1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DIBuilder.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 #include "llvm/Transforms/InstCombine/InstCombiner.h" 22 #include <numeric> 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Analyze 'Val', seeing if it is a simple linear expression. 29 /// If so, decompose it, returning some value X, such that Val is 30 /// X*Scale+Offset. 31 /// 32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 33 uint64_t &Offset) { 34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 35 Offset = CI->getZExtValue(); 36 Scale = 0; 37 return ConstantInt::get(Val->getType(), 0); 38 } 39 40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 41 // Cannot look past anything that might overflow. 42 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 43 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 44 Scale = 1; 45 Offset = 0; 46 return Val; 47 } 48 49 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 50 if (I->getOpcode() == Instruction::Shl) { 51 // This is a value scaled by '1 << the shift amt'. 52 Scale = UINT64_C(1) << RHS->getZExtValue(); 53 Offset = 0; 54 return I->getOperand(0); 55 } 56 57 if (I->getOpcode() == Instruction::Mul) { 58 // This value is scaled by 'RHS'. 59 Scale = RHS->getZExtValue(); 60 Offset = 0; 61 return I->getOperand(0); 62 } 63 64 if (I->getOpcode() == Instruction::Add) { 65 // We have X+C. Check to see if we really have (X*C2)+C1, 66 // where C1 is divisible by C2. 67 unsigned SubScale; 68 Value *SubVal = 69 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 70 Offset += RHS->getZExtValue(); 71 Scale = SubScale; 72 return SubVal; 73 } 74 } 75 } 76 77 // Otherwise, we can't look past this. 78 Scale = 1; 79 Offset = 0; 80 return Val; 81 } 82 83 /// If we find a cast of an allocation instruction, try to eliminate the cast by 84 /// moving the type information into the alloc. 85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 86 AllocaInst &AI) { 87 PointerType *PTy = cast<PointerType>(CI.getType()); 88 89 IRBuilderBase::InsertPointGuard Guard(Builder); 90 Builder.SetInsertPoint(&AI); 91 92 // Get the type really allocated and the type casted to. 93 Type *AllocElTy = AI.getAllocatedType(); 94 Type *CastElTy = PTy->getElementType(); 95 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 96 97 // This optimisation does not work for cases where the cast type 98 // is scalable and the allocated type is not. This because we need to 99 // know how many times the casted type fits into the allocated type. 100 // For the opposite case where the allocated type is scalable and the 101 // cast type is not this leads to poor code quality due to the 102 // introduction of 'vscale' into the calculations. It seems better to 103 // bail out for this case too until we've done a proper cost-benefit 104 // analysis. 105 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 106 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 107 if (AllocIsScalable != CastIsScalable) return nullptr; 108 109 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 110 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 111 if (CastElTyAlign < AllocElTyAlign) return nullptr; 112 113 // If the allocation has multiple uses, only promote it if we are strictly 114 // increasing the alignment of the resultant allocation. If we keep it the 115 // same, we open the door to infinite loops of various kinds. 116 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 117 118 // The alloc and cast types should be either both fixed or both scalable. 119 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 120 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 121 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 122 123 // If the allocation has multiple uses, only promote it if we're not 124 // shrinking the amount of memory being allocated. 125 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 126 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 127 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 128 129 // See if we can satisfy the modulus by pulling a scale out of the array 130 // size argument. 131 unsigned ArraySizeScale; 132 uint64_t ArrayOffset; 133 Value *NumElements = // See if the array size is a decomposable linear expr. 134 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 135 136 // If we can now satisfy the modulus, by using a non-1 scale, we really can 137 // do the xform. 138 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 139 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 140 141 // We don't currently support arrays of scalable types. 142 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 143 144 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 145 Value *Amt = nullptr; 146 if (Scale == 1) { 147 Amt = NumElements; 148 } else { 149 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 150 // Insert before the alloca, not before the cast. 151 Amt = Builder.CreateMul(Amt, NumElements); 152 } 153 154 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 155 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 156 Offset, true); 157 Amt = Builder.CreateAdd(Amt, Off); 158 } 159 160 AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt); 161 New->setAlignment(AI.getAlign()); 162 New->takeName(&AI); 163 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 164 165 // If the allocation has multiple real uses, insert a cast and change all 166 // things that used it to use the new cast. This will also hack on CI, but it 167 // will die soon. 168 if (!AI.hasOneUse()) { 169 // New is the allocation instruction, pointer typed. AI is the original 170 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 171 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 172 replaceInstUsesWith(AI, NewCast); 173 eraseInstFromFunction(AI); 174 } 175 return replaceInstUsesWith(CI, New); 176 } 177 178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 179 /// true for, actually insert the code to evaluate the expression. 180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 181 bool isSigned) { 182 if (Constant *C = dyn_cast<Constant>(V)) { 183 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 184 // If we got a constantexpr back, try to simplify it with DL info. 185 return ConstantFoldConstant(C, DL, &TLI); 186 } 187 188 // Otherwise, it must be an instruction. 189 Instruction *I = cast<Instruction>(V); 190 Instruction *Res = nullptr; 191 unsigned Opc = I->getOpcode(); 192 switch (Opc) { 193 case Instruction::Add: 194 case Instruction::Sub: 195 case Instruction::Mul: 196 case Instruction::And: 197 case Instruction::Or: 198 case Instruction::Xor: 199 case Instruction::AShr: 200 case Instruction::LShr: 201 case Instruction::Shl: 202 case Instruction::UDiv: 203 case Instruction::URem: { 204 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 205 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 206 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 207 break; 208 } 209 case Instruction::Trunc: 210 case Instruction::ZExt: 211 case Instruction::SExt: 212 // If the source type of the cast is the type we're trying for then we can 213 // just return the source. There's no need to insert it because it is not 214 // new. 215 if (I->getOperand(0)->getType() == Ty) 216 return I->getOperand(0); 217 218 // Otherwise, must be the same type of cast, so just reinsert a new one. 219 // This also handles the case of zext(trunc(x)) -> zext(x). 220 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 221 Opc == Instruction::SExt); 222 break; 223 case Instruction::Select: { 224 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 225 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 226 Res = SelectInst::Create(I->getOperand(0), True, False); 227 break; 228 } 229 case Instruction::PHI: { 230 PHINode *OPN = cast<PHINode>(I); 231 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 232 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 233 Value *V = 234 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 235 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 236 } 237 Res = NPN; 238 break; 239 } 240 default: 241 // TODO: Can handle more cases here. 242 llvm_unreachable("Unreachable!"); 243 } 244 245 Res->takeName(I); 246 return InsertNewInstWith(Res, *I); 247 } 248 249 Instruction::CastOps 250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 251 const CastInst *CI2) { 252 Type *SrcTy = CI1->getSrcTy(); 253 Type *MidTy = CI1->getDestTy(); 254 Type *DstTy = CI2->getDestTy(); 255 256 Instruction::CastOps firstOp = CI1->getOpcode(); 257 Instruction::CastOps secondOp = CI2->getOpcode(); 258 Type *SrcIntPtrTy = 259 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 260 Type *MidIntPtrTy = 261 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 262 Type *DstIntPtrTy = 263 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 264 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 265 DstTy, SrcIntPtrTy, MidIntPtrTy, 266 DstIntPtrTy); 267 268 // We don't want to form an inttoptr or ptrtoint that converts to an integer 269 // type that differs from the pointer size. 270 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 271 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 272 Res = 0; 273 274 return Instruction::CastOps(Res); 275 } 276 277 /// Implement the transforms common to all CastInst visitors. 278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 279 Value *Src = CI.getOperand(0); 280 Type *Ty = CI.getType(); 281 282 // Try to eliminate a cast of a cast. 283 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 284 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 285 // The first cast (CSrc) is eliminable so we need to fix up or replace 286 // the second cast (CI). CSrc will then have a good chance of being dead. 287 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 288 // Point debug users of the dying cast to the new one. 289 if (CSrc->hasOneUse()) 290 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 291 return Res; 292 } 293 } 294 295 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 296 // We are casting a select. Try to fold the cast into the select if the 297 // select does not have a compare instruction with matching operand types 298 // or the select is likely better done in a narrow type. 299 // Creating a select with operands that are different sizes than its 300 // condition may inhibit other folds and lead to worse codegen. 301 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 302 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 303 (CI.getOpcode() == Instruction::Trunc && 304 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 305 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 306 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 307 return NV; 308 } 309 } 310 } 311 312 // If we are casting a PHI, then fold the cast into the PHI. 313 if (auto *PN = dyn_cast<PHINode>(Src)) { 314 // Don't do this if it would create a PHI node with an illegal type from a 315 // legal type. 316 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 317 shouldChangeType(CI.getSrcTy(), CI.getType())) 318 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 319 return NV; 320 } 321 322 // Canonicalize a unary shuffle after the cast if neither operation changes 323 // the size or element size of the input vector. 324 // TODO: We could allow size-changing ops if that doesn't harm codegen. 325 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 326 Value *X; 327 ArrayRef<int> Mask; 328 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 329 // TODO: Allow scalable vectors? 330 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 331 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 332 if (SrcTy && DestTy && 333 SrcTy->getNumElements() == DestTy->getNumElements() && 334 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 335 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 336 return new ShuffleVectorInst(CastX, UndefValue::get(DestTy), Mask); 337 } 338 } 339 340 return nullptr; 341 } 342 343 /// Constants and extensions/truncates from the destination type are always 344 /// free to be evaluated in that type. This is a helper for canEvaluate*. 345 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 346 if (isa<Constant>(V)) 347 return true; 348 Value *X; 349 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 350 X->getType() == Ty) 351 return true; 352 353 return false; 354 } 355 356 /// Filter out values that we can not evaluate in the destination type for free. 357 /// This is a helper for canEvaluate*. 358 static bool canNotEvaluateInType(Value *V, Type *Ty) { 359 assert(!isa<Constant>(V) && "Constant should already be handled."); 360 if (!isa<Instruction>(V)) 361 return true; 362 // We don't extend or shrink something that has multiple uses -- doing so 363 // would require duplicating the instruction which isn't profitable. 364 if (!V->hasOneUse()) 365 return true; 366 367 return false; 368 } 369 370 /// Return true if we can evaluate the specified expression tree as type Ty 371 /// instead of its larger type, and arrive with the same value. 372 /// This is used by code that tries to eliminate truncates. 373 /// 374 /// Ty will always be a type smaller than V. We should return true if trunc(V) 375 /// can be computed by computing V in the smaller type. If V is an instruction, 376 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 377 /// makes sense if x and y can be efficiently truncated. 378 /// 379 /// This function works on both vectors and scalars. 