1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Analyze 'Val', seeing if it is a simple linear expression. 27 /// If so, decompose it, returning some value X, such that Val is 28 /// X*Scale+Offset. 29 /// 30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 31 uint64_t &Offset) { 32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 33 Offset = CI->getZExtValue(); 34 Scale = 0; 35 return ConstantInt::get(Val->getType(), 0); 36 } 37 38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 39 // Cannot look past anything that might overflow. 40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 42 Scale = 1; 43 Offset = 0; 44 return Val; 45 } 46 47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 48 if (I->getOpcode() == Instruction::Shl) { 49 // This is a value scaled by '1 << the shift amt'. 50 Scale = UINT64_C(1) << RHS->getZExtValue(); 51 Offset = 0; 52 return I->getOperand(0); 53 } 54 55 if (I->getOpcode() == Instruction::Mul) { 56 // This value is scaled by 'RHS'. 57 Scale = RHS->getZExtValue(); 58 Offset = 0; 59 return I->getOperand(0); 60 } 61 62 if (I->getOpcode() == Instruction::Add) { 63 // We have X+C. Check to see if we really have (X*C2)+C1, 64 // where C1 is divisible by C2. 65 unsigned SubScale; 66 Value *SubVal = 67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 68 Offset += RHS->getZExtValue(); 69 Scale = SubScale; 70 return SubVal; 71 } 72 } 73 } 74 75 // Otherwise, we can't look past this. 76 Scale = 1; 77 Offset = 0; 78 return Val; 79 } 80 81 /// If we find a cast of an allocation instruction, try to eliminate the cast by 82 /// moving the type information into the alloc. 83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 84 AllocaInst &AI) { 85 PointerType *PTy = cast<PointerType>(CI.getType()); 86 87 BuilderTy AllocaBuilder(Builder); 88 AllocaBuilder.SetInsertPoint(&AI); 89 90 // Get the type really allocated and the type casted to. 91 Type *AllocElTy = AI.getAllocatedType(); 92 Type *CastElTy = PTy->getElementType(); 93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 94 95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 97 if (CastElTyAlign < AllocElTyAlign) return nullptr; 98 99 // If the allocation has multiple uses, only promote it if we are strictly 100 // increasing the alignment of the resultant allocation. If we keep it the 101 // same, we open the door to infinite loops of various kinds. 102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 103 104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 107 108 // If the allocation has multiple uses, only promote it if we're not 109 // shrinking the amount of memory being allocated. 110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 113 114 // See if we can satisfy the modulus by pulling a scale out of the array 115 // size argument. 116 unsigned ArraySizeScale; 117 uint64_t ArrayOffset; 118 Value *NumElements = // See if the array size is a decomposable linear expr. 119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 120 121 // If we can now satisfy the modulus, by using a non-1 scale, we really can 122 // do the xform. 123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 125 126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 127 Value *Amt = nullptr; 128 if (Scale == 1) { 129 Amt = NumElements; 130 } else { 131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 132 // Insert before the alloca, not before the cast. 133 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 134 } 135 136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 138 Offset, true); 139 Amt = AllocaBuilder.CreateAdd(Amt, Off); 140 } 141 142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 143 New->setAlignment(AI.getAlignment()); 144 New->takeName(&AI); 145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 146 147 // If the allocation has multiple real uses, insert a cast and change all 148 // things that used it to use the new cast. This will also hack on CI, but it 149 // will die soon. 150 if (!AI.hasOneUse()) { 151 // New is the allocation instruction, pointer typed. AI is the original 152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 154 replaceInstUsesWith(AI, NewCast); 155 } 156 return replaceInstUsesWith(CI, New); 157 } 158 159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 160 /// true for, actually insert the code to evaluate the expression. 161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 162 bool isSigned) { 163 if (Constant *C = dyn_cast<Constant>(V)) { 164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 165 // If we got a constantexpr back, try to simplify it with DL info. 166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 167 C = FoldedC; 168 return C; 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = CI1->getOpcode(); 239 Instruction::CastOps secondOp = CI2->getOpcode(); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// @brief Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 269 } 270 } 271 272 // If we are casting a select, then fold the cast into the select. 273 if (auto *SI = dyn_cast<SelectInst>(Src)) 274 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 275 return NV; 276 277 // If we are casting a PHI, then fold the cast into the PHI. 278 if (auto *PN = dyn_cast<PHINode>(Src)) { 279 // Don't do this if it would create a PHI node with an illegal type from a 280 // legal type. 281 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 282 shouldChangeType(CI.getType(), Src->getType())) 283 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 284 return NV; 285 } 286 287 return nullptr; 288 } 289 290 /// Return true if we can evaluate the specified expression tree as type Ty 291 /// instead of its larger type, and arrive with the same value. 292 /// This is used by code that tries to eliminate truncates. 293 /// 294 /// Ty will always be a type smaller than V. We should return true if trunc(V) 295 /// can be computed by computing V in the smaller type. If V is an instruction, 296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 297 /// makes sense if x and y can be efficiently truncated. 298 /// 299 /// This function works on both vectors and scalars. 300 /// 301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 302 Instruction *CxtI) { 303 // We can always evaluate constants in another type. 304 if (isa<Constant>(V)) 305 return true; 306 307 Instruction *I = dyn_cast<Instruction>(V); 308 if (!I) return false; 309 310 Type *OrigTy = V->getType(); 311 312 // If this is an extension from the dest type, we can eliminate it, even if it 313 // has multiple uses. 314 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 315 I->getOperand(0)->getType() == Ty) 316 return true; 317 318 // We can't extend or shrink something that has multiple uses: doing so would 319 // require duplicating the instruction in general, which isn't profitable. 320 if (!I->hasOneUse()) return false; 321 322 unsigned Opc = I->getOpcode(); 323 switch (Opc) { 324 case Instruction::Add: 325 case Instruction::Sub: 326 case Instruction::Mul: 327 case Instruction::And: 328 case Instruction::Or: 329 case Instruction::Xor: 330 // These operators can all arbitrarily be extended or truncated. 331 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 332 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 333 334 case Instruction::UDiv: 335 case Instruction::URem: { 336 // UDiv and URem can be truncated if all the truncated bits are zero. 337 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 338 uint32_t BitWidth = Ty->getScalarSizeInBits(); 339 if (BitWidth < OrigBitWidth) { 340 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 341 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 342 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 345 } 346 } 347 break; 348 } 349 case Instruction::Shl: 350 // If we are truncating the result of this SHL, and if it's a shift of a 351 // constant amount, we can always perform a SHL in a smaller type. 352 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 353 uint32_t BitWidth = Ty->getScalarSizeInBits(); 354 if (CI->getLimitedValue(BitWidth) < BitWidth) 355 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 356 } 357 break; 358 case Instruction::LShr: 359 // If this is a truncate of a logical shr, we can truncate it to a smaller 360 // lshr iff we know that the bits we would otherwise be shifting in are 361 // already zeros. 362 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 363 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 364 uint32_t BitWidth = Ty->getScalarSizeInBits(); 365 if (IC.MaskedValueIsZero(I->getOperand(0), 366 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 367 CI->getLimitedValue(BitWidth) < BitWidth) { 368 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 369 } 370 } 371 break; 372 case Instruction::Trunc: 373 // trunc(trunc(x)) -> trunc(x) 374 return true; 375 case Instruction::ZExt: 376 case Instruction::SExt: 377 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 378 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 379 return true; 380 case Instruction::Select: { 381 SelectInst *SI = cast<SelectInst>(I); 382 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 383 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 384 } 385 case Instruction::PHI: { 386 // We can change a phi if we can change all operands. Note that we never 387 // get into trouble with cyclic PHIs here because we only consider 388 // instructions with a single use. 389 PHINode *PN = cast<PHINode>(I); 390 for (Value *IncValue : PN->incoming_values()) 391 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 392 return false; 393 return true; 394 } 395 default: 396 // TODO: Can handle more cases here. 397 break; 398 } 399 400 return false; 401 } 402 403 /// Given a vector that is bitcast to an integer, optionally logically 404 /// right-shifted, and truncated, convert it to an extractelement. 