI2->getOpcode();
240   Type *SrcIntPtrTy =
241       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242   Type *MidIntPtrTy =
243       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244   Type *DstIntPtrTy =
245       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
248                                                 DstIntPtrTy);
249 
250   // We don't want to form an inttoptr or ptrtoint that converts to an integer
251   // type that differs from the pointer size.
252   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254     Res = 0;
255 
256   return Instruction::CastOps(Res);
257 }
258 
259 /// @brief Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261   Value *Src = CI.getOperand(0);
262 
263   // Try to eliminate a cast of a cast.
264   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
265     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266       // The first cast (CSrc) is eliminable so we need to fix up or replace
267       // the second cast (CI). CSrc will then have a good chance of being dead.
268       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
269     }
270   }
271 
272   // If we are casting a select, then fold the cast into the select.
273   if (auto *SI = dyn_cast<SelectInst>(Src))
274     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
275       return NV;
276 
277   // If we are casting a PHI, then fold the cast into the PHI.
278   if (auto *PN = dyn_cast<PHINode>(Src)) {
279     // Don't do this if it would create a PHI node with an illegal type from a
280     // legal type.
281     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
282         shouldChangeType(CI.getType(), Src->getType()))
283       if (Instruction *NV = foldOpIntoPhi(CI, PN))
284         return NV;
285   }
286 
287   return nullptr;
288 }
289 
290 /// Return true if we can evaluate the specified expression tree as type Ty
291 /// instead of its larger type, and arrive with the same value.
292 /// This is used by code that tries to eliminate truncates.
293 ///
294 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
295 /// can be computed by computing V in the smaller type.  If V is an instruction,
296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
297 /// makes sense if x and y can be efficiently truncated.
298 ///
299 /// This function works on both vectors and scalars.
300 ///
301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
302                                  Instruction *CxtI) {
303   // We can always evaluate constants in another type.
304   if (isa<Constant>(V))
305     return true;
306 
307   Instruction *I = dyn_cast<Instruction>(V);
308   if (!I) return false;
309 
310   Type *OrigTy = V->getType();
311 
312   // If this is an extension from the dest type, we can eliminate it, even if it
313   // has multiple uses.
314   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
315       I->getOperand(0)->getType() == Ty)
316     return true;
317 
318   // We can't extend or shrink something that has multiple uses: doing so would
319   // require duplicating the instruction in general, which isn't profitable.
320   if (!I->hasOneUse()) return false;
321 
322   unsigned Opc = I->getOpcode();
323   switch (Opc) {
324   case Instruction::Add:
325   case Instruction::Sub:
326   case Instruction::Mul:
327   case Instruction::And:
328   case Instruction::Or:
329   case Instruction::Xor:
330     // These operators can all arbitrarily be extended or truncated.
331     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
332            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
333 
334   case Instruction::UDiv:
335   case Instruction::URem: {
336     // UDiv and URem can be truncated if all the truncated bits are zero.
337     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
338     uint32_t BitWidth = Ty->getScalarSizeInBits();
339     if (BitWidth < OrigBitWidth) {
340       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
341       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
342           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
343         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345       }
346     }
347     break;
348   }
349   case Instruction::Shl:
350     // If we are truncating the result of this SHL, and if it's a shift of a
351     // constant amount, we can always perform a SHL in a smaller type.
352     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
353       uint32_t BitWidth = Ty->getScalarSizeInBits();
354       if (CI->getLimitedValue(BitWidth) < BitWidth)
355         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
356     }
357     break;
358   case Instruction::LShr:
359     // If this is a truncate of a logical shr, we can truncate it to a smaller
360     // lshr iff we know that the bits we would otherwise be shifting in are
361     // already zeros.
362     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
363       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
364       uint32_t BitWidth = Ty->getScalarSizeInBits();
365       if (IC.MaskedValueIsZero(I->getOperand(0),
366             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
367           CI->getLimitedValue(BitWidth) < BitWidth) {
368         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
369       }
370     }
371     break;
372   case Instruction::Trunc:
373     // trunc(trunc(x)) -> trunc(x)
374     return true;
375   case Instruction::ZExt:
376   case Instruction::SExt:
377     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
378     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
379     return true;
380   case Instruction::Select: {
381     SelectInst *SI = cast<SelectInst>(I);
382     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
383            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
384   }
385   case Instruction::PHI: {
386     // We can change a phi if we can change all operands.  Note that we never
387     // get into trouble with cyclic PHIs here because we only consider
388     // instructions with a single use.
389     PHINode *PN = cast<PHINode>(I);
390     for (Value *IncValue : PN->incoming_values())
391       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
392         return false;
393     return true;
394   }
395   default:
396     // TODO: Can handle more cases here.
397     break;
398   }
399 
400   return false;
401 }
402 
403 /// Given a vector that is bitcast to an integer, optionally logically
404 /// right-shifted, and truncated, convert it to an extractelement.
405 /// Example (big endian):
406 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
407 ///   --->
408 ///   extractelement <4 x i32> %X, 1
409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
410   Value *TruncOp = Trunc.getOperand(0);
411   Type *DestType = Trunc.getType();
412   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
413     return nullptr;
414 
415   Value *VecInput = nullptr;
416   ConstantInt *ShiftVal = nullptr;
417   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
418                                   m_LShr(m_BitCast(m_Value(VecInput)),
419                                          m_ConstantInt(ShiftVal)))) ||
420       !isa<VectorType>(VecInput->getType()))
421     return nullptr;
422 
423   VectorType *VecType = cast<VectorType>(VecInput->getType());
424   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
425   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
426   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
427 
428   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
429     return nullptr;
430 
431   // If the element type of the vector doesn't match the result type,
432   // bitcast it to a vector type that we can extract from.
433   unsigned NumVecElts = VecWidth / DestWidth;
434   if (VecType->getElementType() != DestType) {
435     VecType = VectorType::get(DestType, NumVecElts);
436     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
437   }
438 
439   unsigned Elt = ShiftAmount / DestWidth;
440   if (IC.getDataLayout().isBigEndian())
441     Elt = NumVecElts - 1 - Elt;
442 
443   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
444 }
445 
446 /// Try to narrow the width of math or bitwise logic instructions by pulling a
447 /// truncate ahead of binary operators.
448 /// TODO: Transforms for truncated shifts should be moved into here.
449 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
450   Type *SrcTy = Trunc.getSrcTy();
451   Type *DestTy = Trunc.getType();
452   if (isa<IntegerType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
453     return nullptr;
454 
455   BinaryOperator *BinOp;
456   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
457     return nullptr;
458 
459   switch (BinOp->getOpcode()) {
460   case Instruction::And:
461   case Instruction::Or:
462   case Instruction::Xor:
463   case Instruction::Add:
464   case Instruction::Mul: {
465     Constant *C;
466     if (match(BinOp->getOperand(1), m_Constant(C))) {
467       // trunc (binop X, C) --> binop (trunc X, C')
468       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
469       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy);
470       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
471     }
472     break;
473   }
474   case Instruction::Sub: {
475     Constant *C;
476     if (match(BinOp->getOperand(0), m_Constant(C))) {
477       // trunc (binop C, X) --> binop (trunc C', X)
478       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
479       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy);
480       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
481     }
482     break;
483   }
484 
485   default: break;
486   }
487 
488   return nullptr;
489 }
490 
491 /// Try to narrow the width of a splat shuffle. This could be generalized to any
492 /// shuffle with a constant operand, but we limit the transform to avoid
493 /// creating a shuffle type that targets may not be able to lower effectively.
