xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 5780611d7e044ef56c4214df2c236ef5e15545ab)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DIBuilder.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include <numeric>
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Analyze 'Val', seeing if it is a simple linear expression.
29 /// If so, decompose it, returning some value X, such that Val is
30 /// X*Scale+Offset.
31 ///
32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
33                                         uint64_t &Offset) {
34   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
35     Offset = CI->getZExtValue();
36     Scale  = 0;
37     return ConstantInt::get(Val->getType(), 0);
38   }
39 
40   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
41     // Cannot look past anything that might overflow.
42     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
43     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
44       Scale = 1;
45       Offset = 0;
46       return Val;
47     }
48 
49     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
50       if (I->getOpcode() == Instruction::Shl) {
51         // This is a value scaled by '1 << the shift amt'.
52         Scale = UINT64_C(1) << RHS->getZExtValue();
53         Offset = 0;
54         return I->getOperand(0);
55       }
56 
57       if (I->getOpcode() == Instruction::Mul) {
58         // This value is scaled by 'RHS'.
59         Scale = RHS->getZExtValue();
60         Offset = 0;
61         return I->getOperand(0);
62       }
63 
64       if (I->getOpcode() == Instruction::Add) {
65         // We have X+C.  Check to see if we really have (X*C2)+C1,
66         // where C1 is divisible by C2.
67         unsigned SubScale;
68         Value *SubVal =
69           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
70         Offset += RHS->getZExtValue();
71         Scale = SubScale;
72         return SubVal;
73       }
74     }
75   }
76 
77   // Otherwise, we can't look past this.
78   Scale = 1;
79   Offset = 0;
80   return Val;
81 }
82 
83 /// If we find a cast of an allocation instruction, try to eliminate the cast by
84 /// moving the type information into the alloc.
85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
86                                                        AllocaInst &AI) {
87   PointerType *PTy = cast<PointerType>(CI.getType());
88 
89   IRBuilderBase::InsertPointGuard Guard(Builder);
90   Builder.SetInsertPoint(&AI);
91 
92   // Get the type really allocated and the type casted to.
93   Type *AllocElTy = AI.getAllocatedType();
94   Type *CastElTy = PTy->getElementType();
95   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
96 
97   // This optimisation does not work for cases where the cast type
98   // is scalable and the allocated type is not. This because we need to
99   // know how many times the casted type fits into the allocated type.
100   // For the opposite case where the allocated type is scalable and the
101   // cast type is not this leads to poor code quality due to the
102   // introduction of 'vscale' into the calculations. It seems better to
103   // bail out for this case too until we've done a proper cost-benefit
104   // analysis.
105   bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
106   bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
107   if (AllocIsScalable != CastIsScalable) return nullptr;
108 
109   Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
110   Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
111   if (CastElTyAlign < AllocElTyAlign) return nullptr;
112 
113   // If the allocation has multiple uses, only promote it if we are strictly
114   // increasing the alignment of the resultant allocation.  If we keep it the
115   // same, we open the door to infinite loops of various kinds.
116   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
117 
118   // The alloc and cast types should be either both fixed or both scalable.
119   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
120   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
121   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
122 
123   // If the allocation has multiple uses, only promote it if we're not
124   // shrinking the amount of memory being allocated.
125   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
126   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
127   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
128 
129   // See if we can satisfy the modulus by pulling a scale out of the array
130   // size argument.
131   unsigned ArraySizeScale;
132   uint64_t ArrayOffset;
133   Value *NumElements = // See if the array size is a decomposable linear expr.
134     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
135 
136   // If we can now satisfy the modulus, by using a non-1 scale, we really can
137   // do the xform.
138   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
139       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
140 
141   // We don't currently support arrays of scalable types.
142   assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
143 
144   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
145   Value *Amt = nullptr;
146   if (Scale == 1) {
147     Amt = NumElements;
148   } else {
149     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
150     // Insert before the alloca, not before the cast.
151     Amt = Builder.CreateMul(Amt, NumElements);
152   }
153 
154   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
155     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
156                                   Offset, true);
157     Amt = Builder.CreateAdd(Amt, Off);
158   }
159 
160   AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
161   New->setAlignment(AI.getAlign());
162   New->takeName(&AI);
163   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
164 
165   // If the allocation has multiple real uses, insert a cast and change all
166   // things that used it to use the new cast.  This will also hack on CI, but it
167   // will die soon.
168   if (!AI.hasOneUse()) {
169     // New is the allocation instruction, pointer typed. AI is the original
170     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
171     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
172     replaceInstUsesWith(AI, NewCast);
173     eraseInstFromFunction(AI);
174   }
175   return replaceInstUsesWith(CI, New);
176 }
177 
178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
179 /// true for, actually insert the code to evaluate the expression.
180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
181                                                  bool isSigned) {
182   if (Constant *C = dyn_cast<Constant>(V)) {
183     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
184     // If we got a constantexpr back, try to simplify it with DL info.
185     return ConstantFoldConstant(C, DL, &TLI);
186   }
187 
188   // Otherwise, it must be an instruction.
189   Instruction *I = cast<Instruction>(V);
190   Instruction *Res = nullptr;
191   unsigned Opc = I->getOpcode();
192   switch (Opc) {
193   case Instruction::Add:
194   case Instruction::Sub:
195   case Instruction::Mul:
196   case Instruction::And:
197   case Instruction::Or:
198   case Instruction::Xor:
199   case Instruction::AShr:
200   case Instruction::LShr:
201   case Instruction::Shl:
202   case Instruction::UDiv:
203   case Instruction::URem: {
204     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
205     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
207     break;
208   }
209   case Instruction::Trunc:
210   case Instruction::ZExt:
211   case Instruction::SExt:
212     // If the source type of the cast is the type we're trying for then we can
213     // just return the source.  There's no need to insert it because it is not
214     // new.
215     if (I->getOperand(0)->getType() == Ty)
216       return I->getOperand(0);
217 
218     // Otherwise, must be the same type of cast, so just reinsert a new one.
219     // This also handles the case of zext(trunc(x)) -> zext(x).
220     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
221                                       Opc == Instruction::SExt);
222     break;
223   case Instruction::Select: {
224     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
225     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
226     Res = SelectInst::Create(I->getOperand(0), True, False);
227     break;
228   }
229   case Instruction::PHI: {
230     PHINode *OPN = cast<PHINode>(I);
231     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
232     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
233       Value *V =
234           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
235       NPN->addIncoming(V, OPN->getIncomingBlock(i));
236     }
237     Res = NPN;
238     break;
239   }
240   default:
241     // TODO: Can handle more cases here.
242     llvm_unreachable("Unreachable!");
243   }
244 
245   Res->takeName(I);
246   return InsertNewInstWith(Res, *I);
247 }
248 
249 Instruction::CastOps
250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
251                                        const CastInst *CI2) {
252   Type *SrcTy = CI1->getSrcTy();
253   Type *MidTy = CI1->getDestTy();
254   Type *DstTy = CI2->getDestTy();
255 
256   Instruction::CastOps firstOp = CI1->getOpcode();
257   Instruction::CastOps secondOp = CI2->getOpcode();
258   Type *SrcIntPtrTy =
259       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
260   Type *MidIntPtrTy =
261       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
262   Type *DstIntPtrTy =
263       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
264   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
265                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
266                                                 DstIntPtrTy);
267 
268   // We don't want to form an inttoptr or ptrtoint that converts to an integer
269   // type that differs from the pointer size.
270   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
271       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
272     Res = 0;
273 
274   return Instruction::CastOps(Res);
275 }
276 
277 /// Implement the transforms common to all CastInst visitors.
278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
279   Value *Src = CI.getOperand(0);
280   Type *Ty = CI.getType();
281 
282   // Try to eliminate a cast of a cast.
283   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
284     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
285       // The first cast (CSrc) is eliminable so we need to fix up or replace
286       // the second cast (CI). CSrc will then have a good chance of being dead.
287       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
288       // Point debug users of the dying cast to the new one.
289       if (CSrc->hasOneUse())
290         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
291       return Res;
292     }
293   }
294 
295   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
296     // We are casting a select. Try to fold the cast into the select if the
297     // select does not have a compare instruction with matching operand types
298     // or the select is likely better done in a narrow type.
299     // Creating a select with operands that are different sizes than its
300     // condition may inhibit other folds and lead to worse codegen.
301     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
302     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
303         (CI.getOpcode() == Instruction::Trunc &&
304          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
305       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
306         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
307         return NV;
308       }
309     }
310   }
311 
312   // If we are casting a PHI, then fold the cast into the PHI.
313   if (auto *PN = dyn_cast<PHINode>(Src)) {
314     // Don't do this if it would create a PHI node with an illegal type from a
315     // legal type.
316     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
317         shouldChangeType(CI.getSrcTy(), CI.getType()))
318       if (Instruction *NV = foldOpIntoPhi(CI, PN))
319         return NV;
320   }
321 
322   // Canonicalize a unary shuffle after the cast if neither operation changes
323   // the size or element size of the input vector.
324   // TODO: We could allow size-changing ops if that doesn't harm codegen.
325   // cast (shuffle X, Mask) --> shuffle (cast X), Mask
326   Value *X;
327   ArrayRef<int> Mask;
328   if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
329     // TODO: Allow scalable vectors?
330     auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
331     auto *DestTy = dyn_cast<FixedVectorType>(Ty);
332     if (SrcTy && DestTy &&
333         SrcTy->getNumElements() == DestTy->getNumElements() &&
334         SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
335       Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
336       return new ShuffleVectorInst(CastX, UndefValue::get(DestTy), Mask);
337     }
338   }
339 
340   return nullptr;
341 }
342 
343 /// Constants and extensions/truncates from the destination type are always
344 /// free to be evaluated in that type. This is a helper for canEvaluate*.
345 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
346   if (isa<Constant>(V))
347     return true;
348   Value *X;
349   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
350       X->getType() == Ty)
351     return true;
352 
353   return false;
354 }
355 
356 /// Filter out values that we can not evaluate in the destination type for free.
357 /// This is a helper for canEvaluate*.
358 static bool canNotEvaluateInType(Value *V, Type *Ty) {
359   assert(!isa<Constant>(V) && "Constant should already be handled.");
360   if (!isa<Instruction>(V))
361     return true;
362   // We don't extend or shrink something that has multiple uses --  doing so
363   // would require duplicating the instruction which isn't profitable.
364   if (!V->hasOneUse())
365     return true;
366 
367   return false;
368 }
369 
370 /// Return true if we can evaluate the specified expression tree as type Ty
371 /// instead of its larger type, and arrive with the same value.
372 /// This is used by code that tries to eliminate truncates.
373 ///
374 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
375 /// can be computed by computing V in the smaller type.  If V is an instruction,
376 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
377 /// makes sense if x and y can be efficiently truncated.
378 ///
379 /// This function works on both vectors and scalars.