380 /// 381 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 382 Instruction *CxtI) { 383 if (canAlwaysEvaluateInType(V, Ty)) 384 return true; 385 if (canNotEvaluateInType(V, Ty)) 386 return false; 387 388 auto *I = cast<Instruction>(V); 389 Type *OrigTy = V->getType(); 390 switch (I->getOpcode()) { 391 case Instruction::Add: 392 case Instruction::Sub: 393 case Instruction::Mul: 394 case Instruction::And: 395 case Instruction::Or: 396 case Instruction::Xor: 397 // These operators can all arbitrarily be extended or truncated. 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 399 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 400 401 case Instruction::UDiv: 402 case Instruction::URem: { 403 // UDiv and URem can be truncated if all the truncated bits are zero. 404 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 405 uint32_t BitWidth = Ty->getScalarSizeInBits(); 406 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 407 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 408 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 409 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 410 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 411 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 412 } 413 break; 414 } 415 case Instruction::Shl: { 416 // If we are truncating the result of this SHL, and if it's a shift of an 417 // inrange amount, we can always perform a SHL in a smaller type. 418 uint32_t BitWidth = Ty->getScalarSizeInBits(); 419 KnownBits AmtKnownBits = 420 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 421 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 422 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 423 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 424 break; 425 } 426 case Instruction::LShr: { 427 // If this is a truncate of a logical shr, we can truncate it to a smaller 428 // lshr iff we know that the bits we would otherwise be shifting in are 429 // already zeros. 430 // TODO: It is enough to check that the bits we would be shifting in are 431 // zero - use AmtKnownBits.getMaxValue(). 432 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 433 uint32_t BitWidth = Ty->getScalarSizeInBits(); 434 KnownBits AmtKnownBits = 435 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 436 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 437 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 438 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 439 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 440 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 441 } 442 break; 443 } 444 case Instruction::AShr: { 445 // If this is a truncate of an arithmetic shr, we can truncate it to a 446 // smaller ashr iff we know that all the bits from the sign bit of the 447 // original type and the sign bit of the truncate type are similar. 448 // TODO: It is enough to check that the bits we would be shifting in are 449 // similar to sign bit of the truncate type. 450 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 451 uint32_t BitWidth = Ty->getScalarSizeInBits(); 452 KnownBits AmtKnownBits = 453 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 454 unsigned ShiftedBits = OrigBitWidth - BitWidth; 455 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 456 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 457 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 458 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 459 break; 460 } 461 case Instruction::Trunc: 462 // trunc(trunc(x)) -> trunc(x) 463 return true; 464 case Instruction::ZExt: 465 case Instruction::SExt: 466 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 467 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 468 return true; 469 case Instruction::Select: { 470 SelectInst *SI = cast<SelectInst>(I); 471 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 472 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 473 } 474 case Instruction::PHI: { 475 // We can change a phi if we can change all operands. Note that we never 476 // get into trouble with cyclic PHIs here because we only consider 477 // instructions with a single use. 478 PHINode *PN = cast<PHINode>(I); 479 for (Value *IncValue : PN->incoming_values()) 480 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 481 return false; 482 return true; 483 } 484 default: 485 // TODO: Can handle more cases here. 486 break; 487 } 488 489 return false; 490 } 491 492 /// Given a vector that is bitcast to an integer, optionally logically 493 /// right-shifted, and truncated, convert it to an extractelement. 494 /// Example (big endian): 495 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 496 /// ---> 497 /// extractelement <4 x i32> %X, 1 498 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 499 InstCombinerImpl &IC) { 500 Value *TruncOp = Trunc.getOperand(0); 501 Type *DestType = Trunc.getType(); 502 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 503 return nullptr; 504 505 Value *VecInput = nullptr; 506 ConstantInt *ShiftVal = nullptr; 507 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 508 m_LShr(m_BitCast(m_Value(VecInput)), 509 m_ConstantInt(ShiftVal)))) || 510 !isa<VectorType>(VecInput->getType())) 511 return nullptr; 512 513 VectorType *VecType = cast<VectorType>(VecInput->getType()); 514 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 515 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 516 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 517 518 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 519 return nullptr; 520 521 // If the element type of the vector doesn't match the result type, 522 // bitcast it to a vector type that we can extract from. 523 unsigned NumVecElts = VecWidth / DestWidth; 524 if (VecType->getElementType() != DestType) { 525 VecType = FixedVectorType::get(DestType, NumVecElts); 526 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 527 } 528 529 unsigned Elt = ShiftAmount / DestWidth; 530 if (IC.getDataLayout().isBigEndian()) 531 Elt = NumVecElts - 1 - Elt; 532 533 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 534 } 535 536 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 537 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 538 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 539 assert((isa<VectorType>(Trunc.getSrcTy()) || 540 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 541 "Don't narrow to an illegal scalar type"); 542 543 // Bail out on strange types. It is possible to handle some of these patterns 544 // even with non-power-of-2 sizes, but it is not a likely scenario. 545 Type *DestTy = Trunc.getType(); 546 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 547 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 548 if (!isPowerOf2_32(NarrowWidth)) 549 return nullptr; 550 551 // First, find an or'd pair of opposite shifts: 552 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 553 BinaryOperator *Or0, *Or1; 554 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 555 return nullptr; 556 557 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 558 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 559 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 560 Or0->getOpcode() == Or1->getOpcode()) 561 return nullptr; 562 563 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 564 if (Or0->getOpcode() == BinaryOperator::LShr) { 565 std::swap(Or0, Or1); 566 std::swap(ShVal0, ShVal1); 567 std::swap(ShAmt0, ShAmt1); 568 } 569 assert(Or0->getOpcode() == BinaryOperator::Shl && 570 Or1->getOpcode() == BinaryOperator::LShr && 571 "Illegal or(shift,shift) pair"); 572 573 // Match the shift amount operands for a funnel/rotate pattern. This always 574 // matches a subtraction on the R operand. 575 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 576 // The shift amounts may add up to the narrow bit width: 577 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 578 // If this is a funnel shift (different operands are shifted), then the 579 // shift amount can not over-shift (create poison) in the narrow type. 580 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 581 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 582 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 583 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 584 return L; 585 586 // The following patterns currently only work for rotation patterns. 587 // TODO: Add more general funnel-shift compatible patterns. 588 if (ShVal0 != ShVal1) 589 return nullptr; 590 591 // The shift amount may be masked with negation: 592 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 593 Value *X; 594 unsigned Mask = Width - 1; 595 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 596 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 597 return X; 598 599 // Same as above, but the shift amount may be extended after masking: 600 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 601 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 602 return X; 603 604 return nullptr; 605 }; 606 607 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 608 bool IsFshl = true; // Sub on LSHR. 609 if (!ShAmt) { 610 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 611 IsFshl = false; // Sub on SHL. 612 } 613 if (!ShAmt) 614 return nullptr; 615 616 // The right-shifted value must have high zeros in the wide type (for example 617 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 618 // truncated, so those do not matter. 619 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 620 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 621 return nullptr; 622 623 // We have an unnecessarily wide rotate! 624 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 625 // Narrow the inputs and convert to funnel shift intrinsic: 626 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 627 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 628 Value *X, *Y; 629 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 630 if (ShVal0 != ShVal1) 631 Y = Builder.CreateTrunc(ShVal1, DestTy); 632 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 633 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 634 return CallInst::Create(F, {X, Y, NarrowShAmt}); 635 } 636 637 /// Try to narrow the width of math or bitwise logic instructions by pulling a 638 /// truncate ahead of binary operators. 639 /// TODO: Transforms for truncated shifts should be moved into here. 640 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 641 Type *SrcTy = Trunc.getSrcTy(); 642 Type *DestTy = Trunc.getType(); 643 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 644 return nullptr; 645 646 BinaryOperator *BinOp; 647 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 648 return nullptr; 649 650 Value *BinOp0 = BinOp->getOperand(0); 651 Value *BinOp1 = BinOp->getOperand(1); 652 switch (BinOp->getOpcode()) { 653 case Instruction::And: 654 case Instruction::Or: 655 case Instruction::Xor: 656 case Instruction::Add: 657 case Instruction::Sub: 658 case Instruction::Mul: { 659 Constant *C; 660 if (match(BinOp0, m_Constant(C))) { 661 // trunc (binop C, X) --> binop (trunc C', X) 662 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 663 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 664 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 665 } 666 if (match(BinOp1, m_Constant(C))) { 667 // trunc (binop X, C) --> binop (trunc X, C') 668 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 669 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 670 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 671 } 672 Value *X; 673 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 674 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 675 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 676 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 677 } 678 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 679 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 680 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 681 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 682 } 683 break; 684 } 685 686 default: break; 687 } 688 689 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 690 return NarrowOr; 691 692 return nullptr; 693 } 694 695 /// Try to narrow the width of a splat shuffle. This could be generalized to any 696 /// shuffle with a constant operand, but we limit the transform to avoid 697 /// creating a shuffle type that targets may not be able to lower effectively. 698 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 699 InstCombiner::BuilderTy &Builder) { 700 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 701 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 702 is_splat(Shuf->getShuffleMask()) && 703 Shuf->getType() == Shuf->getOperand(0)->getType()) { 704 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 705 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 706 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 707 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask()); 708 } 709 710 return nullptr; 711 } 712 713 /// Try to narrow the width of an insert element. This could be generalized for 714 /// any vector constant, but we limit the transform to insertion into undef to 715 /// avoid potential backend problems from unsupported insertion widths. This 716 /// could also be extended to handle the case of inserting a scalar constant 717 /// into a vector variable. 