xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 73ba1c84beadc3dfc6cf11fc971d97eba48c956e)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 /// Analyze 'Val', seeing if it is a simple linear expression.
27 /// If so, decompose it, returning some value X, such that Val is
28 /// X*Scale+Offset.
29 ///
30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
31                                         uint64_t &Offset) {
32   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
33     Offset = CI->getZExtValue();
34     Scale  = 0;
35     return ConstantInt::get(Val->getType(), 0);
36   }
37 
38   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
39     // Cannot look past anything that might overflow.
40     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
41     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
42       Scale = 1;
43       Offset = 0;
44       return Val;
45     }
46 
47     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
48       if (I->getOpcode() == Instruction::Shl) {
49         // This is a value scaled by '1 << the shift amt'.
50         Scale = UINT64_C(1) << RHS->getZExtValue();
51         Offset = 0;
52         return I->getOperand(0);
53       }
54 
55       if (I->getOpcode() == Instruction::Mul) {
56         // This value is scaled by 'RHS'.
57         Scale = RHS->getZExtValue();
58         Offset = 0;
59         return I->getOperand(0);
60       }
61 
62       if (I->getOpcode() == Instruction::Add) {
63         // We have X+C.  Check to see if we really have (X*C2)+C1,
64         // where C1 is divisible by C2.
65         unsigned SubScale;
66         Value *SubVal =
67           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
68         Offset += RHS->getZExtValue();
69         Scale = SubScale;
70         return SubVal;
71       }
72     }
73   }
74 
75   // Otherwise, we can't look past this.
76   Scale = 1;
77   Offset = 0;
78   return Val;
79 }
80 
81 /// If we find a cast of an allocation instruction, try to eliminate the cast by
82 /// moving the type information into the alloc.
83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
84                                                    AllocaInst &AI) {
85   PointerType *PTy = cast<PointerType>(CI.getType());
86 
87   BuilderTy AllocaBuilder(*Builder);
88   AllocaBuilder.SetInsertPoint(&AI);
89 
90   // Get the type really allocated and the type casted to.
91   Type *AllocElTy = AI.getAllocatedType();
92   Type *CastElTy = PTy->getElementType();
93   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
94 
95   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
96   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
97   if (CastElTyAlign < AllocElTyAlign) return nullptr;
98 
99   // If the allocation has multiple uses, only promote it if we are strictly
100   // increasing the alignment of the resultant allocation.  If we keep it the
101   // same, we open the door to infinite loops of various kinds.
102   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
103 
104   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
105   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
106   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
107 
108   // If the allocation has multiple uses, only promote it if we're not
109   // shrinking the amount of memory being allocated.
110   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
111   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
112   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
113 
114   // See if we can satisfy the modulus by pulling a scale out of the array
115   // size argument.
116   unsigned ArraySizeScale;
117   uint64_t ArrayOffset;
118   Value *NumElements = // See if the array size is a decomposable linear expr.
119     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
120 
121   // If we can now satisfy the modulus, by using a non-1 scale, we really can
122   // do the xform.
123   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
124       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
125 
126   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
127   Value *Amt = nullptr;
128   if (Scale == 1) {
129     Amt = NumElements;
130   } else {
131     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
132     // Insert before the alloca, not before the cast.
133     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
134   }
135 
136   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
137     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
138                                   Offset, true);
139     Amt = AllocaBuilder.CreateAdd(Amt, Off);
140   }
141 
142   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
143   New->setAlignment(AI.getAlignment());
144   New->takeName(&AI);
145   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
146 
147   // If the allocation has multiple real uses, insert a cast and change all
148   // things that used it to use the new cast.  This will also hack on CI, but it
149   // will die soon.
150   if (!AI.hasOneUse()) {
151     // New is the allocation instruction, pointer typed. AI is the original
152     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
153     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
154     replaceInstUsesWith(AI, NewCast);
155   }
156   return replaceInstUsesWith(CI, New);
157 }
158 
159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
160 /// true for, actually insert the code to evaluate the expression.
161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
162                                              bool isSigned) {
163   if (Constant *C = dyn_cast<Constant>(V)) {
164     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
165     // If we got a constantexpr back, try to simplify it with DL info.
166     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
167       C = FoldedC;
168     return C;
169   }
170 
171   // Otherwise, it must be an instruction.
172   Instruction *I = cast<Instruction>(V);
173   Instruction *Res = nullptr;
174   unsigned Opc = I->getOpcode();
175   switch (Opc) {
176   case Instruction::Add:
177   case Instruction::Sub:
178   case Instruction::Mul:
179   case Instruction::And:
180   case Instruction::Or:
181   case Instruction::Xor:
182   case Instruction::AShr:
183   case Instruction::LShr:
184   case Instruction::Shl:
185   case Instruction::UDiv:
186   case Instruction::URem: {
187     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190     break;
191   }
192   case Instruction::Trunc:
193   case Instruction::ZExt:
194   case Instruction::SExt:
195     // If the source type of the cast is the type we're trying for then we can
196     // just return the source.  There's no need to insert it because it is not
197     // new.
198     if (I->getOperand(0)->getType() == Ty)
199       return I->getOperand(0);
200 
201     // Otherwise, must be the same type of cast, so just reinsert a new one.
202     // This also handles the case of zext(trunc(x)) -> zext(x).
203     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204                                       Opc == Instruction::SExt);
205     break;
206   case Instruction::Select: {
207     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209     Res = SelectInst::Create(I->getOperand(0), True, False);
210     break;
211   }
212   case Instruction::PHI: {
213     PHINode *OPN = cast<PHINode>(I);
214     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216       Value *V =
217           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218       NPN->addIncoming(V, OPN->getIncomingBlock(i));
219     }
220     Res = NPN;
221     break;
222   }
223   default:
224     // TODO: Can handle more cases here.
225     llvm_unreachable("Unreachable!");
226   }
227 
228   Res->takeName(I);
229   return InsertNewInstWith(Res, *I);
230 }
231 
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233                                                         const CastInst *CI2) {
234   Type *SrcTy = CI1->getSrcTy();
235   Type *MidTy = CI1->getDestTy();
236   Type *DstTy = CI2->getDestTy();
237 
238   Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode());
239   Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode());
240   Type *SrcIntPtrTy =
241       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242   Type *MidIntPtrTy =
243       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244   Type *DstIntPtrTy =
245       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
248                                                 DstIntPtrTy);
249 
250   // We don't want to form an inttoptr or ptrtoint that converts to an integer
251   // type that differs from the pointer size.
252   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254     Res = 0;
255 
256   return Instruction::CastOps(Res);
257 }
258 
259 /// @brief Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261   Value *Src = CI.getOperand(0);
262 
263   // Try to eliminate a cast of a cast.
264   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
265     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266       // The first cast (CSrc) is eliminable so we need to fix up or replace
267       // the second cast (CI). CSrc will then have a good chance of being dead.
268       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
269     }
270   }
271 
272   // If we are casting a select, then fold the cast into the select.
273   if (auto *SI = dyn_cast<SelectInst>(Src))
274     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
275       return NV;
276 
277   // If we are casting a PHI, then fold the cast into the PHI.
278   if (auto *PN = dyn_cast<PHINode>(Src)) {
279     // Don't do this if it would create a PHI node with an illegal type from a
280     // legal type.
281     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
282         shouldChangeType(CI.getType(), Src->getType()))
283       if (Instruction *NV = foldOpIntoPhi(CI, PN))
284         return NV;
285   }
286 
287   return nullptr;
288 }
289 
290 /// Return true if we can evaluate the specified expression tree as type Ty
291 /// instead of its larger type, and arrive with the same value.
292 /// This is used by code that tries to eliminate truncates.
293 ///
294 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
295 /// can be computed by computing V in the smaller type.  If V is an instruction,
296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
297 /// makes sense if x and y can be efficiently truncated.
298 ///
299 /// This function works on both vectors and scalars.
300 ///
301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
302                                  Instruction *CxtI) {
303   // We can always evaluate constants in another type.
304   if (isa<Constant>(V))
305     return true;
306 
307   Instruction *I = dyn_cast<Instruction>(V);
308   if (!I) return false;
309 
310   Type *OrigTy = V->getType();
311 
312   // If this is an extension from the dest type, we can eliminate it, even if it
313   // has multiple uses.
314   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
315       I->getOperand(0)->getType() == Ty)
316     return true;
317 
318   // We can't extend or shrink something that has multiple uses: doing so would
319   // require duplicating the instruction in general, which isn't profitable.