405 /// Example (big endian): 406 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 407 /// ---> 408 /// extractelement <4 x i32> %X, 1 409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 410 Value *TruncOp = Trunc.getOperand(0); 411 Type *DestType = Trunc.getType(); 412 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 413 return nullptr; 414 415 Value *VecInput = nullptr; 416 ConstantInt *ShiftVal = nullptr; 417 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 418 m_LShr(m_BitCast(m_Value(VecInput)), 419 m_ConstantInt(ShiftVal)))) || 420 !isa<VectorType>(VecInput->getType())) 421 return nullptr; 422 423 VectorType *VecType = cast<VectorType>(VecInput->getType()); 424 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 425 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 426 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 427 428 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 429 return nullptr; 430 431 // If the element type of the vector doesn't match the result type, 432 // bitcast it to a vector type that we can extract from. 433 unsigned NumVecElts = VecWidth / DestWidth; 434 if (VecType->getElementType() != DestType) { 435 VecType = VectorType::get(DestType, NumVecElts); 436 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 437 } 438 439 unsigned Elt = ShiftAmount / DestWidth; 440 if (IC.getDataLayout().isBigEndian()) 441 Elt = NumVecElts - 1 - Elt; 442 443 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 444 } 445 446 /// Try to narrow the width of math or bitwise logic instructions by pulling a 447 /// truncate ahead of binary operators. 448 /// TODO: Transforms for truncated shifts should be moved into here. 449 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 450 Type *SrcTy = Trunc.getSrcTy(); 451 Type *DestTy = Trunc.getType(); 452 if (isa<IntegerType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 453 return nullptr; 454 455 BinaryOperator *BinOp; 456 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 457 return nullptr; 458 459 switch (BinOp->getOpcode()) { 460 case Instruction::And: 461 case Instruction::Or: 462 case Instruction::Xor: 463 case Instruction::Add: 464 case Instruction::Mul: { 465 Constant *C; 466 if (match(BinOp->getOperand(1), m_Constant(C))) { 467 // trunc (binop X, C) --> binop (trunc X, C') 468 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 469 Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy); 470 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 471 } 472 break; 473 } 474 case Instruction::Sub: { 475 Constant *C; 476 if (match(BinOp->getOperand(0), m_Constant(C))) { 477 // trunc (binop C, X) --> binop (trunc C', X) 478 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 479 Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy); 480 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 481 } 482 break; 483 } 484 485 default: break; 486 } 487 488 return nullptr; 489 } 490 491 /// Try to narrow the width of a splat shuffle. This could be generalized to any 492 /// shuffle with a constant operand, but we limit the transform to avoid 493 /// creating a shuffle type that targets may not be able to lower effectively. 494 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 495 InstCombiner::BuilderTy &Builder) { 496 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 497 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 498 Shuf->getMask()->getSplatValue() && 499 Shuf->getType() == Shuf->getOperand(0)->getType()) { 500 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 501 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 502 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 503 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 504 } 505 506 return nullptr; 507 } 508 509 /// Try to narrow the width of an insert element. This could be generalized for 510 /// any vector constant, but we limit the transform to insertion into undef to 511 /// avoid potential backend problems from unsupported insertion widths. This 512 /// could also be extended to handle the case of inserting a scalar constant 513 /// into a vector variable. 514 static Instruction *shrinkInsertElt(CastInst &Trunc, 515 InstCombiner::BuilderTy &Builder) { 516 Instruction::CastOps Opcode = Trunc.getOpcode(); 517 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 518 "Unexpected instruction for shrinking"); 519 520 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 521 if (!InsElt || !InsElt->hasOneUse()) 522 return nullptr; 523 524 Type *DestTy = Trunc.getType(); 525 Type *DestScalarTy = DestTy->getScalarType(); 526 Value *VecOp = InsElt->getOperand(0); 527 Value *ScalarOp = InsElt->getOperand(1); 528 Value *Index = InsElt->getOperand(2); 529 530 if (isa<UndefValue>(VecOp)) { 531 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 532 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 533 UndefValue *NarrowUndef = UndefValue::get(DestTy); 534 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 535 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 536 } 537 538 return nullptr; 539 } 540 541 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 542 if (Instruction *Result = commonCastTransforms(CI)) 543 return Result; 544 545 // Test if the trunc is the user of a select which is part of a 546 // minimum or maximum operation. If so, don't do any more simplification. 547 // Even simplifying demanded bits can break the canonical form of a 548 // min/max. 549 Value *LHS, *RHS; 550 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 551 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 552 return nullptr; 553 554 // See if we can simplify any instructions used by the input whose sole 555 // purpose is to compute bits we don't care about. 556 if (SimplifyDemandedInstructionBits(CI)) 557 return &CI; 558 559 Value *Src = CI.getOperand(0); 560 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 561 562 // Attempt to truncate the entire input expression tree to the destination 563 // type. Only do this if the dest type is a simple type, don't convert the 564 // expression tree to something weird like i93 unless the source is also 565 // strange. 566 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 567 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 568 569 // If this cast is a truncate, evaluting in a different type always 570 // eliminates the cast, so it is always a win. 571 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 572 " to avoid cast: " << CI << '\n'); 573 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 574 assert(Res->getType() == DestTy); 575 return replaceInstUsesWith(CI, Res); 576 } 577 578 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 579 if (DestTy->getScalarSizeInBits() == 1) { 580 Constant *One = ConstantInt::get(SrcTy, 1); 581 Src = Builder.CreateAnd(Src, One); 582 Value *Zero = Constant::getNullValue(Src->getType()); 583 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 584 } 585 586 // FIXME: Maybe combine the next two transforms to handle the no cast case 587 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 588 589 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 590 Value *A = nullptr; ConstantInt *Cst = nullptr; 591 if (Src->hasOneUse() && 592 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 593 // We have three types to worry about here, the type of A, the source of 594 // the truncate (MidSize), and the destination of the truncate. We know that 595 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 596 // between ASize and ResultSize. 597 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 598 599 // If the shift amount is larger than the size of A, then the result is 600 // known to be zero because all the input bits got shifted out. 601 if (Cst->getZExtValue() >= ASize) 602 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 603 604 // Since we're doing an lshr and a zero extend, and know that the shift 605 // amount is smaller than ASize, it is always safe to do the shift in A's 606 // type, then zero extend or truncate to the result. 607 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 608 Shift->takeName(Src); 609 return CastInst::CreateIntegerCast(Shift, DestTy, false); 610 } 611 612 // FIXME: We should canonicalize to zext/trunc and remove this transform. 613 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 614 // conversion. 615 // It works because bits coming from sign extension have the same value as 616 // the sign bit of the original value; performing ashr instead of lshr 617 // generates bits of the same value as the sign bit. 618 if (Src->hasOneUse() && 619 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 620 Value *SExt = cast<Instruction>(Src)->getOperand(0); 621 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 622 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 623 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 624 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 625 unsigned ShiftAmt = Cst->getZExtValue(); 626 627 // This optimization can be only performed when zero bits generated by 628 // the original lshr aren't pulled into the value after truncation, so we 629 // can only shift by values no larger than the number of extension bits. 630 // FIXME: Instead of bailing when the shift is too large, use and to clear 631 // the extra bits. 632 if (ShiftAmt <= MaxAmt) { 633 if (CISize == ASize) 634 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 635 std::min(ShiftAmt, ASize - 1))); 636 if (SExt->hasOneUse()) { 637 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 638 Shift->takeName(Src); 639 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 640 } 641 } 642 } 643 644 if (Instruction *I = narrowBinOp(CI)) 645 return I; 646 647 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 648 return I; 649 650 if (Instruction *I = shrinkInsertElt(CI, Builder)) 651 return I; 652 653 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 654 shouldChangeType(SrcTy, DestTy)) { 655 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 656 // dest type is native and cst < dest size. 657 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 658 !match(A, m_Shr(m_Value(), m_Constant()))) { 659 // Skip shifts of shift by constants. It undoes a combine in 660 // FoldShiftByConstant and is the extend in reg pattern. 661 const unsigned DestSize = DestTy->getScalarSizeInBits(); 662 if (Cst->getValue().ult(DestSize)) { 663 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 664 665 return BinaryOperator::Create( 666 Instruction::Shl, NewTrunc, 667 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 668 } 669 } 670 } 671 672 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 673 return I; 674 675 return nullptr; 676 } 677 678 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 679 bool DoTransform) { 680 // If we are just checking for a icmp eq of a single bit and zext'ing it 681 // to an integer, then shift the bit to the appropriate place and then 682 // cast to integer to avoid the comparison. 