718 static Instruction *shrinkInsertElt(CastInst &Trunc, 719 InstCombiner::BuilderTy &Builder) { 720 Instruction::CastOps Opcode = Trunc.getOpcode(); 721 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 722 "Unexpected instruction for shrinking"); 723 724 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 725 if (!InsElt || !InsElt->hasOneUse()) 726 return nullptr; 727 728 Type *DestTy = Trunc.getType(); 729 Type *DestScalarTy = DestTy->getScalarType(); 730 Value *VecOp = InsElt->getOperand(0); 731 Value *ScalarOp = InsElt->getOperand(1); 732 Value *Index = InsElt->getOperand(2); 733 734 if (match(VecOp, m_Undef())) { 735 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 736 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 737 UndefValue *NarrowUndef = UndefValue::get(DestTy); 738 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 739 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 740 } 741 742 return nullptr; 743 } 744 745 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 746 if (Instruction *Result = commonCastTransforms(Trunc)) 747 return Result; 748 749 Value *Src = Trunc.getOperand(0); 750 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 751 unsigned DestWidth = DestTy->getScalarSizeInBits(); 752 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 753 754 // Attempt to truncate the entire input expression tree to the destination 755 // type. Only do this if the dest type is a simple type, don't convert the 756 // expression tree to something weird like i93 unless the source is also 757 // strange. 758 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 759 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 760 761 // If this cast is a truncate, evaluting in a different type always 762 // eliminates the cast, so it is always a win. 763 LLVM_DEBUG( 764 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 765 " to avoid cast: " 766 << Trunc << '\n'); 767 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 768 assert(Res->getType() == DestTy); 769 return replaceInstUsesWith(Trunc, Res); 770 } 771 772 // For integer types, check if we can shorten the entire input expression to 773 // DestWidth * 2, which won't allow removing the truncate, but reducing the 774 // width may enable further optimizations, e.g. allowing for larger 775 // vectorization factors. 776 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 777 if (DestWidth * 2 < SrcWidth) { 778 auto *NewDestTy = DestITy->getExtendedType(); 779 if (shouldChangeType(SrcTy, NewDestTy) && 780 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 781 LLVM_DEBUG( 782 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 783 " to reduce the width of operand of" 784 << Trunc << '\n'); 785 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 786 return new TruncInst(Res, DestTy); 787 } 788 } 789 } 790 791 // Test if the trunc is the user of a select which is part of a 792 // minimum or maximum operation. If so, don't do any more simplification. 793 // Even simplifying demanded bits can break the canonical form of a 794 // min/max. 795 Value *LHS, *RHS; 796 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 797 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 798 return nullptr; 799 800 // See if we can simplify any instructions used by the input whose sole 801 // purpose is to compute bits we don't care about. 802 if (SimplifyDemandedInstructionBits(Trunc)) 803 return &Trunc; 804 805 if (DestWidth == 1) { 806 Value *Zero = Constant::getNullValue(SrcTy); 807 if (DestTy->isIntegerTy()) { 808 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 809 // TODO: We canonicalize to more instructions here because we are probably 810 // lacking equivalent analysis for trunc relative to icmp. There may also 811 // be codegen concerns. If those trunc limitations were removed, we could 812 // remove this transform. 813 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 814 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 815 } 816 817 // For vectors, we do not canonicalize all truncs to icmp, so optimize 818 // patterns that would be covered within visitICmpInst. 819 Value *X; 820 Constant *C; 821 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 822 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 823 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 824 Constant *MaskC = ConstantExpr::getShl(One, C); 825 Value *And = Builder.CreateAnd(X, MaskC); 826 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 827 } 828 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 829 m_Deferred(X))))) { 830 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 831 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 832 Constant *MaskC = ConstantExpr::getShl(One, C); 833 MaskC = ConstantExpr::getOr(MaskC, One); 834 Value *And = Builder.CreateAnd(X, MaskC); 835 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 836 } 837 } 838 839 Value *A; 840 Constant *C; 841 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 842 unsigned AWidth = A->getType()->getScalarSizeInBits(); 843 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 844 auto *OldSh = cast<Instruction>(Src); 845 bool IsExact = OldSh->isExact(); 846 847 // If the shift is small enough, all zero bits created by the shift are 848 // removed by the trunc. 849 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 850 APInt(SrcWidth, MaxShiftAmt)))) { 851 // trunc (lshr (sext A), C) --> ashr A, C 852 if (A->getType() == DestTy) { 853 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 854 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 855 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 856 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 857 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 858 : BinaryOperator::CreateAShr(A, ShAmt); 859 } 860 // The types are mismatched, so create a cast after shifting: 861 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 862 if (Src->hasOneUse()) { 863 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 864 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 865 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 866 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 867 return CastInst::CreateIntegerCast(Shift, DestTy, true); 868 } 869 } 870 // TODO: Mask high bits with 'and'. 871 } 872 873 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 874 if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) { 875 unsigned MaxShiftAmt = SrcWidth - DestWidth; 876 877 // If the shift is small enough, all zero/sign bits created by the shift are 878 // removed by the trunc. 879 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 880 APInt(SrcWidth, MaxShiftAmt)))) { 881 auto *OldShift = cast<Instruction>(Src); 882 bool IsExact = OldShift->isExact(); 883 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 884 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 885 Value *Shift = 886 OldShift->getOpcode() == Instruction::AShr 887 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 888 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 889 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 890 } 891 } 892 893 if (Instruction *I = narrowBinOp(Trunc)) 894 return I; 895 896 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 897 return I; 898 899 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 900 return I; 901 902 if (Src->hasOneUse() && 903 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 904 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 905 // dest type is native and cst < dest size. 906 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 907 !match(A, m_Shr(m_Value(), m_Constant()))) { 908 // Skip shifts of shift by constants. It undoes a combine in 909 // FoldShiftByConstant and is the extend in reg pattern. 910 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 911 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 912 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 913 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 914 ConstantExpr::getTrunc(C, DestTy)); 915 } 916 } 917 } 918 919 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 920 return I; 921 922 // Whenever an element is extracted from a vector, and then truncated, 923 // canonicalize by converting it to a bitcast followed by an 924 // extractelement. 925 // 926 // Example (little endian): 927 // trunc (extractelement <4 x i64> %X, 0) to i32 928 // ---> 929 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 930 Value *VecOp; 931 ConstantInt *Cst; 932 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 933 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 934 auto VecElts = VecOpTy->getElementCount(); 935 936 // A badly fit destination size would result in an invalid cast. 937 if (SrcWidth % DestWidth == 0) { 938 uint64_t TruncRatio = SrcWidth / DestWidth; 939 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 940 uint64_t VecOpIdx = Cst->getZExtValue(); 941 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 942 : VecOpIdx * TruncRatio; 943 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 944 "overflow 32-bits"); 945 946 auto *BitCastTo = 947 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 948 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 949 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 950 } 951 } 952 953 return nullptr; 954 } 955 956 /// Transform (zext icmp) to bitwise / integer operations in order to 957 /// eliminate it. If DoTransform is false, just test whether the given 958 /// (zext icmp) can be transformed. 959 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, 960 bool DoTransform) { 961 // If we are just checking for a icmp eq of a single bit and zext'ing it 962 // to an integer, then shift the bit to the appropriate place and then 963 // cast to integer to avoid the comparison. 964 const APInt *Op1CV; 965 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 966 967 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 968 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 969 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 970 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 971 if (!DoTransform) return Cmp; 972 973 Value *In = Cmp->getOperand(0); 974 Value *Sh = ConstantInt::get(In->getType(), 975 In->getType()->getScalarSizeInBits() - 1); 976 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 977 if (In->getType() != Zext.getType()) 978 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 979 980 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { 981 Constant *One = ConstantInt::get(In->getType(), 1); 982 In = Builder.CreateXor(In, One, In->getName() + ".not"); 983 } 984 985 return replaceInstUsesWith(Zext, In); 986 } 987 988 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 989 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 990 // zext (X == 1) to i32 --> X iff X has only the low bit set. 991 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 992 // zext (X != 0) to i32 --> X iff X has only the low bit set. 993 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 994 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 995 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 996 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 997 // This only works for EQ and NE 998 Cmp->isEquality()) { 999 // If Op1C some other power of two, convert: 1000 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 1001 1002 APInt KnownZeroMask(~Known.Zero); 1003 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 1004 if (!DoTransform) return Cmp; 1005 1006 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1007 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 1008 // (X&4) == 2 --> false 1009 // (X&4) != 2 --> true 1010 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 1011 return replaceInstUsesWith(Zext, Res); 1012 } 1013 1014 uint32_t ShAmt = KnownZeroMask.logBase2(); 1015 Value *In = Cmp->getOperand(0); 1016 if (ShAmt) { 1017 // Perform a logical shr by shiftamt. 1018 // Insert the shift to put the result in the low bit. 1019 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1020 In->getName() + ".lobit"); 1021 } 1022 1023 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 1024 Constant *One = ConstantInt::get(In->getType(), 1); 1025 In = Builder.CreateXor(In, One); 1026 } 1027 1028 if (Zext.getType() == In->getType()) 1029 return replaceInstUsesWith(Zext, In); 1030 1031 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1032 return replaceInstUsesWith(Zext, IntCast); 1033 } 1034 } 1035 } 1036 1037 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1038 // Test if a bit is clear/set using a shifted-one mask: 1039 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 1040 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 1041 Value *X, *ShAmt; 1042 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 1043 match(Cmp->getOperand(0), 1044 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 1045 if (!DoTransform) 1046 return Cmp; 1047 1048 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1049 X = Builder.CreateNot(X); 1050 Value *Lshr = Builder.CreateLShr(X, ShAmt); 1051 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1052 return replaceInstUsesWith(Zext, And1); 1053 } 1054 1055 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1056 // It is also profitable to transform icmp eq into not(xor(A, B)) because 1057 // that may lead to additional simplifications. 1058 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1059 Value *LHS = Cmp->getOperand(0); 1060 Value *RHS = Cmp->getOperand(1); 1061 1062 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1063 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1064 1065 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 1066 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1067 APInt UnknownBit = ~KnownBits; 1068 if (UnknownBit.countPopulation() == 1) { 1069 if (!DoTransform) return Cmp; 1070 1071 Value *Result = Builder.CreateXor(LHS, RHS); 1072 1073 // Mask off any bits that are set and won't be shifted away. 1074 if (KnownLHS.One.uge(UnknownBit)) 1075 Result = Builder.CreateAnd(Result, 1076 ConstantInt::get(ITy, UnknownBit)); 1077 1078 // Shift the bit we're testing down to the lsb. 1079 Result = Builder.CreateLShr( 1080 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1081 1082 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1083 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1084 Result->takeName(Cmp); 1085 return replaceInstUsesWith(Zext, Result); 1086 } 1087 } 1088 } 1089 } 1090 1091 return nullptr; 1092 } 1093 1094 /// Determine if the specified value can be computed in the specified wider type 1095 /// and produce the same low bits. If not, return false. 