494 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
495                                        InstCombiner::BuilderTy &Builder) {
496   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
497   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
498       Shuf->getMask()->getSplatValue() &&
499       Shuf->getType() == Shuf->getOperand(0)->getType()) {
500     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
501     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
502     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
503     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
504   }
505 
506   return nullptr;
507 }
508 
509 /// Try to narrow the width of an insert element. This could be generalized for
510 /// any vector constant, but we limit the transform to insertion into undef to
511 /// avoid potential backend problems from unsupported insertion widths. This
512 /// could also be extended to handle the case of inserting a scalar constant
513 /// into a vector variable.
514 static Instruction *shrinkInsertElt(CastInst &Trunc,
515                                     InstCombiner::BuilderTy &Builder) {
516   Instruction::CastOps Opcode = Trunc.getOpcode();
517   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
518          "Unexpected instruction for shrinking");
519 
520   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
521   if (!InsElt || !InsElt->hasOneUse())
522     return nullptr;
523 
524   Type *DestTy = Trunc.getType();
525   Type *DestScalarTy = DestTy->getScalarType();
526   Value *VecOp = InsElt->getOperand(0);
527   Value *ScalarOp = InsElt->getOperand(1);
528   Value *Index = InsElt->getOperand(2);
529 
530   if (isa<UndefValue>(VecOp)) {
531     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
532     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
533     UndefValue *NarrowUndef = UndefValue::get(DestTy);
534     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
535     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
536   }
537 
538   return nullptr;
539 }
540 
541 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
542   if (Instruction *Result = commonCastTransforms(CI))
543     return Result;
544 
545   // Test if the trunc is the user of a select which is part of a
546   // minimum or maximum operation. If so, don't do any more simplification.
547   // Even simplifying demanded bits can break the canonical form of a
548   // min/max.
549   Value *LHS, *RHS;
550   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
551     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
552       return nullptr;
553 
554   // See if we can simplify any instructions used by the input whose sole
555   // purpose is to compute bits we don't care about.
556   if (SimplifyDemandedInstructionBits(CI))
557     return &CI;
558 
559   Value *Src = CI.getOperand(0);
560   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
561 
562   // Attempt to truncate the entire input expression tree to the destination
563   // type.   Only do this if the dest type is a simple type, don't convert the
564   // expression tree to something weird like i93 unless the source is also
565   // strange.
566   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
567       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
568 
569     // If this cast is a truncate, evaluting in a different type always
570     // eliminates the cast, so it is always a win.
571     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
572           " to avoid cast: " << CI << '\n');
573     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
574     assert(Res->getType() == DestTy);
575     return replaceInstUsesWith(CI, Res);
576   }
577 
578   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
579   if (DestTy->getScalarSizeInBits() == 1) {
580     Constant *One = ConstantInt::get(SrcTy, 1);
581     Src = Builder.CreateAnd(Src, One);
582     Value *Zero = Constant::getNullValue(Src->getType());
583     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
584   }
585 
586   // FIXME: Maybe combine the next two transforms to handle the no cast case
587   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
588 
589   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
590   Value *A = nullptr; ConstantInt *Cst = nullptr;
591   if (Src->hasOneUse() &&
592       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
593     // We have three types to worry about here, the type of A, the source of
594     // the truncate (MidSize), and the destination of the truncate. We know that
595     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
596     // between ASize and ResultSize.
597     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
598 
599     // If the shift amount is larger than the size of A, then the result is
600     // known to be zero because all the input bits got shifted out.
601     if (Cst->getZExtValue() >= ASize)
602       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
603 
604     // Since we're doing an lshr and a zero extend, and know that the shift
605     // amount is smaller than ASize, it is always safe to do the shift in A's
606     // type, then zero extend or truncate to the result.
607     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
608     Shift->takeName(Src);
609     return CastInst::CreateIntegerCast(Shift, DestTy, false);
610   }
611 
612   // FIXME: We should canonicalize to zext/trunc and remove this transform.
613   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
614   // conversion.
615   // It works because bits coming from sign extension have the same value as
616   // the sign bit of the original value; performing ashr instead of lshr
617   // generates bits of the same value as the sign bit.
618   if (Src->hasOneUse() &&
619       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
620     Value *SExt = cast<Instruction>(Src)->getOperand(0);
621     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
622     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
623     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
624     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
625     unsigned ShiftAmt = Cst->getZExtValue();
626 
627     // This optimization can be only performed when zero bits generated by
628     // the original lshr aren't pulled into the value after truncation, so we
629     // can only shift by values no larger than the number of extension bits.
630     // FIXME: Instead of bailing when the shift is too large, use and to clear
631     // the extra bits.
632     if (ShiftAmt <= MaxAmt) {
633       if (CISize == ASize)
634         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
635                                           std::min(ShiftAmt, ASize - 1)));
636       if (SExt->hasOneUse()) {
637         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
638         Shift->takeName(Src);
639         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
640       }
641     }
642   }
643 
644   if (Instruction *I = narrowBinOp(CI))
645     return I;
646 
647   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
648     return I;
649 
650   if (Instruction *I = shrinkInsertElt(CI, Builder))
651     return I;
652 
653   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
654       shouldChangeType(SrcTy, DestTy)) {
655     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
656     // dest type is native and cst < dest size.
657     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
658         !match(A, m_Shr(m_Value(), m_Constant()))) {
659       // Skip shifts of shift by constants. It undoes a combine in
660       // FoldShiftByConstant and is the extend in reg pattern.
661       const unsigned DestSize = DestTy->getScalarSizeInBits();
662       if (Cst->getValue().ult(DestSize)) {
663         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
664 
665         return BinaryOperator::Create(
666           Instruction::Shl, NewTrunc,
667           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
668       }
669     }
670   }
671 
672   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
673     return I;
674 
675   return nullptr;
676 }
677 
678 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
679                                              bool DoTransform) {
680   // If we are just checking for a icmp eq of a single bit and zext'ing it
681   // to an integer, then shift the bit to the appropriate place and then
682   // cast to integer to avoid the comparison.
683   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
684     const APInt &Op1CV = Op1C->getValue();
685 
686     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
687     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
688     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
689         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
690       if (!DoTransform) return ICI;
691 
692       Value *In = ICI->getOperand(0);
693       Value *Sh = ConstantInt::get(In->getType(),
694                                    In->getType()->getScalarSizeInBits() - 1);
695       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
696       if (In->getType() != CI.getType())
697         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
698 
699       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
700         Constant *One = ConstantInt::get(In->getType(), 1);
701         In = Builder.CreateXor(In, One, In->getName() + ".not");
702       }
703 
704       return replaceInstUsesWith(CI, In);
705     }
706 
707     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
708     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
709     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
710     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
711     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
712     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
713     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
714     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
715     if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
716         // This only works for EQ and NE
717         ICI->isEquality()) {
718       // If Op1C some other power of two, convert:
719       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
720 
721       APInt KnownZeroMask(~Known.Zero);
722       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
723         if (!DoTransform) return ICI;
724 
725         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
726         if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
727           // (X&4) == 2 --> false
728           // (X&4) != 2 --> true
729           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
730                                            isNE);
731           Res = ConstantExpr::getZExt(Res, CI.getType());
732           return replaceInstUsesWith(CI, Res);
733         }
734 
735         uint32_t ShAmt = KnownZeroMask.logBase2();
736         Value *In = ICI->getOperand(0);
737         if (ShAmt) {
738           // Perform a logical shr by shiftamt.
739           // Insert the shift to put the result in the low bit.
740           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
741                                   In->getName() + ".lobit");
742         }
743 
744         if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
745           Constant *One = ConstantInt::get(In->getType(), 1);
746           In = Builder.CreateXor(In, One);
747         }
748 
749         if (CI.getType() == In->getType())
750           return replaceInstUsesWith(CI, In);
751 
752         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
753         return replaceInstUsesWith(CI, IntCast);
754       }
755     }
756   }
757 
758   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
759   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
760   // may lead to additional simplifications.