320   if (!I->hasOneUse()) return false;
321 
322   unsigned Opc = I->getOpcode();
323   switch (Opc) {
324   case Instruction::Add:
325   case Instruction::Sub:
326   case Instruction::Mul:
327   case Instruction::And:
328   case Instruction::Or:
329   case Instruction::Xor:
330     // These operators can all arbitrarily be extended or truncated.
331     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
332            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
333 
334   case Instruction::UDiv:
335   case Instruction::URem: {
336     // UDiv and URem can be truncated if all the truncated bits are zero.
337     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
338     uint32_t BitWidth = Ty->getScalarSizeInBits();
339     if (BitWidth < OrigBitWidth) {
340       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
341       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
342           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
343         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345       }
346     }
347     break;
348   }
349   case Instruction::Shl:
350     // If we are truncating the result of this SHL, and if it's a shift of a
351     // constant amount, we can always perform a SHL in a smaller type.
352     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
353       uint32_t BitWidth = Ty->getScalarSizeInBits();
354       if (CI->getLimitedValue(BitWidth) < BitWidth)
355         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
356     }
357     break;
358   case Instruction::LShr:
359     // If this is a truncate of a logical shr, we can truncate it to a smaller
360     // lshr iff we know that the bits we would otherwise be shifting in are
361     // already zeros.
362     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
363       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
364       uint32_t BitWidth = Ty->getScalarSizeInBits();
365       if (IC.MaskedValueIsZero(I->getOperand(0),
366             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
367           CI->getLimitedValue(BitWidth) < BitWidth) {
368         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
369       }
370     }
371     break;
372   case Instruction::Trunc:
373     // trunc(trunc(x)) -> trunc(x)
374     return true;
375   case Instruction::ZExt:
376   case Instruction::SExt:
377     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
378     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
379     return true;
380   case Instruction::Select: {
381     SelectInst *SI = cast<SelectInst>(I);
382     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
383            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
384   }
385   case Instruction::PHI: {
386     // We can change a phi if we can change all operands.  Note that we never
387     // get into trouble with cyclic PHIs here because we only consider
388     // instructions with a single use.
389     PHINode *PN = cast<PHINode>(I);
390     for (Value *IncValue : PN->incoming_values())
391       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
392         return false;
393     return true;
394   }
395   default:
396     // TODO: Can handle more cases here.
397     break;
398   }
399 
400   return false;
401 }
402 
403 /// Given a vector that is bitcast to an integer, optionally logically
404 /// right-shifted, and truncated, convert it to an extractelement.
405 /// Example (big endian):
406 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
407 ///   --->
408 ///   extractelement <4 x i32> %X, 1
409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
410                                          const DataLayout &DL) {
411   Value *TruncOp = Trunc.getOperand(0);
412   Type *DestType = Trunc.getType();
413   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
414     return nullptr;
415 
416   Value *VecInput = nullptr;
417   ConstantInt *ShiftVal = nullptr;
418   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
419                                   m_LShr(m_BitCast(m_Value(VecInput)),
420                                          m_ConstantInt(ShiftVal)))) ||
421       !isa<VectorType>(VecInput->getType()))
422     return nullptr;
423 
424   VectorType *VecType = cast<VectorType>(VecInput->getType());
425   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
426   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
427   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
428 
429   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
430     return nullptr;
431 
432   // If the element type of the vector doesn't match the result type,
433   // bitcast it to a vector type that we can extract from.
434   unsigned NumVecElts = VecWidth / DestWidth;
435   if (VecType->getElementType() != DestType) {
436     VecType = VectorType::get(DestType, NumVecElts);
437     VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
438   }
439 
440   unsigned Elt = ShiftAmount / DestWidth;
441   if (DL.isBigEndian())
442     Elt = NumVecElts - 1 - Elt;
443 
444   return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
445 }
446 
447 /// Try to narrow the width of bitwise logic instructions with constants.
448 Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) {
449   Type *SrcTy = Trunc.getSrcTy();
450   Type *DestTy = Trunc.getType();
451   if (isa<IntegerType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
452     return nullptr;
453 
454   BinaryOperator *LogicOp;
455   Constant *C;
456   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(LogicOp))) ||
457       !LogicOp->isBitwiseLogicOp() ||
458       !match(LogicOp->getOperand(1), m_Constant(C)))
459     return nullptr;
460 
461   // trunc (logic X, C) --> logic (trunc X, C')
462   Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
463   Value *NarrowOp0 = Builder->CreateTrunc(LogicOp->getOperand(0), DestTy);
464   return BinaryOperator::Create(LogicOp->getOpcode(), NarrowOp0, NarrowC);
465 }
466 
467 /// Try to narrow the width of a splat shuffle. This could be generalized to any
468 /// shuffle with a constant operand, but we limit the transform to avoid
469 /// creating a shuffle type that targets may not be able to lower effectively.
470 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
471                                        InstCombiner::BuilderTy &Builder) {
472   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
473   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
474       Shuf->getMask()->getSplatValue() &&
475       Shuf->getType() == Shuf->getOperand(0)->getType()) {
476     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
477     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
478     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
479     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
480   }
481 
482   return nullptr;
483 }
484 
485 /// Try to narrow the width of an insert element. This could be generalized for
486 /// any vector constant, but we limit the transform to insertion into undef to
487 /// avoid potential backend problems from unsupported insertion widths. This
488 /// could also be extended to handle the case of inserting a scalar constant
489 /// into a vector variable.
490 static Instruction *shrinkInsertElt(CastInst &Trunc,
491                                     InstCombiner::BuilderTy &Builder) {
492   Instruction::CastOps Opcode = Trunc.getOpcode();
493   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
494          "Unexpected instruction for shrinking");
495 
496   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
497   if (!InsElt || !InsElt->hasOneUse())
498     return nullptr;
499 
500   Type *DestTy = Trunc.getType();
501   Type *DestScalarTy = DestTy->getScalarType();
502   Value *VecOp = InsElt->getOperand(0);
503   Value *ScalarOp = InsElt->getOperand(1);
504   Value *Index = InsElt->getOperand(2);
505 
506   if (isa<UndefValue>(VecOp)) {
507     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
508     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
509     UndefValue *NarrowUndef = UndefValue::get(DestTy);
510     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
511     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
512   }
513 
514   return nullptr;
515 }
516 
517 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
518   if (Instruction *Result = commonCastTransforms(CI))
519     return Result;
520 
521   // Test if the trunc is the user of a select which is part of a
522   // minimum or maximum operation. If so, don't do any more simplification.
523   // Even simplifying demanded bits can break the canonical form of a
524   // min/max.
525   Value *LHS, *RHS;
526   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
527     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
528       return nullptr;
529 
530   // See if we can simplify any instructions used by the input whose sole
531   // purpose is to compute bits we don't care about.
532   if (SimplifyDemandedInstructionBits(CI))
533     return &CI;
534 
535   Value *Src = CI.getOperand(0);
536   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
537 
538   // Attempt to truncate the entire input expression tree to the destination
539   // type.   Only do this if the dest type is a simple type, don't convert the
540   // expression tree to something weird like i93 unless the source is also
541   // strange.
542   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
543       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
544 
545     // If this cast is a truncate, evaluting in a different type always
546     // eliminates the cast, so it is always a win.
547     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
548           " to avoid cast: " << CI << '\n');
549     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
550     assert(Res->getType() == DestTy);
551     return replaceInstUsesWith(CI, Res);
552   }
553 
554   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
555   if (DestTy->getScalarSizeInBits() == 1) {
556     Constant *One = ConstantInt::get(SrcTy, 1);
557     Src = Builder->CreateAnd(Src, One);
558     Value *Zero = Constant::getNullValue(Src->getType());
559     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
560   }
561 
562   // FIXME: Maybe combine the next two transforms to handle the no cast case
563   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
564 
565   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
566   Value *A = nullptr; ConstantInt *Cst = nullptr;
567   if (Src->hasOneUse() &&
568       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
569     // We have three types to worry about here, the type of A, the source of
570     // the truncate (MidSize), and the destination of the truncate. We know that
571     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
572     // between ASize and ResultSize.
573     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
574 
575     // If the shift amount is larger than the size of A, then the result is
576     // known to be zero because all the input bits got shifted out.
577     if (Cst->getZExtValue() >= ASize)
578       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
579 
580     // Since we're doing an lshr and a zero extend, and know that the shift
581     // amount is smaller than ASize, it is always safe to do the shift in A's
582     // type, then zero extend or truncate to the result.
583     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
584     Shift->takeName(Src);
585     return CastInst::CreateIntegerCast(Shift, DestTy, false);
586   }
587 
588   // FIXME: We should canonicalize to zext/trunc and remove this transform.