380 ///
381 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
382                                  Instruction *CxtI) {
383   if (canAlwaysEvaluateInType(V, Ty))
384     return true;
385   if (canNotEvaluateInType(V, Ty))
386     return false;
387 
388   auto *I = cast<Instruction>(V);
389   Type *OrigTy = V->getType();
390   switch (I->getOpcode()) {
391   case Instruction::Add:
392   case Instruction::Sub:
393   case Instruction::Mul:
394   case Instruction::And:
395   case Instruction::Or:
396   case Instruction::Xor:
397     // These operators can all arbitrarily be extended or truncated.
398     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
399            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
400 
401   case Instruction::UDiv:
402   case Instruction::URem: {
403     // UDiv and URem can be truncated if all the truncated bits are zero.
404     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
405     uint32_t BitWidth = Ty->getScalarSizeInBits();
406     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
407     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
408     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
409         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
410       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
411              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
412     }
413     break;
414   }
415   case Instruction::Shl: {
416     // If we are truncating the result of this SHL, and if it's a shift of an
417     // inrange amount, we can always perform a SHL in a smaller type.
418     uint32_t BitWidth = Ty->getScalarSizeInBits();
419     KnownBits AmtKnownBits =
420         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
421     if (AmtKnownBits.getMaxValue().ult(BitWidth))
422       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
423              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
424     break;
425   }
426   case Instruction::LShr: {
427     // If this is a truncate of a logical shr, we can truncate it to a smaller
428     // lshr iff we know that the bits we would otherwise be shifting in are
429     // already zeros.
430     // TODO: It is enough to check that the bits we would be shifting in are
431     //       zero - use AmtKnownBits.getMaxValue().
432     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
433     uint32_t BitWidth = Ty->getScalarSizeInBits();
434     KnownBits AmtKnownBits =
435         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
437     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
438         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
439       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
440              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
441     }
442     break;
443   }
444   case Instruction::AShr: {
445     // If this is a truncate of an arithmetic shr, we can truncate it to a
446     // smaller ashr iff we know that all the bits from the sign bit of the
447     // original type and the sign bit of the truncate type are similar.
448     // TODO: It is enough to check that the bits we would be shifting in are
449     //       similar to sign bit of the truncate type.
450     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
451     uint32_t BitWidth = Ty->getScalarSizeInBits();
452     KnownBits AmtKnownBits =
453         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
454     unsigned ShiftedBits = OrigBitWidth - BitWidth;
455     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
456         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
457       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
458              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
459     break;
460   }
461   case Instruction::Trunc:
462     // trunc(trunc(x)) -> trunc(x)
463     return true;
464   case Instruction::ZExt:
465   case Instruction::SExt:
466     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
467     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
468     return true;
469   case Instruction::Select: {
470     SelectInst *SI = cast<SelectInst>(I);
471     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
472            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
473   }
474   case Instruction::PHI: {
475     // We can change a phi if we can change all operands.  Note that we never
476     // get into trouble with cyclic PHIs here because we only consider
477     // instructions with a single use.
478     PHINode *PN = cast<PHINode>(I);
479     for (Value *IncValue : PN->incoming_values())
480       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
481         return false;
482     return true;
483   }
484   default:
485     // TODO: Can handle more cases here.
486     break;
487   }
488 
489   return false;
490 }
491 
492 /// Given a vector that is bitcast to an integer, optionally logically
493 /// right-shifted, and truncated, convert it to an extractelement.
494 /// Example (big endian):
495 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
496 ///   --->
497 ///   extractelement <4 x i32> %X, 1
498 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
499                                          InstCombinerImpl &IC) {
500   Value *TruncOp = Trunc.getOperand(0);
501   Type *DestType = Trunc.getType();
502   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
503     return nullptr;
504 
505   Value *VecInput = nullptr;
506   ConstantInt *ShiftVal = nullptr;
507   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
508                                   m_LShr(m_BitCast(m_Value(VecInput)),
509                                          m_ConstantInt(ShiftVal)))) ||
510       !isa<VectorType>(VecInput->getType()))
511     return nullptr;
512 
513   VectorType *VecType = cast<VectorType>(VecInput->getType());
514   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
515   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
516   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
517 
518   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
519     return nullptr;
520 
521   // If the element type of the vector doesn't match the result type,
522   // bitcast it to a vector type that we can extract from.
523   unsigned NumVecElts = VecWidth / DestWidth;
524   if (VecType->getElementType() != DestType) {
525     VecType = FixedVectorType::get(DestType, NumVecElts);
526     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
527   }
528 
529   unsigned Elt = ShiftAmount / DestWidth;
530   if (IC.getDataLayout().isBigEndian())
531     Elt = NumVecElts - 1 - Elt;
532 
533   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
534 }
535 
536 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
537 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
538 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
539   assert((isa<VectorType>(Trunc.getSrcTy()) ||
540           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
541          "Don't narrow to an illegal scalar type");
542 
543   // Bail out on strange types. It is possible to handle some of these patterns
544   // even with non-power-of-2 sizes, but it is not a likely scenario.
545   Type *DestTy = Trunc.getType();
546   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
547   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
548   if (!isPowerOf2_32(NarrowWidth))
549     return nullptr;
550 
551   // First, find an or'd pair of opposite shifts:
552   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
553   BinaryOperator *Or0, *Or1;
554   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
555     return nullptr;
556 
557   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
558   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
559       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
560       Or0->getOpcode() == Or1->getOpcode())
561     return nullptr;
562 
563   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
564   if (Or0->getOpcode() == BinaryOperator::LShr) {
565     std::swap(Or0, Or1);
566     std::swap(ShVal0, ShVal1);
567     std::swap(ShAmt0, ShAmt1);
568   }
569   assert(Or0->getOpcode() == BinaryOperator::Shl &&
570          Or1->getOpcode() == BinaryOperator::LShr &&
571          "Illegal or(shift,shift) pair");
572 
573   // Match the shift amount operands for a funnel/rotate pattern. This always
574   // matches a subtraction on the R operand.
575   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
576     // The shift amounts may add up to the narrow bit width:
577     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
578     // If this is a funnel shift (different operands are shifted), then the
579     // shift amount can not over-shift (create poison) in the narrow type.
580     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
581     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
582     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
583       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
584         return L;
585 
586     // The following patterns currently only work for rotation patterns.
587     // TODO: Add more general funnel-shift compatible patterns.
588     if (ShVal0 != ShVal1)
589       return nullptr;
590 
591     // The shift amount may be masked with negation:
592     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
593     Value *X;
594     unsigned Mask = Width - 1;
595     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
596         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
597       return X;
598 
599     // Same as above, but the shift amount may be extended after masking:
600     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
601         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
602       return X;
603 
604     return nullptr;
605   };
606 
607   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
608   bool IsFshl = true; // Sub on LSHR.
609   if (!ShAmt) {
610     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
611     IsFshl = false; // Sub on SHL.
612   }
613   if (!ShAmt)
614     return nullptr;
615 
616   // The right-shifted value must have high zeros in the wide type (for example
617   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
618   // truncated, so those do not matter.
619   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
620   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
621     return nullptr;
622 
623   // We have an unnecessarily wide rotate!
624   // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
625   // Narrow the inputs and convert to funnel shift intrinsic:
626   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
627   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
628   Value *X, *Y;
629   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
630   if (ShVal0 != ShVal1)
631     Y = Builder.CreateTrunc(ShVal1, DestTy);
632   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
633   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
634   return CallInst::Create(F, {X, Y, NarrowShAmt});
635 }
636 
637 /// Try to narrow the width of math or bitwise logic instructions by pulling a
638 /// truncate ahead of binary operators.
639 /// TODO: Transforms for truncated shifts should be moved into here.
640 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
641   Type *SrcTy = Trunc.getSrcTy();
642   Type *DestTy = Trunc.getType();
643   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
644     return nullptr;
645 
646   BinaryOperator *BinOp;
647   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
648     return nullptr;
649 
650   Value *BinOp0 = BinOp->getOperand(0);
651   Value *BinOp1 = BinOp->getOperand(1);
652   switch (BinOp->getOpcode()) {
653   case Instruction::And:
654   case Instruction::Or:
655   case Instruction::Xor:
656   case Instruction::Add:
657   case Instruction::Sub:
658   case Instruction::Mul: {
659     Constant *C;
660     if (match(BinOp0, m_Constant(C))) {
661       // trunc (binop C, X) --> binop (trunc C', X)
662       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
663       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
664       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
665     }
666     if (match(BinOp1, m_Constant(C))) {
667       // trunc (binop X, C) --> binop (trunc X, C')
668       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
669       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
670       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
671     }
672     Value *X;
673     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
674       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
675       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
676       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
677     }
678     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
679       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
680       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
681       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
682     }
683     break;
684   }
685 
686   default: break;
687   }
688 
689   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
690     return NarrowOr;
691 
692   return nullptr;
693 }
694 
695 /// Try to narrow the width of a splat shuffle. This could be generalized to any
696 /// shuffle with a constant operand, but we limit the transform to avoid
697 /// creating a shuffle type that targets may not be able to lower effectively.
698 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
699                                        InstCombiner::BuilderTy &Builder) {
700   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
701   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
702       is_splat(Shuf->getShuffleMask()) &&
703       Shuf->getType() == Shuf->getOperand(0)->getType()) {
704     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
705     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
706     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
707     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
708   }
709 
710   return nullptr;
711 }
712 
713 /// Try to narrow the width of an insert element. This could be generalized for
714 /// any vector constant, but we limit the transform to insertion into undef to
715 /// avoid potential backend problems from unsupported insertion widths. This
716 /// could also be extended to handle the case of inserting a scalar constant
717 /// into a vector variable.
718 static Instruction *shrinkInsertElt(CastInst &Trunc,
719                                     InstCombiner::BuilderTy &Builder) {
720   Instruction::CastOps Opcode = Trunc.getOpcode();
721   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
722          "Unexpected instruction for shrinking");
723 
724   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
725   if (!InsElt || !InsElt->hasOneUse())
726     return nullptr;
727 
728   Type *DestTy = Trunc.getType();
729   Type *DestScalarTy = DestTy->getScalarType();
730   Value *VecOp = InsElt->getOperand(0);
731   Value *ScalarOp = InsElt->getOperand(1);
732   Value *Index = InsElt->getOperand(2);
733 
734   if (match(VecOp, m_Undef())) {
735     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
736     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
737     UndefValue *NarrowUndef = UndefValue::get(DestTy);
738     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
739     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
740   }
741 
742   return nullptr;
743 }
744 
745 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
746   if (Instruction *Result = commonCastTransforms(Trunc))
747     return Result;
748 
749   Value *Src = Trunc.getOperand(0);
750   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
751   unsigned DestWidth = DestTy->getScalarSizeInBits();
752   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
753 
754   // Attempt to truncate the entire input expression tree to the destination
755   // type.   Only do this if the dest type is a simple type, don't convert the
756   // expression tree to something weird like i93 unless the source is also
757   // strange.
