1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 191 break; 192 } 193 case Instruction::Trunc: 194 case Instruction::ZExt: 195 case Instruction::SExt: 196 // If the source type of the cast is the type we're trying for then we can 197 // just return the source. There's no need to insert it because it is not 198 // new. 199 if (I->getOperand(0)->getType() == Ty) 200 return I->getOperand(0); 201 202 // Otherwise, must be the same type of cast, so just reinsert a new one. 203 // This also handles the case of zext(trunc(x)) -> zext(x). 204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 205 Opc == Instruction::SExt); 206 break; 207 case Instruction::Select: { 208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 210 Res = SelectInst::Create(I->getOperand(0), True, False); 211 break; 212 } 213 case Instruction::PHI: { 214 PHINode *OPN = cast<PHINode>(I); 215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 217 Value *V = 218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 234 const CastInst *CI2) { 235 Type *SrcTy = CI1->getSrcTy(); 236 Type *MidTy = CI1->getDestTy(); 237 Type *DstTy = CI2->getDestTy(); 238 239 Instruction::CastOps firstOp = CI1->getOpcode(); 240 Instruction::CastOps secondOp = CI2->getOpcode(); 241 Type *SrcIntPtrTy = 242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 243 Type *MidIntPtrTy = 244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 245 Type *DstIntPtrTy = 246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 248 DstTy, SrcIntPtrTy, MidIntPtrTy, 249 DstIntPtrTy); 250 251 // We don't want to form an inttoptr or ptrtoint that converts to an integer 252 // type that differs from the pointer size. 253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 255 Res = 0; 256 257 return Instruction::CastOps(Res); 258 } 259 260 /// @brief Implement the transforms common to all CastInst visitors. 261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 262 Value *Src = CI.getOperand(0); 263 264 // Try to eliminate a cast of a cast. 265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 267 // The first cast (CSrc) is eliminable so we need to fix up or replace 268 // the second cast (CI). CSrc will then have a good chance of being dead. 269 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 270 271 // If the eliminable cast has debug users, insert a debug value after the 272 // cast pointing to the new Value. 273 SmallVector<DbgInfoIntrinsic *, 1> CSrcDbgInsts; 274 findDbgUsers(CSrcDbgInsts, CSrc); 275 if (CSrcDbgInsts.size()) { 276 DIBuilder DIB(*CI.getModule()); 277 for (auto *DII : CSrcDbgInsts) 278 DIB.insertDbgValueIntrinsic( 279 Res, DII->getVariable(), DII->getExpression(), 280 DII->getDebugLoc().get(), &*std::next(CI.getIterator())); 281 } 282 return Res; 283 } 284 } 285 286 // If we are casting a select, then fold the cast into the select. 287 if (auto *SI = dyn_cast<SelectInst>(Src)) 288 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 289 return NV; 290 291 // If we are casting a PHI, then fold the cast into the PHI. 292 if (auto *PN = dyn_cast<PHINode>(Src)) { 293 // Don't do this if it would create a PHI node with an illegal type from a 294 // legal type. 295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 296 shouldChangeType(CI.getType(), Src->getType())) 297 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 298 return NV; 299 } 300 301 return nullptr; 302 } 303 304 /// Constants and extensions/truncates from the destination type are always 305 /// free to be evaluated in that type. This is a helper for canEvaluate*. 306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 307 if (isa<Constant>(V)) 308 return true; 309 Value *X; 310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 311 X->getType() == Ty) 312 return true; 313 314 return false; 315 } 316 317 /// Filter out values that we can not evaluate in the destination type for free. 318 /// This is a helper for canEvaluate*. 319 static bool canNotEvaluateInType(Value *V, Type *Ty) { 320 assert(!isa<Constant>(V) && "Constant should already be handled."); 321 if (!isa<Instruction>(V)) 322 return true; 323 // We don't extend or shrink something that has multiple uses -- doing so 324 // would require duplicating the instruction which isn't profitable. 325 if (!V->hasOneUse()) 326 return true; 327 328 return false; 329 } 330 331 /// Return true if we can evaluate the specified expression tree as type Ty 332 /// instead of its larger type, and arrive with the same value. 333 /// This is used by code that tries to eliminate truncates. 334 /// 335 /// Ty will always be a type smaller than V. We should return true if trunc(V) 336 /// can be computed by computing V in the smaller type. If V is an instruction, 337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 338 /// makes sense if x and y can be efficiently truncated. 339 /// 340 /// This function works on both vectors and scalars. 341 /// 342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 343 Instruction *CxtI) { 344 if (canAlwaysEvaluateInType(V, Ty)) 345 return true; 346 if (canNotEvaluateInType(V, Ty)) 347 return false; 348 349 auto *I = cast<Instruction>(V); 350 Type *OrigTy = V->getType(); 351 switch (I->getOpcode()) { 352 case Instruction::Add: 353 case Instruction::Sub: 354 case Instruction::Mul: 355 case Instruction::And: 356 case Instruction::Or: 357 case Instruction::Xor: 358 // These operators can all arbitrarily be extended or truncated. 359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 361 362 case Instruction::UDiv: 363 case Instruction::URem: { 364 // UDiv and URem can be truncated if all the truncated bits are zero. 365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 366 uint32_t BitWidth = Ty->getScalarSizeInBits(); 367 if (BitWidth < OrigBitWidth) { 368 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 373 } 374 } 375 break; 376 } 377 case Instruction::Shl: { 378 // If we are truncating the result of this SHL, and if it's a shift of a 379 // constant amount, we can always perform a SHL in a smaller type. 380 const APInt *Amt; 381 if (match(I->getOperand(1), m_APInt(Amt))) { 382 uint32_t BitWidth = Ty->getScalarSizeInBits(); 383 if (Amt->getLimitedValue(BitWidth) < BitWidth) 384 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 385 } 386 break; 387 } 388 case Instruction::LShr: { 389 // If this is a truncate of a logical shr, we can truncate it to a smaller 390 // lshr iff we know that the bits we would otherwise be shifting in are 391 // already zeros. 392 const APInt *Amt; 393 if (match(I->getOperand(1), m_APInt(Amt))) { 394 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 395 uint32_t BitWidth = Ty->getScalarSizeInBits(); 396 if (IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 398 Amt->getLimitedValue(BitWidth) < BitWidth) { 399 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 400 } 401 } 402 break; 403 } 404 case Instruction::AShr: { 405 // If this is a truncate of an arithmetic shr, we can truncate it to a 406 // smaller ashr iff we know that all the bits from the sign bit of the 407 // original type and the sign bit of the truncate type are similar. 