589   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
590   // conversion.
591   // It works because bits coming from sign extension have the same value as
592   // the sign bit of the original value; performing ashr instead of lshr
593   // generates bits of the same value as the sign bit.
594   if (Src->hasOneUse() &&
595       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
596     Value *SExt = cast<Instruction>(Src)->getOperand(0);
597     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
598     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
599     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
600     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
601     unsigned ShiftAmt = Cst->getZExtValue();
602 
603     // This optimization can be only performed when zero bits generated by
604     // the original lshr aren't pulled into the value after truncation, so we
605     // can only shift by values no larger than the number of extension bits.
606     // FIXME: Instead of bailing when the shift is too large, use and to clear
607     // the extra bits.
608     if (ShiftAmt <= MaxAmt) {
609       if (CISize == ASize)
610         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
611                                           std::min(ShiftAmt, ASize - 1)));
612       if (SExt->hasOneUse()) {
613         Value *Shift = Builder->CreateAShr(A, std::min(ShiftAmt, ASize-1));
614         Shift->takeName(Src);
615         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
616       }
617     }
618   }
619 
620   if (Instruction *I = shrinkBitwiseLogic(CI))
621     return I;
622 
623   if (Instruction *I = shrinkSplatShuffle(CI, *Builder))
624     return I;
625 
626   if (Instruction *I = shrinkInsertElt(CI, *Builder))
627     return I;
628 
629   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
630       shouldChangeType(SrcTy, DestTy)) {
631     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
632     // dest type is native and cst < dest size.
633     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
634         !match(A, m_Shr(m_Value(), m_Constant()))) {
635       // Skip shifts of shift by constants. It undoes a combine in
636       // FoldShiftByConstant and is the extend in reg pattern.
637       const unsigned DestSize = DestTy->getScalarSizeInBits();
638       if (Cst->getValue().ult(DestSize)) {
639         Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
640 
641         return BinaryOperator::Create(
642           Instruction::Shl, NewTrunc,
643           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
644       }
645     }
646   }
647 
648   if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
649     return I;
650 
651   return nullptr;
652 }
653 
654 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
655                                              bool DoTransform) {
656   // If we are just checking for a icmp eq of a single bit and zext'ing it
657   // to an integer, then shift the bit to the appropriate place and then
658   // cast to integer to avoid the comparison.
659   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
660     const APInt &Op1CV = Op1C->getValue();
661 
662     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
663     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
664     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
665         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
666       if (!DoTransform) return ICI;
667 
668       Value *In = ICI->getOperand(0);
669       Value *Sh = ConstantInt::get(In->getType(),
670                                    In->getType()->getScalarSizeInBits() - 1);
671       In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
672       if (In->getType() != CI.getType())
673         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
674 
675       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
676         Constant *One = ConstantInt::get(In->getType(), 1);
677         In = Builder->CreateXor(In, One, In->getName() + ".not");
678       }
679 
680       return replaceInstUsesWith(CI, In);
681     }
682 
683     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
684     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
685     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
686     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
687     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
688     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
689     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
690     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
691     if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
692         // This only works for EQ and NE
693         ICI->isEquality()) {
694       // If Op1C some other power of two, convert:
695       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
696 
697       APInt KnownZeroMask(~Known.Zero);
698       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
699         if (!DoTransform) return ICI;
700 
701         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
702         if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
703           // (X&4) == 2 --> false
704           // (X&4) != 2 --> true
705           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
706                                            isNE);
707           Res = ConstantExpr::getZExt(Res, CI.getType());
708           return replaceInstUsesWith(CI, Res);
709         }
710 
711         uint32_t ShAmt = KnownZeroMask.logBase2();
712         Value *In = ICI->getOperand(0);
713         if (ShAmt) {
714           // Perform a logical shr by shiftamt.
715           // Insert the shift to put the result in the low bit.
716           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
717                                    In->getName() + ".lobit");
718         }
719 
720         if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
721           Constant *One = ConstantInt::get(In->getType(), 1);
722           In = Builder->CreateXor(In, One);
723         }
724 
725         if (CI.getType() == In->getType())
726           return replaceInstUsesWith(CI, In);
727 
728         Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false);
729         return replaceInstUsesWith(CI, IntCast);
730       }
731     }
732   }
733 
734   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
735   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
736   // may lead to additional simplifications.
737   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
738     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
739       Value *LHS = ICI->getOperand(0);
740       Value *RHS = ICI->getOperand(1);
741 
742       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
743       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
744 
745       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
746         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
747         APInt UnknownBit = ~KnownBits;
748         if (UnknownBit.countPopulation() == 1) {
749           if (!DoTransform) return ICI;
750 
751           Value *Result = Builder->CreateXor(LHS, RHS);
752 
753           // Mask off any bits that are set and won't be shifted away.
754           if (KnownLHS.One.uge(UnknownBit))
755             Result = Builder->CreateAnd(Result,
756                                         ConstantInt::get(ITy, UnknownBit));
757 
758           // Shift the bit we're testing down to the lsb.
759           Result = Builder->CreateLShr(
760                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
761 
762           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
763             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
764           Result->takeName(ICI);
765           return replaceInstUsesWith(CI, Result);
766         }
767       }
768     }
769   }
770 
771   return nullptr;
772 }
773 
774 /// Determine if the specified value can be computed in the specified wider type
775 /// and produce the same low bits. If not, return false.
776 ///
777 /// If this function returns true, it can also return a non-zero number of bits
778 /// (in BitsToClear) which indicates that the value it computes is correct for
779 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
780 /// out.  For example, to promote something like:
781 ///
782 ///   %B = trunc i64 %A to i32
783 ///   %C = lshr i32 %B, 8
784 ///   %E = zext i32 %C to i64
785 ///
786 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
787 /// set to 8 to indicate that the promoted value needs to have bits 24-31
788 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
789 /// clear the top bits anyway, doing this has no extra cost.
790 ///
791 /// This function works on both vectors and scalars.
792 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
793                              InstCombiner &IC, Instruction *CxtI) {
794   BitsToClear = 0;
795   if (isa<Constant>(V))
796     return true;
797 
798   Instruction *I = dyn_cast<Instruction>(V);
799   if (!I) return false;
800 
801   // If the input is a truncate from the destination type, we can trivially
802   // eliminate it.
803   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
804     return true;
805 
806   // We can't extend or shrink something that has multiple uses: doing so would
807   // require duplicating the instruction in general, which isn't profitable.
808   if (!I->hasOneUse()) return false;
809 
810   unsigned Opc = I->getOpcode(), Tmp;
811   switch (Opc) {
812   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
813   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
814   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
815     return true;
816   case Instruction::And:
817   case Instruction::Or:
818   case Instruction::Xor:
819   case Instruction::Add:
820   case Instruction::Sub:
821   case Instruction::Mul:
822     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
823         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
824       return false;
825     // These can all be promoted if neither operand has 'bits to clear'.
826     if (BitsToClear == 0 && Tmp == 0)
827       return true;
828 
829     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
830     // other side, BitsToClear is ok.
831     if (Tmp == 0 && I->isBitwiseLogicOp()) {
832       // We use MaskedValueIsZero here for generality, but the case we care
833       // about the most is constant RHS.
834       unsigned VSize = V->getType()->getScalarSizeInBits();
835       if (IC.MaskedValueIsZero(I->getOperand(1),
836                                APInt::getHighBitsSet(VSize, BitsToClear),
837                                0, CxtI))
838         return true;
839     }
840 
841     // Otherwise, we don't know how to analyze this BitsToClear case yet.
842     return false;
843 
844   case Instruction::Shl:
845     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
846     // upper bits we can reduce BitsToClear by the shift amount.
847     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
848       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
849         return false;
850       uint64_t ShiftAmt = Amt->getZExtValue();
851       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
852       return true;
853     }
854     return false;
855   case Instruction::LShr:
856     // We can promote lshr(x, cst) if we can promote x.  This requires the
857     // ultimate 'and' to clear out the high zero bits we're clearing out though.
858     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
859       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
860         return false;
861       BitsToClear += Amt->getZExtValue();
862       if (BitsToClear > V->getType()->getScalarSizeInBits())
863         BitsToClear = V->getType()->getScalarSizeInBits();
864       return true;
865     }
866     // Cannot promote variable LSHR.
867     return false;
868   case Instruction::Select:
869     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
870         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
871         // TODO: If important, we could handle the case when the BitsToClear are
872         // known zero in the disagreeing side.