1096 /// 1097 /// If this function returns true, it can also return a non-zero number of bits 1098 /// (in BitsToClear) which indicates that the value it computes is correct for 1099 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1100 /// out. For example, to promote something like: 1101 /// 1102 /// %B = trunc i64 %A to i32 1103 /// %C = lshr i32 %B, 8 1104 /// %E = zext i32 %C to i64 1105 /// 1106 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1107 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1108 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1109 /// clear the top bits anyway, doing this has no extra cost. 1110 /// 1111 /// This function works on both vectors and scalars. 1112 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1113 InstCombinerImpl &IC, Instruction *CxtI) { 1114 BitsToClear = 0; 1115 if (canAlwaysEvaluateInType(V, Ty)) 1116 return true; 1117 if (canNotEvaluateInType(V, Ty)) 1118 return false; 1119 1120 auto *I = cast<Instruction>(V); 1121 unsigned Tmp; 1122 switch (I->getOpcode()) { 1123 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1124 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1125 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1126 return true; 1127 case Instruction::And: 1128 case Instruction::Or: 1129 case Instruction::Xor: 1130 case Instruction::Add: 1131 case Instruction::Sub: 1132 case Instruction::Mul: 1133 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1134 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1135 return false; 1136 // These can all be promoted if neither operand has 'bits to clear'. 1137 if (BitsToClear == 0 && Tmp == 0) 1138 return true; 1139 1140 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1141 // other side, BitsToClear is ok. 1142 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1143 // We use MaskedValueIsZero here for generality, but the case we care 1144 // about the most is constant RHS. 1145 unsigned VSize = V->getType()->getScalarSizeInBits(); 1146 if (IC.MaskedValueIsZero(I->getOperand(1), 1147 APInt::getHighBitsSet(VSize, BitsToClear), 1148 0, CxtI)) { 1149 // If this is an And instruction and all of the BitsToClear are 1150 // known to be zero we can reset BitsToClear. 1151 if (I->getOpcode() == Instruction::And) 1152 BitsToClear = 0; 1153 return true; 1154 } 1155 } 1156 1157 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1158 return false; 1159 1160 case Instruction::Shl: { 1161 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1162 // upper bits we can reduce BitsToClear by the shift amount. 1163 const APInt *Amt; 1164 if (match(I->getOperand(1), m_APInt(Amt))) { 1165 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1166 return false; 1167 uint64_t ShiftAmt = Amt->getZExtValue(); 1168 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1169 return true; 1170 } 1171 return false; 1172 } 1173 case Instruction::LShr: { 1174 // We can promote lshr(x, cst) if we can promote x. This requires the 1175 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1176 const APInt *Amt; 1177 if (match(I->getOperand(1), m_APInt(Amt))) { 1178 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1179 return false; 1180 BitsToClear += Amt->getZExtValue(); 1181 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1182 BitsToClear = V->getType()->getScalarSizeInBits(); 1183 return true; 1184 } 1185 // Cannot promote variable LSHR. 1186 return false; 1187 } 1188 case Instruction::Select: 1189 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1190 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1191 // TODO: If important, we could handle the case when the BitsToClear are 1192 // known zero in the disagreeing side. 1193 Tmp != BitsToClear) 1194 return false; 1195 return true; 1196 1197 case Instruction::PHI: { 1198 // We can change a phi if we can change all operands. Note that we never 1199 // get into trouble with cyclic PHIs here because we only consider 1200 // instructions with a single use. 1201 PHINode *PN = cast<PHINode>(I); 1202 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1203 return false; 1204 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1205 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1206 // TODO: If important, we could handle the case when the BitsToClear 1207 // are known zero in the disagreeing input. 1208 Tmp != BitsToClear) 1209 return false; 1210 return true; 1211 } 1212 default: 1213 // TODO: Can handle more cases here. 1214 return false; 1215 } 1216 } 1217 1218 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1219 // If this zero extend is only used by a truncate, let the truncate be 1220 // eliminated before we try to optimize this zext. 1221 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1222 return nullptr; 1223 1224 // If one of the common conversion will work, do it. 1225 if (Instruction *Result = commonCastTransforms(CI)) 1226 return Result; 1227 1228 Value *Src = CI.getOperand(0); 1229 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1230 1231 // Try to extend the entire expression tree to the wide destination type. 1232 unsigned BitsToClear; 1233 if (shouldChangeType(SrcTy, DestTy) && 1234 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1235 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1236 "Can't clear more bits than in SrcTy"); 1237 1238 // Okay, we can transform this! Insert the new expression now. 1239 LLVM_DEBUG( 1240 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1241 " to avoid zero extend: " 1242 << CI << '\n'); 1243 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1244 assert(Res->getType() == DestTy); 1245 1246 // Preserve debug values referring to Src if the zext is its last use. 1247 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1248 if (SrcOp->hasOneUse()) 1249 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1250 1251 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1252 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1253 1254 // If the high bits are already filled with zeros, just replace this 1255 // cast with the result. 1256 if (MaskedValueIsZero(Res, 1257 APInt::getHighBitsSet(DestBitSize, 1258 DestBitSize-SrcBitsKept), 1259 0, &CI)) 1260 return replaceInstUsesWith(CI, Res); 1261 1262 // We need to emit an AND to clear the high bits. 1263 Constant *C = ConstantInt::get(Res->getType(), 1264 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1265 return BinaryOperator::CreateAnd(Res, C); 1266 } 1267 1268 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1269 // types and if the sizes are just right we can convert this into a logical 1270 // 'and' which will be much cheaper than the pair of casts. 1271 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1272 // TODO: Subsume this into EvaluateInDifferentType. 1273 1274 // Get the sizes of the types involved. We know that the intermediate type 1275 // will be smaller than A or C, but don't know the relation between A and C. 1276 Value *A = CSrc->getOperand(0); 1277 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1278 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1279 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1280 // If we're actually extending zero bits, then if 1281 // SrcSize < DstSize: zext(a & mask) 1282 // SrcSize == DstSize: a & mask 1283 // SrcSize > DstSize: trunc(a) & mask 1284 if (SrcSize < DstSize) { 1285 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1286 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1287 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1288 return new ZExtInst(And, CI.getType()); 1289 } 1290 1291 if (SrcSize == DstSize) { 1292 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1293 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1294 AndValue)); 1295 } 1296 if (SrcSize > DstSize) { 1297 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1298 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1299 return BinaryOperator::CreateAnd(Trunc, 1300 ConstantInt::get(Trunc->getType(), 1301 AndValue)); 1302 } 1303 } 1304 1305 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1306 return transformZExtICmp(Cmp, CI); 1307 1308 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1309 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1310 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1311 // of the (zext icmp) can be eliminated. If so, immediately perform the 1312 // according elimination. 1313 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1314 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1315 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1316 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() && 1317 (transformZExtICmp(LHS, CI, false) || 1318 transformZExtICmp(RHS, CI, false))) { 1319 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1320 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1321 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1322 Value *Or = Builder.CreateOr(LCast, RCast, CI.getName()); 1323 if (auto *OrInst = dyn_cast<Instruction>(Or)) 1324 Builder.SetInsertPoint(OrInst); 1325 1326 // Perform the elimination. 1327 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1328 transformZExtICmp(LHS, *LZExt); 1329 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1330 transformZExtICmp(RHS, *RZExt); 1331 1332 return replaceInstUsesWith(CI, Or); 1333 } 1334 } 1335 1336 // zext(trunc(X) & C) -> (X & zext(C)). 1337 Constant *C; 1338 Value *X; 1339 if (SrcI && 1340 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1341 X->getType() == CI.getType()) 1342 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1343 1344 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1345 Value *And; 1346 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1347 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1348 X->getType() == CI.getType()) { 1349 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1350 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1351 } 1352 1353 return nullptr; 1354 } 1355 1356 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1357 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1358 Instruction &CI) { 1359 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1360 ICmpInst::Predicate Pred = ICI->getPredicate(); 1361 1362 // Don't bother if Op1 isn't of vector or integer type. 1363 if (!Op1->getType()->isIntOrIntVectorTy()) 1364 return nullptr; 1365 1366 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1367 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1368 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1369 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1370 Value *Sh = ConstantInt::get(Op0->getType(), 1371 Op0->getType()->getScalarSizeInBits() - 1); 1372 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1373 if (In->getType() != CI.getType()) 1374 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1375 1376 if (Pred == ICmpInst::ICMP_SGT) 1377 In = Builder.CreateNot(In, In->getName() + ".not"); 1378 return replaceInstUsesWith(CI, In); 1379 } 1380 1381 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1382 // If we know that only one bit of the LHS of the icmp can be set and we 1383 // have an equality comparison with zero or a power of 2, we can transform 1384 // the icmp and sext into bitwise/integer operations. 1385 if (ICI->hasOneUse() && 1386 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1387 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1388 1389 APInt KnownZeroMask(~Known.Zero); 1390 if (KnownZeroMask.isPowerOf2()) { 1391 Value *In = ICI->getOperand(0); 1392 1393 // If the icmp tests for a known zero bit we can constant fold it. 1394 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1395 Value *V = Pred == ICmpInst::ICMP_NE ? 1396 ConstantInt::getAllOnesValue(CI.getType()) : 1397 ConstantInt::getNullValue(CI.getType()); 1398 return replaceInstUsesWith(CI, V); 1399 } 1400 1401 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1402 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1403 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1404 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1405 // Perform a right shift to place the desired bit in the LSB. 1406 if (ShiftAmt) 1407 In = Builder.CreateLShr(In, 1408 ConstantInt::get(In->getType(), ShiftAmt)); 1409 1410 // At this point "In" is either 1 or 0. Subtract 1 to turn 1411 // {1, 0} -> {0, -1}. 1412 In = Builder.CreateAdd(In, 1413 ConstantInt::getAllOnesValue(In->getType()), 1414 "sext"); 1415 } else { 1416 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1417 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1418 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1419 // Perform a left shift to place the desired bit in the MSB. 1420 if (ShiftAmt) 1421 In = Builder.CreateShl(In, 1422 ConstantInt::get(In->getType(), ShiftAmt)); 1423 1424 // Distribute the bit over the whole bit width. 