758   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
759       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
760 
761     // If this cast is a truncate, evaluting in a different type always
762     // eliminates the cast, so it is always a win.
763     LLVM_DEBUG(
764         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
765                   " to avoid cast: "
766                << Trunc << '\n');
767     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
768     assert(Res->getType() == DestTy);
769     return replaceInstUsesWith(Trunc, Res);
770   }
771 
772   // For integer types, check if we can shorten the entire input expression to
773   // DestWidth * 2, which won't allow removing the truncate, but reducing the
774   // width may enable further optimizations, e.g. allowing for larger
775   // vectorization factors.
776   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
777     if (DestWidth * 2 < SrcWidth) {
778       auto *NewDestTy = DestITy->getExtendedType();
779       if (shouldChangeType(SrcTy, NewDestTy) &&
780           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
781         LLVM_DEBUG(
782             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
783                       " to reduce the width of operand of"
784                    << Trunc << '\n');
785         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
786         return new TruncInst(Res, DestTy);
787       }
788     }
789   }
790 
791   // Test if the trunc is the user of a select which is part of a
792   // minimum or maximum operation. If so, don't do any more simplification.
793   // Even simplifying demanded bits can break the canonical form of a
794   // min/max.
795   Value *LHS, *RHS;
796   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
797     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
798       return nullptr;
799 
800   // See if we can simplify any instructions used by the input whose sole
801   // purpose is to compute bits we don't care about.
802   if (SimplifyDemandedInstructionBits(Trunc))
803     return &Trunc;
804 
805   if (DestWidth == 1) {
806     Value *Zero = Constant::getNullValue(SrcTy);
807     if (DestTy->isIntegerTy()) {
808       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
809       // TODO: We canonicalize to more instructions here because we are probably
810       // lacking equivalent analysis for trunc relative to icmp. There may also
811       // be codegen concerns. If those trunc limitations were removed, we could
812       // remove this transform.
813       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
814       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
815     }
816 
817     // For vectors, we do not canonicalize all truncs to icmp, so optimize
818     // patterns that would be covered within visitICmpInst.
819     Value *X;
820     Constant *C;
821     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
822       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
823       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
824       Constant *MaskC = ConstantExpr::getShl(One, C);
825       Value *And = Builder.CreateAnd(X, MaskC);
826       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
827     }
828     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
829                                    m_Deferred(X))))) {
830       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
831       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
832       Constant *MaskC = ConstantExpr::getShl(One, C);
833       MaskC = ConstantExpr::getOr(MaskC, One);
834       Value *And = Builder.CreateAnd(X, MaskC);
835       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
836     }
837   }
838 
839   Value *A;
840   Constant *C;
841   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
842     unsigned AWidth = A->getType()->getScalarSizeInBits();
843     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
844     auto *OldSh = cast<Instruction>(Src);
845     bool IsExact = OldSh->isExact();
846 
847     // If the shift is small enough, all zero bits created by the shift are
848     // removed by the trunc.
849     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
850                                     APInt(SrcWidth, MaxShiftAmt)))) {
851       // trunc (lshr (sext A), C) --> ashr A, C
852       if (A->getType() == DestTy) {
853         Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
854         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
855         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
856         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
857         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
858                        : BinaryOperator::CreateAShr(A, ShAmt);
859       }
860       // The types are mismatched, so create a cast after shifting:
861       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
862       if (Src->hasOneUse()) {
863         Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
864         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
865         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
866         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
867         return CastInst::CreateIntegerCast(Shift, DestTy, true);
868       }
869     }
870     // TODO: Mask high bits with 'and'.
871   }
872 
873   // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
874   if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
875     unsigned MaxShiftAmt = SrcWidth - DestWidth;
876 
877     // If the shift is small enough, all zero/sign bits created by the shift are
878     // removed by the trunc.
879     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
880                                     APInt(SrcWidth, MaxShiftAmt)))) {
881       auto *OldShift = cast<Instruction>(Src);
882       bool IsExact = OldShift->isExact();
883       auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
884       ShAmt = Constant::mergeUndefsWith(ShAmt, C);
885       Value *Shift =
886           OldShift->getOpcode() == Instruction::AShr
887               ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
888               : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
889       return CastInst::CreateTruncOrBitCast(Shift, DestTy);
890     }
891   }
892 
893   if (Instruction *I = narrowBinOp(Trunc))
894     return I;
895 
896   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
897     return I;
898 
899   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
900     return I;
901 
902   if (Src->hasOneUse() &&
903       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
904     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
905     // dest type is native and cst < dest size.
906     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
907         !match(A, m_Shr(m_Value(), m_Constant()))) {
908       // Skip shifts of shift by constants. It undoes a combine in
909       // FoldShiftByConstant and is the extend in reg pattern.
910       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
911       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
912         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
913         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
914                                       ConstantExpr::getTrunc(C, DestTy));
915       }
916     }
917   }
918 
919   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
920     return I;
921 
922   // Whenever an element is extracted from a vector, and then truncated,
923   // canonicalize by converting it to a bitcast followed by an
924   // extractelement.
925   //
926   // Example (little endian):
927   //   trunc (extractelement <4 x i64> %X, 0) to i32
928   //   --->
929   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
930   Value *VecOp;
931   ConstantInt *Cst;
932   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
933     auto *VecOpTy = cast<VectorType>(VecOp->getType());
934     auto VecElts = VecOpTy->getElementCount();
935 
936     // A badly fit destination size would result in an invalid cast.
937     if (SrcWidth % DestWidth == 0) {
938       uint64_t TruncRatio = SrcWidth / DestWidth;
939       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
940       uint64_t VecOpIdx = Cst->getZExtValue();
941       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
942                                          : VecOpIdx * TruncRatio;
943       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
944              "overflow 32-bits");
945 
946       auto *BitCastTo =
947           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
948       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
949       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
950     }
951   }
952 
953   return nullptr;
954 }
955 
956 /// Transform (zext icmp) to bitwise / integer operations in order to
957 /// eliminate it. If DoTransform is false, just test whether the given
958 /// (zext icmp) can be transformed.
959 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
960                                                  bool DoTransform) {
961   // If we are just checking for a icmp eq of a single bit and zext'ing it
962   // to an integer, then shift the bit to the appropriate place and then
963   // cast to integer to avoid the comparison.
964   const APInt *Op1CV;
965   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
966 
967     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
968     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
969     if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
970         (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
971       if (!DoTransform) return Cmp;
972 
973       Value *In = Cmp->getOperand(0);
974       Value *Sh = ConstantInt::get(In->getType(),
975                                    In->getType()->getScalarSizeInBits() - 1);
976       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
977       if (In->getType() != Zext.getType())
978         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
979 
980       if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
981         Constant *One = ConstantInt::get(In->getType(), 1);
982         In = Builder.CreateXor(In, One, In->getName() + ".not");
983       }
984 
985       return replaceInstUsesWith(Zext, In);
986     }
987 
988     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
989     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
990     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
991     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
992     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
993     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
994     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
995     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
996     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
997         // This only works for EQ and NE
998         Cmp->isEquality()) {
999       // If Op1C some other power of two, convert:
1000       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
1001 
1002       APInt KnownZeroMask(~Known.Zero);
1003       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
1004         if (!DoTransform) return Cmp;
1005 
1006         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
1007         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
1008           // (X&4) == 2 --> false
1009           // (X&4) != 2 --> true
1010           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
1011           return replaceInstUsesWith(Zext, Res);
1012         }
1013 
1014         uint32_t ShAmt = KnownZeroMask.logBase2();
1015         Value *In = Cmp->getOperand(0);
1016         if (ShAmt) {
1017           // Perform a logical shr by shiftamt.
1018           // Insert the shift to put the result in the low bit.
1019           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
1020                                   In->getName() + ".lobit");
1021         }
1022 
1023         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
1024           Constant *One = ConstantInt::get(In->getType(), 1);
1025           In = Builder.CreateXor(In, One);
1026         }
1027 
1028         if (Zext.getType() == In->getType())
1029           return replaceInstUsesWith(Zext, In);
1030 
1031         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1032         return replaceInstUsesWith(Zext, IntCast);
1033       }
1034     }
1035   }
1036 
1037   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1038     // Test if a bit is clear/set using a shifted-one mask:
1039     // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
1040     // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
1041     Value *X, *ShAmt;
1042     if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
1043         match(Cmp->getOperand(0),
1044               m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
1045       if (!DoTransform)
1046         return Cmp;
1047 
1048       if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1049         X = Builder.CreateNot(X);
1050       Value *Lshr = Builder.CreateLShr(X, ShAmt);
1051       Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
1052       return replaceInstUsesWith(Zext, And1);
1053     }
1054 
1055     // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
1056     // It is also profitable to transform icmp eq into not(xor(A, B)) because
1057     // that may lead to additional simplifications.
1058     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
1059       Value *LHS = Cmp->getOperand(0);
1060       Value *RHS = Cmp->getOperand(1);
1061 
1062       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
1063       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
1064 
1065       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
1066         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
1067         APInt UnknownBit = ~KnownBits;
1068         if (UnknownBit.countPopulation() == 1) {
1069           if (!DoTransform) return Cmp;
1070 
1071           Value *Result = Builder.CreateXor(LHS, RHS);
1072 
1073           // Mask off any bits that are set and won't be shifted away.
1074           if (KnownLHS.One.uge(UnknownBit))
1075             Result = Builder.CreateAnd(Result,
1076                                         ConstantInt::get(ITy, UnknownBit));
1077 
1078           // Shift the bit we're testing down to the lsb.
1079           Result = Builder.CreateLShr(
1080                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1081 
1082           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1083             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1084           Result->takeName(Cmp);
1085           return replaceInstUsesWith(Zext, Result);
1086         }
1087       }
1088     }
1089   }
1090 
1091   return nullptr;
1092 }
1093 
1094 /// Determine if the specified value can be computed in the specified wider type
1095 /// and produce the same low bits. If not, return false.
1096 ///
1097 /// If this function returns true, it can also return a non-zero number of bits
1098 /// (in BitsToClear) which indicates that the value it computes is correct for
1099 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1100 /// out.  For example, to promote something like:
1101 ///
1102 ///   %B = trunc i64 %A to i32
1103 ///   %C = lshr i32 %B, 8
1104 ///   %E = zext i32 %C to i64
1105 ///
1106 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1107 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1108 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1109 /// clear the top bits anyway, doing this has no extra cost.
1110 ///
1111 /// This function works on both vectors and scalars.
1112 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1113                              InstCombinerImpl &IC, Instruction *CxtI) {
1114   BitsToClear = 0;
1115   if (canAlwaysEvaluateInType(V, Ty))
1116     return true;
1117   if (canNotEvaluateInType(V, Ty))
1118     return false;
1119 
1120   auto *I = cast<Instruction>(V);
1121   unsigned Tmp;
1122   switch (I->getOpcode()) {
1123   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1124   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1125   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1126     return true;
1127   case Instruction::And:
1128   case Instruction::Or:
1129   case Instruction::Xor:
1130   case Instruction::Add:
1131   case Instruction::Sub:
1132   case Instruction::Mul:
1133     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1134         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1135       return false;
1136     // These can all be promoted if neither operand has 'bits to clear'.