873         Tmp != BitsToClear)
874       return false;
875     return true;
876 
877   case Instruction::PHI: {
878     // We can change a phi if we can change all operands.  Note that we never
879     // get into trouble with cyclic PHIs here because we only consider
880     // instructions with a single use.
881     PHINode *PN = cast<PHINode>(I);
882     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
883       return false;
884     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
885       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
886           // TODO: If important, we could handle the case when the BitsToClear
887           // are known zero in the disagreeing input.
888           Tmp != BitsToClear)
889         return false;
890     return true;
891   }
892   default:
893     // TODO: Can handle more cases here.
894     return false;
895   }
896 }
897 
898 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
899   // If this zero extend is only used by a truncate, let the truncate be
900   // eliminated before we try to optimize this zext.
901   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
902     return nullptr;
903 
904   // If one of the common conversion will work, do it.
905   if (Instruction *Result = commonCastTransforms(CI))
906     return Result;
907 
908   Value *Src = CI.getOperand(0);
909   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
910 
911   // Attempt to extend the entire input expression tree to the destination
912   // type.   Only do this if the dest type is a simple type, don't convert the
913   // expression tree to something weird like i93 unless the source is also
914   // strange.
915   unsigned BitsToClear;
916   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
917       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
918     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
919            "Can't clear more bits than in SrcTy");
920 
921     // Okay, we can transform this!  Insert the new expression now.
922     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
923           " to avoid zero extend: " << CI << '\n');
924     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
925     assert(Res->getType() == DestTy);
926 
927     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
928     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
929 
930     // If the high bits are already filled with zeros, just replace this
931     // cast with the result.
932     if (MaskedValueIsZero(Res,
933                           APInt::getHighBitsSet(DestBitSize,
934                                                 DestBitSize-SrcBitsKept),
935                              0, &CI))
936       return replaceInstUsesWith(CI, Res);
937 
938     // We need to emit an AND to clear the high bits.
939     Constant *C = ConstantInt::get(Res->getType(),
940                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
941     return BinaryOperator::CreateAnd(Res, C);
942   }
943 
944   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
945   // types and if the sizes are just right we can convert this into a logical
946   // 'and' which will be much cheaper than the pair of casts.
947   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
948     // TODO: Subsume this into EvaluateInDifferentType.
949 
950     // Get the sizes of the types involved.  We know that the intermediate type
951     // will be smaller than A or C, but don't know the relation between A and C.
952     Value *A = CSrc->getOperand(0);
953     unsigned SrcSize = A->getType()->getScalarSizeInBits();
954     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
955     unsigned DstSize = CI.getType()->getScalarSizeInBits();
956     // If we're actually extending zero bits, then if
957     // SrcSize <  DstSize: zext(a & mask)
958     // SrcSize == DstSize: a & mask
959     // SrcSize  > DstSize: trunc(a) & mask
960     if (SrcSize < DstSize) {
961       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
962       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
963       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
964       return new ZExtInst(And, CI.getType());
965     }
966 
967     if (SrcSize == DstSize) {
968       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
969       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
970                                                            AndValue));
971     }
972     if (SrcSize > DstSize) {
973       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
974       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
975       return BinaryOperator::CreateAnd(Trunc,
976                                        ConstantInt::get(Trunc->getType(),
977                                                         AndValue));
978     }
979   }
980 
981   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
982     return transformZExtICmp(ICI, CI);
983 
984   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
985   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
986     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
987     // of the (zext icmp) can be eliminated. If so, immediately perform the
988     // according elimination.
989     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
990     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
991     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
992         (transformZExtICmp(LHS, CI, false) ||
993          transformZExtICmp(RHS, CI, false))) {
994       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
995       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
996       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
997       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
998 
999       // Perform the elimination.
1000       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1001         transformZExtICmp(LHS, *LZExt);
1002       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1003         transformZExtICmp(RHS, *RZExt);
1004 
1005       return Or;
1006     }
1007   }
1008 
1009   // zext(trunc(X) & C) -> (X & zext(C)).
1010   Constant *C;
1011   Value *X;
1012   if (SrcI &&
1013       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1014       X->getType() == CI.getType())
1015     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1016 
1017   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1018   Value *And;
1019   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1020       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1021       X->getType() == CI.getType()) {
1022     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1023     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
1024   }
1025 
1026   return nullptr;
1027 }
1028 
1029 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1030 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1031   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1032   ICmpInst::Predicate Pred = ICI->getPredicate();
1033 
1034   // Don't bother if Op1 isn't of vector or integer type.
1035   if (!Op1->getType()->isIntOrIntVectorTy())
1036     return nullptr;
1037 
1038   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1039     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1040     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1041     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
1042         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
1043 
1044       Value *Sh = ConstantInt::get(Op0->getType(),
1045                                    Op0->getType()->getScalarSizeInBits()-1);
1046       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
1047       if (In->getType() != CI.getType())
1048         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
1049 
1050       if (Pred == ICmpInst::ICMP_SGT)
1051         In = Builder->CreateNot(In, In->getName()+".not");
1052       return replaceInstUsesWith(CI, In);
1053     }
1054   }
1055 
1056   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1057     // If we know that only one bit of the LHS of the icmp can be set and we
1058     // have an equality comparison with zero or a power of 2, we can transform
1059     // the icmp and sext into bitwise/integer operations.
1060     if (ICI->hasOneUse() &&
1061         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1062       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1063 
1064       APInt KnownZeroMask(~Known.Zero);
1065       if (KnownZeroMask.isPowerOf2()) {
1066         Value *In = ICI->getOperand(0);
1067 
1068         // If the icmp tests for a known zero bit we can constant fold it.
1069         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1070           Value *V = Pred == ICmpInst::ICMP_NE ?
1071                        ConstantInt::getAllOnesValue(CI.getType()) :
1072                        ConstantInt::getNullValue(CI.getType());
1073           return replaceInstUsesWith(CI, V);
1074         }
1075 
1076         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1077           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1078           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1079           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1080           // Perform a right shift to place the desired bit in the LSB.
1081           if (ShiftAmt)
1082             In = Builder->CreateLShr(In,
1083                                      ConstantInt::get(In->getType(), ShiftAmt));
1084 
1085           // At this point "In" is either 1 or 0. Subtract 1 to turn
1086           // {1, 0} -> {0, -1}.
1087           In = Builder->CreateAdd(In,
1088                                   ConstantInt::getAllOnesValue(In->getType()),
1089                                   "sext");
1090         } else {
1091           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1092           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1093           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1094           // Perform a left shift to place the desired bit in the MSB.
1095           if (ShiftAmt)
1096             In = Builder->CreateShl(In,
1097                                     ConstantInt::get(In->getType(), ShiftAmt));
1098 
1099           // Distribute the bit over the whole bit width.
1100           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1101                                       KnownZeroMask.getBitWidth() - 1), "sext");
1102         }
1103 
1104         if (CI.getType() == In->getType())
1105           return replaceInstUsesWith(CI, In);
1106         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1107       }
1108     }
1109   }
1110 
1111   return nullptr;
1112 }
1113 
1114 /// Return true if we can take the specified value and return it as type Ty
1115 /// without inserting any new casts and without changing the value of the common
1116 /// low bits.  This is used by code that tries to promote integer operations to
1117 /// a wider types will allow us to eliminate the extension.
1118 ///
1119 /// This function works on both vectors and scalars.
1120 ///
1121 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1122   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1123          "Can't sign extend type to a smaller type");
1124   // If this is a constant, it can be trivially promoted.
1125   if (isa<Constant>(V))
1126     return true;
1127 
1128   Instruction *I = dyn_cast<Instruction>(V);
1129   if (!I) return false;
1130 
1131   // If this is a truncate from the dest type, we can trivially eliminate it.
1132   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1133     return true;
1134 
1135   // We can't extend or shrink something that has multiple uses: doing so would
1136   // require duplicating the instruction in general, which isn't profitable.
1137   if (!I->hasOneUse()) return false;
1138 
1139   switch (I->getOpcode()) {
1140   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1141   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1142   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1143     return true;
1144   case Instruction::And:
1145   case Instruction::Or:
1146   case Instruction::Xor:
1147   case Instruction::Add:
1148   case Instruction::Sub:
1149   case Instruction::Mul:
1150     // These operators can all arbitrarily be extended if their inputs can.