761   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
762     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
763       Value *LHS = ICI->getOperand(0);
764       Value *RHS = ICI->getOperand(1);
765 
766       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
767       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
768 
769       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
770         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
771         APInt UnknownBit = ~KnownBits;
772         if (UnknownBit.countPopulation() == 1) {
773           if (!DoTransform) return ICI;
774 
775           Value *Result = Builder.CreateXor(LHS, RHS);
776 
777           // Mask off any bits that are set and won't be shifted away.
778           if (KnownLHS.One.uge(UnknownBit))
779             Result = Builder.CreateAnd(Result,
780                                         ConstantInt::get(ITy, UnknownBit));
781 
782           // Shift the bit we're testing down to the lsb.
783           Result = Builder.CreateLShr(
784                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
785 
786           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
787             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
788           Result->takeName(ICI);
789           return replaceInstUsesWith(CI, Result);
790         }
791       }
792     }
793   }
794 
795   return nullptr;
796 }
797 
798 /// Determine if the specified value can be computed in the specified wider type
799 /// and produce the same low bits. If not, return false.
800 ///
801 /// If this function returns true, it can also return a non-zero number of bits
802 /// (in BitsToClear) which indicates that the value it computes is correct for
803 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
804 /// out.  For example, to promote something like:
805 ///
806 ///   %B = trunc i64 %A to i32
807 ///   %C = lshr i32 %B, 8
808 ///   %E = zext i32 %C to i64
809 ///
810 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
811 /// set to 8 to indicate that the promoted value needs to have bits 24-31
812 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
813 /// clear the top bits anyway, doing this has no extra cost.
814 ///
815 /// This function works on both vectors and scalars.
816 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
817                              InstCombiner &IC, Instruction *CxtI) {
818   BitsToClear = 0;
819   if (isa<Constant>(V))
820     return true;
821 
822   Instruction *I = dyn_cast<Instruction>(V);
823   if (!I) return false;
824 
825   // If the input is a truncate from the destination type, we can trivially
826   // eliminate it.
827   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
828     return true;
829 
830   // We can't extend or shrink something that has multiple uses: doing so would
831   // require duplicating the instruction in general, which isn't profitable.
832   if (!I->hasOneUse()) return false;
833 
834   unsigned Opc = I->getOpcode(), Tmp;
835   switch (Opc) {
836   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
837   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
838   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
839     return true;
840   case Instruction::And:
841   case Instruction::Or:
842   case Instruction::Xor:
843   case Instruction::Add:
844   case Instruction::Sub:
845   case Instruction::Mul:
846     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
847         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
848       return false;
849     // These can all be promoted if neither operand has 'bits to clear'.
850     if (BitsToClear == 0 && Tmp == 0)
851       return true;
852 
853     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
854     // other side, BitsToClear is ok.
855     if (Tmp == 0 && I->isBitwiseLogicOp()) {
856       // We use MaskedValueIsZero here for generality, but the case we care
857       // about the most is constant RHS.
858       unsigned VSize = V->getType()->getScalarSizeInBits();
859       if (IC.MaskedValueIsZero(I->getOperand(1),
860                                APInt::getHighBitsSet(VSize, BitsToClear),
861                                0, CxtI))
862         return true;
863     }
864 
865     // Otherwise, we don't know how to analyze this BitsToClear case yet.
866     return false;
867 
868   case Instruction::Shl:
869     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
870     // upper bits we can reduce BitsToClear by the shift amount.
871     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
872       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
873         return false;
874       uint64_t ShiftAmt = Amt->getZExtValue();
875       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
876       return true;
877     }
878     return false;
879   case Instruction::LShr:
880     // We can promote lshr(x, cst) if we can promote x.  This requires the
881     // ultimate 'and' to clear out the high zero bits we're clearing out though.
882     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
883       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
884         return false;
885       BitsToClear += Amt->getZExtValue();
886       if (BitsToClear > V->getType()->getScalarSizeInBits())
887         BitsToClear = V->getType()->getScalarSizeInBits();
888       return true;
889     }
890     // Cannot promote variable LSHR.
891     return false;
892   case Instruction::Select:
893     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
894         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
895         // TODO: If important, we could handle the case when the BitsToClear are
896         // known zero in the disagreeing side.
897         Tmp != BitsToClear)
898       return false;
899     return true;
900 
901   case Instruction::PHI: {
902     // We can change a phi if we can change all operands.  Note that we never
903     // get into trouble with cyclic PHIs here because we only consider
904     // instructions with a single use.
905     PHINode *PN = cast<PHINode>(I);
906     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
907       return false;
908     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
909       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
910           // TODO: If important, we could handle the case when the BitsToClear
911           // are known zero in the disagreeing input.
912           Tmp != BitsToClear)
913         return false;
914     return true;
915   }
916   default:
917     // TODO: Can handle more cases here.
918     return false;
919   }
920 }
921 
922 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
923   // If this zero extend is only used by a truncate, let the truncate be
924   // eliminated before we try to optimize this zext.
925   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
926     return nullptr;
927 
928   // If one of the common conversion will work, do it.
929   if (Instruction *Result = commonCastTransforms(CI))
930     return Result;
931 
932   Value *Src = CI.getOperand(0);
933   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
934 
935   // Attempt to extend the entire input expression tree to the destination
936   // type.   Only do this if the dest type is a simple type, don't convert the
937   // expression tree to something weird like i93 unless the source is also
938   // strange.
939   unsigned BitsToClear;
940   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
941       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
942     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
943            "Can't clear more bits than in SrcTy");
944 
945     // Okay, we can transform this!  Insert the new expression now.
946     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
947           " to avoid zero extend: " << CI << '\n');
948     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
949     assert(Res->getType() == DestTy);
950 
951     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
952     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
953 
954     // If the high bits are already filled with zeros, just replace this
955     // cast with the result.
956     if (MaskedValueIsZero(Res,
957                           APInt::getHighBitsSet(DestBitSize,
958                                                 DestBitSize-SrcBitsKept),
959                              0, &CI))
960       return replaceInstUsesWith(CI, Res);
961 
962     // We need to emit an AND to clear the high bits.
963     Constant *C = ConstantInt::get(Res->getType(),
964                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
965     return BinaryOperator::CreateAnd(Res, C);
966   }
967 
968   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
969   // types and if the sizes are just right we can convert this into a logical
970   // 'and' which will be much cheaper than the pair of casts.
971   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
972     // TODO: Subsume this into EvaluateInDifferentType.
973 
974     // Get the sizes of the types involved.  We know that the intermediate type
975     // will be smaller than A or C, but don't know the relation between A and C.
976     Value *A = CSrc->getOperand(0);
977     unsigned SrcSize = A->getType()->getScalarSizeInBits();
978     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
979     unsigned DstSize = CI.getType()->getScalarSizeInBits();
980     // If we're actually extending zero bits, then if
981     // SrcSize <  DstSize: zext(a & mask)
982     // SrcSize == DstSize: a & mask
983     // SrcSize  > DstSize: trunc(a) & mask
984     if (SrcSize < DstSize) {
985       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
986       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
987       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
988       return new ZExtInst(And, CI.getType());
989     }
990 
991     if (SrcSize == DstSize) {
992       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
993       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
994                                                            AndValue));
995     }
996     if (SrcSize > DstSize) {
997       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
998       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
999       return BinaryOperator::CreateAnd(Trunc,
1000                                        ConstantInt::get(Trunc->getType(),
1001                                                         AndValue));
1002     }
1003   }
1004 
1005   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1006     return transformZExtICmp(ICI, CI);
1007 
1008   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1009   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1010     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1011     // of the (zext icmp) can be eliminated. If so, immediately perform the
1012     // according elimination.
1013     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1014     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1015     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1016         (transformZExtICmp(LHS, CI, false) ||
1017          transformZExtICmp(RHS, CI, false))) {
1018       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1019       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1020       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1021       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1022 
1023       // Perform the elimination.