1425 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1426 KnownZeroMask.getBitWidth() - 1), "sext"); 1427 } 1428 1429 if (CI.getType() == In->getType()) 1430 return replaceInstUsesWith(CI, In); 1431 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1432 } 1433 } 1434 } 1435 1436 return nullptr; 1437 } 1438 1439 /// Return true if we can take the specified value and return it as type Ty 1440 /// without inserting any new casts and without changing the value of the common 1441 /// low bits. This is used by code that tries to promote integer operations to 1442 /// a wider types will allow us to eliminate the extension. 1443 /// 1444 /// This function works on both vectors and scalars. 1445 /// 1446 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1447 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1448 "Can't sign extend type to a smaller type"); 1449 if (canAlwaysEvaluateInType(V, Ty)) 1450 return true; 1451 if (canNotEvaluateInType(V, Ty)) 1452 return false; 1453 1454 auto *I = cast<Instruction>(V); 1455 switch (I->getOpcode()) { 1456 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1457 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1458 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1459 return true; 1460 case Instruction::And: 1461 case Instruction::Or: 1462 case Instruction::Xor: 1463 case Instruction::Add: 1464 case Instruction::Sub: 1465 case Instruction::Mul: 1466 // These operators can all arbitrarily be extended if their inputs can. 1467 return canEvaluateSExtd(I->getOperand(0), Ty) && 1468 canEvaluateSExtd(I->getOperand(1), Ty); 1469 1470 //case Instruction::Shl: TODO 1471 //case Instruction::LShr: TODO 1472 1473 case Instruction::Select: 1474 return canEvaluateSExtd(I->getOperand(1), Ty) && 1475 canEvaluateSExtd(I->getOperand(2), Ty); 1476 1477 case Instruction::PHI: { 1478 // We can change a phi if we can change all operands. Note that we never 1479 // get into trouble with cyclic PHIs here because we only consider 1480 // instructions with a single use. 1481 PHINode *PN = cast<PHINode>(I); 1482 for (Value *IncValue : PN->incoming_values()) 1483 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1484 return true; 1485 } 1486 default: 1487 // TODO: Can handle more cases here. 1488 break; 1489 } 1490 1491 return false; 1492 } 1493 1494 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1495 // If this sign extend is only used by a truncate, let the truncate be 1496 // eliminated before we try to optimize this sext. 1497 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1498 return nullptr; 1499 1500 if (Instruction *I = commonCastTransforms(CI)) 1501 return I; 1502 1503 Value *Src = CI.getOperand(0); 1504 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1505 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1506 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1507 1508 // If we know that the value being extended is positive, we can use a zext 1509 // instead. 1510 KnownBits Known = computeKnownBits(Src, 0, &CI); 1511 if (Known.isNonNegative()) 1512 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1513 1514 // Try to extend the entire expression tree to the wide destination type. 1515 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1516 // Okay, we can transform this! Insert the new expression now. 1517 LLVM_DEBUG( 1518 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1519 " to avoid sign extend: " 1520 << CI << '\n'); 1521 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1522 assert(Res->getType() == DestTy); 1523 1524 // If the high bits are already filled with sign bit, just replace this 1525 // cast with the result. 1526 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1527 return replaceInstUsesWith(CI, Res); 1528 1529 // We need to emit a shl + ashr to do the sign extend. 1530 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1531 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1532 ShAmt); 1533 } 1534 1535 Value *X; 1536 if (match(Src, m_Trunc(m_Value(X)))) { 1537 // If the input has more sign bits than bits truncated, then convert 1538 // directly to final type. 1539 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1540 if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize) 1541 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1542 1543 // If input is a trunc from the destination type, then convert into shifts. 1544 if (Src->hasOneUse() && X->getType() == DestTy) { 1545 // sext (trunc X) --> ashr (shl X, C), C 1546 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1547 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1548 } 1549 1550 // If we are replacing shifted-in high zero bits with sign bits, convert 1551 // the logic shift to arithmetic shift and eliminate the cast to 1552 // intermediate type: 1553 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1554 Value *Y; 1555 if (Src->hasOneUse() && 1556 match(X, m_LShr(m_Value(Y), 1557 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1558 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1559 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1560 } 1561 } 1562 1563 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1564 return transformSExtICmp(ICI, CI); 1565 1566 // If the input is a shl/ashr pair of a same constant, then this is a sign 1567 // extension from a smaller value. If we could trust arbitrary bitwidth 1568 // integers, we could turn this into a truncate to the smaller bit and then 1569 // use a sext for the whole extension. Since we don't, look deeper and check 1570 // for a truncate. If the source and dest are the same type, eliminate the 1571 // trunc and extend and just do shifts. For example, turn: 1572 // %a = trunc i32 %i to i8 1573 // %b = shl i8 %a, C 1574 // %c = ashr i8 %b, C 1575 // %d = sext i8 %c to i32 1576 // into: 1577 // %a = shl i32 %i, 32-(8-C) 1578 // %d = ashr i32 %a, 32-(8-C) 1579 Value *A = nullptr; 1580 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1581 Constant *BA = nullptr, *CA = nullptr; 1582 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1583 m_Constant(CA))) && 1584 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1585 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1586 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1587 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1588 Constant *NewShAmt = ConstantExpr::getSub( 1589 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1590 NumLowbitsLeft); 1591 NewShAmt = 1592 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1593 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1594 return BinaryOperator::CreateAShr(A, NewShAmt); 1595 } 1596 1597 return nullptr; 1598 } 1599 1600 /// Return a Constant* for the specified floating-point constant if it fits 1601 /// in the specified FP type without changing its value. 1602 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1603 bool losesInfo; 1604 APFloat F = CFP->getValueAPF(); 1605 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1606 return !losesInfo; 1607 } 1608 1609 static Type *shrinkFPConstant(ConstantFP *CFP) { 1610 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1611 return nullptr; // No constant folding of this. 1612 // See if the value can be truncated to half and then reextended. 1613 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1614 return Type::getHalfTy(CFP->getContext()); 1615 // See if the value can be truncated to float and then reextended. 1616 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1617 return Type::getFloatTy(CFP->getContext()); 1618 if (CFP->getType()->isDoubleTy()) 1619 return nullptr; // Won't shrink. 1620 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1621 return Type::getDoubleTy(CFP->getContext()); 1622 // Don't try to shrink to various long double types. 1623 return nullptr; 1624 } 1625 1626 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1627 // type we can safely truncate all elements to. 1628 // TODO: Make these support undef elements. 1629 static Type *shrinkFPConstantVector(Value *V) { 1630 auto *CV = dyn_cast<Constant>(V); 1631 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1632 if (!CV || !CVVTy) 1633 return nullptr; 1634 1635 Type *MinType = nullptr; 1636 1637 unsigned NumElts = CVVTy->getNumElements(); 1638 1639 // For fixed-width vectors we find the minimal type by looking 1640 // through the constant values of the vector. 1641 for (unsigned i = 0; i != NumElts; ++i) { 1642 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1643 if (!CFP) 1644 return nullptr; 1645 1646 Type *T = shrinkFPConstant(CFP); 1647 if (!T) 1648 return nullptr; 1649 1650 // If we haven't found a type yet or this type has a larger mantissa than 1651 // our previous type, this is our new minimal type. 1652 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1653 MinType = T; 1654 } 1655 1656 // Make a vector type from the minimal type. 1657 return FixedVectorType::get(MinType, NumElts); 1658 } 1659 1660 /// Find the minimum FP type we can safely truncate to. 1661 static Type *getMinimumFPType(Value *V) { 1662 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1663 return FPExt->getOperand(0)->getType(); 1664 1665 // If this value is a constant, return the constant in the smallest FP type 1666 // that can accurately represent it. This allows us to turn 1667 // (float)((double)X+2.0) into x+2.0f. 1668 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1669 if (Type *T = shrinkFPConstant(CFP)) 1670 return T; 1671 1672 // We can only correctly find a minimum type for a scalable vector when it is 1673 // a splat. For splats of constant values the fpext is wrapped up as a 1674 // ConstantExpr. 1675 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1676 if (FPCExt->getOpcode() == Instruction::FPExt) 1677 return FPCExt->getOperand(0)->getType(); 1678 1679 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1680 // vectors 1681 if (Type *T = shrinkFPConstantVector(V)) 1682 return T; 1683 1684 return V->getType(); 1685 } 1686 1687 /// Return true if the cast from integer to FP can be proven to be exact for all 1688 /// possible inputs (the conversion does not lose any precision). 1689 static bool isKnownExactCastIntToFP(CastInst &I) { 1690 CastInst::CastOps Opcode = I.getOpcode(); 1691 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1692 "Unexpected cast"); 1693 Value *Src = I.getOperand(0); 1694 Type *SrcTy = Src->getType(); 1695 Type *FPTy = I.getType(); 1696 bool IsSigned = Opcode == Instruction::SIToFP; 1697 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1698 1699 // Easy case - if the source integer type has less bits than the FP mantissa, 1700 // then the cast must be exact. 1701 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1702 if (SrcSize <= DestNumSigBits) 1703 return true; 1704 1705 // Cast from FP to integer and back to FP is independent of the intermediate 1706 // integer width because of poison on overflow. 1707 Value *F; 1708 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1709 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1710 // potential rounding of negative FP input values. 1711 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1712 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1713 SrcNumSigBits++; 1714 1715 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1716 // significant bits than the destination (and make sure neither type is 1717 // weird -- ppc_fp128). 1718 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1719 SrcNumSigBits <= DestNumSigBits) 1720 return true; 1721 } 1722 1723 // TODO: 1724 // Try harder to find if the source integer type has less significant bits. 1725 // For example, compute number of sign bits or compute low bit mask. 1726 return false; 1727 } 1728 1729 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1730 if (Instruction *I = commonCastTransforms(FPT)) 1731 return I; 1732 1733 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1734 // simplify this expression to avoid one or more of the trunc/extend 1735 // operations if we can do so without changing the numerical results. 1736 // 1737 // The exact manner in which the widths of the operands interact to limit 1738 // what we can and cannot do safely varies from operation to operation, and 1739 // is explained below in the various case statements. 1740 Type *Ty = FPT.getType(); 1741 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1742 if (BO && BO->hasOneUse()) { 1743 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1744 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1745 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1746 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1747 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1748 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1749 unsigned DstWidth = Ty->getFPMantissaWidth(); 1750 switch (BO->getOpcode()) { 1751 default: break; 1752 case Instruction::FAdd: 1753 case Instruction::FSub: 1754 // For addition and subtraction, the infinitely precise result can 1755 // essentially be arbitrarily wide; proving that double rounding 1756 // will not occur because the result of OpI is exact (as we will for 1757 // FMul, for example) is hopeless. However, we *can* nonetheless 1758 // frequently know that double rounding cannot occur (or that it is 1759 // innocuous) by taking advantage of the specific structure of 1760 // infinitely-precise results that admit double rounding. 1761 // 1762 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1763 // to represent both sources, we can guarantee that the double 1764 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1765 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1766 // for proof of this fact). 1767 // 1768 // Note: Figueroa does not consider the case where DstFormat != 1769 // SrcFormat. It's possible (likely even!) that this analysis 1770 // could be tightened for those cases, but they are rare (the main 1771 // case of interest here is (float)((double)float + float)). 