1151     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1152            canEvaluateSExtd(I->getOperand(1), Ty);
1153 
1154   //case Instruction::Shl:   TODO
1155   //case Instruction::LShr:  TODO
1156 
1157   case Instruction::Select:
1158     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1159            canEvaluateSExtd(I->getOperand(2), Ty);
1160 
1161   case Instruction::PHI: {
1162     // We can change a phi if we can change all operands.  Note that we never
1163     // get into trouble with cyclic PHIs here because we only consider
1164     // instructions with a single use.
1165     PHINode *PN = cast<PHINode>(I);
1166     for (Value *IncValue : PN->incoming_values())
1167       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1168     return true;
1169   }
1170   default:
1171     // TODO: Can handle more cases here.
1172     break;
1173   }
1174 
1175   return false;
1176 }
1177 
1178 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1179   // If this sign extend is only used by a truncate, let the truncate be
1180   // eliminated before we try to optimize this sext.
1181   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1182     return nullptr;
1183 
1184   if (Instruction *I = commonCastTransforms(CI))
1185     return I;
1186 
1187   Value *Src = CI.getOperand(0);
1188   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1189 
1190   // If we know that the value being extended is positive, we can use a zext
1191   // instead.
1192   KnownBits Known = computeKnownBits(Src, 0, &CI);
1193   if (Known.isNonNegative()) {
1194     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1195     return replaceInstUsesWith(CI, ZExt);
1196   }
1197 
1198   // Attempt to extend the entire input expression tree to the destination
1199   // type.   Only do this if the dest type is a simple type, don't convert the
1200   // expression tree to something weird like i93 unless the source is also
1201   // strange.
1202   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1203       canEvaluateSExtd(Src, DestTy)) {
1204     // Okay, we can transform this!  Insert the new expression now.
1205     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1206           " to avoid sign extend: " << CI << '\n');
1207     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1208     assert(Res->getType() == DestTy);
1209 
1210     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1211     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1212 
1213     // If the high bits are already filled with sign bit, just replace this
1214     // cast with the result.
1215     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1216       return replaceInstUsesWith(CI, Res);
1217 
1218     // We need to emit a shl + ashr to do the sign extend.
1219     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1220     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1221                                       ShAmt);
1222   }
1223 
1224   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1225   // into shifts.
1226   Value *X;
1227   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1228     // sext(trunc(X)) --> ashr(shl(X, C), C)
1229     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1230     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1231     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1232     return BinaryOperator::CreateAShr(Builder->CreateShl(X, ShAmt), ShAmt);
1233   }
1234 
1235   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1236     return transformSExtICmp(ICI, CI);
1237 
1238   // If the input is a shl/ashr pair of a same constant, then this is a sign
1239   // extension from a smaller value.  If we could trust arbitrary bitwidth
1240   // integers, we could turn this into a truncate to the smaller bit and then
1241   // use a sext for the whole extension.  Since we don't, look deeper and check
1242   // for a truncate.  If the source and dest are the same type, eliminate the
1243   // trunc and extend and just do shifts.  For example, turn:
1244   //   %a = trunc i32 %i to i8
1245   //   %b = shl i8 %a, 6
1246   //   %c = ashr i8 %b, 6
1247   //   %d = sext i8 %c to i32
1248   // into:
1249   //   %a = shl i32 %i, 30
1250   //   %d = ashr i32 %a, 30
1251   Value *A = nullptr;
1252   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1253   ConstantInt *BA = nullptr, *CA = nullptr;
1254   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1255                         m_ConstantInt(CA))) &&
1256       BA == CA && A->getType() == CI.getType()) {
1257     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1258     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1259     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1260     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1261     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1262     return BinaryOperator::CreateAShr(A, ShAmtV);
1263   }
1264 
1265   return nullptr;
1266 }
1267 
1268 
1269 /// Return a Constant* for the specified floating-point constant if it fits
1270 /// in the specified FP type without changing its value.
1271 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1272   bool losesInfo;
1273   APFloat F = CFP->getValueAPF();
1274   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1275   if (!losesInfo)
1276     return ConstantFP::get(CFP->getContext(), F);
1277   return nullptr;
1278 }
1279 
1280 /// Look through floating-point extensions until we get the source value.
1281 static Value *lookThroughFPExtensions(Value *V) {
1282   while (auto *FPExt = dyn_cast<FPExtInst>(V))
1283     V = FPExt->getOperand(0);
1284 
1285   // If this value is a constant, return the constant in the smallest FP type
1286   // that can accurately represent it.  This allows us to turn
1287   // (float)((double)X+2.0) into x+2.0f.
1288   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
1289     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1290       return V;  // No constant folding of this.
1291     // See if the value can be truncated to half and then reextended.
1292     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
1293       return V;
1294     // See if the value can be truncated to float and then reextended.
1295     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
1296       return V;
1297     if (CFP->getType()->isDoubleTy())
1298       return V;  // Won't shrink.
1299     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
1300       return V;
1301     // Don't try to shrink to various long double types.
1302   }
1303 
1304   return V;
1305 }
1306 
1307 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1308   if (Instruction *I = commonCastTransforms(CI))
1309     return I;
1310   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1311   // simplify this expression to avoid one or more of the trunc/extend
1312   // operations if we can do so without changing the numerical results.
1313   //
1314   // The exact manner in which the widths of the operands interact to limit
1315   // what we can and cannot do safely varies from operation to operation, and
1316   // is explained below in the various case statements.
1317   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1318   if (OpI && OpI->hasOneUse()) {
1319     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1320     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1321     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1322     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1323     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1324     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1325     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1326     switch (OpI->getOpcode()) {
1327       default: break;
1328       case Instruction::FAdd:
1329       case Instruction::FSub:
1330         // For addition and subtraction, the infinitely precise result can
1331         // essentially be arbitrarily wide; proving that double rounding
1332         // will not occur because the result of OpI is exact (as we will for
1333         // FMul, for example) is hopeless.  However, we *can* nonetheless
1334         // frequently know that double rounding cannot occur (or that it is
1335         // innocuous) by taking advantage of the specific structure of
1336         // infinitely-precise results that admit double rounding.
1337         //
1338         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1339         // to represent both sources, we can guarantee that the double
1340         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1341         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1342         // for proof of this fact).
1343         //
1344         // Note: Figueroa does not consider the case where DstFormat !=
1345         // SrcFormat.  It's possible (likely even!) that this analysis
1346         // could be tightened for those cases, but they are rare (the main
1347         // case of interest here is (float)((double)float + float)).
1348         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1349           if (LHSOrig->getType() != CI.getType())
1350             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1351           if (RHSOrig->getType() != CI.getType())
1352             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1353           Instruction *RI =
1354             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1355           RI->copyFastMathFlags(OpI);
1356           return RI;
1357         }
1358         break;
1359       case Instruction::FMul:
1360         // For multiplication, the infinitely precise result has at most
1361         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1362         // that such a value can be exactly represented, then no double
1363         // rounding can possibly occur; we can safely perform the operation
1364         // in the destination format if it can represent both sources.
1365         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1366           if (LHSOrig->getType() != CI.getType())
1367             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1368           if (RHSOrig->getType() != CI.getType())
1369             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1370           Instruction *RI =
1371             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1372           RI->copyFastMathFlags(OpI);
1373           return RI;
1374         }
1375         break;
1376       case Instruction::FDiv:
1377         // For division, we use again use the bound from Figueroa's
1378         // dissertation.  I am entirely certain that this bound can be
1379         // tightened in the unbalanced operand case by an analysis based on
1380         // the diophantine rational approximation bound, but the well-known
1381         // condition used here is a good conservative first pass.
1382         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1383         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1384           if (LHSOrig->getType() != CI.getType())
1385             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1386           if (RHSOrig->getType() != CI.getType())
1387             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1388           Instruction *RI =
1389             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1390           RI->copyFastMathFlags(OpI);
1391           return RI;
1392         }
1393         break;
1394       case Instruction::FRem:
1395         // Remainder is straightforward.  Remainder is always exact, so the
1396         // type of OpI doesn't enter into things at all.  We simply evaluate
1397         // in whichever source type is larger, then convert to the
1398         // destination type.
1399         if (SrcWidth == OpWidth)
1400           break;
1401         if (LHSWidth < SrcWidth)
1402           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1403         else if (RHSWidth <= SrcWidth)
1404           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1405         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1406           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1407           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1408             RI->copyFastMathFlags(OpI);
1409           return CastInst::CreateFPCast(ExactResult, CI.getType());
1410         }
1411     }
1412 
1413     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1414     if (BinaryOperator::isFNeg(OpI)) {
1415       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1416                                                  CI.getType());
1417       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1418       RI->copyFastMathFlags(OpI);
1419       return RI;
1420     }
1421   }
1422 
1423   // (fptrunc (select cond, R1, Cst)) -->
1424   // (select cond, (fptrunc R1), (fptrunc Cst))
1425   //
1426   //  - but only if this isn't part of a min/max operation, else we'll
1427   // ruin min/max canonical form which is to have the select and
1428   // compare's operands be of the same type with no casts to look through.