1137     if (BitsToClear == 0 && Tmp == 0)
1138       return true;
1139 
1140     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1141     // other side, BitsToClear is ok.
1142     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1143       // We use MaskedValueIsZero here for generality, but the case we care
1144       // about the most is constant RHS.
1145       unsigned VSize = V->getType()->getScalarSizeInBits();
1146       if (IC.MaskedValueIsZero(I->getOperand(1),
1147                                APInt::getHighBitsSet(VSize, BitsToClear),
1148                                0, CxtI)) {
1149         // If this is an And instruction and all of the BitsToClear are
1150         // known to be zero we can reset BitsToClear.
1151         if (I->getOpcode() == Instruction::And)
1152           BitsToClear = 0;
1153         return true;
1154       }
1155     }
1156 
1157     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1158     return false;
1159 
1160   case Instruction::Shl: {
1161     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1162     // upper bits we can reduce BitsToClear by the shift amount.
1163     const APInt *Amt;
1164     if (match(I->getOperand(1), m_APInt(Amt))) {
1165       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1166         return false;
1167       uint64_t ShiftAmt = Amt->getZExtValue();
1168       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1169       return true;
1170     }
1171     return false;
1172   }
1173   case Instruction::LShr: {
1174     // We can promote lshr(x, cst) if we can promote x.  This requires the
1175     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1176     const APInt *Amt;
1177     if (match(I->getOperand(1), m_APInt(Amt))) {
1178       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1179         return false;
1180       BitsToClear += Amt->getZExtValue();
1181       if (BitsToClear > V->getType()->getScalarSizeInBits())
1182         BitsToClear = V->getType()->getScalarSizeInBits();
1183       return true;
1184     }
1185     // Cannot promote variable LSHR.
1186     return false;
1187   }
1188   case Instruction::Select:
1189     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1190         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1191         // TODO: If important, we could handle the case when the BitsToClear are
1192         // known zero in the disagreeing side.
1193         Tmp != BitsToClear)
1194       return false;
1195     return true;
1196 
1197   case Instruction::PHI: {
1198     // We can change a phi if we can change all operands.  Note that we never
1199     // get into trouble with cyclic PHIs here because we only consider
1200     // instructions with a single use.
1201     PHINode *PN = cast<PHINode>(I);
1202     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1203       return false;
1204     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1205       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1206           // TODO: If important, we could handle the case when the BitsToClear
1207           // are known zero in the disagreeing input.
1208           Tmp != BitsToClear)
1209         return false;
1210     return true;
1211   }
1212   default:
1213     // TODO: Can handle more cases here.
1214     return false;
1215   }
1216 }
1217 
1218 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
1219   // If this zero extend is only used by a truncate, let the truncate be
1220   // eliminated before we try to optimize this zext.
1221   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1222     return nullptr;
1223 
1224   // If one of the common conversion will work, do it.
1225   if (Instruction *Result = commonCastTransforms(CI))
1226     return Result;
1227 
1228   Value *Src = CI.getOperand(0);
1229   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1230 
1231   // Try to extend the entire expression tree to the wide destination type.
1232   unsigned BitsToClear;
1233   if (shouldChangeType(SrcTy, DestTy) &&
1234       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1235     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1236            "Can't clear more bits than in SrcTy");
1237 
1238     // Okay, we can transform this!  Insert the new expression now.
1239     LLVM_DEBUG(
1240         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1241                   " to avoid zero extend: "
1242                << CI << '\n');
1243     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1244     assert(Res->getType() == DestTy);
1245 
1246     // Preserve debug values referring to Src if the zext is its last use.
1247     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1248       if (SrcOp->hasOneUse())
1249         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1250 
1251     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1252     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1253 
1254     // If the high bits are already filled with zeros, just replace this
1255     // cast with the result.
1256     if (MaskedValueIsZero(Res,
1257                           APInt::getHighBitsSet(DestBitSize,
1258                                                 DestBitSize-SrcBitsKept),
1259                              0, &CI))
1260       return replaceInstUsesWith(CI, Res);
1261 
1262     // We need to emit an AND to clear the high bits.
1263     Constant *C = ConstantInt::get(Res->getType(),
1264                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1265     return BinaryOperator::CreateAnd(Res, C);
1266   }
1267 
1268   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1269   // types and if the sizes are just right we can convert this into a logical
1270   // 'and' which will be much cheaper than the pair of casts.
1271   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1272     // TODO: Subsume this into EvaluateInDifferentType.
1273 
1274     // Get the sizes of the types involved.  We know that the intermediate type
1275     // will be smaller than A or C, but don't know the relation between A and C.
1276     Value *A = CSrc->getOperand(0);
1277     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1278     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1279     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1280     // If we're actually extending zero bits, then if
1281     // SrcSize <  DstSize: zext(a & mask)
1282     // SrcSize == DstSize: a & mask
1283     // SrcSize  > DstSize: trunc(a) & mask
1284     if (SrcSize < DstSize) {
1285       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1286       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1287       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1288       return new ZExtInst(And, CI.getType());
1289     }
1290 
1291     if (SrcSize == DstSize) {
1292       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1293       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1294                                                            AndValue));
1295     }
1296     if (SrcSize > DstSize) {
1297       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1298       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1299       return BinaryOperator::CreateAnd(Trunc,
1300                                        ConstantInt::get(Trunc->getType(),
1301                                                         AndValue));
1302     }
1303   }
1304 
1305   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1306     return transformZExtICmp(Cmp, CI);
1307 
1308   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1309   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1310     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1311     // of the (zext icmp) can be eliminated. If so, immediately perform the
1312     // according elimination.
1313     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1314     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1315     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1316         LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() &&
1317         (transformZExtICmp(LHS, CI, false) ||
1318          transformZExtICmp(RHS, CI, false))) {
1319       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1320       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1321       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1322       Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1323       if (auto *OrInst = dyn_cast<Instruction>(Or))
1324         Builder.SetInsertPoint(OrInst);
1325 
1326       // Perform the elimination.
1327       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1328         transformZExtICmp(LHS, *LZExt);
1329       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1330         transformZExtICmp(RHS, *RZExt);
1331 
1332       return replaceInstUsesWith(CI, Or);
1333     }
1334   }
1335 
1336   // zext(trunc(X) & C) -> (X & zext(C)).
1337   Constant *C;
1338   Value *X;
1339   if (SrcI &&
1340       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1341       X->getType() == CI.getType())
1342     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1343 
1344   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1345   Value *And;
1346   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1347       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1348       X->getType() == CI.getType()) {
1349     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1350     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1351   }
1352 
1353   return nullptr;
1354 }
1355 
1356 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1357 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
1358                                                  Instruction &CI) {
1359   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1360   ICmpInst::Predicate Pred = ICI->getPredicate();
1361 
1362   // Don't bother if Op1 isn't of vector or integer type.
1363   if (!Op1->getType()->isIntOrIntVectorTy())
1364     return nullptr;
1365 
1366   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1367       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1368     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1369     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1370     Value *Sh = ConstantInt::get(Op0->getType(),
1371                                  Op0->getType()->getScalarSizeInBits() - 1);
1372     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1373     if (In->getType() != CI.getType())
1374       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1375 
1376     if (Pred == ICmpInst::ICMP_SGT)
1377       In = Builder.CreateNot(In, In->getName() + ".not");
1378     return replaceInstUsesWith(CI, In);
1379   }
1380 
1381   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1382     // If we know that only one bit of the LHS of the icmp can be set and we
1383     // have an equality comparison with zero or a power of 2, we can transform
1384     // the icmp and sext into bitwise/integer operations.
1385     if (ICI->hasOneUse() &&
1386         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1387       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1388 
1389       APInt KnownZeroMask(~Known.Zero);
1390       if (KnownZeroMask.isPowerOf2()) {
1391         Value *In = ICI->getOperand(0);
1392 
1393         // If the icmp tests for a known zero bit we can constant fold it.
1394         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1395           Value *V = Pred == ICmpInst::ICMP_NE ?
1396                        ConstantInt::getAllOnesValue(CI.getType()) :
1397                        ConstantInt::getNullValue(CI.getType());
1398           return replaceInstUsesWith(CI, V);
1399         }
1400 
1401         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1402           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1403           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1404           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1405           // Perform a right shift to place the desired bit in the LSB.
1406           if (ShiftAmt)
1407             In = Builder.CreateLShr(In,
1408                                     ConstantInt::get(In->getType(), ShiftAmt));
1409 
1410           // At this point "In" is either 1 or 0. Subtract 1 to turn
1411           // {1, 0} -> {0, -1}.
1412           In = Builder.CreateAdd(In,
1413                                  ConstantInt::getAllOnesValue(In->getType()),
1414                                  "sext");
1415         } else {
1416           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1417           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1418           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1419           // Perform a left shift to place the desired bit in the MSB.
1420           if (ShiftAmt)
1421             In = Builder.CreateShl(In,
1422                                    ConstantInt::get(In->getType(), ShiftAmt));
1423 
1424           // Distribute the bit over the whole bit width.
1425           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1426                                   KnownZeroMask.getBitWidth() - 1), "sext");
1427         }
1428 
1429         if (CI.getType() == In->getType())
1430           return replaceInstUsesWith(CI, In);
1431         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1432       }
1433     }
1434   }
1435 
1436   return nullptr;
1437 }
1438 
1439 /// Return true if we can take the specified value and return it as type Ty
1440 /// without inserting any new casts and without changing the value of the common
1441 /// low bits.  This is used by code that tries to promote integer operations to
1442 /// a wider types will allow us to eliminate the extension.
1443 ///
1444 /// This function works on both vectors and scalars.
1445 ///
1446 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1447   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1448          "Can't sign extend type to a smaller type");
1449   if (canAlwaysEvaluateInType(V, Ty))
1450     return true;
1451   if (canNotEvaluateInType(V, Ty))
1452     return false;
1453 
1454   auto *I = cast<Instruction>(V);
1455   switch (I->getOpcode()) {
1456   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1457   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1458   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1459     return true;
1460   case Instruction::And:
1461   case Instruction::Or:
1462   case Instruction::Xor:
1463   case Instruction::Add:
1464   case Instruction::Sub:
1465   case Instruction::Mul:
1466     // These operators can all arbitrarily be extended if their inputs can.
1467     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1468            canEvaluateSExtd(I->getOperand(1), Ty);
1469 
1470   //case Instruction::Shl:   TODO
1471   //case Instruction::LShr:  TODO
1472 
1473   case Instruction::Select:
1474     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1475            canEvaluateSExtd(I->getOperand(2), Ty);
1476 
1477   case Instruction::PHI: {
1478     // We can change a phi if we can change all operands.  Note that we never
1479     // get into trouble with cyclic PHIs here because we only consider
1480     // instructions with a single use.