683 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 684 const APInt &Op1CV = Op1C->getValue(); 685 686 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 687 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 688 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) || 689 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 690 if (!DoTransform) return ICI; 691 692 Value *In = ICI->getOperand(0); 693 Value *Sh = ConstantInt::get(In->getType(), 694 In->getType()->getScalarSizeInBits() - 1); 695 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 696 if (In->getType() != CI.getType()) 697 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 698 699 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 700 Constant *One = ConstantInt::get(In->getType(), 1); 701 In = Builder.CreateXor(In, One, In->getName() + ".not"); 702 } 703 704 return replaceInstUsesWith(CI, In); 705 } 706 707 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 708 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 709 // zext (X == 1) to i32 --> X iff X has only the low bit set. 710 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 711 // zext (X != 0) to i32 --> X iff X has only the low bit set. 712 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 713 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 714 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 715 if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) && 716 // This only works for EQ and NE 717 ICI->isEquality()) { 718 // If Op1C some other power of two, convert: 719 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 720 721 APInt KnownZeroMask(~Known.Zero); 722 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 723 if (!DoTransform) return ICI; 724 725 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 726 if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) { 727 // (X&4) == 2 --> false 728 // (X&4) != 2 --> true 729 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 730 isNE); 731 Res = ConstantExpr::getZExt(Res, CI.getType()); 732 return replaceInstUsesWith(CI, Res); 733 } 734 735 uint32_t ShAmt = KnownZeroMask.logBase2(); 736 Value *In = ICI->getOperand(0); 737 if (ShAmt) { 738 // Perform a logical shr by shiftamt. 739 // Insert the shift to put the result in the low bit. 740 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 741 In->getName() + ".lobit"); 742 } 743 744 if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit. 745 Constant *One = ConstantInt::get(In->getType(), 1); 746 In = Builder.CreateXor(In, One); 747 } 748 749 if (CI.getType() == In->getType()) 750 return replaceInstUsesWith(CI, In); 751 752 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 753 return replaceInstUsesWith(CI, IntCast); 754 } 755 } 756 } 757 758 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 759 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 760 // may lead to additional simplifications. 761 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 762 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 763 Value *LHS = ICI->getOperand(0); 764 Value *RHS = ICI->getOperand(1); 765 766 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 767 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 768 769 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 770 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 771 APInt UnknownBit = ~KnownBits; 772 if (UnknownBit.countPopulation() == 1) { 773 if (!DoTransform) return ICI; 774 775 Value *Result = Builder.CreateXor(LHS, RHS); 776 777 // Mask off any bits that are set and won't be shifted away. 778 if (KnownLHS.One.uge(UnknownBit)) 779 Result = Builder.CreateAnd(Result, 780 ConstantInt::get(ITy, UnknownBit)); 781 782 // Shift the bit we're testing down to the lsb. 783 Result = Builder.CreateLShr( 784 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 785 786 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 787 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 788 Result->takeName(ICI); 789 return replaceInstUsesWith(CI, Result); 790 } 791 } 792 } 793 } 794 795 return nullptr; 796 } 797 798 /// Determine if the specified value can be computed in the specified wider type 799 /// and produce the same low bits. If not, return false. 800 /// 801 /// If this function returns true, it can also return a non-zero number of bits 802 /// (in BitsToClear) which indicates that the value it computes is correct for 803 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 804 /// out. For example, to promote something like: 805 /// 806 /// %B = trunc i64 %A to i32 807 /// %C = lshr i32 %B, 8 808 /// %E = zext i32 %C to i64 809 /// 810 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 811 /// set to 8 to indicate that the promoted value needs to have bits 24-31 812 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 813 /// clear the top bits anyway, doing this has no extra cost. 814 /// 815 /// This function works on both vectors and scalars. 816 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 817 InstCombiner &IC, Instruction *CxtI) { 818 BitsToClear = 0; 819 if (isa<Constant>(V)) 820 return true; 821 822 Instruction *I = dyn_cast<Instruction>(V); 823 if (!I) return false; 824 825 // If the input is a truncate from the destination type, we can trivially 826 // eliminate it. 827 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 828 return true; 829 830 // We can't extend or shrink something that has multiple uses: doing so would 831 // require duplicating the instruction in general, which isn't profitable. 832 if (!I->hasOneUse()) return false; 833 834 unsigned Opc = I->getOpcode(), Tmp; 835 switch (Opc) { 836 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 837 case Instruction::SExt: // zext(sext(x)) -> sext(x). 838 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 839 return true; 840 case Instruction::And: 841 case Instruction::Or: 842 case Instruction::Xor: 843 case Instruction::Add: 844 case Instruction::Sub: 845 case Instruction::Mul: 846 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 847 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 848 return false; 849 // These can all be promoted if neither operand has 'bits to clear'. 850 if (BitsToClear == 0 && Tmp == 0) 851 return true; 852 853 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 854 // other side, BitsToClear is ok. 855 if (Tmp == 0 && I->isBitwiseLogicOp()) { 856 // We use MaskedValueIsZero here for generality, but the case we care 857 // about the most is constant RHS. 858 unsigned VSize = V->getType()->getScalarSizeInBits(); 859 if (IC.MaskedValueIsZero(I->getOperand(1), 860 APInt::getHighBitsSet(VSize, BitsToClear), 861 0, CxtI)) 862 return true; 863 } 864 865 // Otherwise, we don't know how to analyze this BitsToClear case yet. 866 return false; 867 868 case Instruction::Shl: 869 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 870 // upper bits we can reduce BitsToClear by the shift amount. 871 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 872 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 873 return false; 874 uint64_t ShiftAmt = Amt->getZExtValue(); 875 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 876 return true; 877 } 878 return false; 879 case Instruction::LShr: 880 // We can promote lshr(x, cst) if we can promote x. This requires the 881 // ultimate 'and' to clear out the high zero bits we're clearing out though. 882 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 883 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 884 return false; 885 BitsToClear += Amt->getZExtValue(); 886 if (BitsToClear > V->getType()->getScalarSizeInBits()) 887 BitsToClear = V->getType()->getScalarSizeInBits(); 888 return true; 889 } 890 // Cannot promote variable LSHR. 891 return false; 892 case Instruction::Select: 893 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 894 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 895 // TODO: If important, we could handle the case when the BitsToClear are 896 // known zero in the disagreeing side. 897 Tmp != BitsToClear) 898 return false; 899 return true; 900 901 case Instruction::PHI: { 902 // We can change a phi if we can change all operands. Note that we never 903 // get into trouble with cyclic PHIs here because we only consider 904 // instructions with a single use. 905 PHINode *PN = cast<PHINode>(I); 906 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 907 return false; 908 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 909 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 910 // TODO: If important, we could handle the case when the BitsToClear 911 // are known zero in the disagreeing input. 912 Tmp != BitsToClear) 913 return false; 914 return true; 915 } 916 default: 917 // TODO: Can handle more cases here. 918 return false; 919 } 920 } 921 922 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 923 // If this zero extend is only used by a truncate, let the truncate be 924 // eliminated before we try to optimize this zext. 925 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 926 return nullptr; 927 928 // If one of the common conversion will work, do it. 929 if (Instruction *Result = commonCastTransforms(CI)) 930 return Result; 931 932 Value *Src = CI.getOperand(0); 933 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 934 935 // Attempt to extend the entire input expression tree to the destination 936 // type. Only do this if the dest type is a simple type, don't convert the 937 // expression tree to something weird like i93 unless the source is also 938 // strange. 939 unsigned BitsToClear; 940 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 941 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 942 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 943 "Can't clear more bits than in SrcTy"); 944 945 // Okay, we can transform this! Insert the new expression now. 946 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 947 " to avoid zero extend: " << CI << '\n'); 948 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 949 assert(Res->getType() == DestTy); 950 951 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 952 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 953 954 // If the high bits are already filled with zeros, just replace this 955 // cast with the result. 