1429   Value *LHS, *RHS;
1430   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1431   if (SI &&
1432       (isa<ConstantFP>(SI->getOperand(1)) ||
1433        isa<ConstantFP>(SI->getOperand(2))) &&
1434       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1435     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1436                                              CI.getType());
1437     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1438                                              CI.getType());
1439     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1440   }
1441 
1442   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1443   if (II) {
1444     switch (II->getIntrinsicID()) {
1445     default: break;
1446     case Intrinsic::fabs:
1447     case Intrinsic::ceil:
1448     case Intrinsic::floor:
1449     case Intrinsic::rint:
1450     case Intrinsic::round:
1451     case Intrinsic::nearbyint:
1452     case Intrinsic::trunc: {
1453       Value *Src = II->getArgOperand(0);
1454       if (!Src->hasOneUse())
1455         break;
1456 
1457       // Except for fabs, this transformation requires the input of the unary FP
1458       // operation to be itself an fpext from the type to which we're
1459       // truncating.
1460       if (II->getIntrinsicID() != Intrinsic::fabs) {
1461         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1462         if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
1463           break;
1464       }
1465 
1466       // Do unary FP operation on smaller type.
1467       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1468       Value *InnerTrunc = Builder->CreateFPTrunc(Src, CI.getType());
1469       Type *IntrinsicType[] = { CI.getType() };
1470       Function *Overload = Intrinsic::getDeclaration(
1471         CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1472 
1473       SmallVector<OperandBundleDef, 1> OpBundles;
1474       II->getOperandBundlesAsDefs(OpBundles);
1475 
1476       Value *Args[] = { InnerTrunc };
1477       CallInst *NewCI =  CallInst::Create(Overload, Args,
1478                                           OpBundles, II->getName());
1479       NewCI->copyFastMathFlags(II);
1480       return NewCI;
1481     }
1482     }
1483   }
1484 
1485   if (Instruction *I = shrinkInsertElt(CI, *Builder))
1486     return I;
1487 
1488   return nullptr;
1489 }
1490 
1491 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1492   return commonCastTransforms(CI);
1493 }
1494 
1495 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1496 // This is safe if the intermediate type has enough bits in its mantissa to
1497 // accurately represent all values of X.  For example, this won't work with
1498 // i64 -> float -> i64.
1499 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1500   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1501     return nullptr;
1502   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1503 
1504   Value *SrcI = OpI->getOperand(0);
1505   Type *FITy = FI.getType();
1506   Type *OpITy = OpI->getType();
1507   Type *SrcTy = SrcI->getType();
1508   bool IsInputSigned = isa<SIToFPInst>(OpI);
1509   bool IsOutputSigned = isa<FPToSIInst>(FI);
1510 
1511   // We can safely assume the conversion won't overflow the output range,
1512   // because (for example) (uint8_t)18293.f is undefined behavior.
1513 
1514   // Since we can assume the conversion won't overflow, our decision as to
1515   // whether the input will fit in the float should depend on the minimum
1516   // of the input range and output range.
1517 
1518   // This means this is also safe for a signed input and unsigned output, since
1519   // a negative input would lead to undefined behavior.
1520   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1521   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1522   int ActualSize = std::min(InputSize, OutputSize);
1523 
1524   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1525     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1526       if (IsInputSigned && IsOutputSigned)
1527         return new SExtInst(SrcI, FITy);
1528       return new ZExtInst(SrcI, FITy);
1529     }
1530     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1531       return new TruncInst(SrcI, FITy);
1532     if (SrcTy == FITy)
1533       return replaceInstUsesWith(FI, SrcI);
1534     return new BitCastInst(SrcI, FITy);
1535   }
1536   return nullptr;
1537 }
1538 
1539 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1540   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1541   if (!OpI)
1542     return commonCastTransforms(FI);
1543 
1544   if (Instruction *I = FoldItoFPtoI(FI))
1545     return I;
1546 
1547   return commonCastTransforms(FI);
1548 }
1549 
1550 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1551   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1552   if (!OpI)
1553     return commonCastTransforms(FI);
1554 
1555   if (Instruction *I = FoldItoFPtoI(FI))
1556     return I;
1557 
1558   return commonCastTransforms(FI);
1559 }
1560 
1561 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1562   return commonCastTransforms(CI);
1563 }
1564 
1565 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1566   return commonCastTransforms(CI);
1567 }
1568 
1569 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1570   // If the source integer type is not the intptr_t type for this target, do a
1571   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1572   // cast to be exposed to other transforms.
1573   unsigned AS = CI.getAddressSpace();
1574   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1575       DL.getPointerSizeInBits(AS)) {
1576     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1577     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1578       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1579 
1580     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1581     return new IntToPtrInst(P, CI.getType());
1582   }
1583 
1584   if (Instruction *I = commonCastTransforms(CI))
1585     return I;
1586 
1587   return nullptr;
1588 }
1589 
1590 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1591 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1592   Value *Src = CI.getOperand(0);
1593 
1594   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1595     // If casting the result of a getelementptr instruction with no offset, turn
1596     // this into a cast of the original pointer!
1597     if (GEP->hasAllZeroIndices() &&
1598         // If CI is an addrspacecast and GEP changes the poiner type, merging
1599         // GEP into CI would undo canonicalizing addrspacecast with different
1600         // pointer types, causing infinite loops.
1601         (!isa<AddrSpaceCastInst>(CI) ||
1602          GEP->getType() == GEP->getPointerOperandType())) {
1603       // Changing the cast operand is usually not a good idea but it is safe
1604       // here because the pointer operand is being replaced with another
1605       // pointer operand so the opcode doesn't need to change.
1606       Worklist.Add(GEP);
1607       CI.setOperand(0, GEP->getOperand(0));
1608       return &CI;
1609     }
1610   }
1611 
1612   return commonCastTransforms(CI);
1613 }
1614 
1615 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1616   // If the destination integer type is not the intptr_t type for this target,
1617   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1618   // to be exposed to other transforms.
1619 
1620   Type *Ty = CI.getType();
1621   unsigned AS = CI.getPointerAddressSpace();
1622 
1623   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1624     return commonPointerCastTransforms(CI);
1625 
1626   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1627   if (Ty->isVectorTy()) // Handle vectors of pointers.
1628     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1629 
1630   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1631   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1632 }
1633 
1634 /// This input value (which is known to have vector type) is being zero extended
1635 /// or truncated to the specified vector type.
1636 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1637 ///
1638 /// The source and destination vector types may have different element types.
1639 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1640                                          InstCombiner &IC) {
1641   // We can only do this optimization if the output is a multiple of the input
1642   // element size, or the input is a multiple of the output element size.
1643   // Convert the input type to have the same element type as the output.
1644   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1645 
1646   if (SrcTy->getElementType() != DestTy->getElementType()) {
1647     // The input types don't need to be identical, but for now they must be the
1648     // same size.  There is no specific reason we couldn't handle things like
1649     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1650     // there yet.
1651     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1652         DestTy->getElementType()->getPrimitiveSizeInBits())
1653       return nullptr;
1654 
1655     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1656     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1657   }
1658 
1659   // Now that the element types match, get the shuffle mask and RHS of the
1660   // shuffle to use, which depends on whether we're increasing or decreasing the
1661   // size of the input.
1662   SmallVector<uint32_t, 16> ShuffleMask;
1663   Value *V2;
1664 
1665   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1666     // If we're shrinking the number of elements, just shuffle in the low
1667     // elements from the input and use undef as the second shuffle input.
1668     V2 = UndefValue::get(SrcTy);
1669     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1670       ShuffleMask.push_back(i);
1671 
1672   } else {
1673     // If we're increasing the number of elements, shuffle in all of the
1674     // elements from InVal and fill the rest of the result elements with zeros
1675     // from a constant zero.
1676     V2 = Constant::getNullValue(SrcTy);
1677     unsigned SrcElts = SrcTy->getNumElements();
1678     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1679       ShuffleMask.push_back(i);
1680 
1681     // The excess elements reference the first element of the zero input.