1481     PHINode *PN = cast<PHINode>(I);
1482     for (Value *IncValue : PN->incoming_values())
1483       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1484     return true;
1485   }
1486   default:
1487     // TODO: Can handle more cases here.
1488     break;
1489   }
1490 
1491   return false;
1492 }
1493 
1494 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
1495   // If this sign extend is only used by a truncate, let the truncate be
1496   // eliminated before we try to optimize this sext.
1497   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1498     return nullptr;
1499 
1500   if (Instruction *I = commonCastTransforms(CI))
1501     return I;
1502 
1503   Value *Src = CI.getOperand(0);
1504   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1505   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1506   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1507 
1508   // If we know that the value being extended is positive, we can use a zext
1509   // instead.
1510   KnownBits Known = computeKnownBits(Src, 0, &CI);
1511   if (Known.isNonNegative())
1512     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1513 
1514   // Try to extend the entire expression tree to the wide destination type.
1515   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1516     // Okay, we can transform this!  Insert the new expression now.
1517     LLVM_DEBUG(
1518         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1519                   " to avoid sign extend: "
1520                << CI << '\n');
1521     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1522     assert(Res->getType() == DestTy);
1523 
1524     // If the high bits are already filled with sign bit, just replace this
1525     // cast with the result.
1526     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1527       return replaceInstUsesWith(CI, Res);
1528 
1529     // We need to emit a shl + ashr to do the sign extend.
1530     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1531     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1532                                       ShAmt);
1533   }
1534 
1535   Value *X;
1536   if (match(Src, m_Trunc(m_Value(X)))) {
1537     // If the input has more sign bits than bits truncated, then convert
1538     // directly to final type.
1539     unsigned XBitSize = X->getType()->getScalarSizeInBits();
1540     if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize)
1541       return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1542 
1543     // If input is a trunc from the destination type, then convert into shifts.
1544     if (Src->hasOneUse() && X->getType() == DestTy) {
1545       // sext (trunc X) --> ashr (shl X, C), C
1546       Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1547       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1548     }
1549 
1550     // If we are replacing shifted-in high zero bits with sign bits, convert
1551     // the logic shift to arithmetic shift and eliminate the cast to
1552     // intermediate type:
1553     // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1554     Value *Y;
1555     if (Src->hasOneUse() &&
1556         match(X, m_LShr(m_Value(Y),
1557                         m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
1558       Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1559       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1560     }
1561   }
1562 
1563   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1564     return transformSExtICmp(ICI, CI);
1565 
1566   // If the input is a shl/ashr pair of a same constant, then this is a sign
1567   // extension from a smaller value.  If we could trust arbitrary bitwidth
1568   // integers, we could turn this into a truncate to the smaller bit and then
1569   // use a sext for the whole extension.  Since we don't, look deeper and check
1570   // for a truncate.  If the source and dest are the same type, eliminate the
1571   // trunc and extend and just do shifts.  For example, turn:
1572   //   %a = trunc i32 %i to i8
1573   //   %b = shl i8 %a, C
1574   //   %c = ashr i8 %b, C
1575   //   %d = sext i8 %c to i32
1576   // into:
1577   //   %a = shl i32 %i, 32-(8-C)
1578   //   %d = ashr i32 %a, 32-(8-C)
1579   Value *A = nullptr;
1580   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1581   Constant *BA = nullptr, *CA = nullptr;
1582   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1583                         m_Constant(CA))) &&
1584       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1585     Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1586     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1587         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1588     Constant *NewShAmt = ConstantExpr::getSub(
1589         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1590         NumLowbitsLeft);
1591     NewShAmt =
1592         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1593     A = Builder.CreateShl(A, NewShAmt, CI.getName());
1594     return BinaryOperator::CreateAShr(A, NewShAmt);
1595   }
1596 
1597   return nullptr;
1598 }
1599 
1600 /// Return a Constant* for the specified floating-point constant if it fits
1601 /// in the specified FP type without changing its value.
1602 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1603   bool losesInfo;
1604   APFloat F = CFP->getValueAPF();
1605   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1606   return !losesInfo;
1607 }
1608 
1609 static Type *shrinkFPConstant(ConstantFP *CFP) {
1610   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1611     return nullptr;  // No constant folding of this.
1612   // See if the value can be truncated to half and then reextended.
1613   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1614     return Type::getHalfTy(CFP->getContext());
1615   // See if the value can be truncated to float and then reextended.
1616   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1617     return Type::getFloatTy(CFP->getContext());
1618   if (CFP->getType()->isDoubleTy())
1619     return nullptr;  // Won't shrink.
1620   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1621     return Type::getDoubleTy(CFP->getContext());
1622   // Don't try to shrink to various long double types.
1623   return nullptr;
1624 }
1625 
1626 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1627 // type we can safely truncate all elements to.
1628 // TODO: Make these support undef elements.
1629 static Type *shrinkFPConstantVector(Value *V) {
1630   auto *CV = dyn_cast<Constant>(V);
1631   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1632   if (!CV || !CVVTy)
1633     return nullptr;
1634 
1635   Type *MinType = nullptr;
1636 
1637   unsigned NumElts = CVVTy->getNumElements();
1638 
1639   // For fixed-width vectors we find the minimal type by looking
1640   // through the constant values of the vector.
1641   for (unsigned i = 0; i != NumElts; ++i) {
1642     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1643     if (!CFP)
1644       return nullptr;
1645 
1646     Type *T = shrinkFPConstant(CFP);
1647     if (!T)
1648       return nullptr;
1649 
1650     // If we haven't found a type yet or this type has a larger mantissa than
1651     // our previous type, this is our new minimal type.
1652     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1653       MinType = T;
1654   }
1655 
1656   // Make a vector type from the minimal type.
1657   return FixedVectorType::get(MinType, NumElts);
1658 }
1659 
1660 /// Find the minimum FP type we can safely truncate to.
1661 static Type *getMinimumFPType(Value *V) {
1662   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1663     return FPExt->getOperand(0)->getType();
1664 
1665   // If this value is a constant, return the constant in the smallest FP type
1666   // that can accurately represent it.  This allows us to turn
1667   // (float)((double)X+2.0) into x+2.0f.
1668   if (auto *CFP = dyn_cast<ConstantFP>(V))
1669     if (Type *T = shrinkFPConstant(CFP))
1670       return T;
1671 
1672   // We can only correctly find a minimum type for a scalable vector when it is
1673   // a splat. For splats of constant values the fpext is wrapped up as a
1674   // ConstantExpr.
1675   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1676     if (FPCExt->getOpcode() == Instruction::FPExt)
1677       return FPCExt->getOperand(0)->getType();
1678 
1679   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1680   // vectors
1681   if (Type *T = shrinkFPConstantVector(V))
1682     return T;
1683 
1684   return V->getType();
1685 }
1686 
1687 /// Return true if the cast from integer to FP can be proven to be exact for all
1688 /// possible inputs (the conversion does not lose any precision).
1689 static bool isKnownExactCastIntToFP(CastInst &I) {
1690   CastInst::CastOps Opcode = I.getOpcode();
1691   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1692          "Unexpected cast");
1693   Value *Src = I.getOperand(0);
1694   Type *SrcTy = Src->getType();
1695   Type *FPTy = I.getType();
1696   bool IsSigned = Opcode == Instruction::SIToFP;
1697   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1698 
1699   // Easy case - if the source integer type has less bits than the FP mantissa,
1700   // then the cast must be exact.
1701   int DestNumSigBits = FPTy->getFPMantissaWidth();
1702   if (SrcSize <= DestNumSigBits)
1703     return true;
1704 
1705   // Cast from FP to integer and back to FP is independent of the intermediate
1706   // integer width because of poison on overflow.
1707   Value *F;
1708   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1709     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1710     // potential rounding of negative FP input values.
1711     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1712     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1713       SrcNumSigBits++;
1714 
1715     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1716     // significant bits than the destination (and make sure neither type is
1717     // weird -- ppc_fp128).
1718     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1719         SrcNumSigBits <= DestNumSigBits)
1720       return true;
1721   }
1722 
1723   // TODO:
1724   // Try harder to find if the source integer type has less significant bits.
1725   // For example, compute number of sign bits or compute low bit mask.
1726   return false;
1727 }
1728 
1729 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1730   if (Instruction *I = commonCastTransforms(FPT))
1731     return I;
1732 
1733   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1734   // simplify this expression to avoid one or more of the trunc/extend
1735   // operations if we can do so without changing the numerical results.
1736   //
1737   // The exact manner in which the widths of the operands interact to limit
1738   // what we can and cannot do safely varies from operation to operation, and
1739   // is explained below in the various case statements.
1740   Type *Ty = FPT.getType();
1741   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1742   if (BO && BO->hasOneUse()) {
1743     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1744     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1745     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1746     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1747     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1748     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1749     unsigned DstWidth = Ty->getFPMantissaWidth();
1750     switch (BO->getOpcode()) {
1751       default: break;
1752       case Instruction::FAdd:
1753       case Instruction::FSub:
1754         // For addition and subtraction, the infinitely precise result can
1755         // essentially be arbitrarily wide; proving that double rounding
1756         // will not occur because the result of OpI is exact (as we will for
1757         // FMul, for example) is hopeless.  However, we *can* nonetheless
1758         // frequently know that double rounding cannot occur (or that it is
1759         // innocuous) by taking advantage of the specific structure of
1760         // infinitely-precise results that admit double rounding.
1761         //
1762         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1763         // to represent both sources, we can guarantee that the double
1764         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1765         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1766         // for proof of this fact).
1767         //
1768         // Note: Figueroa does not consider the case where DstFormat !=
1769         // SrcFormat.  It's possible (likely even!) that this analysis
1770         // could be tightened for those cases, but they are rare (the main
1771         // case of interest here is (float)((double)float + float)).
1772         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1773           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1774           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1775           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1776           RI->copyFastMathFlags(BO);
1777           return RI;
1778         }
1779         break;
1780       case Instruction::FMul:
1781         // For multiplication, the infinitely precise result has at most
1782         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1783         // that such a value can be exactly represented, then no double
1784         // rounding can possibly occur; we can safely perform the operation
1785         // in the destination format if it can represent both sources.
1786         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1787           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1788           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1789           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1790         }
1791         break;
1792       case Instruction::FDiv:
1793         // For division, we use again use the bound from Figueroa's
1794         // dissertation.  I am entirely certain that this bound can be
1795         // tightened in the unbalanced operand case by an analysis based on
1796         // the diophantine rational approximation bound, but the well-known
1797         // condition used here is a good conservative first pass.
1798         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1799         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1800           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1801           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1802           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1803         }
1804         break;
1805       case Instruction::FRem: {
1806         // Remainder is straightforward.  Remainder is always exact, so the
1807         // type of OpI doesn't enter into things at all.  We simply evaluate
1808         // in whichever source type is larger, then convert to the
1809         // destination type.