1024       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1025         transformZExtICmp(LHS, *LZExt);
1026       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1027         transformZExtICmp(RHS, *RZExt);
1028 
1029       return Or;
1030     }
1031   }
1032 
1033   // zext(trunc(X) & C) -> (X & zext(C)).
1034   Constant *C;
1035   Value *X;
1036   if (SrcI &&
1037       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1038       X->getType() == CI.getType())
1039     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1040 
1041   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1042   Value *And;
1043   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1044       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1045       X->getType() == CI.getType()) {
1046     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1047     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1048   }
1049 
1050   return nullptr;
1051 }
1052 
1053 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1054 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1055   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1056   ICmpInst::Predicate Pred = ICI->getPredicate();
1057 
1058   // Don't bother if Op1 isn't of vector or integer type.
1059   if (!Op1->getType()->isIntOrIntVectorTy())
1060     return nullptr;
1061 
1062   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1063     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1064     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1065     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
1066         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
1067 
1068       Value *Sh = ConstantInt::get(Op0->getType(),
1069                                    Op0->getType()->getScalarSizeInBits()-1);
1070       Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1071       if (In->getType() != CI.getType())
1072         In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1073 
1074       if (Pred == ICmpInst::ICMP_SGT)
1075         In = Builder.CreateNot(In, In->getName() + ".not");
1076       return replaceInstUsesWith(CI, In);
1077     }
1078   }
1079 
1080   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1081     // If we know that only one bit of the LHS of the icmp can be set and we
1082     // have an equality comparison with zero or a power of 2, we can transform
1083     // the icmp and sext into bitwise/integer operations.
1084     if (ICI->hasOneUse() &&
1085         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1086       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1087 
1088       APInt KnownZeroMask(~Known.Zero);
1089       if (KnownZeroMask.isPowerOf2()) {
1090         Value *In = ICI->getOperand(0);
1091 
1092         // If the icmp tests for a known zero bit we can constant fold it.
1093         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1094           Value *V = Pred == ICmpInst::ICMP_NE ?
1095                        ConstantInt::getAllOnesValue(CI.getType()) :
1096                        ConstantInt::getNullValue(CI.getType());
1097           return replaceInstUsesWith(CI, V);
1098         }
1099 
1100         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1101           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1102           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1103           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1104           // Perform a right shift to place the desired bit in the LSB.
1105           if (ShiftAmt)
1106             In = Builder.CreateLShr(In,
1107                                     ConstantInt::get(In->getType(), ShiftAmt));
1108 
1109           // At this point "In" is either 1 or 0. Subtract 1 to turn
1110           // {1, 0} -> {0, -1}.
1111           In = Builder.CreateAdd(In,
1112                                  ConstantInt::getAllOnesValue(In->getType()),
1113                                  "sext");
1114         } else {
1115           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1116           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1117           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1118           // Perform a left shift to place the desired bit in the MSB.
1119           if (ShiftAmt)
1120             In = Builder.CreateShl(In,
1121                                    ConstantInt::get(In->getType(), ShiftAmt));
1122 
1123           // Distribute the bit over the whole bit width.
1124           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1125                                   KnownZeroMask.getBitWidth() - 1), "sext");
1126         }
1127 
1128         if (CI.getType() == In->getType())
1129           return replaceInstUsesWith(CI, In);
1130         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1131       }
1132     }
1133   }
1134 
1135   return nullptr;
1136 }
1137 
1138 /// Return true if we can take the specified value and return it as type Ty
1139 /// without inserting any new casts and without changing the value of the common
1140 /// low bits.  This is used by code that tries to promote integer operations to
1141 /// a wider types will allow us to eliminate the extension.
1142 ///
1143 /// This function works on both vectors and scalars.
1144 ///
1145 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1146   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1147          "Can't sign extend type to a smaller type");
1148   // If this is a constant, it can be trivially promoted.
1149   if (isa<Constant>(V))
1150     return true;
1151 
1152   Instruction *I = dyn_cast<Instruction>(V);
1153   if (!I) return false;
1154 
1155   // If this is a truncate from the dest type, we can trivially eliminate it.
1156   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1157     return true;
1158 
1159   // We can't extend or shrink something that has multiple uses: doing so would
1160   // require duplicating the instruction in general, which isn't profitable.
1161   if (!I->hasOneUse()) return false;
1162 
1163   switch (I->getOpcode()) {
1164   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1165   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1166   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1167     return true;
1168   case Instruction::And:
1169   case Instruction::Or:
1170   case Instruction::Xor:
1171   case Instruction::Add:
1172   case Instruction::Sub:
1173   case Instruction::Mul:
1174     // These operators can all arbitrarily be extended if their inputs can.
1175     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1176            canEvaluateSExtd(I->getOperand(1), Ty);
1177 
1178   //case Instruction::Shl:   TODO
1179   //case Instruction::LShr:  TODO
1180 
1181   case Instruction::Select:
1182     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1183            canEvaluateSExtd(I->getOperand(2), Ty);
1184 
1185   case Instruction::PHI: {
1186     // We can change a phi if we can change all operands.  Note that we never
1187     // get into trouble with cyclic PHIs here because we only consider
1188     // instructions with a single use.
1189     PHINode *PN = cast<PHINode>(I);
1190     for (Value *IncValue : PN->incoming_values())
1191       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1192     return true;
1193   }
1194   default:
1195     // TODO: Can handle more cases here.
1196     break;
1197   }
1198 
1199   return false;
1200 }
1201 
1202 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1203   // If this sign extend is only used by a truncate, let the truncate be
1204   // eliminated before we try to optimize this sext.
1205   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1206     return nullptr;
1207 
1208   if (Instruction *I = commonCastTransforms(CI))
1209     return I;
1210 
1211   Value *Src = CI.getOperand(0);
1212   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1213 
1214   // If we know that the value being extended is positive, we can use a zext
1215   // instead.
1216   KnownBits Known = computeKnownBits(Src, 0, &CI);
1217   if (Known.isNonNegative()) {
1218     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1219     return replaceInstUsesWith(CI, ZExt);
1220   }
1221 
1222   // Attempt to extend the entire input expression tree to the destination
1223   // type.   Only do this if the dest type is a simple type, don't convert the
1224   // expression tree to something weird like i93 unless the source is also
1225   // strange.
1226   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1227       canEvaluateSExtd(Src, DestTy)) {
1228     // Okay, we can transform this!  Insert the new expression now.
1229     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1230           " to avoid sign extend: " << CI << '\n');
1231     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1232     assert(Res->getType() == DestTy);
1233 
1234     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1235     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1236 
1237     // If the high bits are already filled with sign bit, just replace this
1238     // cast with the result.
1239     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1240       return replaceInstUsesWith(CI, Res);
1241 
1242     // We need to emit a shl + ashr to do the sign extend.
1243     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1244     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1245                                       ShAmt);
1246   }
1247 
1248   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1249   // into shifts.
1250   Value *X;
1251   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1252     // sext(trunc(X)) --> ashr(shl(X, C), C)
1253     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1254     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1255     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1256     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1257   }
1258 
1259   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1260     return transformSExtICmp(ICI, CI);
1261 
1262   // If the input is a shl/ashr pair of a same constant, then this is a sign
1263   // extension from a smaller value.  If we could trust arbitrary bitwidth
1264   // integers, we could turn this into a truncate to the smaller bit and then
1265   // use a sext for the whole extension.  Since we don't, look deeper and check
1266   // for a truncate.  If the source and dest are the same type, eliminate the
1267   // trunc and extend and just do shifts.  For example, turn:
1268   //   %a = trunc i32 %i to i8
1269   //   %b = shl i8 %a, 6
1270   //   %c = ashr i8 %b, 6
1271   //   %d = sext i8 %c to i32
1272   // into:
1273   //   %a = shl i32 %i, 30
1274   //   %d = ashr i32 %a, 30
1275   Value *A = nullptr;
1276   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1277   ConstantInt *BA = nullptr, *CA = nullptr;
1278   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1279                         m_ConstantInt(CA))) &&
1280       BA == CA && A->getType() == CI.getType()) {
1281     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1282     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1283     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1284     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1285     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1286     return BinaryOperator::CreateAShr(A, ShAmtV);
1287   }
1288 
1289   return nullptr;
1290 }
1291 
1292 
1293 /// Return a Constant* for the specified floating-point constant if it fits
1294 /// in the specified FP type without changing its value.