408 // TODO: It is enough to check that the bits we would be shifting in are 409 // similar to sign bit of the truncate type. 410 const APInt *Amt; 411 if (match(I->getOperand(1), m_APInt(Amt))) { 412 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 413 uint32_t BitWidth = Ty->getScalarSizeInBits(); 414 if (Amt->getLimitedValue(BitWidth) < BitWidth && 415 OrigBitWidth - BitWidth < 416 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 417 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 418 } 419 break; 420 } 421 case Instruction::Trunc: 422 // trunc(trunc(x)) -> trunc(x) 423 return true; 424 case Instruction::ZExt: 425 case Instruction::SExt: 426 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 427 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 428 return true; 429 case Instruction::Select: { 430 SelectInst *SI = cast<SelectInst>(I); 431 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 432 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 433 } 434 case Instruction::PHI: { 435 // We can change a phi if we can change all operands. Note that we never 436 // get into trouble with cyclic PHIs here because we only consider 437 // instructions with a single use. 438 PHINode *PN = cast<PHINode>(I); 439 for (Value *IncValue : PN->incoming_values()) 440 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 441 return false; 442 return true; 443 } 444 default: 445 // TODO: Can handle more cases here. 446 break; 447 } 448 449 return false; 450 } 451 452 /// Given a vector that is bitcast to an integer, optionally logically 453 /// right-shifted, and truncated, convert it to an extractelement. 454 /// Example (big endian): 455 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 456 /// ---> 457 /// extractelement <4 x i32> %X, 1 458 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 459 Value *TruncOp = Trunc.getOperand(0); 460 Type *DestType = Trunc.getType(); 461 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 462 return nullptr; 463 464 Value *VecInput = nullptr; 465 ConstantInt *ShiftVal = nullptr; 466 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 467 m_LShr(m_BitCast(m_Value(VecInput)), 468 m_ConstantInt(ShiftVal)))) || 469 !isa<VectorType>(VecInput->getType())) 470 return nullptr; 471 472 VectorType *VecType = cast<VectorType>(VecInput->getType()); 473 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 474 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 475 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 476 477 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 478 return nullptr; 479 480 // If the element type of the vector doesn't match the result type, 481 // bitcast it to a vector type that we can extract from. 482 unsigned NumVecElts = VecWidth / DestWidth; 483 if (VecType->getElementType() != DestType) { 484 VecType = VectorType::get(DestType, NumVecElts); 485 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 486 } 487 488 unsigned Elt = ShiftAmount / DestWidth; 489 if (IC.getDataLayout().isBigEndian()) 490 Elt = NumVecElts - 1 - Elt; 491 492 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 493 } 494 495 /// Rotate left/right may occur in a wider type than necessary because of type 496 /// promotion rules. Try to narrow all of the component instructions. 497 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 498 assert((isa<VectorType>(Trunc.getSrcTy()) || 499 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 500 "Don't narrow to an illegal scalar type"); 501 502 // First, find an or'd pair of opposite shifts with the same shifted operand: 503 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 504 Value *Or0, *Or1; 505 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 506 return nullptr; 507 508 Value *ShVal, *ShAmt0, *ShAmt1; 509 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 510 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 511 return nullptr; 512 513 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 514 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 515 if (ShiftOpcode0 == ShiftOpcode1) 516 return nullptr; 517 518 // The shift amounts must add up to the narrow bit width. 519 Value *ShAmt; 520 bool SubIsOnLHS; 521 Type *DestTy = Trunc.getType(); 522 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 523 if (match(ShAmt0, 524 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { 525 ShAmt = ShAmt1; 526 SubIsOnLHS = true; 527 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), 528 m_Specific(ShAmt0))))) { 529 ShAmt = ShAmt0; 530 SubIsOnLHS = false; 531 } else { 532 return nullptr; 533 } 534 535 // The shifted value must have high zeros in the wide type. Typically, this 536 // will be a zext, but it could also be the result of an 'and' or 'shift'. 537 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 538 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 539 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 540 return nullptr; 541 542 // We have an unnecessarily wide rotate! 543 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 544 // Narrow it down to eliminate the zext/trunc: 545 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 546 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 547 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 548 549 // Mask both shift amounts to ensure there's no UB from oversized shifts. 550 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 551 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 552 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 553 554 // Truncate the original value and use narrow ops. 555 Value *X = Builder.CreateTrunc(ShVal, DestTy); 556 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 557 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 558 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 559 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 560 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 561 } 562 563 /// Try to narrow the width of math or bitwise logic instructions by pulling a 564 /// truncate ahead of binary operators. 