1810         if (SrcWidth == OpWidth)
1811           break;
1812         Value *LHS, *RHS;
1813         if (LHSWidth == SrcWidth) {
1814            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1815            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1816         } else {
1817            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1818            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1819         }
1820 
1821         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1822         return CastInst::CreateFPCast(ExactResult, Ty);
1823       }
1824     }
1825   }
1826 
1827   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1828   Value *X;
1829   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1830   if (Op && Op->hasOneUse()) {
1831     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1832     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1833     if (isa<FPMathOperator>(Op))
1834       Builder.setFastMathFlags(Op->getFastMathFlags());
1835 
1836     if (match(Op, m_FNeg(m_Value(X)))) {
1837       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1838 
1839       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1840     }
1841 
1842     // If we are truncating a select that has an extended operand, we can
1843     // narrow the other operand and do the select as a narrow op.
1844     Value *Cond, *X, *Y;
1845     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1846         X->getType() == Ty) {
1847       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1848       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1849       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1850       return replaceInstUsesWith(FPT, Sel);
1851     }
1852     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1853         X->getType() == Ty) {
1854       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1855       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1856       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1857       return replaceInstUsesWith(FPT, Sel);
1858     }
1859   }
1860 
1861   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1862     switch (II->getIntrinsicID()) {
1863     default: break;
1864     case Intrinsic::ceil:
1865     case Intrinsic::fabs:
1866     case Intrinsic::floor:
1867     case Intrinsic::nearbyint:
1868     case Intrinsic::rint:
1869     case Intrinsic::round:
1870     case Intrinsic::roundeven:
1871     case Intrinsic::trunc: {
1872       Value *Src = II->getArgOperand(0);
1873       if (!Src->hasOneUse())
1874         break;
1875 
1876       // Except for fabs, this transformation requires the input of the unary FP
1877       // operation to be itself an fpext from the type to which we're
1878       // truncating.
1879       if (II->getIntrinsicID() != Intrinsic::fabs) {
1880         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1881         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1882           break;
1883       }
1884 
1885       // Do unary FP operation on smaller type.
1886       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1887       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1888       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1889                                                      II->getIntrinsicID(), Ty);
1890       SmallVector<OperandBundleDef, 1> OpBundles;
1891       II->getOperandBundlesAsDefs(OpBundles);
1892       CallInst *NewCI =
1893           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1894       NewCI->copyFastMathFlags(II);
1895       return NewCI;
1896     }
1897     }
1898   }
1899 
1900   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1901     return I;
1902 
1903   Value *Src = FPT.getOperand(0);
1904   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1905     auto *FPCast = cast<CastInst>(Src);
1906     if (isKnownExactCastIntToFP(*FPCast))
1907       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1908   }
1909 
1910   return nullptr;
1911 }
1912 
1913 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1914   // If the source operand is a cast from integer to FP and known exact, then
1915   // cast the integer operand directly to the destination type.
1916   Type *Ty = FPExt.getType();
1917   Value *Src = FPExt.getOperand(0);
1918   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1919     auto *FPCast = cast<CastInst>(Src);
1920     if (isKnownExactCastIntToFP(*FPCast))
1921       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1922   }
1923 
1924   return commonCastTransforms(FPExt);
1925 }
1926 
1927 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1928 /// This is safe if the intermediate type has enough bits in its mantissa to
1929 /// accurately represent all values of X.  For example, this won't work with
1930 /// i64 -> float -> i64.
1931 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1932   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1933     return nullptr;
1934 
1935   auto *OpI = cast<CastInst>(FI.getOperand(0));
1936   Value *X = OpI->getOperand(0);
1937   Type *XType = X->getType();
1938   Type *DestType = FI.getType();
1939   bool IsOutputSigned = isa<FPToSIInst>(FI);
1940 
1941   // Since we can assume the conversion won't overflow, our decision as to
1942   // whether the input will fit in the float should depend on the minimum
1943   // of the input range and output range.
1944 
1945   // This means this is also safe for a signed input and unsigned output, since
1946   // a negative input would lead to undefined behavior.
1947   if (!isKnownExactCastIntToFP(*OpI)) {
1948     // The first cast may not round exactly based on the source integer width
1949     // and FP width, but the overflow UB rules can still allow this to fold.
1950     // If the destination type is narrow, that means the intermediate FP value
1951     // must be large enough to hold the source value exactly.
1952     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1953     int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1954     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1955       return nullptr;
1956   }
1957 
1958   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1959     bool IsInputSigned = isa<SIToFPInst>(OpI);
1960     if (IsInputSigned && IsOutputSigned)
1961       return new SExtInst(X, DestType);
1962     return new ZExtInst(X, DestType);
1963   }
1964   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1965     return new TruncInst(X, DestType);
1966 
1967   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1968   return replaceInstUsesWith(FI, X);
1969 }
1970 
1971 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1972   if (Instruction *I = foldItoFPtoI(FI))
1973     return I;
1974 
1975   return commonCastTransforms(FI);
1976 }
1977 
1978 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1979   if (Instruction *I = foldItoFPtoI(FI))
1980     return I;
1981 
1982   return commonCastTransforms(FI);
1983 }
1984 
1985 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1986   return commonCastTransforms(CI);
1987 }
1988 
1989 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1990   return commonCastTransforms(CI);
1991 }
1992 
1993 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1994   // If the source integer type is not the intptr_t type for this target, do a
1995   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1996   // cast to be exposed to other transforms.
1997   unsigned AS = CI.getAddressSpace();
1998   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1999       DL.getPointerSizeInBits(AS)) {
2000     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2001         DL.getIntPtrType(CI.getContext(), AS));
2002     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
2003     return new IntToPtrInst(P, CI.getType());
2004   }
2005 
2006   if (Instruction *I = commonCastTransforms(CI))
2007     return I;
2008 
2009   return nullptr;
2010 }
2011 
2012 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
2013 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
2014   Value *Src = CI.getOperand(0);
2015 
2016   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
2017     // If casting the result of a getelementptr instruction with no offset, turn
2018     // this into a cast of the original pointer!
2019     if (GEP->hasAllZeroIndices() &&
2020         // If CI is an addrspacecast and GEP changes the poiner type, merging
2021         // GEP into CI would undo canonicalizing addrspacecast with different
2022         // pointer types, causing infinite loops.
2023         (!isa<AddrSpaceCastInst>(CI) ||
2024          GEP->getType() == GEP->getPointerOperandType())) {
2025       // Changing the cast operand is usually not a good idea but it is safe
2026       // here because the pointer operand is being replaced with another
2027       // pointer operand so the opcode doesn't need to change.
2028       return replaceOperand(CI, 0, GEP->getOperand(0));
2029     }
2030   }
2031 
2032   return commonCastTransforms(CI);
2033 }
2034 
2035 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
2036   // If the destination integer type is not the intptr_t type for this target,
2037   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
2038   // to be exposed to other transforms.
2039   Value *SrcOp = CI.getPointerOperand();
2040   Type *SrcTy = SrcOp->getType();
2041   Type *Ty = CI.getType();
2042   unsigned AS = CI.getPointerAddressSpace();
2043   unsigned TySize = Ty->getScalarSizeInBits();
2044   unsigned PtrSize = DL.getPointerSizeInBits(AS);
2045   if (TySize != PtrSize) {
2046     Type *IntPtrTy =
2047         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2048     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2049     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2050   }
2051 
2052   Value *Vec, *Scalar, *Index;
2053   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2054                                         m_Value(Scalar), m_Value(Index)))) &&
2055       Vec->getType() == Ty) {
2056     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2057     // Convert the scalar to int followed by insert to eliminate one cast:
2058     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2059     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2060     return InsertElementInst::Create(Vec, NewCast, Index);
2061   }
2062 
2063   return commonPointerCastTransforms(CI);
2064 }
2065 
2066 /// This input value (which is known to have vector type) is being zero extended
2067 /// or truncated to the specified vector type. Since the zext/trunc is done
2068 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2069 /// endianness will impact which end of the vector that is extended or
2070 /// truncated.
2071 ///
2072 /// A vector is always stored with index 0 at the lowest address, which
2073 /// corresponds to the most significant bits for a big endian stored integer and
2074 /// the least significant bits for little endian. A trunc/zext of an integer
2075 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2076 /// the front of the vector for big endian targets, and the back of the vector
2077 /// for little endian targets.
2078 ///
2079 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2080 ///
2081 /// The source and destination vector types may have different element types.
2082 static Instruction *
2083 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2084                                         InstCombinerImpl &IC) {
2085   // We can only do this optimization if the output is a multiple of the input
2086   // element size, or the input is a multiple of the output element size.
2087   // Convert the input type to have the same element type as the output.
2088   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2089 
2090   if (SrcTy->getElementType() != DestTy->getElementType()) {
2091     // The input types don't need to be identical, but for now they must be the
2092     // same size.  There is no specific reason we couldn't handle things like
2093     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2094     // there yet.
2095     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2096         DestTy->getElementType()->getPrimitiveSizeInBits())
2097       return nullptr;
2098 
2099     SrcTy =
2100         FixedVectorType::get(DestTy->getElementType(),
2101                              cast<FixedVectorType>(SrcTy)->getNumElements());
2102     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2103   }
2104 
2105   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2106   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2107   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2108 
2109   assert(SrcElts != DestElts && "Element counts should be different.");
2110 
2111   // Now that the element types match, get the shuffle mask and RHS of the
2112   // shuffle to use, which depends on whether we're increasing or decreasing the
2113   // size of the input.
2114   SmallVector<int, 16> ShuffleMaskStorage;
2115   ArrayRef<int> ShuffleMask;
2116   Value *V2;
2117 
2118   // Produce an identify shuffle mask for the src vector.
2119   ShuffleMaskStorage.resize(SrcElts);
2120   std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
2121 
2122   if (SrcElts > DestElts) {
2123     // If we're shrinking the number of elements (rewriting an integer
2124     // truncate), just shuffle in the elements corresponding to the least
2125     // significant bits from the input and use undef as the second shuffle
2126     // input.
2127     V2 = UndefValue::get(SrcTy);
2128     // Make sure the shuffle mask selects the "least significant bits" by
2129     // keeping elements from back of the src vector for big endian, and from the
2130     // front for little endian.
2131     ShuffleMask = ShuffleMaskStorage;
2132     if (IsBigEndian)
2133       ShuffleMask = ShuffleMask.take_back(DestElts);
2134     else
2135       ShuffleMask = ShuffleMask.take_front(DestElts);
2136   } else {
2137     // If we're increasing the number of elements (rewriting an integer zext),
2138     // shuffle in all of the elements from InVal. Fill the rest of the result
2139     // elements with zeros from a constant zero.
2140     V2 = Constant::getNullValue(SrcTy);
2141     // Use first elt from V2 when indicating zero in the shuffle mask.