956 if (MaskedValueIsZero(Res, 957 APInt::getHighBitsSet(DestBitSize, 958 DestBitSize-SrcBitsKept), 959 0, &CI)) 960 return replaceInstUsesWith(CI, Res); 961 962 // We need to emit an AND to clear the high bits. 963 Constant *C = ConstantInt::get(Res->getType(), 964 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 965 return BinaryOperator::CreateAnd(Res, C); 966 } 967 968 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 969 // types and if the sizes are just right we can convert this into a logical 970 // 'and' which will be much cheaper than the pair of casts. 971 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 972 // TODO: Subsume this into EvaluateInDifferentType. 973 974 // Get the sizes of the types involved. We know that the intermediate type 975 // will be smaller than A or C, but don't know the relation between A and C. 976 Value *A = CSrc->getOperand(0); 977 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 978 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 979 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 980 // If we're actually extending zero bits, then if 981 // SrcSize < DstSize: zext(a & mask) 982 // SrcSize == DstSize: a & mask 983 // SrcSize > DstSize: trunc(a) & mask 984 if (SrcSize < DstSize) { 985 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 986 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 987 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 988 return new ZExtInst(And, CI.getType()); 989 } 990 991 if (SrcSize == DstSize) { 992 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 993 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 994 AndValue)); 995 } 996 if (SrcSize > DstSize) { 997 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 998 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 999 return BinaryOperator::CreateAnd(Trunc, 1000 ConstantInt::get(Trunc->getType(), 1001 AndValue)); 1002 } 1003 } 1004 1005 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1006 return transformZExtICmp(ICI, CI); 1007 1008 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1009 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1010 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1011 // of the (zext icmp) can be eliminated. If so, immediately perform the 1012 // according elimination. 1013 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1014 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1015 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1016 (transformZExtICmp(LHS, CI, false) || 1017 transformZExtICmp(RHS, CI, false))) { 1018 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1019 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1020 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1021 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1022 1023 // Perform the elimination. 1024 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1025 transformZExtICmp(LHS, *LZExt); 1026 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1027 transformZExtICmp(RHS, *RZExt); 1028 1029 return Or; 1030 } 1031 } 1032 1033 // zext(trunc(X) & C) -> (X & zext(C)). 1034 Constant *C; 1035 Value *X; 1036 if (SrcI && 1037 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1038 X->getType() == CI.getType()) 1039 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1040 1041 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1042 Value *And; 1043 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1044 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1045 X->getType() == CI.getType()) { 1046 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1047 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1048 } 1049 1050 return nullptr; 1051 } 1052 1053 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1054 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1055 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1056 ICmpInst::Predicate Pred = ICI->getPredicate(); 1057 1058 // Don't bother if Op1 isn't of vector or integer type. 1059 if (!Op1->getType()->isIntOrIntVectorTy()) 1060 return nullptr; 1061 1062 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1063 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1064 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1065 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1066 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1067 1068 Value *Sh = ConstantInt::get(Op0->getType(), 1069 Op0->getType()->getScalarSizeInBits()-1); 1070 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1071 if (In->getType() != CI.getType()) 1072 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1073 1074 if (Pred == ICmpInst::ICMP_SGT) 1075 In = Builder.CreateNot(In, In->getName() + ".not"); 1076 return replaceInstUsesWith(CI, In); 1077 } 1078 } 1079 1080 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1081 // If we know that only one bit of the LHS of the icmp can be set and we 1082 // have an equality comparison with zero or a power of 2, we can transform 1083 // the icmp and sext into bitwise/integer operations. 1084 if (ICI->hasOneUse() && 1085 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1086 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1087 1088 APInt KnownZeroMask(~Known.Zero); 1089 if (KnownZeroMask.isPowerOf2()) { 1090 Value *In = ICI->getOperand(0); 1091 1092 // If the icmp tests for a known zero bit we can constant fold it. 1093 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1094 Value *V = Pred == ICmpInst::ICMP_NE ? 1095 ConstantInt::getAllOnesValue(CI.getType()) : 1096 ConstantInt::getNullValue(CI.getType()); 1097 return replaceInstUsesWith(CI, V); 1098 } 1099 1100 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1101 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1102 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1103 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1104 // Perform a right shift to place the desired bit in the LSB. 1105 if (ShiftAmt) 1106 In = Builder.CreateLShr(In, 1107 ConstantInt::get(In->getType(), ShiftAmt)); 1108 1109 // At this point "In" is either 1 or 0. Subtract 1 to turn 1110 // {1, 0} -> {0, -1}. 1111 In = Builder.CreateAdd(In, 1112 ConstantInt::getAllOnesValue(In->getType()), 1113 "sext"); 1114 } else { 1115 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1116 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1117 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1118 // Perform a left shift to place the desired bit in the MSB. 1119 if (ShiftAmt) 1120 In = Builder.CreateShl(In, 1121 ConstantInt::get(In->getType(), ShiftAmt)); 1122 1123 // Distribute the bit over the whole bit width. 1124 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1125 KnownZeroMask.getBitWidth() - 1), "sext"); 1126 } 1127 1128 if (CI.getType() == In->getType()) 1129 return replaceInstUsesWith(CI, In); 1130 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1131 } 1132 } 1133 } 1134 1135 return nullptr; 1136 } 1137 1138 /// Return true if we can take the specified value and return it as type Ty 1139 /// without inserting any new casts and without changing the value of the common 1140 /// low bits. This is used by code that tries to promote integer operations to 1141 /// a wider types will allow us to eliminate the extension. 1142 /// 1143 /// This function works on both vectors and scalars. 1144 /// 1145 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1146 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1147 "Can't sign extend type to a smaller type"); 1148 // If this is a constant, it can be trivially promoted. 1149 if (isa<Constant>(V)) 1150 return true; 1151 1152 Instruction *I = dyn_cast<Instruction>(V); 1153 if (!I) return false; 1154 1155 // If this is a truncate from the dest type, we can trivially eliminate it. 1156 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1157 return true; 1158 1159 // We can't extend or shrink something that has multiple uses: doing so would 1160 // require duplicating the instruction in general, which isn't profitable. 1161 if (!I->hasOneUse()) return false; 1162 1163 switch (I->getOpcode()) { 1164 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1165 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1166 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1167 return true; 1168 case Instruction::And: 1169 case Instruction::Or: 1170 case Instruction::Xor: 1171 case Instruction::Add: 1172 case Instruction::Sub: 1173 case Instruction::Mul: 1174 // These operators can all arbitrarily be extended if their inputs can. 1175 return canEvaluateSExtd(I->getOperand(0), Ty) && 1176 canEvaluateSExtd(I->getOperand(1), Ty); 1177 1178 //case Instruction::Shl: TODO 1179 //case Instruction::LShr: TODO 1180 1181 case Instruction::Select: 1182 return canEvaluateSExtd(I->getOperand(1), Ty) && 1183 canEvaluateSExtd(I->getOperand(2), Ty); 1184 1185 case Instruction::PHI: { 1186 // We can change a phi if we can change all operands. Note that we never 1187 // get into trouble with cyclic PHIs here because we only consider 1188 // instructions with a single use. 1189 PHINode *PN = cast<PHINode>(I); 1190 for (Value *IncValue : PN->incoming_values()) 1191 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1192 return true; 1193 } 1194 default: 1195 // TODO: Can handle more cases here. 1196 break; 1197 } 1198 1199 return false; 1200 } 1201 1202 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1203 // If this sign extend is only used by a truncate, let the truncate be 1204 // eliminated before we try to optimize this sext. 1205 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1206 return nullptr; 1207 1208 if (Instruction *I = commonCastTransforms(CI)) 1209 return I; 1210 1211 Value *Src = CI.getOperand(0); 1212 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1213 1214 // If we know that the value being extended is positive, we can use a zext 1215 // instead. 