565 /// TODO: Transforms for truncated shifts should be moved into here. 566 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 567 Type *SrcTy = Trunc.getSrcTy(); 568 Type *DestTy = Trunc.getType(); 569 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 570 return nullptr; 571 572 BinaryOperator *BinOp; 573 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 574 return nullptr; 575 576 Value *BinOp0 = BinOp->getOperand(0); 577 Value *BinOp1 = BinOp->getOperand(1); 578 switch (BinOp->getOpcode()) { 579 case Instruction::And: 580 case Instruction::Or: 581 case Instruction::Xor: 582 case Instruction::Add: 583 case Instruction::Sub: 584 case Instruction::Mul: { 585 Constant *C; 586 if (match(BinOp0, m_Constant(C))) { 587 // trunc (binop C, X) --> binop (trunc C', X) 588 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 589 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 590 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 591 } 592 if (match(BinOp1, m_Constant(C))) { 593 // trunc (binop X, C) --> binop (trunc X, C') 594 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 595 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 596 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 597 } 598 Value *X; 599 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 600 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 601 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 602 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 603 } 604 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 605 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 606 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 607 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 608 } 609 break; 610 } 611 612 default: break; 613 } 614 615 if (Instruction *NarrowOr = narrowRotate(Trunc)) 616 return NarrowOr; 617 618 return nullptr; 619 } 620 621 /// Try to narrow the width of a splat shuffle. This could be generalized to any 622 /// shuffle with a constant operand, but we limit the transform to avoid 623 /// creating a shuffle type that targets may not be able to lower effectively. 624 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 625 InstCombiner::BuilderTy &Builder) { 626 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 627 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 628 Shuf->getMask()->getSplatValue() && 629 Shuf->getType() == Shuf->getOperand(0)->getType()) { 630 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 631 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 632 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 633 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 634 } 635 636 return nullptr; 637 } 638 639 /// Try to narrow the width of an insert element. This could be generalized for 640 /// any vector constant, but we limit the transform to insertion into undef to 641 /// avoid potential backend problems from unsupported insertion widths. This 642 /// could also be extended to handle the case of inserting a scalar constant 643 /// into a vector variable. 644 static Instruction *shrinkInsertElt(CastInst &Trunc, 645 InstCombiner::BuilderTy &Builder) { 646 Instruction::CastOps Opcode = Trunc.getOpcode(); 647 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 648 "Unexpected instruction for shrinking"); 649 650 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 651 if (!InsElt || !InsElt->hasOneUse()) 652 return nullptr; 653 654 Type *DestTy = Trunc.getType(); 655 Type *DestScalarTy = DestTy->getScalarType(); 656 Value *VecOp = InsElt->getOperand(0); 657 Value *ScalarOp = InsElt->getOperand(1); 658 Value *Index = InsElt->getOperand(2); 659 660 if (isa<UndefValue>(VecOp)) { 661 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 662 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 663 UndefValue *NarrowUndef = UndefValue::get(DestTy); 664 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 665 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 666 } 667 668 return nullptr; 669 } 670 671 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 672 if (Instruction *Result = commonCastTransforms(CI)) 673 return Result; 674 675 // Test if the trunc is the user of a select which is part of a 676 // minimum or maximum operation. If so, don't do any more simplification. 677 // Even simplifying demanded bits can break the canonical form of a 678 // min/max. 679 Value *LHS, *RHS; 680 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 681 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 682 return nullptr; 683 684 // See if we can simplify any instructions used by the input whose sole 685 // purpose is to compute bits we don't care about. 686 if (SimplifyDemandedInstructionBits(CI)) 687 return &CI; 688 689 Value *Src = CI.getOperand(0); 690 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 691 692 // Attempt to truncate the entire input expression tree to the destination 693 // type. Only do this if the dest type is a simple type, don't convert the 694 // expression tree to something weird like i93 unless the source is also 695 // strange. 696 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 697 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 698 699 // If this cast is a truncate, evaluting in a different type always 700 // eliminates the cast, so it is always a win. 701 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 702 " to avoid cast: " << CI << '\n'); 703 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 704 assert(Res->getType() == DestTy); 705 return replaceInstUsesWith(CI, Res); 706 } 707 708 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 709 if (DestTy->getScalarSizeInBits() == 1) { 710 Constant *One = ConstantInt::get(SrcTy, 1); 711 Src = Builder.CreateAnd(Src, One); 712 Value *Zero = Constant::getNullValue(Src->getType()); 713 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 714 } 715 716 // FIXME: Maybe combine the next two transforms to handle the no cast case 717 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 718 719 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 720 Value *A = nullptr; ConstantInt *Cst = nullptr; 721 if (Src->hasOneUse() && 722 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 723 // We have three types to worry about here, the type of A, the source of 724 // the truncate (MidSize), and the destination of the truncate. We know that 725 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 726 // between ASize and ResultSize. 727 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 728 729 // If the shift amount is larger than the size of A, then the result is 730 // known to be zero because all the input bits got shifted out. 731 if (Cst->getZExtValue() >= ASize) 732 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 733 734 // Since we're doing an lshr and a zero extend, and know that the shift 735 // amount is smaller than ASize, it is always safe to do the shift in A's 736 // type, then zero extend or truncate to the result. 737 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 738 Shift->takeName(Src); 739 return CastInst::CreateIntegerCast(Shift, DestTy, false); 740 } 741 742 // FIXME: We should canonicalize to zext/trunc and remove this transform. 743 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 744 // conversion. 