1295 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1296   bool losesInfo;
1297   APFloat F = CFP->getValueAPF();
1298   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1299   if (!losesInfo)
1300     return ConstantFP::get(CFP->getContext(), F);
1301   return nullptr;
1302 }
1303 
1304 /// Look through floating-point extensions until we get the source value.
1305 static Value *lookThroughFPExtensions(Value *V) {
1306   while (auto *FPExt = dyn_cast<FPExtInst>(V))
1307     V = FPExt->getOperand(0);
1308 
1309   // If this value is a constant, return the constant in the smallest FP type
1310   // that can accurately represent it.  This allows us to turn
1311   // (float)((double)X+2.0) into x+2.0f.
1312   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
1313     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1314       return V;  // No constant folding of this.
1315     // See if the value can be truncated to half and then reextended.
1316     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
1317       return V;
1318     // See if the value can be truncated to float and then reextended.
1319     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
1320       return V;
1321     if (CFP->getType()->isDoubleTy())
1322       return V;  // Won't shrink.
1323     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
1324       return V;
1325     // Don't try to shrink to various long double types.
1326   }
1327 
1328   return V;
1329 }
1330 
1331 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1332   if (Instruction *I = commonCastTransforms(CI))
1333     return I;
1334   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1335   // simplify this expression to avoid one or more of the trunc/extend
1336   // operations if we can do so without changing the numerical results.
1337   //
1338   // The exact manner in which the widths of the operands interact to limit
1339   // what we can and cannot do safely varies from operation to operation, and
1340   // is explained below in the various case statements.
1341   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1342   if (OpI && OpI->hasOneUse()) {
1343     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1344     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1345     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1346     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1347     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1348     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1349     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1350     switch (OpI->getOpcode()) {
1351       default: break;
1352       case Instruction::FAdd:
1353       case Instruction::FSub:
1354         // For addition and subtraction, the infinitely precise result can
1355         // essentially be arbitrarily wide; proving that double rounding
1356         // will not occur because the result of OpI is exact (as we will for
1357         // FMul, for example) is hopeless.  However, we *can* nonetheless
1358         // frequently know that double rounding cannot occur (or that it is
1359         // innocuous) by taking advantage of the specific structure of
1360         // infinitely-precise results that admit double rounding.
1361         //
1362         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1363         // to represent both sources, we can guarantee that the double
1364         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1365         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1366         // for proof of this fact).
1367         //
1368         // Note: Figueroa does not consider the case where DstFormat !=
1369         // SrcFormat.  It's possible (likely even!) that this analysis
1370         // could be tightened for those cases, but they are rare (the main
1371         // case of interest here is (float)((double)float + float)).
1372         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1373           if (LHSOrig->getType() != CI.getType())
1374             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1375           if (RHSOrig->getType() != CI.getType())
1376             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1377           Instruction *RI =
1378             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1379           RI->copyFastMathFlags(OpI);
1380           return RI;
1381         }
1382         break;
1383       case Instruction::FMul:
1384         // For multiplication, the infinitely precise result has at most
1385         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1386         // that such a value can be exactly represented, then no double
1387         // rounding can possibly occur; we can safely perform the operation
1388         // in the destination format if it can represent both sources.
1389         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1390           if (LHSOrig->getType() != CI.getType())
1391             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1392           if (RHSOrig->getType() != CI.getType())
1393             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1394           Instruction *RI =
1395             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1396           RI->copyFastMathFlags(OpI);
1397           return RI;
1398         }
1399         break;
1400       case Instruction::FDiv:
1401         // For division, we use again use the bound from Figueroa's
1402         // dissertation.  I am entirely certain that this bound can be
1403         // tightened in the unbalanced operand case by an analysis based on
1404         // the diophantine rational approximation bound, but the well-known
1405         // condition used here is a good conservative first pass.
1406         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1407         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1408           if (LHSOrig->getType() != CI.getType())
1409             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1410           if (RHSOrig->getType() != CI.getType())
1411             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1412           Instruction *RI =
1413             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1414           RI->copyFastMathFlags(OpI);
1415           return RI;
1416         }
1417         break;
1418       case Instruction::FRem:
1419         // Remainder is straightforward.  Remainder is always exact, so the
1420         // type of OpI doesn't enter into things at all.  We simply evaluate
1421         // in whichever source type is larger, then convert to the
1422         // destination type.
1423         if (SrcWidth == OpWidth)
1424           break;
1425         if (LHSWidth < SrcWidth)
1426           LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
1427         else if (RHSWidth <= SrcWidth)
1428           RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
1429         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1430           Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
1431           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1432             RI->copyFastMathFlags(OpI);
1433           return CastInst::CreateFPCast(ExactResult, CI.getType());
1434         }
1435     }
1436 
1437     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1438     if (BinaryOperator::isFNeg(OpI)) {
1439       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
1440                                                 CI.getType());
1441       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1442       RI->copyFastMathFlags(OpI);
1443       return RI;
1444     }
1445   }
1446 
1447   // (fptrunc (select cond, R1, Cst)) -->
1448   // (select cond, (fptrunc R1), (fptrunc Cst))
1449   //
1450   //  - but only if this isn't part of a min/max operation, else we'll
1451   // ruin min/max canonical form which is to have the select and
1452   // compare's operands be of the same type with no casts to look through.
1453   Value *LHS, *RHS;
1454   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1455   if (SI &&
1456       (isa<ConstantFP>(SI->getOperand(1)) ||
1457        isa<ConstantFP>(SI->getOperand(2))) &&
1458       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1459     Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
1460     Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
1461     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1462   }
1463 
1464   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1465   if (II) {
1466     switch (II->getIntrinsicID()) {
1467     default: break;
1468     case Intrinsic::fabs:
1469     case Intrinsic::ceil:
1470     case Intrinsic::floor:
1471     case Intrinsic::rint:
1472     case Intrinsic::round:
1473     case Intrinsic::nearbyint:
1474     case Intrinsic::trunc: {
1475       Value *Src = II->getArgOperand(0);
1476       if (!Src->hasOneUse())
1477         break;
1478 
1479       // Except for fabs, this transformation requires the input of the unary FP
1480       // operation to be itself an fpext from the type to which we're
1481       // truncating.
1482       if (II->getIntrinsicID() != Intrinsic::fabs) {
1483         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1484         if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
1485           break;
1486       }
1487 
1488       // Do unary FP operation on smaller type.
1489       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1490       Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
1491       Type *IntrinsicType[] = { CI.getType() };
1492       Function *Overload = Intrinsic::getDeclaration(
1493         CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1494 
1495       SmallVector<OperandBundleDef, 1> OpBundles;
1496       II->getOperandBundlesAsDefs(OpBundles);
1497 
1498       Value *Args[] = { InnerTrunc };
1499       CallInst *NewCI =  CallInst::Create(Overload, Args,
1500                                           OpBundles, II->getName());
1501       NewCI->copyFastMathFlags(II);
1502       return NewCI;
1503     }
1504     }
1505   }
1506 
1507   if (Instruction *I = shrinkInsertElt(CI, Builder))
1508     return I;
1509 
1510   return nullptr;
1511 }
1512 
1513 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1514   return commonCastTransforms(CI);
1515 }
1516 
1517 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1518 // This is safe if the intermediate type has enough bits in its mantissa to
1519 // accurately represent all values of X.  For example, this won't work with
1520 // i64 -> float -> i64.