1682     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1683       ShuffleMask.push_back(SrcElts);
1684   }
1685 
1686   return new ShuffleVectorInst(InVal, V2,
1687                                ConstantDataVector::get(V2->getContext(),
1688                                                        ShuffleMask));
1689 }
1690 
1691 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1692   return Value % Ty->getPrimitiveSizeInBits() == 0;
1693 }
1694 
1695 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1696   return Value / Ty->getPrimitiveSizeInBits();
1697 }
1698 
1699 /// V is a value which is inserted into a vector of VecEltTy.
1700 /// Look through the value to see if we can decompose it into
1701 /// insertions into the vector.  See the example in the comment for
1702 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1703 /// The type of V is always a non-zero multiple of VecEltTy's size.
1704 /// Shift is the number of bits between the lsb of V and the lsb of
1705 /// the vector.
1706 ///
1707 /// This returns false if the pattern can't be matched or true if it can,
1708 /// filling in Elements with the elements found here.
1709 static bool collectInsertionElements(Value *V, unsigned Shift,
1710                                      SmallVectorImpl<Value *> &Elements,
1711                                      Type *VecEltTy, bool isBigEndian) {
1712   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1713          "Shift should be a multiple of the element type size");
1714 
1715   // Undef values never contribute useful bits to the result.
1716   if (isa<UndefValue>(V)) return true;
1717 
1718   // If we got down to a value of the right type, we win, try inserting into the
1719   // right element.
1720   if (V->getType() == VecEltTy) {
1721     // Inserting null doesn't actually insert any elements.
1722     if (Constant *C = dyn_cast<Constant>(V))
1723       if (C->isNullValue())
1724         return true;
1725 
1726     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1727     if (isBigEndian)
1728       ElementIndex = Elements.size() - ElementIndex - 1;
1729 
1730     // Fail if multiple elements are inserted into this slot.
1731     if (Elements[ElementIndex])
1732       return false;
1733 
1734     Elements[ElementIndex] = V;
1735     return true;
1736   }
1737 
1738   if (Constant *C = dyn_cast<Constant>(V)) {
1739     // Figure out the # elements this provides, and bitcast it or slice it up
1740     // as required.
1741     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1742                                         VecEltTy);
1743     // If the constant is the size of a vector element, we just need to bitcast
1744     // it to the right type so it gets properly inserted.
1745     if (NumElts == 1)
1746       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1747                                       Shift, Elements, VecEltTy, isBigEndian);
1748 
1749     // Okay, this is a constant that covers multiple elements.  Slice it up into
1750     // pieces and insert each element-sized piece into the vector.
1751     if (!isa<IntegerType>(C->getType()))
1752       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1753                                        C->getType()->getPrimitiveSizeInBits()));
1754     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1755     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1756 
1757     for (unsigned i = 0; i != NumElts; ++i) {
1758       unsigned ShiftI = Shift+i*ElementSize;
1759       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1760                                                                   ShiftI));
1761       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1762       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1763                                     isBigEndian))
1764         return false;
1765     }
1766     return true;
1767   }
1768 
1769   if (!V->hasOneUse()) return false;
1770 
1771   Instruction *I = dyn_cast<Instruction>(V);
1772   if (!I) return false;
1773   switch (I->getOpcode()) {
1774   default: return false; // Unhandled case.
1775   case Instruction::BitCast:
1776     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1777                                     isBigEndian);
1778   case Instruction::ZExt:
1779     if (!isMultipleOfTypeSize(
1780                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1781                               VecEltTy))
1782       return false;
1783     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1784                                     isBigEndian);
1785   case Instruction::Or:
1786     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1787                                     isBigEndian) &&
1788            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1789                                     isBigEndian);
1790   case Instruction::Shl: {
1791     // Must be shifting by a constant that is a multiple of the element size.
1792     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1793     if (!CI) return false;
1794     Shift += CI->getZExtValue();
1795     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1796     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1797                                     isBigEndian);
1798   }
1799 
1800   }
1801 }
1802 
1803 
1804 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1805 /// assemble the elements of the vector manually.
1806 /// Try to rip the code out and replace it with insertelements.  This is to
1807 /// optimize code like this:
1808 ///
1809 ///    %tmp37 = bitcast float %inc to i32
1810 ///    %tmp38 = zext i32 %tmp37 to i64
1811 ///    %tmp31 = bitcast float %inc5 to i32
1812 ///    %tmp32 = zext i32 %tmp31 to i64
1813 ///    %tmp33 = shl i64 %tmp32, 32
1814 ///    %ins35 = or i64 %tmp33, %tmp38
1815 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1816 ///
1817 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1818 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1819                                                 InstCombiner &IC) {
1820   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1821   Value *IntInput = CI.getOperand(0);
1822 
1823   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1824   if (!collectInsertionElements(IntInput, 0, Elements,
1825                                 DestVecTy->getElementType(),
1826                                 IC.getDataLayout().isBigEndian()))
1827     return nullptr;
1828 
1829   // If we succeeded, we know that all of the element are specified by Elements
1830   // or are zero if Elements has a null entry.  Recast this as a set of
1831   // insertions.
1832   Value *Result = Constant::getNullValue(CI.getType());
1833   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1834     if (!Elements[i]) continue;  // Unset element.
1835 
1836     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1837                                              IC.Builder->getInt32(i));
1838   }
1839 
1840   return Result;
1841 }
1842 
1843 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1844 /// vector followed by extract element. The backend tends to handle bitcasts of
1845 /// vectors better than bitcasts of scalars because vector registers are
1846 /// usually not type-specific like scalar integer or scalar floating-point.
1847 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1848                                               InstCombiner &IC,
1849                                               const DataLayout &DL) {
1850   // TODO: Create and use a pattern matcher for ExtractElementInst.
1851   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1852   if (!ExtElt || !ExtElt->hasOneUse())
1853     return nullptr;
1854 
1855   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1856   // type to extract from.
1857   Type *DestType = BitCast.getType();
1858   if (!VectorType::isValidElementType(DestType))
1859     return nullptr;
1860 
1861   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1862   auto *NewVecType = VectorType::get(DestType, NumElts);
1863   auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1864                                           NewVecType, "bc");
1865   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1866 }
1867 
1868 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
1869 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
1870                                             InstCombiner::BuilderTy &Builder) {
1871   Type *DestTy = BitCast.getType();
1872   BinaryOperator *BO;
1873   if (!DestTy->getScalarType()->isIntegerTy() ||
1874       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
1875       !BO->isBitwiseLogicOp())
1876     return nullptr;
1877 
1878   // FIXME: This transform is restricted to vector types to avoid backend
1879   // problems caused by creating potentially illegal operations. If a fix-up is
1880   // added to handle that situation, we can remove this check.
1881   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
1882     return nullptr;
1883 
1884   Value *X;
1885   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
1886       X->getType() == DestTy && !isa<Constant>(X)) {
1887     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
1888     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
1889     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
1890   }
1891 
1892   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
1893       X->getType() == DestTy && !isa<Constant>(X)) {
1894     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
1895     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1896     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
1897   }
1898 
1899   return nullptr;
1900 }
1901 
1902 /// Change the type of a select if we can eliminate a bitcast.
1903 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
1904                                       InstCombiner::BuilderTy &Builder) {
1905   Value *Cond, *TVal, *FVal;
1906   if (!match(BitCast.getOperand(0),
1907              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
1908     return nullptr;
1909 
1910   // A vector select must maintain the same number of elements in its operands.
1911   Type *CondTy = Cond->getType();
1912   Type *DestTy = BitCast.getType();
1913   if (CondTy->isVectorTy()) {
1914     if (!DestTy->isVectorTy())
1915       return nullptr;
1916     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
1917       return nullptr;
1918   }
1919 
1920   // FIXME: This transform is restricted from changing the select between
1921   // scalars and vectors to avoid backend problems caused by creating
1922   // potentially illegal operations. If a fix-up is added to handle that
1923   // situation, we can remove this check.
1924   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
1925     return nullptr;
1926 
1927   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
1928   Value *X;
1929   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
1930       !isa<Constant>(X)) {
1931     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
1932     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
1933     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
1934   }
1935 
1936   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
1937       !isa<Constant>(X)) {
1938     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
1939     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
1940     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
1941   }
1942 
1943   return nullptr;
1944 }
1945 
1946 /// Check if all users of CI are StoreInsts.