2142     uint32_t NullElt = SrcElts;
2143     // Extend with null values in the "most significant bits" by adding elements
2144     // in front of the src vector for big endian, and at the back for little
2145     // endian.
2146     unsigned DeltaElts = DestElts - SrcElts;
2147     if (IsBigEndian)
2148       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2149     else
2150       ShuffleMaskStorage.append(DeltaElts, NullElt);
2151     ShuffleMask = ShuffleMaskStorage;
2152   }
2153 
2154   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2155 }
2156 
2157 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2158   return Value % Ty->getPrimitiveSizeInBits() == 0;
2159 }
2160 
2161 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2162   return Value / Ty->getPrimitiveSizeInBits();
2163 }
2164 
2165 /// V is a value which is inserted into a vector of VecEltTy.
2166 /// Look through the value to see if we can decompose it into
2167 /// insertions into the vector.  See the example in the comment for
2168 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2169 /// The type of V is always a non-zero multiple of VecEltTy's size.
2170 /// Shift is the number of bits between the lsb of V and the lsb of
2171 /// the vector.
2172 ///
2173 /// This returns false if the pattern can't be matched or true if it can,
2174 /// filling in Elements with the elements found here.
2175 static bool collectInsertionElements(Value *V, unsigned Shift,
2176                                      SmallVectorImpl<Value *> &Elements,
2177                                      Type *VecEltTy, bool isBigEndian) {
2178   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2179          "Shift should be a multiple of the element type size");
2180 
2181   // Undef values never contribute useful bits to the result.
2182   if (isa<UndefValue>(V)) return true;
2183 
2184   // If we got down to a value of the right type, we win, try inserting into the
2185   // right element.
2186   if (V->getType() == VecEltTy) {
2187     // Inserting null doesn't actually insert any elements.
2188     if (Constant *C = dyn_cast<Constant>(V))
2189       if (C->isNullValue())
2190         return true;
2191 
2192     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2193     if (isBigEndian)
2194       ElementIndex = Elements.size() - ElementIndex - 1;
2195 
2196     // Fail if multiple elements are inserted into this slot.
2197     if (Elements[ElementIndex])
2198       return false;
2199 
2200     Elements[ElementIndex] = V;
2201     return true;
2202   }
2203 
2204   if (Constant *C = dyn_cast<Constant>(V)) {
2205     // Figure out the # elements this provides, and bitcast it or slice it up
2206     // as required.
2207     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2208                                         VecEltTy);
2209     // If the constant is the size of a vector element, we just need to bitcast
2210     // it to the right type so it gets properly inserted.
2211     if (NumElts == 1)
2212       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2213                                       Shift, Elements, VecEltTy, isBigEndian);
2214 
2215     // Okay, this is a constant that covers multiple elements.  Slice it up into
2216     // pieces and insert each element-sized piece into the vector.
2217     if (!isa<IntegerType>(C->getType()))
2218       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2219                                        C->getType()->getPrimitiveSizeInBits()));
2220     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2221     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2222 
2223     for (unsigned i = 0; i != NumElts; ++i) {
2224       unsigned ShiftI = Shift+i*ElementSize;
2225       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2226                                                                   ShiftI));
2227       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2228       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2229                                     isBigEndian))
2230         return false;
2231     }
2232     return true;
2233   }
2234 
2235   if (!V->hasOneUse()) return false;
2236 
2237   Instruction *I = dyn_cast<Instruction>(V);
2238   if (!I) return false;
2239   switch (I->getOpcode()) {
2240   default: return false; // Unhandled case.
2241   case Instruction::BitCast:
2242     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2243                                     isBigEndian);
2244   case Instruction::ZExt:
2245     if (!isMultipleOfTypeSize(
2246                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2247                               VecEltTy))
2248       return false;
2249     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2250                                     isBigEndian);
2251   case Instruction::Or:
2252     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2253                                     isBigEndian) &&
2254            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2255                                     isBigEndian);
2256   case Instruction::Shl: {
2257     // Must be shifting by a constant that is a multiple of the element size.
2258     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2259     if (!CI) return false;
2260     Shift += CI->getZExtValue();
2261     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2262     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2263                                     isBigEndian);
2264   }
2265 
2266   }
2267 }
2268 
2269 
2270 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2271 /// assemble the elements of the vector manually.
2272 /// Try to rip the code out and replace it with insertelements.  This is to
2273 /// optimize code like this:
2274 ///
2275 ///    %tmp37 = bitcast float %inc to i32
2276 ///    %tmp38 = zext i32 %tmp37 to i64
2277 ///    %tmp31 = bitcast float %inc5 to i32
2278 ///    %tmp32 = zext i32 %tmp31 to i64
2279 ///    %tmp33 = shl i64 %tmp32, 32
2280 ///    %ins35 = or i64 %tmp33, %tmp38
2281 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2282 ///
2283 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2284 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2285                                                 InstCombinerImpl &IC) {
2286   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2287   Value *IntInput = CI.getOperand(0);
2288 
2289   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2290   if (!collectInsertionElements(IntInput, 0, Elements,
2291                                 DestVecTy->getElementType(),
2292                                 IC.getDataLayout().isBigEndian()))
2293     return nullptr;
2294 
2295   // If we succeeded, we know that all of the element are specified by Elements
2296   // or are zero if Elements has a null entry.  Recast this as a set of
2297   // insertions.
2298   Value *Result = Constant::getNullValue(CI.getType());
2299   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2300     if (!Elements[i]) continue;  // Unset element.
2301 
2302     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2303                                             IC.Builder.getInt32(i));
2304   }
2305 
2306   return Result;
2307 }
2308 
2309 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2310 /// vector followed by extract element. The backend tends to handle bitcasts of
2311 /// vectors better than bitcasts of scalars because vector registers are
2312 /// usually not type-specific like scalar integer or scalar floating-point.
2313 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2314                                               InstCombinerImpl &IC) {
2315   // TODO: Create and use a pattern matcher for ExtractElementInst.
2316   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2317   if (!ExtElt || !ExtElt->hasOneUse())
2318     return nullptr;
2319 
2320   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2321   // type to extract from.
2322   Type *DestType = BitCast.getType();
2323   if (!VectorType::isValidElementType(DestType))
2324     return nullptr;
2325 
2326   auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
2327   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2328                                          NewVecType, "bc");
2329   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2330 }
2331 
2332 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2333 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2334                                             InstCombiner::BuilderTy &Builder) {
2335   Type *DestTy = BitCast.getType();
2336   BinaryOperator *BO;
2337   if (!DestTy->isIntOrIntVectorTy() ||
2338       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2339       !BO->isBitwiseLogicOp())
2340     return nullptr;
2341 
2342   // FIXME: This transform is restricted to vector types to avoid backend
2343   // problems caused by creating potentially illegal operations. If a fix-up is
2344   // added to handle that situation, we can remove this check.
2345   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2346     return nullptr;
2347 
2348   Value *X;
2349   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2350       X->getType() == DestTy && !isa<Constant>(X)) {
2351     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2352     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2353     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2354   }
2355 
2356   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2357       X->getType() == DestTy && !isa<Constant>(X)) {
2358     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2359     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2360     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2361   }
2362 
2363   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2364   // constant. This eases recognition of special constants for later ops.
2365   // Example:
2366   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2367   Constant *C;
2368   if (match(BO->getOperand(1), m_Constant(C))) {
2369     // bitcast (logic X, C) --> logic (bitcast X, C')
2370     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2371     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2372     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2373   }
2374 
2375   return nullptr;
2376 }
2377 
2378 /// Change the type of a select if we can eliminate a bitcast.
2379 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2380                                       InstCombiner::BuilderTy &Builder) {
2381   Value *Cond, *TVal, *FVal;
2382   if (!match(BitCast.getOperand(0),
2383              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2384     return nullptr;
2385 
2386   // A vector select must maintain the same number of elements in its operands.
2387   Type *CondTy = Cond->getType();
2388   Type *DestTy = BitCast.getType();
2389   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2390     if (!DestTy->isVectorTy() ||
2391         CondVTy->getElementCount() !=
2392             cast<VectorType>(DestTy)->getElementCount())
2393       return nullptr;
2394 
2395   // FIXME: This transform is restricted from changing the select between
2396   // scalars and vectors to avoid backend problems caused by creating
2397   // potentially illegal operations. If a fix-up is added to handle that
2398   // situation, we can remove this check.
2399   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2400     return nullptr;
2401 
2402   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2403   Value *X;
2404   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2405       !isa<Constant>(X)) {
2406     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2407     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2408     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2409   }
2410 
2411   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2412       !isa<Constant>(X)) {
2413     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2414     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2415     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2416   }
2417 
2418   return nullptr;
2419 }
2420 
2421 /// Check if all users of CI are StoreInsts.
2422 static bool hasStoreUsersOnly(CastInst &CI) {
2423   for (User *U : CI.users()) {
2424     if (!isa<StoreInst>(U))
2425       return false;
2426   }
2427   return true;
2428 }
2429 
2430 /// This function handles following case
2431 ///
2432 ///     A  ->  B    cast
2433 ///     PHI
2434 ///     B  ->  A    cast
2435 ///
2436 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2437 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2438 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2439                                                       PHINode *PN) {
2440   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2441   if (hasStoreUsersOnly(CI))
2442     return nullptr;
2443 
2444   Value *Src = CI.getOperand(0);
2445   Type *SrcTy = Src->getType();         // Type B
2446   Type *DestTy = CI.getType();          // Type A
2447 
2448   SmallVector<PHINode *, 4> PhiWorklist;
2449   SmallSetVector<PHINode *, 4> OldPhiNodes;
2450 
2451   // Find all of the A->B casts and PHI nodes.
2452   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2453   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2454   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2455   PhiWorklist.push_back(PN);
2456   OldPhiNodes.insert(PN);
2457   while (!PhiWorklist.empty()) {
2458     auto *OldPN = PhiWorklist.pop_back_val();
2459     for (Value *IncValue : OldPN->incoming_values()) {
2460       if (isa<Constant>(IncValue))
2461         continue;
2462 
2463       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2464         // If there is a sequence of one or more load instructions, each loaded
2465         // value is used as address of later load instruction, bitcast is
2466         // necessary to change the value type, don't optimize it. For
2467         // simplicity we give up if the load address comes from another load.
2468         Value *Addr = LI->getOperand(0);
2469         if (Addr == &CI || isa<LoadInst>(Addr))
2470           return nullptr;
2471         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2472         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2473         // TODO: Remove this check when bitcast between vector and x86_amx
2474         // is replaced with a specific intrinsic.
2475         if (DestTy->isX86_AMXTy())
2476           return nullptr;
2477         if (LI->hasOneUse() && LI->isSimple())
2478           continue;
2479         // If a LoadInst has more than one use, changing the type of loaded
2480         // value may create another bitcast.