1521 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1522   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1523     return nullptr;
1524   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1525 
1526   Value *SrcI = OpI->getOperand(0);
1527   Type *FITy = FI.getType();
1528   Type *OpITy = OpI->getType();
1529   Type *SrcTy = SrcI->getType();
1530   bool IsInputSigned = isa<SIToFPInst>(OpI);
1531   bool IsOutputSigned = isa<FPToSIInst>(FI);
1532 
1533   // We can safely assume the conversion won't overflow the output range,
1534   // because (for example) (uint8_t)18293.f is undefined behavior.
1535 
1536   // Since we can assume the conversion won't overflow, our decision as to
1537   // whether the input will fit in the float should depend on the minimum
1538   // of the input range and output range.
1539 
1540   // This means this is also safe for a signed input and unsigned output, since
1541   // a negative input would lead to undefined behavior.
1542   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1543   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1544   int ActualSize = std::min(InputSize, OutputSize);
1545 
1546   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1547     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1548       if (IsInputSigned && IsOutputSigned)
1549         return new SExtInst(SrcI, FITy);
1550       return new ZExtInst(SrcI, FITy);
1551     }
1552     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1553       return new TruncInst(SrcI, FITy);
1554     if (SrcTy == FITy)
1555       return replaceInstUsesWith(FI, SrcI);
1556     return new BitCastInst(SrcI, FITy);
1557   }
1558   return nullptr;
1559 }
1560 
1561 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1562   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1563   if (!OpI)
1564     return commonCastTransforms(FI);
1565 
1566   if (Instruction *I = FoldItoFPtoI(FI))
1567     return I;
1568 
1569   return commonCastTransforms(FI);
1570 }
1571 
1572 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1573   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1574   if (!OpI)
1575     return commonCastTransforms(FI);
1576 
1577   if (Instruction *I = FoldItoFPtoI(FI))
1578     return I;
1579 
1580   return commonCastTransforms(FI);
1581 }
1582 
1583 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1584   return commonCastTransforms(CI);
1585 }
1586 
1587 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1588   return commonCastTransforms(CI);
1589 }
1590 
1591 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1592   // If the source integer type is not the intptr_t type for this target, do a
1593   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1594   // cast to be exposed to other transforms.
1595   unsigned AS = CI.getAddressSpace();
1596   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1597       DL.getPointerSizeInBits(AS)) {
1598     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1599     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1600       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1601 
1602     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1603     return new IntToPtrInst(P, CI.getType());
1604   }
1605 
1606   if (Instruction *I = commonCastTransforms(CI))
1607     return I;
1608 
1609   return nullptr;
1610 }
1611 
1612 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1613 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1614   Value *Src = CI.getOperand(0);
1615 
1616   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1617     // If casting the result of a getelementptr instruction with no offset, turn
1618     // this into a cast of the original pointer!
1619     if (GEP->hasAllZeroIndices() &&
1620         // If CI is an addrspacecast and GEP changes the poiner type, merging
1621         // GEP into CI would undo canonicalizing addrspacecast with different
1622         // pointer types, causing infinite loops.
1623         (!isa<AddrSpaceCastInst>(CI) ||
1624          GEP->getType() == GEP->getPointerOperandType())) {
1625       // Changing the cast operand is usually not a good idea but it is safe
1626       // here because the pointer operand is being replaced with another
1627       // pointer operand so the opcode doesn't need to change.
1628       Worklist.Add(GEP);
1629       CI.setOperand(0, GEP->getOperand(0));
1630       return &CI;
1631     }
1632   }
1633 
1634   return commonCastTransforms(CI);
1635 }
1636 
1637 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1638   // If the destination integer type is not the intptr_t type for this target,
1639   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1640   // to be exposed to other transforms.
1641 
1642   Type *Ty = CI.getType();
1643   unsigned AS = CI.getPointerAddressSpace();
1644 
1645   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1646     return commonPointerCastTransforms(CI);
1647 
1648   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1649   if (Ty->isVectorTy()) // Handle vectors of pointers.
1650     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1651 
1652   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1653   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1654 }
1655 
1656 /// This input value (which is known to have vector type) is being zero extended
1657 /// or truncated to the specified vector type.
1658 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1659 ///
1660 /// The source and destination vector types may have different element types.
1661 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1662                                          InstCombiner &IC) {
1663   // We can only do this optimization if the output is a multiple of the input
1664   // element size, or the input is a multiple of the output element size.
1665   // Convert the input type to have the same element type as the output.
1666   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1667 
1668   if (SrcTy->getElementType() != DestTy->getElementType()) {
1669     // The input types don't need to be identical, but for now they must be the
1670     // same size.  There is no specific reason we couldn't handle things like
1671     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1672     // there yet.
1673     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1674         DestTy->getElementType()->getPrimitiveSizeInBits())
1675       return nullptr;
1676 
1677     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1678     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1679   }
1680 
1681   // Now that the element types match, get the shuffle mask and RHS of the
1682   // shuffle to use, which depends on whether we're increasing or decreasing the
1683   // size of the input.
1684   SmallVector<uint32_t, 16> ShuffleMask;
1685   Value *V2;
1686 
1687   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1688     // If we're shrinking the number of elements, just shuffle in the low
1689     // elements from the input and use undef as the second shuffle input.
1690     V2 = UndefValue::get(SrcTy);
1691     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1692       ShuffleMask.push_back(i);
1693 
1694   } else {
1695     // If we're increasing the number of elements, shuffle in all of the
1696     // elements from InVal and fill the rest of the result elements with zeros
1697     // from a constant zero.
1698     V2 = Constant::getNullValue(SrcTy);
1699     unsigned SrcElts = SrcTy->getNumElements();
1700     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1701       ShuffleMask.push_back(i);
1702 
1703     // The excess elements reference the first element of the zero input.
1704     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1705       ShuffleMask.push_back(SrcElts);
1706   }
1707 
1708   return new ShuffleVectorInst(InVal, V2,
1709                                ConstantDataVector::get(V2->getContext(),
1710                                                        ShuffleMask));
1711 }
1712 
1713 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1714   return Value % Ty->getPrimitiveSizeInBits() == 0;
1715 }
1716 
1717 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1718   return Value / Ty->getPrimitiveSizeInBits();
1719 }
1720 
1721 /// V is a value which is inserted into a vector of VecEltTy.
1722 /// Look through the value to see if we can decompose it into
1723 /// insertions into the vector.  See the example in the comment for
1724 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1725 /// The type of V is always a non-zero multiple of VecEltTy's size.
1726 /// Shift is the number of bits between the lsb of V and the lsb of
1727 /// the vector.
1728 ///
1729 /// This returns false if the pattern can't be matched or true if it can,
1730 /// filling in Elements with the elements found here.
1731 static bool collectInsertionElements(Value *V, unsigned Shift,
1732                                      SmallVectorImpl<Value *> &Elements,
1733                                      Type *VecEltTy, bool isBigEndian) {
1734   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1735          "Shift should be a multiple of the element type size");
1736 
1737   // Undef values never contribute useful bits to the result.
1738   if (isa<UndefValue>(V)) return true;
1739 
1740   // If we got down to a value of the right type, we win, try inserting into the
1741   // right element.
1742   if (V->getType() == VecEltTy) {
1743     // Inserting null doesn't actually insert any elements.
1744     if (Constant *C = dyn_cast<Constant>(V))
1745       if (C->isNullValue())
1746         return true;
1747 
1748     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1749     if (isBigEndian)
1750       ElementIndex = Elements.size() - ElementIndex - 1;
1751 
1752     // Fail if multiple elements are inserted into this slot.