1772 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1773 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1774 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1775 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1776 RI->copyFastMathFlags(BO); 1777 return RI; 1778 } 1779 break; 1780 case Instruction::FMul: 1781 // For multiplication, the infinitely precise result has at most 1782 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1783 // that such a value can be exactly represented, then no double 1784 // rounding can possibly occur; we can safely perform the operation 1785 // in the destination format if it can represent both sources. 1786 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1787 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1788 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1789 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1790 } 1791 break; 1792 case Instruction::FDiv: 1793 // For division, we use again use the bound from Figueroa's 1794 // dissertation. I am entirely certain that this bound can be 1795 // tightened in the unbalanced operand case by an analysis based on 1796 // the diophantine rational approximation bound, but the well-known 1797 // condition used here is a good conservative first pass. 1798 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1799 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1800 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1801 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1802 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1803 } 1804 break; 1805 case Instruction::FRem: { 1806 // Remainder is straightforward. Remainder is always exact, so the 1807 // type of OpI doesn't enter into things at all. We simply evaluate 1808 // in whichever source type is larger, then convert to the 1809 // destination type. 1810 if (SrcWidth == OpWidth) 1811 break; 1812 Value *LHS, *RHS; 1813 if (LHSWidth == SrcWidth) { 1814 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1815 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1816 } else { 1817 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1818 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1819 } 1820 1821 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1822 return CastInst::CreateFPCast(ExactResult, Ty); 1823 } 1824 } 1825 } 1826 1827 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1828 Value *X; 1829 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1830 if (Op && Op->hasOneUse()) { 1831 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1832 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1833 if (isa<FPMathOperator>(Op)) 1834 Builder.setFastMathFlags(Op->getFastMathFlags()); 1835 1836 if (match(Op, m_FNeg(m_Value(X)))) { 1837 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1838 1839 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1840 } 1841 1842 // If we are truncating a select that has an extended operand, we can 1843 // narrow the other operand and do the select as a narrow op. 1844 Value *Cond, *X, *Y; 1845 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1846 X->getType() == Ty) { 1847 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1848 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1849 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1850 return replaceInstUsesWith(FPT, Sel); 1851 } 1852 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1853 X->getType() == Ty) { 1854 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1855 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1856 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1857 return replaceInstUsesWith(FPT, Sel); 1858 } 1859 } 1860 1861 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1862 switch (II->getIntrinsicID()) { 1863 default: break; 1864 case Intrinsic::ceil: 1865 case Intrinsic::fabs: 1866 case Intrinsic::floor: 1867 case Intrinsic::nearbyint: 1868 case Intrinsic::rint: 1869 case Intrinsic::round: 1870 case Intrinsic::roundeven: 1871 case Intrinsic::trunc: { 1872 Value *Src = II->getArgOperand(0); 1873 if (!Src->hasOneUse()) 1874 break; 1875 1876 // Except for fabs, this transformation requires the input of the unary FP 1877 // operation to be itself an fpext from the type to which we're 1878 // truncating. 1879 if (II->getIntrinsicID() != Intrinsic::fabs) { 1880 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1881 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1882 break; 1883 } 1884 1885 // Do unary FP operation on smaller type. 1886 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1887 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1888 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1889 II->getIntrinsicID(), Ty); 1890 SmallVector<OperandBundleDef, 1> OpBundles; 1891 II->getOperandBundlesAsDefs(OpBundles); 1892 CallInst *NewCI = 1893 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1894 NewCI->copyFastMathFlags(II); 1895 return NewCI; 1896 } 1897 } 1898 } 1899 1900 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1901 return I; 1902 1903 Value *Src = FPT.getOperand(0); 1904 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1905 auto *FPCast = cast<CastInst>(Src); 1906 if (isKnownExactCastIntToFP(*FPCast)) 1907 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1908 } 1909 1910 return nullptr; 1911 } 1912 1913 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1914 // If the source operand is a cast from integer to FP and known exact, then 1915 // cast the integer operand directly to the destination type. 1916 Type *Ty = FPExt.getType(); 1917 Value *Src = FPExt.getOperand(0); 1918 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1919 auto *FPCast = cast<CastInst>(Src); 1920 if (isKnownExactCastIntToFP(*FPCast)) 1921 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1922 } 1923 1924 return commonCastTransforms(FPExt); 1925 } 1926 1927 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1928 /// This is safe if the intermediate type has enough bits in its mantissa to 1929 /// accurately represent all values of X. For example, this won't work with 1930 /// i64 -> float -> i64. 1931 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1932 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1933 return nullptr; 1934 1935 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1936 Value *X = OpI->getOperand(0); 1937 Type *XType = X->getType(); 1938 Type *DestType = FI.getType(); 1939 bool IsOutputSigned = isa<FPToSIInst>(FI); 1940 1941 // Since we can assume the conversion won't overflow, our decision as to 1942 // whether the input will fit in the float should depend on the minimum 1943 // of the input range and output range. 1944 1945 // This means this is also safe for a signed input and unsigned output, since 1946 // a negative input would lead to undefined behavior. 1947 if (!isKnownExactCastIntToFP(*OpI)) { 1948 // The first cast may not round exactly based on the source integer width 1949 // and FP width, but the overflow UB rules can still allow this to fold. 1950 // If the destination type is narrow, that means the intermediate FP value 1951 // must be large enough to hold the source value exactly. 1952 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1953 int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned; 1954 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1955 return nullptr; 1956 } 1957 1958 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1959 bool IsInputSigned = isa<SIToFPInst>(OpI); 1960 if (IsInputSigned && IsOutputSigned) 1961 return new SExtInst(X, DestType); 1962 return new ZExtInst(X, DestType); 1963 } 1964 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1965 return new TruncInst(X, DestType); 1966 1967 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1968 return replaceInstUsesWith(FI, X); 1969 } 1970 1971 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 1972 if (Instruction *I = foldItoFPtoI(FI)) 1973 return I; 1974 1975 return commonCastTransforms(FI); 1976 } 1977 1978 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 1979 if (Instruction *I = foldItoFPtoI(FI)) 1980 return I; 1981 1982 return commonCastTransforms(FI); 1983 } 1984 1985 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 1986 return commonCastTransforms(CI); 1987 } 1988 1989 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 1990 return commonCastTransforms(CI); 1991 } 1992 1993 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 1994 // If the source integer type is not the intptr_t type for this target, do a 1995 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1996 // cast to be exposed to other transforms. 1997 unsigned AS = CI.getAddressSpace(); 1998 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1999 DL.getPointerSizeInBits(AS)) { 2000 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2001 DL.getIntPtrType(CI.getContext(), AS)); 2002 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2003 return new IntToPtrInst(P, CI.getType()); 2004 } 2005 2006 if (Instruction *I = commonCastTransforms(CI)) 2007 return I; 2008 2009 return nullptr; 2010 } 2011 2012 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 2013 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 2014 Value *Src = CI.getOperand(0); 2015 2016 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 2017 // If casting the result of a getelementptr instruction with no offset, turn 2018 // this into a cast of the original pointer! 2019 if (GEP->hasAllZeroIndices() && 2020 // If CI is an addrspacecast and GEP changes the poiner type, merging 2021 // GEP into CI would undo canonicalizing addrspacecast with different 2022 // pointer types, causing infinite loops. 2023 (!isa<AddrSpaceCastInst>(CI) || 2024 GEP->getType() == GEP->getPointerOperandType())) { 2025 // Changing the cast operand is usually not a good idea but it is safe 2026 // here because the pointer operand is being replaced with another 2027 // pointer operand so the opcode doesn't need to change. 2028 return replaceOperand(CI, 0, GEP->getOperand(0)); 2029 } 2030 } 2031 2032 return commonCastTransforms(CI); 2033 } 2034 2035 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2036 // If the destination integer type is not the intptr_t type for this target, 2037 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2038 // to be exposed to other transforms. 2039 Value *SrcOp = CI.getPointerOperand(); 2040 Type *SrcTy = SrcOp->getType(); 2041 Type *Ty = CI.getType(); 2042 unsigned AS = CI.getPointerAddressSpace(); 2043 unsigned TySize = Ty->getScalarSizeInBits(); 2044 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2045 if (TySize != PtrSize) { 2046 Type *IntPtrTy = 2047 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2048 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2049 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2050 } 2051 2052 Value *Vec, *Scalar, *Index; 2053 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2054 m_Value(Scalar), m_Value(Index)))) && 2055 Vec->getType() == Ty) { 2056 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2057 // Convert the scalar to int followed by insert to eliminate one cast: 2058 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2059 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2060 return InsertElementInst::Create(Vec, NewCast, Index); 2061 } 2062 2063 return commonPointerCastTransforms(CI); 2064 } 2065 2066 /// This input value (which is known to have vector type) is being zero extended 2067 /// or truncated to the specified vector type. Since the zext/trunc is done 2068 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2069 /// endianness will impact which end of the vector that is extended or 2070 /// truncated. 2071 /// 2072 /// A vector is always stored with index 0 at the lowest address, which 2073 /// corresponds to the most significant bits for a big endian stored integer and 2074 /// the least significant bits for little endian. A trunc/zext of an integer 2075 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2076 /// the front of the vector for big endian targets, and the back of the vector 2077 /// for little endian targets. 2078 /// 2079 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2080 /// 2081 /// The source and destination vector types may have different element types. 2082 static Instruction * 2083 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2084 InstCombinerImpl &IC) { 2085 // We can only do this optimization if the output is a multiple of the input 2086 // element size, or the input is a multiple of the output element size. 2087 // Convert the input type to have the same element type as the output. 2088 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2089 2090 if (SrcTy->getElementType() != DestTy->getElementType()) { 2091 // The input types don't need to be identical, but for now they must be the 2092 // same size. There is no specific reason we couldn't handle things like 2093 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2094 // there yet. 2095 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2096 DestTy->getElementType()->getPrimitiveSizeInBits()) 2097 return nullptr; 2098 2099 SrcTy = 2100 FixedVectorType::get(DestTy->getElementType(), 2101 cast<FixedVectorType>(SrcTy)->getNumElements()); 2102 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2103 } 2104 2105 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2106 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2107 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2108 2109 assert(SrcElts != DestElts && "Element counts should be different."); 2110 2111 // Now that the element types match, get the shuffle mask and RHS of the 2112 // shuffle to use, which depends on whether we're increasing or decreasing the 2113 // size of the input. 