745 // It works because bits coming from sign extension have the same value as 746 // the sign bit of the original value; performing ashr instead of lshr 747 // generates bits of the same value as the sign bit. 748 if (Src->hasOneUse() && 749 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 750 Value *SExt = cast<Instruction>(Src)->getOperand(0); 751 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 752 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 753 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 754 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 755 unsigned ShiftAmt = Cst->getZExtValue(); 756 757 // This optimization can be only performed when zero bits generated by 758 // the original lshr aren't pulled into the value after truncation, so we 759 // can only shift by values no larger than the number of extension bits. 760 // FIXME: Instead of bailing when the shift is too large, use and to clear 761 // the extra bits. 762 if (ShiftAmt <= MaxAmt) { 763 if (CISize == ASize) 764 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 765 std::min(ShiftAmt, ASize - 1))); 766 if (SExt->hasOneUse()) { 767 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 768 Shift->takeName(Src); 769 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 770 } 771 } 772 } 773 774 if (Instruction *I = narrowBinOp(CI)) 775 return I; 776 777 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 778 return I; 779 780 if (Instruction *I = shrinkInsertElt(CI, Builder)) 781 return I; 782 783 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 784 shouldChangeType(SrcTy, DestTy)) { 785 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 786 // dest type is native and cst < dest size. 787 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 788 !match(A, m_Shr(m_Value(), m_Constant()))) { 789 // Skip shifts of shift by constants. It undoes a combine in 790 // FoldShiftByConstant and is the extend in reg pattern. 791 const unsigned DestSize = DestTy->getScalarSizeInBits(); 792 if (Cst->getValue().ult(DestSize)) { 793 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 794 795 return BinaryOperator::Create( 796 Instruction::Shl, NewTrunc, 797 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 798 } 799 } 800 } 801 802 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 803 return I; 804 805 return nullptr; 806 } 807 808 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 809 bool DoTransform) { 810 // If we are just checking for a icmp eq of a single bit and zext'ing it 811 // to an integer, then shift the bit to the appropriate place and then 812 // cast to integer to avoid the comparison. 813 const APInt *Op1CV; 814 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 815 816 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 817 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 818 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 819 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 820 if (!DoTransform) return ICI; 821 822 Value *In = ICI->getOperand(0); 823 Value *Sh = ConstantInt::get(In->getType(), 824 In->getType()->getScalarSizeInBits() - 1); 825 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 826 if (In->getType() != CI.getType()) 827 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 828 829 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 830 Constant *One = ConstantInt::get(In->getType(), 1); 831 In = Builder.CreateXor(In, One, In->getName() + ".not"); 832 } 833 834 return replaceInstUsesWith(CI, In); 835 } 836 837 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 838 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 839 // zext (X == 1) to i32 --> X iff X has only the low bit set. 840 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 841 // zext (X != 0) to i32 --> X iff X has only the low bit set. 842 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 843 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 844 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 845 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 846 // This only works for EQ and NE 847 ICI->isEquality()) { 848 // If Op1C some other power of two, convert: 849 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 850 851 APInt KnownZeroMask(~Known.Zero); 852 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 853 if (!DoTransform) return ICI; 854 855 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 856 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 857 // (X&4) == 2 --> false 858 // (X&4) != 2 --> true 859 Constant *Res = ConstantInt::get(CI.getType(), isNE); 860 return replaceInstUsesWith(CI, Res); 861 } 862 863 uint32_t ShAmt = KnownZeroMask.logBase2(); 864 Value *In = ICI->getOperand(0); 865 if (ShAmt) { 866 // Perform a logical shr by shiftamt. 867 // Insert the shift to put the result in the low bit. 868 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 869 In->getName() + ".lobit"); 870 } 871 872 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 873 Constant *One = ConstantInt::get(In->getType(), 1); 874 In = Builder.CreateXor(In, One); 875 } 876 877 if (CI.getType() == In->getType()) 878 return replaceInstUsesWith(CI, In); 879 880 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 881 return replaceInstUsesWith(CI, IntCast); 882 } 883 } 884 } 885 886 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 887 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 888 // may lead to additional simplifications. 889 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 890 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 891 Value *LHS = ICI->getOperand(0); 892 Value *RHS = ICI->getOperand(1); 893 894 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 895 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 896 897 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 898 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 899 APInt UnknownBit = ~KnownBits; 900 if (UnknownBit.countPopulation() == 1) { 901 if (!DoTransform) return ICI; 902 903 Value *Result = Builder.CreateXor(LHS, RHS); 904 905 // Mask off any bits that are set and won't be shifted away. 906 if (KnownLHS.One.uge(UnknownBit)) 907 Result = Builder.CreateAnd(Result, 908 ConstantInt::get(ITy, UnknownBit)); 909 910 // Shift the bit we're testing down to the lsb. 911 Result = Builder.CreateLShr( 912 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 913 914 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 915 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 916 Result->takeName(ICI); 917 return replaceInstUsesWith(CI, Result); 918 } 919 } 920 } 921 } 922 923 return nullptr; 924 } 925 926 /// Determine if the specified value can be computed in the specified wider type 927 /// and produce the same low bits. If not, return false. 928 /// 929 /// If this function returns true, it can also return a non-zero number of bits 930 /// (in BitsToClear) which indicates that the value it computes is correct for 931 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 932 /// out. For example, to promote something like: 933 /// 934 /// %B = trunc i64 %A to i32 935 /// %C = lshr i32 %B, 8 936 /// %E = zext i32 %C to i64 937 /// 938 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 939 /// set to 8 to indicate that the promoted value needs to have bits 24-31 940 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 941 /// clear the top bits anyway, doing this has no extra cost. 942 /// 943 /// This function works on both vectors and scalars. 