1216 KnownBits Known = computeKnownBits(Src, 0, &CI); 1217 if (Known.isNonNegative()) { 1218 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1219 return replaceInstUsesWith(CI, ZExt); 1220 } 1221 1222 // Attempt to extend the entire input expression tree to the destination 1223 // type. Only do this if the dest type is a simple type, don't convert the 1224 // expression tree to something weird like i93 unless the source is also 1225 // strange. 1226 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1227 canEvaluateSExtd(Src, DestTy)) { 1228 // Okay, we can transform this! Insert the new expression now. 1229 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1230 " to avoid sign extend: " << CI << '\n'); 1231 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1232 assert(Res->getType() == DestTy); 1233 1234 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1235 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1236 1237 // If the high bits are already filled with sign bit, just replace this 1238 // cast with the result. 1239 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1240 return replaceInstUsesWith(CI, Res); 1241 1242 // We need to emit a shl + ashr to do the sign extend. 1243 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1244 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1245 ShAmt); 1246 } 1247 1248 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1249 // into shifts. 1250 Value *X; 1251 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1252 // sext(trunc(X)) --> ashr(shl(X, C), C) 1253 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1254 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1255 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1256 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1257 } 1258 1259 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1260 return transformSExtICmp(ICI, CI); 1261 1262 // If the input is a shl/ashr pair of a same constant, then this is a sign 1263 // extension from a smaller value. If we could trust arbitrary bitwidth 1264 // integers, we could turn this into a truncate to the smaller bit and then 1265 // use a sext for the whole extension. Since we don't, look deeper and check 1266 // for a truncate. If the source and dest are the same type, eliminate the 1267 // trunc and extend and just do shifts. For example, turn: 1268 // %a = trunc i32 %i to i8 1269 // %b = shl i8 %a, 6 1270 // %c = ashr i8 %b, 6 1271 // %d = sext i8 %c to i32 1272 // into: 1273 // %a = shl i32 %i, 30 1274 // %d = ashr i32 %a, 30 1275 Value *A = nullptr; 1276 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1277 ConstantInt *BA = nullptr, *CA = nullptr; 1278 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1279 m_ConstantInt(CA))) && 1280 BA == CA && A->getType() == CI.getType()) { 1281 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1282 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1283 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1284 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1285 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1286 return BinaryOperator::CreateAShr(A, ShAmtV); 1287 } 1288 1289 return nullptr; 1290 } 1291 1292 1293 /// Return a Constant* for the specified floating-point constant if it fits 1294 /// in the specified FP type without changing its value. 1295 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1296 bool losesInfo; 1297 APFloat F = CFP->getValueAPF(); 1298 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1299 if (!losesInfo) 1300 return ConstantFP::get(CFP->getContext(), F); 1301 return nullptr; 1302 } 1303 1304 /// Look through floating-point extensions until we get the source value. 1305 static Value *lookThroughFPExtensions(Value *V) { 1306 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1307 V = FPExt->getOperand(0); 1308 1309 // If this value is a constant, return the constant in the smallest FP type 1310 // that can accurately represent it. This allows us to turn 1311 // (float)((double)X+2.0) into x+2.0f. 1312 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1313 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1314 return V; // No constant folding of this. 1315 // See if the value can be truncated to half and then reextended. 1316 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1317 return V; 1318 // See if the value can be truncated to float and then reextended. 1319 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1320 return V; 1321 if (CFP->getType()->isDoubleTy()) 1322 return V; // Won't shrink. 1323 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1324 return V; 1325 // Don't try to shrink to various long double types. 1326 } 1327 1328 return V; 1329 } 1330 1331 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1332 if (Instruction *I = commonCastTransforms(CI)) 1333 return I; 1334 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1335 // simplify this expression to avoid one or more of the trunc/extend 1336 // operations if we can do so without changing the numerical results. 1337 // 1338 // The exact manner in which the widths of the operands interact to limit 1339 // what we can and cannot do safely varies from operation to operation, and 1340 // is explained below in the various case statements. 1341 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1342 if (OpI && OpI->hasOneUse()) { 1343 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1344 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1345 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1346 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1347 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1348 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1349 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1350 switch (OpI->getOpcode()) { 1351 default: break; 1352 case Instruction::FAdd: 1353 case Instruction::FSub: 1354 // For addition and subtraction, the infinitely precise result can 1355 // essentially be arbitrarily wide; proving that double rounding 1356 // will not occur because the result of OpI is exact (as we will for 1357 // FMul, for example) is hopeless. However, we *can* nonetheless 1358 // frequently know that double rounding cannot occur (or that it is 1359 // innocuous) by taking advantage of the specific structure of 1360 // infinitely-precise results that admit double rounding. 1361 // 1362 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1363 // to represent both sources, we can guarantee that the double 1364 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1365 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1366 // for proof of this fact). 1367 // 1368 // Note: Figueroa does not consider the case where DstFormat != 1369 // SrcFormat. It's possible (likely even!) that this analysis 1370 // could be tightened for those cases, but they are rare (the main 1371 // case of interest here is (float)((double)float + float)). 1372 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1373 if (LHSOrig->getType() != CI.getType()) 1374 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1375 if (RHSOrig->getType() != CI.getType()) 1376 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1377 Instruction *RI = 1378 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1379 RI->copyFastMathFlags(OpI); 1380 return RI; 1381 } 1382 break; 1383 case Instruction::FMul: 1384 // For multiplication, the infinitely precise result has at most 1385 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1386 // that such a value can be exactly represented, then no double 1387 // rounding can possibly occur; we can safely perform the operation 1388 // in the destination format if it can represent both sources. 1389 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1390 if (LHSOrig->getType() != CI.getType()) 1391 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1392 if (RHSOrig->getType() != CI.getType()) 1393 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1394 Instruction *RI = 1395 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1396 RI->copyFastMathFlags(OpI); 1397 return RI; 1398 } 1399 break; 1400 case Instruction::FDiv: 1401 // For division, we use again use the bound from Figueroa's 1402 // dissertation. I am entirely certain that this bound can be 1403 // tightened in the unbalanced operand case by an analysis based on 1404 // the diophantine rational approximation bound, but the well-known 1405 // condition used here is a good conservative first pass. 1406 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1407 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1408 if (LHSOrig->getType() != CI.getType()) 1409 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1410 if (RHSOrig->getType() != CI.getType()) 1411 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1412 Instruction *RI = 1413 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1414 RI->copyFastMathFlags(OpI); 1415 return RI; 1416 } 1417 break; 1418 case Instruction::FRem: 1419 // Remainder is straightforward. Remainder is always exact, so the 1420 // type of OpI doesn't enter into things at all. We simply evaluate 1421 // in whichever source type is larger, then convert to the 1422 // destination type. 1423 if (SrcWidth == OpWidth) 1424 break; 1425 if (LHSWidth < SrcWidth) 1426 LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType()); 1427 else if (RHSWidth <= SrcWidth) 1428 RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType()); 1429 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1430 Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig); 1431 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1432 RI->copyFastMathFlags(OpI); 1433 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1434 } 1435 } 1436 1437 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1438 if (BinaryOperator::isFNeg(OpI)) { 1439 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), 1440 CI.getType()); 1441 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1442 RI->copyFastMathFlags(OpI); 1443 return RI; 1444 } 1445 } 1446 1447 // (fptrunc (select cond, R1, Cst)) --> 1448 // (select cond, (fptrunc R1), (fptrunc Cst)) 1449 // 1450 // - but only if this isn't part of a min/max operation, else we'll 1451 // ruin min/max canonical form which is to have the select and 1452 // compare's operands be of the same type with no casts to look through. 