1753     if (Elements[ElementIndex])
1754       return false;
1755 
1756     Elements[ElementIndex] = V;
1757     return true;
1758   }
1759 
1760   if (Constant *C = dyn_cast<Constant>(V)) {
1761     // Figure out the # elements this provides, and bitcast it or slice it up
1762     // as required.
1763     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1764                                         VecEltTy);
1765     // If the constant is the size of a vector element, we just need to bitcast
1766     // it to the right type so it gets properly inserted.
1767     if (NumElts == 1)
1768       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1769                                       Shift, Elements, VecEltTy, isBigEndian);
1770 
1771     // Okay, this is a constant that covers multiple elements.  Slice it up into
1772     // pieces and insert each element-sized piece into the vector.
1773     if (!isa<IntegerType>(C->getType()))
1774       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1775                                        C->getType()->getPrimitiveSizeInBits()));
1776     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1777     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1778 
1779     for (unsigned i = 0; i != NumElts; ++i) {
1780       unsigned ShiftI = Shift+i*ElementSize;
1781       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1782                                                                   ShiftI));
1783       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1784       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1785                                     isBigEndian))
1786         return false;
1787     }
1788     return true;
1789   }
1790 
1791   if (!V->hasOneUse()) return false;
1792 
1793   Instruction *I = dyn_cast<Instruction>(V);
1794   if (!I) return false;
1795   switch (I->getOpcode()) {
1796   default: return false; // Unhandled case.
1797   case Instruction::BitCast:
1798     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1799                                     isBigEndian);
1800   case Instruction::ZExt:
1801     if (!isMultipleOfTypeSize(
1802                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1803                               VecEltTy))
1804       return false;
1805     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1806                                     isBigEndian);
1807   case Instruction::Or:
1808     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1809                                     isBigEndian) &&
1810            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1811                                     isBigEndian);
1812   case Instruction::Shl: {
1813     // Must be shifting by a constant that is a multiple of the element size.
1814     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1815     if (!CI) return false;
1816     Shift += CI->getZExtValue();
1817     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1818     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1819                                     isBigEndian);
1820   }
1821 
1822   }
1823 }
1824 
1825 
1826 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1827 /// assemble the elements of the vector manually.
1828 /// Try to rip the code out and replace it with insertelements.  This is to
1829 /// optimize code like this:
1830 ///
1831 ///    %tmp37 = bitcast float %inc to i32
1832 ///    %tmp38 = zext i32 %tmp37 to i64
1833 ///    %tmp31 = bitcast float %inc5 to i32
1834 ///    %tmp32 = zext i32 %tmp31 to i64
1835 ///    %tmp33 = shl i64 %tmp32, 32
1836 ///    %ins35 = or i64 %tmp33, %tmp38
1837 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1838 ///
1839 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1840 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1841                                                 InstCombiner &IC) {
1842   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1843   Value *IntInput = CI.getOperand(0);
1844 
1845   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1846   if (!collectInsertionElements(IntInput, 0, Elements,
1847                                 DestVecTy->getElementType(),
1848                                 IC.getDataLayout().isBigEndian()))
1849     return nullptr;
1850 
1851   // If we succeeded, we know that all of the element are specified by Elements
1852   // or are zero if Elements has a null entry.  Recast this as a set of
1853   // insertions.
1854   Value *Result = Constant::getNullValue(CI.getType());
1855   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1856     if (!Elements[i]) continue;  // Unset element.
1857 
1858     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
1859                                             IC.Builder.getInt32(i));
1860   }
1861 
1862   return Result;
1863 }
1864 
1865 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1866 /// vector followed by extract element. The backend tends to handle bitcasts of
1867 /// vectors better than bitcasts of scalars because vector registers are
1868 /// usually not type-specific like scalar integer or scalar floating-point.
1869 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1870                                               InstCombiner &IC) {
1871   // TODO: Create and use a pattern matcher for ExtractElementInst.
1872   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1873   if (!ExtElt || !ExtElt->hasOneUse())
1874     return nullptr;
1875 
1876   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1877   // type to extract from.
1878   Type *DestType = BitCast.getType();
1879   if (!VectorType::isValidElementType(DestType))
1880     return nullptr;
1881 
1882   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1883   auto *NewVecType = VectorType::get(DestType, NumElts);
1884   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
1885                                          NewVecType, "bc");
1886   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1887 }
1888 
1889 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
1890 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
1891                                             InstCombiner::BuilderTy &Builder) {
1892   Type *DestTy = BitCast.getType();
1893   BinaryOperator *BO;
1894   if (!DestTy->isIntOrIntVectorTy() ||
1895       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
1896       !BO->isBitwiseLogicOp())
1897     return nullptr;
1898 
1899   // FIXME: This transform is restricted to vector types to avoid backend
1900   // problems caused by creating potentially illegal operations. If a fix-up is
1901   // added to handle that situation, we can remove this check.
1902   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
1903     return nullptr;
1904 
1905   Value *X;
1906   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
1907       X->getType() == DestTy && !isa<Constant>(X)) {
1908     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
1909     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
1910     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
1911   }
1912 
1913   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
1914       X->getType() == DestTy && !isa<Constant>(X)) {
1915     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
1916     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1917     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
1918   }
1919 
1920   // Canonicalize vector bitcasts to come before vector bitwise logic with a
1921   // constant. This eases recognition of special constants for later ops.
1922   // Example:
1923   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
1924   Constant *C;
1925   if (match(BO->getOperand(1), m_Constant(C))) {
1926     // bitcast (logic X, C) --> logic (bitcast X, C')
1927     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1928     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
1929     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
1930   }
1931 
1932   return nullptr;
1933 }
1934 
1935 /// Change the type of a select if we can eliminate a bitcast.
1936 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
1937                                       InstCombiner::BuilderTy &Builder) {
1938   Value *Cond, *TVal, *FVal;
1939   if (!match(BitCast.getOperand(0),
1940              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
1941     return nullptr;
1942 
1943   // A vector select must maintain the same number of elements in its operands.
1944   Type *CondTy = Cond->getType();
1945   Type *DestTy = BitCast.getType();
1946   if (CondTy->isVectorTy()) {
1947     if (!DestTy->isVectorTy())
1948       return nullptr;
1949     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
1950       return nullptr;
1951   }
1952 
1953   // FIXME: This transform is restricted from changing the select between
1954   // scalars and vectors to avoid backend problems caused by creating
1955   // potentially illegal operations. If a fix-up is added to handle that
1956   // situation, we can remove this check.
1957   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
1958     return nullptr;
1959 
1960   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
1961   Value *X;
1962   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
1963       !isa<Constant>(X)) {
1964     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
1965     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
1966     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
1967   }
1968 
1969   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
1970       !isa<Constant>(X)) {
1971     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
1972     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
1973     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
1974   }
1975 
1976   return nullptr;
1977 }
1978 
1979 /// Check if all users of CI are StoreInsts.
1980 static bool hasStoreUsersOnly(CastInst &CI) {
1981   for (User *U : CI.users()) {
1982     if (!isa<StoreInst>(U))
1983       return false;
1984   }
1985   return true;
1986 }
1987 
1988 /// This function handles following case
1989 ///
1990 ///     A  ->  B    cast
1991 ///     PHI
1992 ///     B  ->  A    cast
1993 ///
1994 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
1995 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
1996 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
1997   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
1998   if (hasStoreUsersOnly(CI))
1999     return nullptr;
2000 
2001   Value *Src = CI.getOperand(0);
2002   Type *SrcTy = Src->getType();         // Type B
2003   Type *DestTy = CI.getType();          // Type A
2004 
2005   SmallVector<PHINode *, 4> PhiWorklist;
2006   SmallSetVector<PHINode *, 4> OldPhiNodes;
2007 
2008   // Find all of the A->B casts and PHI nodes.