944 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 945 InstCombiner &IC, Instruction *CxtI) { 946 BitsToClear = 0; 947 if (canAlwaysEvaluateInType(V, Ty)) 948 return true; 949 if (canNotEvaluateInType(V, Ty)) 950 return false; 951 952 auto *I = cast<Instruction>(V); 953 unsigned Tmp; 954 switch (I->getOpcode()) { 955 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 956 case Instruction::SExt: // zext(sext(x)) -> sext(x). 957 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 958 return true; 959 case Instruction::And: 960 case Instruction::Or: 961 case Instruction::Xor: 962 case Instruction::Add: 963 case Instruction::Sub: 964 case Instruction::Mul: 965 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 966 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 967 return false; 968 // These can all be promoted if neither operand has 'bits to clear'. 969 if (BitsToClear == 0 && Tmp == 0) 970 return true; 971 972 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 973 // other side, BitsToClear is ok. 974 if (Tmp == 0 && I->isBitwiseLogicOp()) { 975 // We use MaskedValueIsZero here for generality, but the case we care 976 // about the most is constant RHS. 977 unsigned VSize = V->getType()->getScalarSizeInBits(); 978 if (IC.MaskedValueIsZero(I->getOperand(1), 979 APInt::getHighBitsSet(VSize, BitsToClear), 980 0, CxtI)) { 981 // If this is an And instruction and all of the BitsToClear are 982 // known to be zero we can reset BitsToClear. 983 if (I->getOpcode() == Instruction::And) 984 BitsToClear = 0; 985 return true; 986 } 987 } 988 989 // Otherwise, we don't know how to analyze this BitsToClear case yet. 990 return false; 991 992 case Instruction::Shl: { 993 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 994 // upper bits we can reduce BitsToClear by the shift amount. 995 const APInt *Amt; 996 if (match(I->getOperand(1), m_APInt(Amt))) { 997 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 998 return false; 999 uint64_t ShiftAmt = Amt->getZExtValue(); 1000 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1001 return true; 1002 } 1003 return false; 1004 } 1005 case Instruction::LShr: { 1006 // We can promote lshr(x, cst) if we can promote x. This requires the 1007 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1008 const APInt *Amt; 1009 if (match(I->getOperand(1), m_APInt(Amt))) { 1010 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1011 return false; 1012 BitsToClear += Amt->getZExtValue(); 1013 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1014 BitsToClear = V->getType()->getScalarSizeInBits(); 1015 return true; 1016 } 1017 // Cannot promote variable LSHR. 1018 return false; 1019 } 1020 case Instruction::Select: 1021 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1022 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1023 // TODO: If important, we could handle the case when the BitsToClear are 1024 // known zero in the disagreeing side. 1025 Tmp != BitsToClear) 1026 return false; 1027 return true; 1028 1029 case Instruction::PHI: { 1030 // We can change a phi if we can change all operands. Note that we never 1031 // get into trouble with cyclic PHIs here because we only consider 1032 // instructions with a single use. 1033 PHINode *PN = cast<PHINode>(I); 1034 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1035 return false; 1036 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1037 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1038 // TODO: If important, we could handle the case when the BitsToClear 1039 // are known zero in the disagreeing input. 1040 Tmp != BitsToClear) 1041 return false; 1042 return true; 1043 } 1044 default: 1045 // TODO: Can handle more cases here. 1046 return false; 1047 } 1048 } 1049 1050 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1051 // If this zero extend is only used by a truncate, let the truncate be 1052 // eliminated before we try to optimize this zext. 1053 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1054 return nullptr; 1055 1056 // If one of the common conversion will work, do it. 1057 if (Instruction *Result = commonCastTransforms(CI)) 1058 return Result; 1059 1060 Value *Src = CI.getOperand(0); 1061 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1062 1063 // Attempt to extend the entire input expression tree to the destination 1064 // type. Only do this if the dest type is a simple type, don't convert the 1065 // expression tree to something weird like i93 unless the source is also 1066 // strange. 1067 unsigned BitsToClear; 1068 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1069 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1070 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1071 "Can't clear more bits than in SrcTy"); 1072 1073 // Okay, we can transform this! Insert the new expression now. 1074 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1075 " to avoid zero extend: " << CI << '\n'); 1076 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1077 assert(Res->getType() == DestTy); 1078 1079 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1080 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1081 1082 // If the high bits are already filled with zeros, just replace this 1083 // cast with the result. 1084 if (MaskedValueIsZero(Res, 1085 APInt::getHighBitsSet(DestBitSize, 1086 DestBitSize-SrcBitsKept), 1087 0, &CI)) 1088 return replaceInstUsesWith(CI, Res); 1089 1090 // We need to emit an AND to clear the high bits. 1091 Constant *C = ConstantInt::get(Res->getType(), 1092 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1093 return BinaryOperator::CreateAnd(Res, C); 1094 } 1095 1096 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1097 // types and if the sizes are just right we can convert this into a logical 1098 // 'and' which will be much cheaper than the pair of casts. 1099 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1100 // TODO: Subsume this into EvaluateInDifferentType. 