2114 SmallVector<int, 16> ShuffleMaskStorage; 2115 ArrayRef<int> ShuffleMask; 2116 Value *V2; 2117 2118 // Produce an identify shuffle mask for the src vector. 2119 ShuffleMaskStorage.resize(SrcElts); 2120 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); 2121 2122 if (SrcElts > DestElts) { 2123 // If we're shrinking the number of elements (rewriting an integer 2124 // truncate), just shuffle in the elements corresponding to the least 2125 // significant bits from the input and use undef as the second shuffle 2126 // input. 2127 V2 = UndefValue::get(SrcTy); 2128 // Make sure the shuffle mask selects the "least significant bits" by 2129 // keeping elements from back of the src vector for big endian, and from the 2130 // front for little endian. 2131 ShuffleMask = ShuffleMaskStorage; 2132 if (IsBigEndian) 2133 ShuffleMask = ShuffleMask.take_back(DestElts); 2134 else 2135 ShuffleMask = ShuffleMask.take_front(DestElts); 2136 } else { 2137 // If we're increasing the number of elements (rewriting an integer zext), 2138 // shuffle in all of the elements from InVal. Fill the rest of the result 2139 // elements with zeros from a constant zero. 2140 V2 = Constant::getNullValue(SrcTy); 2141 // Use first elt from V2 when indicating zero in the shuffle mask. 2142 uint32_t NullElt = SrcElts; 2143 // Extend with null values in the "most significant bits" by adding elements 2144 // in front of the src vector for big endian, and at the back for little 2145 // endian. 2146 unsigned DeltaElts = DestElts - SrcElts; 2147 if (IsBigEndian) 2148 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2149 else 2150 ShuffleMaskStorage.append(DeltaElts, NullElt); 2151 ShuffleMask = ShuffleMaskStorage; 2152 } 2153 2154 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2155 } 2156 2157 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2158 return Value % Ty->getPrimitiveSizeInBits() == 0; 2159 } 2160 2161 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2162 return Value / Ty->getPrimitiveSizeInBits(); 2163 } 2164 2165 /// V is a value which is inserted into a vector of VecEltTy. 2166 /// Look through the value to see if we can decompose it into 2167 /// insertions into the vector. See the example in the comment for 2168 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2169 /// The type of V is always a non-zero multiple of VecEltTy's size. 2170 /// Shift is the number of bits between the lsb of V and the lsb of 2171 /// the vector. 2172 /// 2173 /// This returns false if the pattern can't be matched or true if it can, 2174 /// filling in Elements with the elements found here. 2175 static bool collectInsertionElements(Value *V, unsigned Shift, 2176 SmallVectorImpl<Value *> &Elements, 2177 Type *VecEltTy, bool isBigEndian) { 2178 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2179 "Shift should be a multiple of the element type size"); 2180 2181 // Undef values never contribute useful bits to the result. 2182 if (isa<UndefValue>(V)) return true; 2183 2184 // If we got down to a value of the right type, we win, try inserting into the 2185 // right element. 2186 if (V->getType() == VecEltTy) { 2187 // Inserting null doesn't actually insert any elements. 2188 if (Constant *C = dyn_cast<Constant>(V)) 2189 if (C->isNullValue()) 2190 return true; 2191 2192 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2193 if (isBigEndian) 2194 ElementIndex = Elements.size() - ElementIndex - 1; 2195 2196 // Fail if multiple elements are inserted into this slot. 2197 if (Elements[ElementIndex]) 2198 return false; 2199 2200 Elements[ElementIndex] = V; 2201 return true; 2202 } 2203 2204 if (Constant *C = dyn_cast<Constant>(V)) { 2205 // Figure out the # elements this provides, and bitcast it or slice it up 2206 // as required. 2207 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2208 VecEltTy); 2209 // If the constant is the size of a vector element, we just need to bitcast 2210 // it to the right type so it gets properly inserted. 2211 if (NumElts == 1) 2212 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2213 Shift, Elements, VecEltTy, isBigEndian); 2214 2215 // Okay, this is a constant that covers multiple elements. Slice it up into 2216 // pieces and insert each element-sized piece into the vector. 2217 if (!isa<IntegerType>(C->getType())) 2218 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2219 C->getType()->getPrimitiveSizeInBits())); 2220 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2221 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2222 2223 for (unsigned i = 0; i != NumElts; ++i) { 2224 unsigned ShiftI = Shift+i*ElementSize; 2225 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2226 ShiftI)); 2227 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2228 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2229 isBigEndian)) 2230 return false; 2231 } 2232 return true; 2233 } 2234 2235 if (!V->hasOneUse()) return false; 2236 2237 Instruction *I = dyn_cast<Instruction>(V); 2238 if (!I) return false; 2239 switch (I->getOpcode()) { 2240 default: return false; // Unhandled case. 2241 case Instruction::BitCast: 2242 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2243 isBigEndian); 2244 case Instruction::ZExt: 2245 if (!isMultipleOfTypeSize( 2246 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2247 VecEltTy)) 2248 return false; 2249 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2250 isBigEndian); 2251 case Instruction::Or: 2252 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2253 isBigEndian) && 2254 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2255 isBigEndian); 2256 case Instruction::Shl: { 2257 // Must be shifting by a constant that is a multiple of the element size. 2258 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2259 if (!CI) return false; 2260 Shift += CI->getZExtValue(); 2261 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2262 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2263 isBigEndian); 2264 } 2265 2266 } 2267 } 2268 2269 2270 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2271 /// assemble the elements of the vector manually. 2272 /// Try to rip the code out and replace it with insertelements. This is to 2273 /// optimize code like this: 2274 /// 2275 /// %tmp37 = bitcast float %inc to i32 2276 /// %tmp38 = zext i32 %tmp37 to i64 2277 /// %tmp31 = bitcast float %inc5 to i32 2278 /// %tmp32 = zext i32 %tmp31 to i64 2279 /// %tmp33 = shl i64 %tmp32, 32 2280 /// %ins35 = or i64 %tmp33, %tmp38 2281 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2282 /// 2283 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2284 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2285 InstCombinerImpl &IC) { 2286 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2287 Value *IntInput = CI.getOperand(0); 2288 2289 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2290 if (!collectInsertionElements(IntInput, 0, Elements, 2291 DestVecTy->getElementType(), 2292 IC.getDataLayout().isBigEndian())) 2293 return nullptr; 2294 2295 // If we succeeded, we know that all of the element are specified by Elements 2296 // or are zero if Elements has a null entry. Recast this as a set of 2297 // insertions. 2298 Value *Result = Constant::getNullValue(CI.getType()); 2299 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2300 if (!Elements[i]) continue; // Unset element. 2301 2302 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2303 IC.Builder.getInt32(i)); 2304 } 2305 2306 return Result; 2307 } 2308 2309 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2310 /// vector followed by extract element. The backend tends to handle bitcasts of 2311 /// vectors better than bitcasts of scalars because vector registers are 2312 /// usually not type-specific like scalar integer or scalar floating-point. 2313 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2314 InstCombinerImpl &IC) { 2315 // TODO: Create and use a pattern matcher for ExtractElementInst. 2316 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2317 if (!ExtElt || !ExtElt->hasOneUse()) 2318 return nullptr; 2319 2320 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2321 // type to extract from. 2322 Type *DestType = BitCast.getType(); 2323 if (!VectorType::isValidElementType(DestType)) 2324 return nullptr; 2325 2326 auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType()); 2327 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2328 NewVecType, "bc"); 2329 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2330 } 2331 2332 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2333 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2334 InstCombiner::BuilderTy &Builder) { 2335 Type *DestTy = BitCast.getType(); 2336 BinaryOperator *BO; 2337 if (!DestTy->isIntOrIntVectorTy() || 2338 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2339 !BO->isBitwiseLogicOp()) 2340 return nullptr; 2341 2342 // FIXME: This transform is restricted to vector types to avoid backend 2343 // problems caused by creating potentially illegal operations. If a fix-up is 2344 // added to handle that situation, we can remove this check. 2345 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2346 return nullptr; 2347 2348 Value *X; 2349 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2350 X->getType() == DestTy && !isa<Constant>(X)) { 2351 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2352 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2353 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2354 } 2355 2356 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2357 X->getType() == DestTy && !isa<Constant>(X)) { 2358 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2359 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2360 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2361 } 2362 2363 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2364 // constant. This eases recognition of special constants for later ops. 2365 // Example: 2366 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2367 Constant *C; 2368 if (match(BO->getOperand(1), m_Constant(C))) { 2369 // bitcast (logic X, C) --> logic (bitcast X, C') 2370 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2371 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2372 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2373 } 2374 2375 return nullptr; 2376 } 2377 2378 /// Change the type of a select if we can eliminate a bitcast. 2379 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2380 InstCombiner::BuilderTy &Builder) { 2381 Value *Cond, *TVal, *FVal; 2382 if (!match(BitCast.getOperand(0), 2383 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2384 return nullptr; 2385 2386 // A vector select must maintain the same number of elements in its operands. 2387 Type *CondTy = Cond->getType(); 2388 Type *DestTy = BitCast.getType(); 2389 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2390 if (!DestTy->isVectorTy() || 2391 CondVTy->getElementCount() != 2392 cast<VectorType>(DestTy)->getElementCount()) 2393 return nullptr; 2394 2395 // FIXME: This transform is restricted from changing the select between 2396 // scalars and vectors to avoid backend problems caused by creating 2397 // potentially illegal operations. If a fix-up is added to handle that 2398 // situation, we can remove this check. 2399 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2400 return nullptr; 2401 2402 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2403 Value *X; 2404 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2405 !isa<Constant>(X)) { 2406 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2407 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2408 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2409 } 2410 2411 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2412 !isa<Constant>(X)) { 2413 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2414 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2415 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2416 } 2417 2418 return nullptr; 2419 } 2420 2421 /// Check if all users of CI are StoreInsts. 2422 static bool hasStoreUsersOnly(CastInst &CI) { 2423 for (User *U : CI.users()) { 2424 if (!isa<StoreInst>(U)) 2425 return false; 2426 } 2427 return true; 2428 } 2429 2430 /// This function handles following case 2431 /// 2432 /// A -> B cast 2433 /// PHI 2434 /// B -> A cast 2435 /// 2436 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2437 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2438 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2439 PHINode *PN) { 2440 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2441 if (hasStoreUsersOnly(CI)) 2442 return nullptr; 2443 2444 Value *Src = CI.getOperand(0); 2445 Type *SrcTy = Src->getType(); // Type B 2446 Type *DestTy = CI.getType(); // Type A 2447 2448 SmallVector<PHINode *, 4> PhiWorklist; 2449 SmallSetVector<PHINode *, 4> OldPhiNodes; 2450 2451 // Find all of the A->B casts and PHI nodes. 2452 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2453 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2454 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2455 PhiWorklist.push_back(PN); 2456 OldPhiNodes.insert(PN); 2457 while (!PhiWorklist.empty()) { 2458 auto *OldPN = PhiWorklist.pop_back_val(); 2459 for (Value *IncValue : OldPN->incoming_values()) { 2460 if (isa<Constant>(IncValue)) 2461 continue; 2462 2463 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2464 // If there is a sequence of one or more load instructions, each loaded 2465 // value is used as address of later load instruction, bitcast is 2466 // necessary to change the value type, don't optimize it. For 2467 // simplicity we give up if the load address comes from another load. 2468 Value *Addr = LI->getOperand(0); 2469 if (Addr == &CI || isa<LoadInst>(Addr)) 2470 return nullptr; 2471 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2472 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2473 // TODO: Remove this check when bitcast between vector and x86_amx 2474 // is replaced with a specific intrinsic. 