1453 Value *LHS, *RHS; 1454 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1455 if (SI && 1456 (isa<ConstantFP>(SI->getOperand(1)) || 1457 isa<ConstantFP>(SI->getOperand(2))) && 1458 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1459 Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType()); 1460 Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType()); 1461 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1462 } 1463 1464 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1465 if (II) { 1466 switch (II->getIntrinsicID()) { 1467 default: break; 1468 case Intrinsic::fabs: 1469 case Intrinsic::ceil: 1470 case Intrinsic::floor: 1471 case Intrinsic::rint: 1472 case Intrinsic::round: 1473 case Intrinsic::nearbyint: 1474 case Intrinsic::trunc: { 1475 Value *Src = II->getArgOperand(0); 1476 if (!Src->hasOneUse()) 1477 break; 1478 1479 // Except for fabs, this transformation requires the input of the unary FP 1480 // operation to be itself an fpext from the type to which we're 1481 // truncating. 1482 if (II->getIntrinsicID() != Intrinsic::fabs) { 1483 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1484 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1485 break; 1486 } 1487 1488 // Do unary FP operation on smaller type. 1489 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1490 Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType()); 1491 Type *IntrinsicType[] = { CI.getType() }; 1492 Function *Overload = Intrinsic::getDeclaration( 1493 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1494 1495 SmallVector<OperandBundleDef, 1> OpBundles; 1496 II->getOperandBundlesAsDefs(OpBundles); 1497 1498 Value *Args[] = { InnerTrunc }; 1499 CallInst *NewCI = CallInst::Create(Overload, Args, 1500 OpBundles, II->getName()); 1501 NewCI->copyFastMathFlags(II); 1502 return NewCI; 1503 } 1504 } 1505 } 1506 1507 if (Instruction *I = shrinkInsertElt(CI, Builder)) 1508 return I; 1509 1510 return nullptr; 1511 } 1512 1513 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1514 return commonCastTransforms(CI); 1515 } 1516 1517 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1518 // This is safe if the intermediate type has enough bits in its mantissa to 1519 // accurately represent all values of X. For example, this won't work with 1520 // i64 -> float -> i64. 1521 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1522 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1523 return nullptr; 1524 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1525 1526 Value *SrcI = OpI->getOperand(0); 1527 Type *FITy = FI.getType(); 1528 Type *OpITy = OpI->getType(); 1529 Type *SrcTy = SrcI->getType(); 1530 bool IsInputSigned = isa<SIToFPInst>(OpI); 1531 bool IsOutputSigned = isa<FPToSIInst>(FI); 1532 1533 // We can safely assume the conversion won't overflow the output range, 1534 // because (for example) (uint8_t)18293.f is undefined behavior. 1535 1536 // Since we can assume the conversion won't overflow, our decision as to 1537 // whether the input will fit in the float should depend on the minimum 1538 // of the input range and output range. 1539 1540 // This means this is also safe for a signed input and unsigned output, since 1541 // a negative input would lead to undefined behavior. 1542 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1543 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1544 int ActualSize = std::min(InputSize, OutputSize); 1545 1546 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1547 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1548 if (IsInputSigned && IsOutputSigned) 1549 return new SExtInst(SrcI, FITy); 1550 return new ZExtInst(SrcI, FITy); 1551 } 1552 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1553 return new TruncInst(SrcI, FITy); 1554 if (SrcTy == FITy) 1555 return replaceInstUsesWith(FI, SrcI); 1556 return new BitCastInst(SrcI, FITy); 1557 } 1558 return nullptr; 1559 } 1560 1561 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1562 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1563 if (!OpI) 1564 return commonCastTransforms(FI); 1565 1566 if (Instruction *I = FoldItoFPtoI(FI)) 1567 return I; 1568 1569 return commonCastTransforms(FI); 1570 } 1571 1572 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1573 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1574 if (!OpI) 1575 return commonCastTransforms(FI); 1576 1577 if (Instruction *I = FoldItoFPtoI(FI)) 1578 return I; 1579 1580 return commonCastTransforms(FI); 1581 } 1582 1583 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1584 return commonCastTransforms(CI); 1585 } 1586 1587 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1588 return commonCastTransforms(CI); 1589 } 1590 1591 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1592 // If the source integer type is not the intptr_t type for this target, do a 1593 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1594 // cast to be exposed to other transforms. 1595 unsigned AS = CI.getAddressSpace(); 1596 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1597 DL.getPointerSizeInBits(AS)) { 1598 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1599 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1600 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1601 1602 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1603 return new IntToPtrInst(P, CI.getType()); 1604 } 1605 1606 if (Instruction *I = commonCastTransforms(CI)) 1607 return I; 1608 1609 return nullptr; 1610 } 1611 1612 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1613 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1614 Value *Src = CI.getOperand(0); 1615 1616 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1617 // If casting the result of a getelementptr instruction with no offset, turn 1618 // this into a cast of the original pointer! 1619 if (GEP->hasAllZeroIndices() && 1620 // If CI is an addrspacecast and GEP changes the poiner type, merging 1621 // GEP into CI would undo canonicalizing addrspacecast with different 1622 // pointer types, causing infinite loops. 1623 (!isa<AddrSpaceCastInst>(CI) || 1624 GEP->getType() == GEP->getPointerOperandType())) { 1625 // Changing the cast operand is usually not a good idea but it is safe 1626 // here because the pointer operand is being replaced with another 1627 // pointer operand so the opcode doesn't need to change. 1628 Worklist.Add(GEP); 1629 CI.setOperand(0, GEP->getOperand(0)); 1630 return &CI; 1631 } 1632 } 1633 1634 return commonCastTransforms(CI); 1635 } 1636 1637 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1638 // If the destination integer type is not the intptr_t type for this target, 1639 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1640 // to be exposed to other transforms. 1641 1642 Type *Ty = CI.getType(); 1643 unsigned AS = CI.getPointerAddressSpace(); 1644 1645 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1646 return commonPointerCastTransforms(CI); 1647 1648 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1649 if (Ty->isVectorTy()) // Handle vectors of pointers. 1650 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1651 1652 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1653 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1654 } 1655 1656 /// This input value (which is known to have vector type) is being zero extended 1657 /// or truncated to the specified vector type. 1658 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1659 /// 1660 /// The source and destination vector types may have different element types. 1661 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1662 InstCombiner &IC) { 1663 // We can only do this optimization if the output is a multiple of the input 1664 // element size, or the input is a multiple of the output element size. 1665 // Convert the input type to have the same element type as the output. 1666 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1667 1668 if (SrcTy->getElementType() != DestTy->getElementType()) { 1669 // The input types don't need to be identical, but for now they must be the 1670 // same size. There is no specific reason we couldn't handle things like 1671 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1672 // there yet. 1673 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1674 DestTy->getElementType()->getPrimitiveSizeInBits()) 1675 return nullptr; 1676 1677 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1678 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1679 } 1680 1681 // Now that the element types match, get the shuffle mask and RHS of the 1682 // shuffle to use, which depends on whether we're increasing or decreasing the 1683 // size of the input. 1684 SmallVector<uint32_t, 16> ShuffleMask; 1685 Value *V2; 1686 1687 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1688 // If we're shrinking the number of elements, just shuffle in the low 1689 // elements from the input and use undef as the second shuffle input. 1690 V2 = UndefValue::get(SrcTy); 1691 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1692 ShuffleMask.push_back(i); 1693 1694 } else { 1695 // If we're increasing the number of elements, shuffle in all of the 1696 // elements from InVal and fill the rest of the result elements with zeros 1697 // from a constant zero. 1698 V2 = Constant::getNullValue(SrcTy); 1699 unsigned SrcElts = SrcTy->getNumElements(); 1700 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1701 ShuffleMask.push_back(i); 1702 1703 // The excess elements reference the first element of the zero input. 1704 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1705 ShuffleMask.push_back(SrcElts); 1706 } 1707 1708 return new ShuffleVectorInst(InVal, V2, 1709 ConstantDataVector::get(V2->getContext(), 1710 ShuffleMask)); 1711 } 1712 1713 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1714 return Value % Ty->getPrimitiveSizeInBits() == 0; 1715 } 1716 1717 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1718 return Value / Ty->getPrimitiveSizeInBits(); 1719 } 1720 1721 /// V is a value which is inserted into a vector of VecEltTy. 