2481         return nullptr;
2482       }
2483 
2484       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2485         if (OldPhiNodes.insert(PNode))
2486           PhiWorklist.push_back(PNode);
2487         continue;
2488       }
2489 
2490       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2491       // We can't handle other instructions.
2492       if (!BCI)
2493         return nullptr;
2494 
2495       // Verify it's a A->B cast.
2496       Type *TyA = BCI->getOperand(0)->getType();
2497       Type *TyB = BCI->getType();
2498       if (TyA != DestTy || TyB != SrcTy)
2499         return nullptr;
2500     }
2501   }
2502 
2503   // Check that each user of each old PHI node is something that we can
2504   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2505   for (auto *OldPN : OldPhiNodes) {
2506     for (User *V : OldPN->users()) {
2507       if (auto *SI = dyn_cast<StoreInst>(V)) {
2508         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2509           return nullptr;
2510       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2511         // Verify it's a B->A cast.
2512         Type *TyB = BCI->getOperand(0)->getType();
2513         Type *TyA = BCI->getType();
2514         if (TyA != DestTy || TyB != SrcTy)
2515           return nullptr;
2516       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2517         // As long as the user is another old PHI node, then even if we don't
2518         // rewrite it, the PHI web we're considering won't have any users
2519         // outside itself, so it'll be dead.
2520         if (OldPhiNodes.count(PHI) == 0)
2521           return nullptr;
2522       } else {
2523         return nullptr;
2524       }
2525     }
2526   }
2527 
2528   // For each old PHI node, create a corresponding new PHI node with a type A.
2529   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2530   for (auto *OldPN : OldPhiNodes) {
2531     Builder.SetInsertPoint(OldPN);
2532     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2533     NewPNodes[OldPN] = NewPN;
2534   }
2535 
2536   // Fill in the operands of new PHI nodes.
2537   for (auto *OldPN : OldPhiNodes) {
2538     PHINode *NewPN = NewPNodes[OldPN];
2539     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2540       Value *V = OldPN->getOperand(j);
2541       Value *NewV = nullptr;
2542       if (auto *C = dyn_cast<Constant>(V)) {
2543         NewV = ConstantExpr::getBitCast(C, DestTy);
2544       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2545         // Explicitly perform load combine to make sure no opposing transform
2546         // can remove the bitcast in the meantime and trigger an infinite loop.
2547         Builder.SetInsertPoint(LI);
2548         NewV = combineLoadToNewType(*LI, DestTy);
2549         // Remove the old load and its use in the old phi, which itself becomes
2550         // dead once the whole transform finishes.
2551         replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2552         eraseInstFromFunction(*LI);
2553       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2554         NewV = BCI->getOperand(0);
2555       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2556         NewV = NewPNodes[PrevPN];
2557       }
2558       assert(NewV);
2559       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2560     }
2561   }
2562 
2563   // Traverse all accumulated PHI nodes and process its users,
2564   // which are Stores and BitcCasts. Without this processing
2565   // NewPHI nodes could be replicated and could lead to extra
2566   // moves generated after DeSSA.
2567   // If there is a store with type B, change it to type A.
2568 
2569 
2570   // Replace users of BitCast B->A with NewPHI. These will help
2571   // later to get rid off a closure formed by OldPHI nodes.
2572   Instruction *RetVal = nullptr;
2573   for (auto *OldPN : OldPhiNodes) {
2574     PHINode *NewPN = NewPNodes[OldPN];
2575     for (User *V : make_early_inc_range(OldPN->users())) {
2576       if (auto *SI = dyn_cast<StoreInst>(V)) {
2577         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2578         Builder.SetInsertPoint(SI);
2579         auto *NewBC =
2580           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2581         SI->setOperand(0, NewBC);
2582         Worklist.push(SI);
2583         assert(hasStoreUsersOnly(*NewBC));
2584       }
2585       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2586         Type *TyB = BCI->getOperand(0)->getType();
2587         Type *TyA = BCI->getType();
2588         assert(TyA == DestTy && TyB == SrcTy);
2589         (void) TyA;
2590         (void) TyB;
2591         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2592         if (BCI == &CI)
2593           RetVal = I;
2594       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2595         assert(OldPhiNodes.contains(PHI));
2596         (void) PHI;
2597       } else {
2598         llvm_unreachable("all uses should be handled");
2599       }
2600     }
2601   }
2602 
2603   return RetVal;
2604 }
2605 
2606 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder,
2607                                         const DataLayout &DL) {
2608   Value *Src = CI.getOperand(0);
2609   PointerType *SrcPTy = cast<PointerType>(Src->getType());
2610   PointerType *DstPTy = cast<PointerType>(CI.getType());
2611 
2612   // Bitcasts involving opaque pointers cannot be converted into a GEP.
2613   if (SrcPTy->isOpaque() || DstPTy->isOpaque())
2614     return nullptr;
2615 
2616   Type *DstElTy = DstPTy->getElementType();
2617   Type *SrcElTy = SrcPTy->getElementType();
2618 
2619   // When the type pointed to is not sized the cast cannot be
2620   // turned into a gep.
2621   if (!SrcElTy->isSized())
2622     return nullptr;
2623 
2624   // If the source and destination are pointers, and this cast is equivalent
2625   // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2626   // This can enhance SROA and other transforms that want type-safe pointers.
2627   unsigned NumZeros = 0;
2628   while (SrcElTy && SrcElTy != DstElTy) {
2629     SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2630     ++NumZeros;
2631   }
2632 
2633   // If we found a path from the src to dest, create the getelementptr now.
2634   if (SrcElTy == DstElTy) {
2635     SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2636     GetElementPtrInst *GEP =
2637         GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2638 
2639     // If the source pointer is dereferenceable, then assume it points to an
2640     // allocated object and apply "inbounds" to the GEP.
2641     bool CanBeNull, CanBeFreed;
2642     if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
2643       // In a non-default address space (not 0), a null pointer can not be
2644       // assumed inbounds, so ignore that case (dereferenceable_or_null).
2645       // The reason is that 'null' is not treated differently in these address
2646       // spaces, and we consequently ignore the 'gep inbounds' special case
2647       // for 'null' which allows 'inbounds' on 'null' if the indices are
2648       // zeros.
2649       if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2650         GEP->setIsInBounds();
2651     }
2652     return GEP;
2653   }
2654   return nullptr;
2655 }
2656 
2657 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2658   // If the operands are integer typed then apply the integer transforms,
2659   // otherwise just apply the common ones.
2660   Value *Src = CI.getOperand(0);
2661   Type *SrcTy = Src->getType();
2662   Type *DestTy = CI.getType();
2663 
2664   // Get rid of casts from one type to the same type. These are useless and can
2665   // be replaced by the operand.
2666   if (DestTy == Src->getType())
2667     return replaceInstUsesWith(CI, Src);
2668 
2669   if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2670     // If we are casting a alloca to a pointer to a type of the same
2671     // size, rewrite the allocation instruction to allocate the "right" type.
2672     // There is no need to modify malloc calls because it is their bitcast that
2673     // needs to be cleaned up.
2674     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2675       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2676         return V;
2677 
2678     if (Instruction *I = convertBitCastToGEP(CI, Builder, DL))
2679       return I;
2680   }
2681 
2682   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2683     // Beware: messing with this target-specific oddity may cause trouble.
2684     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2685       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2686       return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2687                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2688     }
2689 
2690     if (isa<IntegerType>(SrcTy)) {
2691       // If this is a cast from an integer to vector, check to see if the input
2692       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2693       // the casts with a shuffle and (potentially) a bitcast.
2694       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2695         CastInst *SrcCast = cast<CastInst>(Src);
2696         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2697           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2698             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2699                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2700               return I;
2701       }
2702 
2703       // If the input is an 'or' instruction, we may be doing shifts and ors to
2704       // assemble the elements of the vector manually.  Try to rip the code out
2705       // and replace it with insertelements.
2706       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2707         return replaceInstUsesWith(CI, V);
2708     }
2709   }
2710 
2711   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2712     if (SrcVTy->getNumElements() == 1) {
2713       // If our destination is not a vector, then make this a straight
2714       // scalar-scalar cast.
2715       if (!DestTy->isVectorTy()) {
2716         Value *Elem =
2717           Builder.CreateExtractElement(Src,
2718                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2719         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2720       }
2721 
2722       // Otherwise, see if our source is an insert. If so, then use the scalar
2723       // component directly:
2724       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2725       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2726         return new BitCastInst(InsElt->getOperand(1), DestTy);
2727     }
2728   }
2729 
2730   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2731     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2732     // a bitcast to a vector with the same # elts.
2733     Value *ShufOp0 = Shuf->getOperand(0);
2734     Value *ShufOp1 = Shuf->getOperand(1);
2735     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2736     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2737     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2738         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2739         ShufElts == SrcVecElts) {
2740       BitCastInst *Tmp;
2741       // If either of the operands is a cast from CI.getType(), then
2742       // evaluating the shuffle in the casted destination's type will allow
2743       // us to eliminate at least one cast.
2744       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2745            Tmp->getOperand(0)->getType() == DestTy) ||
2746           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2747            Tmp->getOperand(0)->getType() == DestTy)) {
2748         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2749         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2750         // Return a new shuffle vector.  Use the same element ID's, as we
2751         // know the vector types match #elts.
2752         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2753       }
2754     }
2755 
2756     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2757     // a byte-swap:
2758     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2759     // TODO: We should match the related pattern for bitreverse.
2760     if (DestTy->isIntegerTy() &&
2761         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2762         SrcTy->getScalarSizeInBits() == 8 &&
2763         ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() &&
2764         Shuf->isReverse()) {
2765       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2766       assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2767       Function *Bswap =
2768           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2769       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2770       return CallInst::Create(Bswap, { ScalarX });
2771     }
2772   }
2773 
2774   // Handle the A->B->A cast, and there is an intervening PHI node.
2775   if (PHINode *PN = dyn_cast<PHINode>(Src))
2776     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2777       return I;
2778 
2779   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2780     return I;
2781 
2782   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2783     return I;
2784 
2785   if (Instruction *I = foldBitCastSelect(CI, Builder))
2786     return I;
2787 
2788   if (SrcTy->isPointerTy())
2789     return commonPointerCastTransforms(CI);
2790   return commonCastTransforms(CI);
2791 }
2792 
2793 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2794   // If the destination pointer element type is not the same as the source's
2795   // first do a bitcast to the destination type, and then the addrspacecast.
2796   // This allows the cast to be exposed to other transforms.
2797   Value *Src = CI.getOperand(0);
2798   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2799   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2800 
2801   Type *DestElemTy = DestTy->getElementType();
2802   if (SrcTy->getElementType() != DestElemTy) {
2803     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2804     // Handle vectors of pointers.
2805     if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
2806       MidTy = VectorType::get(MidTy, VT->getElementCount());
2807 
2808     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2809     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2810   }
2811 
2812   return commonPointerCastTransforms(CI);
2813 }
2814