2475 if (DestTy->isX86_AMXTy()) 2476 return nullptr; 2477 if (LI->hasOneUse() && LI->isSimple()) 2478 continue; 2479 // If a LoadInst has more than one use, changing the type of loaded 2480 // value may create another bitcast. 2481 return nullptr; 2482 } 2483 2484 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2485 if (OldPhiNodes.insert(PNode)) 2486 PhiWorklist.push_back(PNode); 2487 continue; 2488 } 2489 2490 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2491 // We can't handle other instructions. 2492 if (!BCI) 2493 return nullptr; 2494 2495 // Verify it's a A->B cast. 2496 Type *TyA = BCI->getOperand(0)->getType(); 2497 Type *TyB = BCI->getType(); 2498 if (TyA != DestTy || TyB != SrcTy) 2499 return nullptr; 2500 } 2501 } 2502 2503 // Check that each user of each old PHI node is something that we can 2504 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2505 for (auto *OldPN : OldPhiNodes) { 2506 for (User *V : OldPN->users()) { 2507 if (auto *SI = dyn_cast<StoreInst>(V)) { 2508 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2509 return nullptr; 2510 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2511 // Verify it's a B->A cast. 2512 Type *TyB = BCI->getOperand(0)->getType(); 2513 Type *TyA = BCI->getType(); 2514 if (TyA != DestTy || TyB != SrcTy) 2515 return nullptr; 2516 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2517 // As long as the user is another old PHI node, then even if we don't 2518 // rewrite it, the PHI web we're considering won't have any users 2519 // outside itself, so it'll be dead. 2520 if (OldPhiNodes.count(PHI) == 0) 2521 return nullptr; 2522 } else { 2523 return nullptr; 2524 } 2525 } 2526 } 2527 2528 // For each old PHI node, create a corresponding new PHI node with a type A. 2529 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2530 for (auto *OldPN : OldPhiNodes) { 2531 Builder.SetInsertPoint(OldPN); 2532 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2533 NewPNodes[OldPN] = NewPN; 2534 } 2535 2536 // Fill in the operands of new PHI nodes. 2537 for (auto *OldPN : OldPhiNodes) { 2538 PHINode *NewPN = NewPNodes[OldPN]; 2539 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2540 Value *V = OldPN->getOperand(j); 2541 Value *NewV = nullptr; 2542 if (auto *C = dyn_cast<Constant>(V)) { 2543 NewV = ConstantExpr::getBitCast(C, DestTy); 2544 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2545 // Explicitly perform load combine to make sure no opposing transform 2546 // can remove the bitcast in the meantime and trigger an infinite loop. 2547 Builder.SetInsertPoint(LI); 2548 NewV = combineLoadToNewType(*LI, DestTy); 2549 // Remove the old load and its use in the old phi, which itself becomes 2550 // dead once the whole transform finishes. 2551 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2552 eraseInstFromFunction(*LI); 2553 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2554 NewV = BCI->getOperand(0); 2555 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2556 NewV = NewPNodes[PrevPN]; 2557 } 2558 assert(NewV); 2559 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2560 } 2561 } 2562 2563 // Traverse all accumulated PHI nodes and process its users, 2564 // which are Stores and BitcCasts. Without this processing 2565 // NewPHI nodes could be replicated and could lead to extra 2566 // moves generated after DeSSA. 2567 // If there is a store with type B, change it to type A. 2568 2569 2570 // Replace users of BitCast B->A with NewPHI. These will help 2571 // later to get rid off a closure formed by OldPHI nodes. 2572 Instruction *RetVal = nullptr; 2573 for (auto *OldPN : OldPhiNodes) { 2574 PHINode *NewPN = NewPNodes[OldPN]; 2575 for (User *V : make_early_inc_range(OldPN->users())) { 2576 if (auto *SI = dyn_cast<StoreInst>(V)) { 2577 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2578 Builder.SetInsertPoint(SI); 2579 auto *NewBC = 2580 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2581 SI->setOperand(0, NewBC); 2582 Worklist.push(SI); 2583 assert(hasStoreUsersOnly(*NewBC)); 2584 } 2585 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2586 Type *TyB = BCI->getOperand(0)->getType(); 2587 Type *TyA = BCI->getType(); 2588 assert(TyA == DestTy && TyB == SrcTy); 2589 (void) TyA; 2590 (void) TyB; 2591 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2592 if (BCI == &CI) 2593 RetVal = I; 2594 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2595 assert(OldPhiNodes.contains(PHI)); 2596 (void) PHI; 2597 } else { 2598 llvm_unreachable("all uses should be handled"); 2599 } 2600 } 2601 } 2602 2603 return RetVal; 2604 } 2605 2606 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder, 2607 const DataLayout &DL) { 2608 Value *Src = CI.getOperand(0); 2609 PointerType *SrcPTy = cast<PointerType>(Src->getType()); 2610 PointerType *DstPTy = cast<PointerType>(CI.getType()); 2611 2612 // Bitcasts involving opaque pointers cannot be converted into a GEP. 2613 if (SrcPTy->isOpaque() || DstPTy->isOpaque()) 2614 return nullptr; 2615 2616 Type *DstElTy = DstPTy->getElementType(); 2617 Type *SrcElTy = SrcPTy->getElementType(); 2618 2619 // When the type pointed to is not sized the cast cannot be 2620 // turned into a gep. 2621 if (!SrcElTy->isSized()) 2622 return nullptr; 2623 2624 // If the source and destination are pointers, and this cast is equivalent 2625 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2626 // This can enhance SROA and other transforms that want type-safe pointers. 2627 unsigned NumZeros = 0; 2628 while (SrcElTy && SrcElTy != DstElTy) { 2629 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2630 ++NumZeros; 2631 } 2632 2633 // If we found a path from the src to dest, create the getelementptr now. 2634 if (SrcElTy == DstElTy) { 2635 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2636 GetElementPtrInst *GEP = 2637 GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs); 2638 2639 // If the source pointer is dereferenceable, then assume it points to an 2640 // allocated object and apply "inbounds" to the GEP. 2641 bool CanBeNull, CanBeFreed; 2642 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2643 // In a non-default address space (not 0), a null pointer can not be 2644 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2645 // The reason is that 'null' is not treated differently in these address 2646 // spaces, and we consequently ignore the 'gep inbounds' special case 2647 // for 'null' which allows 'inbounds' on 'null' if the indices are 2648 // zeros. 2649 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2650 GEP->setIsInBounds(); 2651 } 2652 return GEP; 2653 } 2654 return nullptr; 2655 } 2656 2657 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2658 // If the operands are integer typed then apply the integer transforms, 2659 // otherwise just apply the common ones. 2660 Value *Src = CI.getOperand(0); 2661 Type *SrcTy = Src->getType(); 2662 Type *DestTy = CI.getType(); 2663 2664 // Get rid of casts from one type to the same type. These are useless and can 2665 // be replaced by the operand. 2666 if (DestTy == Src->getType()) 2667 return replaceInstUsesWith(CI, Src); 2668 2669 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2670 // If we are casting a alloca to a pointer to a type of the same 2671 // size, rewrite the allocation instruction to allocate the "right" type. 2672 // There is no need to modify malloc calls because it is their bitcast that 2673 // needs to be cleaned up. 2674 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2675 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2676 return V; 2677 2678 if (Instruction *I = convertBitCastToGEP(CI, Builder, DL)) 2679 return I; 2680 } 2681 2682 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2683 // Beware: messing with this target-specific oddity may cause trouble. 2684 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2685 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2686 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2687 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2688 } 2689 2690 if (isa<IntegerType>(SrcTy)) { 2691 // If this is a cast from an integer to vector, check to see if the input 2692 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2693 // the casts with a shuffle and (potentially) a bitcast. 2694 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2695 CastInst *SrcCast = cast<CastInst>(Src); 2696 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2697 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2698 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2699 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2700 return I; 2701 } 2702 2703 // If the input is an 'or' instruction, we may be doing shifts and ors to 2704 // assemble the elements of the vector manually. Try to rip the code out 2705 // and replace it with insertelements. 2706 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2707 return replaceInstUsesWith(CI, V); 2708 } 2709 } 2710 2711 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2712 if (SrcVTy->getNumElements() == 1) { 2713 // If our destination is not a vector, then make this a straight 2714 // scalar-scalar cast. 2715 if (!DestTy->isVectorTy()) { 2716 Value *Elem = 2717 Builder.CreateExtractElement(Src, 2718 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2719 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2720 } 2721 2722 // Otherwise, see if our source is an insert. If so, then use the scalar 2723 // component directly: 2724 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2725 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2726 return new BitCastInst(InsElt->getOperand(1), DestTy); 2727 } 2728 } 2729 2730 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2731 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2732 // a bitcast to a vector with the same # elts. 2733 Value *ShufOp0 = Shuf->getOperand(0); 2734 Value *ShufOp1 = Shuf->getOperand(1); 2735 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2736 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2737 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2738 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2739 ShufElts == SrcVecElts) { 2740 BitCastInst *Tmp; 2741 // If either of the operands is a cast from CI.getType(), then 2742 // evaluating the shuffle in the casted destination's type will allow 2743 // us to eliminate at least one cast. 2744 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2745 Tmp->getOperand(0)->getType() == DestTy) || 2746 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2747 Tmp->getOperand(0)->getType() == DestTy)) { 2748 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2749 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2750 // Return a new shuffle vector. Use the same element ID's, as we 2751 // know the vector types match #elts. 2752 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2753 } 2754 } 2755 2756 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2757 // a byte-swap: 2758 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2759 // TODO: We should match the related pattern for bitreverse. 2760 if (DestTy->isIntegerTy() && 2761 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2762 SrcTy->getScalarSizeInBits() == 8 && 2763 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 2764 Shuf->isReverse()) { 2765 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2766 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2767 Function *Bswap = 2768 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2769 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2770 return CallInst::Create(Bswap, { ScalarX }); 2771 } 2772 } 2773 2774 // Handle the A->B->A cast, and there is an intervening PHI node. 2775 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2776 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2777 return I; 2778 2779 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2780 return I; 2781 2782 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2783 return I; 2784 2785 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2786 return I; 2787 2788 if (SrcTy->isPointerTy()) 2789 return commonPointerCastTransforms(CI); 2790 return commonCastTransforms(CI); 2791 } 2792 2793 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2794 // If the destination pointer element type is not the same as the source's 2795 // first do a bitcast to the destination type, and then the addrspacecast. 2796 // This allows the cast to be exposed to other transforms. 2797 Value *Src = CI.getOperand(0); 2798 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2799 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2800 2801 Type *DestElemTy = DestTy->getElementType(); 2802 if (SrcTy->getElementType() != DestElemTy) { 2803 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2804 // Handle vectors of pointers. 2805 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2806 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2807 2808 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2809 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2810 } 2811 2812 return commonPointerCastTransforms(CI); 2813 } 2814