1101 1102 // Get the sizes of the types involved. We know that the intermediate type 1103 // will be smaller than A or C, but don't know the relation between A and C. 1104 Value *A = CSrc->getOperand(0); 1105 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1106 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1107 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1108 // If we're actually extending zero bits, then if 1109 // SrcSize < DstSize: zext(a & mask) 1110 // SrcSize == DstSize: a & mask 1111 // SrcSize > DstSize: trunc(a) & mask 1112 if (SrcSize < DstSize) { 1113 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1114 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1115 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1116 return new ZExtInst(And, CI.getType()); 1117 } 1118 1119 if (SrcSize == DstSize) { 1120 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1121 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1122 AndValue)); 1123 } 1124 if (SrcSize > DstSize) { 1125 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1126 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1127 return BinaryOperator::CreateAnd(Trunc, 1128 ConstantInt::get(Trunc->getType(), 1129 AndValue)); 1130 } 1131 } 1132 1133 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1134 return transformZExtICmp(ICI, CI); 1135 1136 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1137 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1138 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1139 // of the (zext icmp) can be eliminated. If so, immediately perform the 1140 // according elimination. 1141 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1142 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1143 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1144 (transformZExtICmp(LHS, CI, false) || 1145 transformZExtICmp(RHS, CI, false))) { 1146 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1147 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1148 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1149 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1150 1151 // Perform the elimination. 1152 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1153 transformZExtICmp(LHS, *LZExt); 1154 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1155 transformZExtICmp(RHS, *RZExt); 1156 1157 return Or; 1158 } 1159 } 1160 1161 // zext(trunc(X) & C) -> (X & zext(C)). 1162 Constant *C; 1163 Value *X; 1164 if (SrcI && 1165 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1166 X->getType() == CI.getType()) 1167 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1168 1169 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1170 Value *And; 1171 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1172 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1173 X->getType() == CI.getType()) { 1174 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1175 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1176 } 1177 1178 return nullptr; 1179 } 1180 1181 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1182 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1183 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1184 ICmpInst::Predicate Pred = ICI->getPredicate(); 1185 1186 // Don't bother if Op1 isn't of vector or integer type. 1187 if (!Op1->getType()->isIntOrIntVectorTy()) 1188 return nullptr; 1189 1190 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1191 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1192 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1193 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1194 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1195 1196 Value *Sh = ConstantInt::get(Op0->getType(), 1197 Op0->getType()->getScalarSizeInBits()-1); 1198 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1199 if (In->getType() != CI.getType()) 1200 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1201 1202 if (Pred == ICmpInst::ICMP_SGT) 1203 In = Builder.CreateNot(In, In->getName() + ".not"); 1204 return replaceInstUsesWith(CI, In); 1205 } 1206 } 1207 1208 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1209 // If we know that only one bit of the LHS of the icmp can be set and we 1210 // have an equality comparison with zero or a power of 2, we can transform 1211 // the icmp and sext into bitwise/integer operations. 1212 if (ICI->hasOneUse() && 1213 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1214 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1215 1216 APInt KnownZeroMask(~Known.Zero); 1217 if (KnownZeroMask.isPowerOf2()) { 1218 Value *In = ICI->getOperand(0); 1219 1220 // If the icmp tests for a known zero bit we can constant fold it. 1221 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1222 Value *V = Pred == ICmpInst::ICMP_NE ? 1223 ConstantInt::getAllOnesValue(CI.getType()) : 1224 ConstantInt::getNullValue(CI.getType()); 1225 return replaceInstUsesWith(CI, V); 1226 } 1227 1228 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1229 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1230 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1231 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1232 // Perform a right shift to place the desired bit in the LSB. 1233 if (ShiftAmt) 1234 In = Builder.CreateLShr(In, 1235 ConstantInt::get(In->getType(), ShiftAmt)); 1236 1237 // At this point "In" is either 1 or 0. Subtract 1 to turn 1238 // {1, 0} -> {0, -1}. 1239 In = Builder.CreateAdd(In, 1240 ConstantInt::getAllOnesValue(In->getType()), 1241 "sext"); 1242 } else { 1243 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1244 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1245 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1246 // Perform a left shift to place the desired bit in the MSB. 1247 if (ShiftAmt) 1248 In = Builder.CreateShl(In, 1249 ConstantInt::get(In->getType(), ShiftAmt)); 1250 1251 // Distribute the bit over the whole bit width. 1252 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1253 KnownZeroMask.getBitWidth() - 1), "sext"); 1254 } 1255 1256 if (CI.getType() == In->getType()) 1257 return replaceInstUsesWith(CI, In); 1258 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1259 } 1260 } 1261 } 1262 1263 return nullptr; 1264 } 1265 1266 /// Return true if we can take the specified value and return it as type Ty 1267 /// without inserting any new casts and without changing the value of the common 1268 /// low bits. This is used by code that tries to promote integer operations to 1269 /// a wider types will allow us to eliminate the extension. 1270 /// 1271 /// This function works on both vectors and scalars. 1272 /// 1273 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1274 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1275 "Can't sign extend type to a smaller type"); 1276 if (canAlwaysEvaluateInType(V, Ty)) 1277 return true; 1278 if (canNotEvaluateInType(V, Ty)) 1279 return false; 1280 1281 auto *I = cast<Instruction>(V); 1282 switch (I->getOpcode()) { 1283 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1284 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1285 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1286 return true; 1287 case Instruction::And: 1288 case Instruction::Or: 1289 case Instruction::Xor: 1290 case Instruction::Add: 1291 case Instruction::Sub: 1292 case Instruction::Mul: 1293 // These operators can all arbitrarily be extended if their inputs can. 1294 return canEvaluateSExtd(I->getOperand(0), Ty) && 1295 canEvaluateSExtd(I->getOperand(1), Ty); 1296 1297 //case Instruction::Shl: TODO 1298 //case Instruction::LShr: TODO 1299 1300 case Instruction::Select: 1301 return canEvaluateSExtd(I->getOperand(1), Ty) && 