2009   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2010   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2011   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2012   PhiWorklist.push_back(PN);
2013   OldPhiNodes.insert(PN);
2014   while (!PhiWorklist.empty()) {
2015     auto *OldPN = PhiWorklist.pop_back_val();
2016     for (Value *IncValue : OldPN->incoming_values()) {
2017       if (isa<Constant>(IncValue))
2018         continue;
2019 
2020       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2021         // If there is a sequence of one or more load instructions, each loaded
2022         // value is used as address of later load instruction, bitcast is
2023         // necessary to change the value type, don't optimize it. For
2024         // simplicity we give up if the load address comes from another load.
2025         Value *Addr = LI->getOperand(0);
2026         if (Addr == &CI || isa<LoadInst>(Addr))
2027           return nullptr;
2028         if (LI->hasOneUse() && LI->isSimple())
2029           continue;
2030         // If a LoadInst has more than one use, changing the type of loaded
2031         // value may create another bitcast.
2032         return nullptr;
2033       }
2034 
2035       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2036         if (OldPhiNodes.insert(PNode))
2037           PhiWorklist.push_back(PNode);
2038         continue;
2039       }
2040 
2041       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2042       // We can't handle other instructions.
2043       if (!BCI)
2044         return nullptr;
2045 
2046       // Verify it's a A->B cast.
2047       Type *TyA = BCI->getOperand(0)->getType();
2048       Type *TyB = BCI->getType();
2049       if (TyA != DestTy || TyB != SrcTy)
2050         return nullptr;
2051     }
2052   }
2053 
2054   // For each old PHI node, create a corresponding new PHI node with a type A.
2055   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2056   for (auto *OldPN : OldPhiNodes) {
2057     Builder.SetInsertPoint(OldPN);
2058     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2059     NewPNodes[OldPN] = NewPN;
2060   }
2061 
2062   // Fill in the operands of new PHI nodes.
2063   for (auto *OldPN : OldPhiNodes) {
2064     PHINode *NewPN = NewPNodes[OldPN];
2065     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2066       Value *V = OldPN->getOperand(j);
2067       Value *NewV = nullptr;
2068       if (auto *C = dyn_cast<Constant>(V)) {
2069         NewV = ConstantExpr::getBitCast(C, DestTy);
2070       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2071         Builder.SetInsertPoint(LI->getNextNode());
2072         NewV = Builder.CreateBitCast(LI, DestTy);
2073         Worklist.Add(LI);
2074       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2075         NewV = BCI->getOperand(0);
2076       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2077         NewV = NewPNodes[PrevPN];
2078       }
2079       assert(NewV);
2080       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2081     }
2082   }
2083 
2084   // If there is a store with type B, change it to type A.
2085   for (User *U : PN->users()) {
2086     auto *SI = dyn_cast<StoreInst>(U);
2087     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2088       Builder.SetInsertPoint(SI);
2089       auto *NewBC =
2090           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2091       SI->setOperand(0, NewBC);
2092       Worklist.Add(SI);
2093       assert(hasStoreUsersOnly(*NewBC));
2094     }
2095   }
2096 
2097   return replaceInstUsesWith(CI, NewPNodes[PN]);
2098 }
2099 
2100 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2101   // If the operands are integer typed then apply the integer transforms,
2102   // otherwise just apply the common ones.
2103   Value *Src = CI.getOperand(0);
2104   Type *SrcTy = Src->getType();
2105   Type *DestTy = CI.getType();
2106 
2107   // Get rid of casts from one type to the same type. These are useless and can
2108   // be replaced by the operand.
2109   if (DestTy == Src->getType())
2110     return replaceInstUsesWith(CI, Src);
2111 
2112   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2113     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2114     Type *DstElTy = DstPTy->getElementType();
2115     Type *SrcElTy = SrcPTy->getElementType();
2116 
2117     // If we are casting a alloca to a pointer to a type of the same
2118     // size, rewrite the allocation instruction to allocate the "right" type.
2119     // There is no need to modify malloc calls because it is their bitcast that
2120     // needs to be cleaned up.
2121     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2122       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2123         return V;
2124 
2125     // When the type pointed to is not sized the cast cannot be
2126     // turned into a gep.
2127     Type *PointeeType =
2128         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2129     if (!PointeeType->isSized())
2130       return nullptr;
2131 
2132     // If the source and destination are pointers, and this cast is equivalent
2133     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2134     // This can enhance SROA and other transforms that want type-safe pointers.
2135     unsigned NumZeros = 0;
2136     while (SrcElTy != DstElTy &&
2137            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2138            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2139       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2140       ++NumZeros;
2141     }
2142 
2143     // If we found a path from the src to dest, create the getelementptr now.
2144     if (SrcElTy == DstElTy) {
2145       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2146       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2147     }
2148   }
2149 
2150   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2151     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2152       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2153       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2154                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2155       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2156     }
2157 
2158     if (isa<IntegerType>(SrcTy)) {
2159       // If this is a cast from an integer to vector, check to see if the input
2160       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2161       // the casts with a shuffle and (potentially) a bitcast.
2162       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2163         CastInst *SrcCast = cast<CastInst>(Src);
2164         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2165           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2166             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2167                                                cast<VectorType>(DestTy), *this))
2168               return I;
2169       }
2170 
2171       // If the input is an 'or' instruction, we may be doing shifts and ors to
2172       // assemble the elements of the vector manually.  Try to rip the code out
2173       // and replace it with insertelements.
2174       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2175         return replaceInstUsesWith(CI, V);
2176     }
2177   }
2178 
2179   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2180     if (SrcVTy->getNumElements() == 1) {
2181       // If our destination is not a vector, then make this a straight
2182       // scalar-scalar cast.
2183       if (!DestTy->isVectorTy()) {
2184         Value *Elem =
2185           Builder.CreateExtractElement(Src,
2186                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2187         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2188       }
2189 
2190       // Otherwise, see if our source is an insert. If so, then use the scalar
2191       // component directly.
2192       if (InsertElementInst *IEI =
2193             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2194         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2195                                 DestTy);
2196     }
2197   }
2198 
2199   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2200     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2201     // a bitcast to a vector with the same # elts.
2202     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2203         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2204         SVI->getType()->getNumElements() ==
2205         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2206       BitCastInst *Tmp;
2207       // If either of the operands is a cast from CI.getType(), then
2208       // evaluating the shuffle in the casted destination's type will allow
2209       // us to eliminate at least one cast.
2210       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2211            Tmp->getOperand(0)->getType() == DestTy) ||
2212           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2213            Tmp->getOperand(0)->getType() == DestTy)) {
2214         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2215         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2216         // Return a new shuffle vector.  Use the same element ID's, as we
2217         // know the vector types match #elts.
2218         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2219       }
2220     }
2221   }
2222 
2223   // Handle the A->B->A cast, and there is an intervening PHI node.
2224   if (PHINode *PN = dyn_cast<PHINode>(Src))
2225     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2226       return I;
2227 
2228   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2229     return I;
2230 
2231   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2232     return I;
2233 
2234   if (Instruction *I = foldBitCastSelect(CI, Builder))
2235     return I;
2236 
2237   if (SrcTy->isPointerTy())
2238     return commonPointerCastTransforms(CI);
2239   return commonCastTransforms(CI);
2240 }
2241 
2242 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2243   // If the destination pointer element type is not the same as the source's
2244   // first do a bitcast to the destination type, and then the addrspacecast.
2245   // This allows the cast to be exposed to other transforms.
2246   Value *Src = CI.getOperand(0);
2247   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2248   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2249 
2250   Type *DestElemTy = DestTy->getElementType();
2251   if (SrcTy->getElementType() != DestElemTy) {
2252     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2253     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2254       // Handle vectors of pointers.
2255       MidTy = VectorType::get(MidTy, VT->getNumElements());
2256     }
2257 
2258     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2259     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2260   }
2261 
2262   return commonPointerCastTransforms(CI);
2263 }
2264