1722 /// Look through the value to see if we can decompose it into 1723 /// insertions into the vector. See the example in the comment for 1724 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1725 /// The type of V is always a non-zero multiple of VecEltTy's size. 1726 /// Shift is the number of bits between the lsb of V and the lsb of 1727 /// the vector. 1728 /// 1729 /// This returns false if the pattern can't be matched or true if it can, 1730 /// filling in Elements with the elements found here. 1731 static bool collectInsertionElements(Value *V, unsigned Shift, 1732 SmallVectorImpl<Value *> &Elements, 1733 Type *VecEltTy, bool isBigEndian) { 1734 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1735 "Shift should be a multiple of the element type size"); 1736 1737 // Undef values never contribute useful bits to the result. 1738 if (isa<UndefValue>(V)) return true; 1739 1740 // If we got down to a value of the right type, we win, try inserting into the 1741 // right element. 1742 if (V->getType() == VecEltTy) { 1743 // Inserting null doesn't actually insert any elements. 1744 if (Constant *C = dyn_cast<Constant>(V)) 1745 if (C->isNullValue()) 1746 return true; 1747 1748 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1749 if (isBigEndian) 1750 ElementIndex = Elements.size() - ElementIndex - 1; 1751 1752 // Fail if multiple elements are inserted into this slot. 1753 if (Elements[ElementIndex]) 1754 return false; 1755 1756 Elements[ElementIndex] = V; 1757 return true; 1758 } 1759 1760 if (Constant *C = dyn_cast<Constant>(V)) { 1761 // Figure out the # elements this provides, and bitcast it or slice it up 1762 // as required. 1763 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1764 VecEltTy); 1765 // If the constant is the size of a vector element, we just need to bitcast 1766 // it to the right type so it gets properly inserted. 1767 if (NumElts == 1) 1768 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1769 Shift, Elements, VecEltTy, isBigEndian); 1770 1771 // Okay, this is a constant that covers multiple elements. Slice it up into 1772 // pieces and insert each element-sized piece into the vector. 1773 if (!isa<IntegerType>(C->getType())) 1774 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1775 C->getType()->getPrimitiveSizeInBits())); 1776 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1777 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1778 1779 for (unsigned i = 0; i != NumElts; ++i) { 1780 unsigned ShiftI = Shift+i*ElementSize; 1781 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1782 ShiftI)); 1783 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1784 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1785 isBigEndian)) 1786 return false; 1787 } 1788 return true; 1789 } 1790 1791 if (!V->hasOneUse()) return false; 1792 1793 Instruction *I = dyn_cast<Instruction>(V); 1794 if (!I) return false; 1795 switch (I->getOpcode()) { 1796 default: return false; // Unhandled case. 1797 case Instruction::BitCast: 1798 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1799 isBigEndian); 1800 case Instruction::ZExt: 1801 if (!isMultipleOfTypeSize( 1802 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1803 VecEltTy)) 1804 return false; 1805 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1806 isBigEndian); 1807 case Instruction::Or: 1808 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1809 isBigEndian) && 1810 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1811 isBigEndian); 1812 case Instruction::Shl: { 1813 // Must be shifting by a constant that is a multiple of the element size. 1814 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1815 if (!CI) return false; 1816 Shift += CI->getZExtValue(); 1817 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1818 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1819 isBigEndian); 1820 } 1821 1822 } 1823 } 1824 1825 1826 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1827 /// assemble the elements of the vector manually. 1828 /// Try to rip the code out and replace it with insertelements. This is to 1829 /// optimize code like this: 1830 /// 1831 /// %tmp37 = bitcast float %inc to i32 1832 /// %tmp38 = zext i32 %tmp37 to i64 1833 /// %tmp31 = bitcast float %inc5 to i32 1834 /// %tmp32 = zext i32 %tmp31 to i64 1835 /// %tmp33 = shl i64 %tmp32, 32 1836 /// %ins35 = or i64 %tmp33, %tmp38 1837 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1838 /// 1839 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1840 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1841 InstCombiner &IC) { 1842 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1843 Value *IntInput = CI.getOperand(0); 1844 1845 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1846 if (!collectInsertionElements(IntInput, 0, Elements, 1847 DestVecTy->getElementType(), 1848 IC.getDataLayout().isBigEndian())) 1849 return nullptr; 1850 1851 // If we succeeded, we know that all of the element are specified by Elements 1852 // or are zero if Elements has a null entry. Recast this as a set of 1853 // insertions. 1854 Value *Result = Constant::getNullValue(CI.getType()); 1855 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1856 if (!Elements[i]) continue; // Unset element. 1857 1858 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1859 IC.Builder.getInt32(i)); 1860 } 1861 1862 return Result; 1863 } 1864 1865 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1866 /// vector followed by extract element. The backend tends to handle bitcasts of 1867 /// vectors better than bitcasts of scalars because vector registers are 1868 /// usually not type-specific like scalar integer or scalar floating-point. 1869 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1870 InstCombiner &IC) { 1871 // TODO: Create and use a pattern matcher for ExtractElementInst. 1872 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1873 if (!ExtElt || !ExtElt->hasOneUse()) 1874 return nullptr; 1875 1876 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1877 // type to extract from. 1878 Type *DestType = BitCast.getType(); 1879 if (!VectorType::isValidElementType(DestType)) 1880 return nullptr; 1881 1882 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1883 auto *NewVecType = VectorType::get(DestType, NumElts); 1884 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 1885 NewVecType, "bc"); 1886 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1887 } 1888 1889 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1890 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1891 InstCombiner::BuilderTy &Builder) { 1892 Type *DestTy = BitCast.getType(); 1893 BinaryOperator *BO; 1894 if (!DestTy->isIntOrIntVectorTy() || 1895 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 1896 !BO->isBitwiseLogicOp()) 1897 return nullptr; 1898 1899 // FIXME: This transform is restricted to vector types to avoid backend 1900 // problems caused by creating potentially illegal operations. If a fix-up is 1901 // added to handle that situation, we can remove this check. 1902 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 1903 return nullptr; 1904 1905 Value *X; 1906 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 1907 X->getType() == DestTy && !isa<Constant>(X)) { 1908 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 1909 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 1910 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 1911 } 1912 1913 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 1914 X->getType() == DestTy && !isa<Constant>(X)) { 1915 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 1916 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1917 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 1918 } 1919 1920 // Canonicalize vector bitcasts to come before vector bitwise logic with a 1921 // constant. This eases recognition of special constants for later ops. 1922 // Example: 1923 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 1924 Constant *C; 1925 if (match(BO->getOperand(1), m_Constant(C))) { 1926 // bitcast (logic X, C) --> logic (bitcast X, C') 1927 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1928 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 1929 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 1930 } 1931 1932 return nullptr; 1933 } 1934 1935 /// Change the type of a select if we can eliminate a bitcast. 1936 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 1937 InstCombiner::BuilderTy &Builder) { 1938 Value *Cond, *TVal, *FVal; 1939 if (!match(BitCast.getOperand(0), 1940 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 1941 return nullptr; 1942 1943 // A vector select must maintain the same number of elements in its operands. 1944 Type *CondTy = Cond->getType(); 1945 Type *DestTy = BitCast.getType(); 1946 if (CondTy->isVectorTy()) { 1947 if (!DestTy->isVectorTy()) 1948 return nullptr; 1949 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 1950 return nullptr; 1951 } 1952 1953 // FIXME: This transform is restricted from changing the select between 1954 // scalars and vectors to avoid backend problems caused by creating 1955 // potentially illegal operations. If a fix-up is added to handle that 1956 // situation, we can remove this check. 1957 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 1958 return nullptr; 1959 1960 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 1961 Value *X; 1962 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 1963 !isa<Constant>(X)) { 1964 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 1965 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 1966 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 1967 } 1968 1969 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 1970 !isa<Constant>(X)) { 1971 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 1972 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 1973 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 1974 } 1975 1976 return nullptr; 1977 } 1978 1979 /// Check if all users of CI are StoreInsts. 