1302 canEvaluateSExtd(I->getOperand(2), Ty); 1303 1304 case Instruction::PHI: { 1305 // We can change a phi if we can change all operands. Note that we never 1306 // get into trouble with cyclic PHIs here because we only consider 1307 // instructions with a single use. 1308 PHINode *PN = cast<PHINode>(I); 1309 for (Value *IncValue : PN->incoming_values()) 1310 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1311 return true; 1312 } 1313 default: 1314 // TODO: Can handle more cases here. 1315 break; 1316 } 1317 1318 return false; 1319 } 1320 1321 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1322 // If this sign extend is only used by a truncate, let the truncate be 1323 // eliminated before we try to optimize this sext. 1324 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1325 return nullptr; 1326 1327 if (Instruction *I = commonCastTransforms(CI)) 1328 return I; 1329 1330 Value *Src = CI.getOperand(0); 1331 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1332 1333 // If we know that the value being extended is positive, we can use a zext 1334 // instead. 1335 KnownBits Known = computeKnownBits(Src, 0, &CI); 1336 if (Known.isNonNegative()) { 1337 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1338 return replaceInstUsesWith(CI, ZExt); 1339 } 1340 1341 // Attempt to extend the entire input expression tree to the destination 1342 // type. Only do this if the dest type is a simple type, don't convert the 1343 // expression tree to something weird like i93 unless the source is also 1344 // strange. 1345 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1346 canEvaluateSExtd(Src, DestTy)) { 1347 // Okay, we can transform this! Insert the new expression now. 1348 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1349 " to avoid sign extend: " << CI << '\n'); 1350 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1351 assert(Res->getType() == DestTy); 1352 1353 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1354 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1355 1356 // If the high bits are already filled with sign bit, just replace this 1357 // cast with the result. 1358 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1359 return replaceInstUsesWith(CI, Res); 1360 1361 // We need to emit a shl + ashr to do the sign extend. 1362 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1363 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1364 ShAmt); 1365 } 1366 1367 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1368 // into shifts. 1369 Value *X; 1370 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1371 // sext(trunc(X)) --> ashr(shl(X, C), C) 1372 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1373 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1374 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1375 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1376 } 1377 1378 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1379 return transformSExtICmp(ICI, CI); 1380 1381 // If the input is a shl/ashr pair of a same constant, then this is a sign 1382 // extension from a smaller value. If we could trust arbitrary bitwidth 1383 // integers, we could turn this into a truncate to the smaller bit and then 1384 // use a sext for the whole extension. Since we don't, look deeper and check 1385 // for a truncate. If the source and dest are the same type, eliminate the 1386 // trunc and extend and just do shifts. For example, turn: 1387 // %a = trunc i32 %i to i8 1388 // %b = shl i8 %a, 6 1389 // %c = ashr i8 %b, 6 1390 // %d = sext i8 %c to i32 1391 // into: 1392 // %a = shl i32 %i, 30 1393 // %d = ashr i32 %a, 30 1394 Value *A = nullptr; 1395 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1396 ConstantInt *BA = nullptr, *CA = nullptr; 1397 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1398 m_ConstantInt(CA))) && 1399 BA == CA && A->getType() == CI.getType()) { 1400 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1401 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1402 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1403 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1404 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1405 return BinaryOperator::CreateAShr(A, ShAmtV); 1406 } 1407 1408 return nullptr; 1409 } 1410 1411 1412 /// Return a Constant* for the specified floating-point constant if it fits 1413 /// in the specified FP type without changing its value. 1414 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1415 bool losesInfo; 1416 APFloat F = CFP->getValueAPF(); 1417 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1418 if (!losesInfo) 1419 return ConstantFP::get(CFP->getContext(), F); 1420 return nullptr; 1421 } 1422 1423 /// Look through floating-point extensions until we get the source value. 1424 static Value *lookThroughFPExtensions(Value *V) { 1425 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1426 V = FPExt->getOperand(0); 1427 1428 // If this value is a constant, return the constant in the smallest FP type 1429 // that can accurately represent it. This allows us to turn 1430 // (float)((double)X+2.0) into x+2.0f. 1431 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1432 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1433 return V; // No constant folding of this. 1434 // See if the value can be truncated to half and then reextended. 1435 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1436 return V; 1437 // See if the value can be truncated to float and then reextended. 1438 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1439 return V; 1440 if (CFP->getType()->isDoubleTy()) 1441 return V; // Won't shrink. 1442 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1443 return V; 1444 // Don't try to shrink to various long double types. 1445 } 1446 1447 return V; 1448 } 1449 1450 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1451 if (Instruction *I = commonCastTransforms(CI)) 1452 return I; 1453 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1454 // simplify this expression to avoid one or more of the trunc/extend 1455 // operations if we can do so without changing the numerical results. 1456 // 1457 // The exact manner in which the widths of the operands interact to limit 1458 // what we can and cannot do safely varies from operation to operation, and 1459 // is explained below in the various case statements. 