1947 static bool hasStoreUsersOnly(CastInst &CI) {
1948   for (User *U : CI.users()) {
1949     if (!isa<StoreInst>(U))
1950       return false;
1951   }
1952   return true;
1953 }
1954 
1955 /// This function handles following case
1956 ///
1957 ///     A  ->  B    cast
1958 ///     PHI
1959 ///     B  ->  A    cast
1960 ///
1961 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
1962 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
1963 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
1964   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
1965   if (hasStoreUsersOnly(CI))
1966     return nullptr;
1967 
1968   Value *Src = CI.getOperand(0);
1969   Type *SrcTy = Src->getType();         // Type B
1970   Type *DestTy = CI.getType();          // Type A
1971 
1972   SmallVector<PHINode *, 4> PhiWorklist;
1973   SmallSetVector<PHINode *, 4> OldPhiNodes;
1974 
1975   // Find all of the A->B casts and PHI nodes.
1976   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
1977   // OldPhiNodes is used to track all known PHI nodes, before adding a new
1978   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
1979   PhiWorklist.push_back(PN);
1980   OldPhiNodes.insert(PN);
1981   while (!PhiWorklist.empty()) {
1982     auto *OldPN = PhiWorklist.pop_back_val();
1983     for (Value *IncValue : OldPN->incoming_values()) {
1984       if (isa<Constant>(IncValue))
1985         continue;
1986 
1987       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
1988         // If there is a sequence of one or more load instructions, each loaded
1989         // value is used as address of later load instruction, bitcast is
1990         // necessary to change the value type, don't optimize it. For
1991         // simplicity we give up if the load address comes from another load.
1992         Value *Addr = LI->getOperand(0);
1993         if (Addr == &CI || isa<LoadInst>(Addr))
1994           return nullptr;
1995         if (LI->hasOneUse() && LI->isSimple())
1996           continue;
1997         // If a LoadInst has more than one use, changing the type of loaded
1998         // value may create another bitcast.
1999         return nullptr;
2000       }
2001 
2002       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2003         if (OldPhiNodes.insert(PNode))
2004           PhiWorklist.push_back(PNode);
2005         continue;
2006       }
2007 
2008       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2009       // We can't handle other instructions.
2010       if (!BCI)
2011         return nullptr;
2012 
2013       // Verify it's a A->B cast.
2014       Type *TyA = BCI->getOperand(0)->getType();
2015       Type *TyB = BCI->getType();
2016       if (TyA != DestTy || TyB != SrcTy)
2017         return nullptr;
2018     }
2019   }
2020 
2021   // For each old PHI node, create a corresponding new PHI node with a type A.
2022   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2023   for (auto *OldPN : OldPhiNodes) {
2024     Builder->SetInsertPoint(OldPN);
2025     PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands());
2026     NewPNodes[OldPN] = NewPN;
2027   }
2028 
2029   // Fill in the operands of new PHI nodes.
2030   for (auto *OldPN : OldPhiNodes) {
2031     PHINode *NewPN = NewPNodes[OldPN];
2032     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2033       Value *V = OldPN->getOperand(j);
2034       Value *NewV = nullptr;
2035       if (auto *C = dyn_cast<Constant>(V)) {
2036         NewV = ConstantExpr::getBitCast(C, DestTy);
2037       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2038         Builder->SetInsertPoint(LI->getNextNode());
2039         NewV = Builder->CreateBitCast(LI, DestTy);
2040         Worklist.Add(LI);
2041       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2042         NewV = BCI->getOperand(0);
2043       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2044         NewV = NewPNodes[PrevPN];
2045       }
2046       assert(NewV);
2047       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2048     }
2049   }
2050 
2051   // If there is a store with type B, change it to type A.
2052   for (User *U : PN->users()) {
2053     auto *SI = dyn_cast<StoreInst>(U);
2054     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2055       Builder->SetInsertPoint(SI);
2056       auto *NewBC =
2057           cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy));
2058       SI->setOperand(0, NewBC);
2059       Worklist.Add(SI);
2060       assert(hasStoreUsersOnly(*NewBC));
2061     }
2062   }
2063 
2064   return replaceInstUsesWith(CI, NewPNodes[PN]);
2065 }
2066 
2067 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2068   // If the operands are integer typed then apply the integer transforms,
2069   // otherwise just apply the common ones.
2070   Value *Src = CI.getOperand(0);
2071   Type *SrcTy = Src->getType();
2072   Type *DestTy = CI.getType();
2073 
2074   // Get rid of casts from one type to the same type. These are useless and can
2075   // be replaced by the operand.
2076   if (DestTy == Src->getType())
2077     return replaceInstUsesWith(CI, Src);
2078 
2079   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2080     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2081     Type *DstElTy = DstPTy->getElementType();
2082     Type *SrcElTy = SrcPTy->getElementType();
2083 
2084     // If we are casting a alloca to a pointer to a type of the same
2085     // size, rewrite the allocation instruction to allocate the "right" type.
2086     // There is no need to modify malloc calls because it is their bitcast that
2087     // needs to be cleaned up.
2088     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2089       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2090         return V;
2091 
2092     // When the type pointed to is not sized the cast cannot be
2093     // turned into a gep.
2094     Type *PointeeType =
2095         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2096     if (!PointeeType->isSized())
2097       return nullptr;
2098 
2099     // If the source and destination are pointers, and this cast is equivalent
2100     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2101     // This can enhance SROA and other transforms that want type-safe pointers.
2102     unsigned NumZeros = 0;
2103     while (SrcElTy != DstElTy &&
2104            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2105            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2106       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2107       ++NumZeros;
2108     }
2109 
2110     // If we found a path from the src to dest, create the getelementptr now.
2111     if (SrcElTy == DstElTy) {
2112       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
2113       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2114     }
2115   }
2116 
2117   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2118     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2119       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
2120       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2121                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2122       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2123     }
2124 
2125     if (isa<IntegerType>(SrcTy)) {
2126       // If this is a cast from an integer to vector, check to see if the input
2127       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2128       // the casts with a shuffle and (potentially) a bitcast.
2129       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2130         CastInst *SrcCast = cast<CastInst>(Src);
2131         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2132           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2133             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2134                                                cast<VectorType>(DestTy), *this))
2135               return I;
2136       }
2137 
2138       // If the input is an 'or' instruction, we may be doing shifts and ors to
2139       // assemble the elements of the vector manually.  Try to rip the code out
2140       // and replace it with insertelements.
2141       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2142         return replaceInstUsesWith(CI, V);
2143     }
2144   }
2145 
2146   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2147     if (SrcVTy->getNumElements() == 1) {
2148       // If our destination is not a vector, then make this a straight
2149       // scalar-scalar cast.
2150       if (!DestTy->isVectorTy()) {
2151         Value *Elem =
2152           Builder->CreateExtractElement(Src,
2153                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2154         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2155       }
2156 
2157       // Otherwise, see if our source is an insert. If so, then use the scalar
2158       // component directly.
2159       if (InsertElementInst *IEI =
2160             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2161         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2162                                 DestTy);
2163     }
2164   }
2165 
2166   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2167     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2168     // a bitcast to a vector with the same # elts.
2169     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2170         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2171         SVI->getType()->getNumElements() ==
2172         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2173       BitCastInst *Tmp;
2174       // If either of the operands is a cast from CI.getType(), then
2175       // evaluating the shuffle in the casted destination's type will allow
2176       // us to eliminate at least one cast.
2177       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2178            Tmp->getOperand(0)->getType() == DestTy) ||
2179           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2180            Tmp->getOperand(0)->getType() == DestTy)) {
2181         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
2182         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
2183         // Return a new shuffle vector.  Use the same element ID's, as we
2184         // know the vector types match #elts.
2185         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2186       }
2187     }
2188   }
2189 
2190   // Handle the A->B->A cast, and there is an intervening PHI node.
2191   if (PHINode *PN = dyn_cast<PHINode>(Src))
2192     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2193       return I;
2194 
2195   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
2196     return I;
2197 
2198   if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder))
2199     return I;
2200 
2201   if (Instruction *I = foldBitCastSelect(CI, *Builder))
2202     return I;
2203 
2204   if (SrcTy->isPointerTy())
2205     return commonPointerCastTransforms(CI);
2206   return commonCastTransforms(CI);
2207 }
2208 
2209 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2210   // If the destination pointer element type is not the same as the source's
2211   // first do a bitcast to the destination type, and then the addrspacecast.
2212   // This allows the cast to be exposed to other transforms.
2213   Value *Src = CI.getOperand(0);
2214   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2215   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2216 
2217   Type *DestElemTy = DestTy->getElementType();
2218   if (SrcTy->getElementType() != DestElemTy) {
2219     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2220     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2221       // Handle vectors of pointers.
2222       MidTy = VectorType::get(MidTy, VT->getNumElements());
2223     }
2224 
2225     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
2226     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2227   }
2228 
2229   return commonPointerCastTransforms(CI);
2230 }
2231