1980 static bool hasStoreUsersOnly(CastInst &CI) { 1981 for (User *U : CI.users()) { 1982 if (!isa<StoreInst>(U)) 1983 return false; 1984 } 1985 return true; 1986 } 1987 1988 /// This function handles following case 1989 /// 1990 /// A -> B cast 1991 /// PHI 1992 /// B -> A cast 1993 /// 1994 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 1995 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 1996 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 1997 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 1998 if (hasStoreUsersOnly(CI)) 1999 return nullptr; 2000 2001 Value *Src = CI.getOperand(0); 2002 Type *SrcTy = Src->getType(); // Type B 2003 Type *DestTy = CI.getType(); // Type A 2004 2005 SmallVector<PHINode *, 4> PhiWorklist; 2006 SmallSetVector<PHINode *, 4> OldPhiNodes; 2007 2008 // Find all of the A->B casts and PHI nodes. 2009 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2010 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2011 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2012 PhiWorklist.push_back(PN); 2013 OldPhiNodes.insert(PN); 2014 while (!PhiWorklist.empty()) { 2015 auto *OldPN = PhiWorklist.pop_back_val(); 2016 for (Value *IncValue : OldPN->incoming_values()) { 2017 if (isa<Constant>(IncValue)) 2018 continue; 2019 2020 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2021 // If there is a sequence of one or more load instructions, each loaded 2022 // value is used as address of later load instruction, bitcast is 2023 // necessary to change the value type, don't optimize it. For 2024 // simplicity we give up if the load address comes from another load. 2025 Value *Addr = LI->getOperand(0); 2026 if (Addr == &CI || isa<LoadInst>(Addr)) 2027 return nullptr; 2028 if (LI->hasOneUse() && LI->isSimple()) 2029 continue; 2030 // If a LoadInst has more than one use, changing the type of loaded 2031 // value may create another bitcast. 2032 return nullptr; 2033 } 2034 2035 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2036 if (OldPhiNodes.insert(PNode)) 2037 PhiWorklist.push_back(PNode); 2038 continue; 2039 } 2040 2041 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2042 // We can't handle other instructions. 2043 if (!BCI) 2044 return nullptr; 2045 2046 // Verify it's a A->B cast. 2047 Type *TyA = BCI->getOperand(0)->getType(); 2048 Type *TyB = BCI->getType(); 2049 if (TyA != DestTy || TyB != SrcTy) 2050 return nullptr; 2051 } 2052 } 2053 2054 // For each old PHI node, create a corresponding new PHI node with a type A. 2055 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2056 for (auto *OldPN : OldPhiNodes) { 2057 Builder.SetInsertPoint(OldPN); 2058 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2059 NewPNodes[OldPN] = NewPN; 2060 } 2061 2062 // Fill in the operands of new PHI nodes. 2063 for (auto *OldPN : OldPhiNodes) { 2064 PHINode *NewPN = NewPNodes[OldPN]; 2065 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2066 Value *V = OldPN->getOperand(j); 2067 Value *NewV = nullptr; 2068 if (auto *C = dyn_cast<Constant>(V)) { 2069 NewV = ConstantExpr::getBitCast(C, DestTy); 2070 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2071 Builder.SetInsertPoint(LI->getNextNode()); 2072 NewV = Builder.CreateBitCast(LI, DestTy); 2073 Worklist.Add(LI); 2074 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2075 NewV = BCI->getOperand(0); 2076 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2077 NewV = NewPNodes[PrevPN]; 2078 } 2079 assert(NewV); 2080 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2081 } 2082 } 2083 2084 // If there is a store with type B, change it to type A. 2085 for (User *U : PN->users()) { 2086 auto *SI = dyn_cast<StoreInst>(U); 2087 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2088 Builder.SetInsertPoint(SI); 2089 auto *NewBC = 2090 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2091 SI->setOperand(0, NewBC); 2092 Worklist.Add(SI); 2093 assert(hasStoreUsersOnly(*NewBC)); 2094 } 2095 } 2096 2097 return replaceInstUsesWith(CI, NewPNodes[PN]); 2098 } 2099 2100 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2101 // If the operands are integer typed then apply the integer transforms, 2102 // otherwise just apply the common ones. 2103 Value *Src = CI.getOperand(0); 2104 Type *SrcTy = Src->getType(); 2105 Type *DestTy = CI.getType(); 2106 2107 // Get rid of casts from one type to the same type. These are useless and can 2108 // be replaced by the operand. 2109 if (DestTy == Src->getType()) 2110 return replaceInstUsesWith(CI, Src); 2111 2112 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2113 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2114 Type *DstElTy = DstPTy->getElementType(); 2115 Type *SrcElTy = SrcPTy->getElementType(); 2116 2117 // If we are casting a alloca to a pointer to a type of the same 2118 // size, rewrite the allocation instruction to allocate the "right" type. 2119 // There is no need to modify malloc calls because it is their bitcast that 2120 // needs to be cleaned up. 2121 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2122 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2123 return V; 2124 2125 // When the type pointed to is not sized the cast cannot be 2126 // turned into a gep. 2127 Type *PointeeType = 2128 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2129 if (!PointeeType->isSized()) 2130 return nullptr; 2131 2132 // If the source and destination are pointers, and this cast is equivalent 2133 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2134 // This can enhance SROA and other transforms that want type-safe pointers. 2135 unsigned NumZeros = 0; 2136 while (SrcElTy != DstElTy && 2137 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2138 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2139 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2140 ++NumZeros; 2141 } 2142 2143 // If we found a path from the src to dest, create the getelementptr now. 2144 if (SrcElTy == DstElTy) { 2145 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2146 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2147 } 2148 } 2149 2150 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2151 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2152 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2153 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2154 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2155 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2156 } 2157 2158 if (isa<IntegerType>(SrcTy)) { 2159 // If this is a cast from an integer to vector, check to see if the input 2160 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2161 // the casts with a shuffle and (potentially) a bitcast. 2162 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2163 CastInst *SrcCast = cast<CastInst>(Src); 2164 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2165 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2166 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2167 cast<VectorType>(DestTy), *this)) 2168 return I; 2169 } 2170 2171 // If the input is an 'or' instruction, we may be doing shifts and ors to 2172 // assemble the elements of the vector manually. Try to rip the code out 2173 // and replace it with insertelements. 2174 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2175 return replaceInstUsesWith(CI, V); 2176 } 2177 } 2178 2179 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2180 if (SrcVTy->getNumElements() == 1) { 2181 // If our destination is not a vector, then make this a straight 2182 // scalar-scalar cast. 2183 if (!DestTy->isVectorTy()) { 2184 Value *Elem = 2185 Builder.CreateExtractElement(Src, 2186 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2187 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2188 } 2189 2190 // Otherwise, see if our source is an insert. If so, then use the scalar 2191 // component directly. 2192 if (InsertElementInst *IEI = 2193 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2194 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2195 DestTy); 2196 } 2197 } 2198 2199 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2200 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2201 // a bitcast to a vector with the same # elts. 2202 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2203 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2204 SVI->getType()->getNumElements() == 2205 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2206 BitCastInst *Tmp; 2207 // If either of the operands is a cast from CI.getType(), then 2208 // evaluating the shuffle in the casted destination's type will allow 2209 // us to eliminate at least one cast. 2210 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2211 Tmp->getOperand(0)->getType() == DestTy) || 2212 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2213 Tmp->getOperand(0)->getType() == DestTy)) { 2214 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2215 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2216 // Return a new shuffle vector. Use the same element ID's, as we 2217 // know the vector types match #elts. 2218 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2219 } 2220 } 2221 } 2222 2223 // Handle the A->B->A cast, and there is an intervening PHI node. 2224 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2225 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2226 return I; 2227 2228 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2229 return I; 2230 2231 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2232 return I; 2233 2234 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2235 return I; 2236 2237 if (SrcTy->isPointerTy()) 2238 return commonPointerCastTransforms(CI); 2239 return commonCastTransforms(CI); 2240 } 2241 2242 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2243 // If the destination pointer element type is not the same as the source's 2244 // first do a bitcast to the destination type, and then the addrspacecast. 2245 // This allows the cast to be exposed to other transforms. 2246 Value *Src = CI.getOperand(0); 2247 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2248 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2249 2250 Type *DestElemTy = DestTy->getElementType(); 2251 if (SrcTy->getElementType() != DestElemTy) { 2252 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2253 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2254 // Handle vectors of pointers. 2255 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2256 } 2257 2258 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2259 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2260 } 2261 2262 return commonPointerCastTransforms(CI); 2263 } 2264