1460 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1461 if (OpI && OpI->hasOneUse()) { 1462 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1463 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1464 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1465 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1466 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1467 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1468 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1469 switch (OpI->getOpcode()) { 1470 default: break; 1471 case Instruction::FAdd: 1472 case Instruction::FSub: 1473 // For addition and subtraction, the infinitely precise result can 1474 // essentially be arbitrarily wide; proving that double rounding 1475 // will not occur because the result of OpI is exact (as we will for 1476 // FMul, for example) is hopeless. However, we *can* nonetheless 1477 // frequently know that double rounding cannot occur (or that it is 1478 // innocuous) by taking advantage of the specific structure of 1479 // infinitely-precise results that admit double rounding. 1480 // 1481 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1482 // to represent both sources, we can guarantee that the double 1483 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1484 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1485 // for proof of this fact). 1486 // 1487 // Note: Figueroa does not consider the case where DstFormat != 1488 // SrcFormat. It's possible (likely even!) that this analysis 1489 // could be tightened for those cases, but they are rare (the main 1490 // case of interest here is (float)((double)float + float)). 1491 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1492 if (LHSOrig->getType() != CI.getType()) 1493 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1494 if (RHSOrig->getType() != CI.getType()) 1495 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1496 Instruction *RI = 1497 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1498 RI->copyFastMathFlags(OpI); 1499 return RI; 1500 } 1501 break; 1502 case Instruction::FMul: 1503 // For multiplication, the infinitely precise result has at most 1504 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1505 // that such a value can be exactly represented, then no double 1506 // rounding can possibly occur; we can safely perform the operation 1507 // in the destination format if it can represent both sources. 1508 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1509 if (LHSOrig->getType() != CI.getType()) 1510 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1511 if (RHSOrig->getType() != CI.getType()) 1512 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1513 Instruction *RI = 1514 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1515 RI->copyFastMathFlags(OpI); 1516 return RI; 1517 } 1518 break; 1519 case Instruction::FDiv: 1520 // For division, we use again use the bound from Figueroa's 1521 // dissertation. I am entirely certain that this bound can be 1522 // tightened in the unbalanced operand case by an analysis based on 1523 // the diophantine rational approximation bound, but the well-known 1524 // condition used here is a good conservative first pass. 1525 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1526 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1527 if (LHSOrig->getType() != CI.getType()) 1528 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1529 if (RHSOrig->getType() != CI.getType()) 1530 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1531 Instruction *RI = 1532 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1533 RI->copyFastMathFlags(OpI); 1534 return RI; 1535 } 1536 break; 1537 case Instruction::FRem: 1538 // Remainder is straightforward. Remainder is always exact, so the 1539 // type of OpI doesn't enter into things at all. We simply evaluate 1540 // in whichever source type is larger, then convert to the 1541 // destination type. 1542 if (SrcWidth == OpWidth) 1543 break; 1544 if (LHSWidth < SrcWidth) 1545 LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType()); 1546 else if (RHSWidth <= SrcWidth) 1547 RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType()); 1548 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1549 Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig); 1550 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1551 RI->copyFastMathFlags(OpI); 1552 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1553 } 1554 } 1555 1556 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1557 if (BinaryOperator::isFNeg(OpI)) { 1558 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), 1559 CI.getType()); 1560 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1561 RI->copyFastMathFlags(OpI); 1562 return RI; 1563 } 1564 } 1565 1566 // (fptrunc (select cond, R1, Cst)) --> 1567 // (select cond, (fptrunc R1), (fptrunc Cst)) 1568 // 1569 // - but only if this isn't part of a min/max operation, else we'll 1570 // ruin min/max canonical form which is to have the select and 1571 // compare's operands be of the same type with no casts to look through. 1572 Value *LHS, *RHS; 1573 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1574 if (SI && 1575 (isa<ConstantFP>(SI->getOperand(1)) || 1576 isa<ConstantFP>(SI->getOperand(2))) && 1577 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1578 Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType()); 1579 Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType()); 1580 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1581 } 1582 1583 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1584 if (II) { 1585 switch (II->getIntrinsicID()) { 1586 default: break; 1587 case Intrinsic::fabs: 1588 case Intrinsic::ceil: 1589 case Intrinsic::floor: 1590 case Intrinsic::rint: 1591 case Intrinsic::round: 1592 case Intrinsic::nearbyint: 1593 case Intrinsic::trunc: { 1594 Value *Src = II->getArgOperand(0); 1595 if (!Src->hasOneUse()) 1596 break; 1597 1598 // Except for fabs, this transformation requires the input of the unary FP 1599 // operation to be itself an fpext from the type to which we're 1600 // truncating. 1601 if (II->getIntrinsicID() != Intrinsic::fabs) { 1602 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1603 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1604 break; 1605 } 1606 1607 // Do unary FP operation on smaller type. 1608 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1609 Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType()); 1610 Type *IntrinsicType[] = { CI.getType() }; 1611 Function *Overload = Intrinsic::getDeclaration( 1612 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1613 1614 SmallVector<OperandBundleDef, 1> OpBundles; 1615 II->getOperandBundlesAsDefs(OpBundles); 1616 1617 Value *Args[] = { InnerTrunc }; 1618 CallInst *NewCI = CallInst::Create(Overload, Args, 1619 OpBundles, II->getName()); 1620 NewCI->copyFastMathFlags(II); 1621 return NewCI; 1622 } 1623 } 1624 } 1625 1626 if (Instruction *I = shrinkInsertElt(CI, Builder)) 1627 return I; 1628 1629 return nullptr; 1630 } 1631 1632 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1633 return commonCastTransforms(CI); 1634 } 1635 1636 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1637 // This is safe if the intermediate type has enough bits in its mantissa to 1638 // accurately represent all values of X. For example, this won't work with 1639 // i64 -> float -> i64. 1640 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1641 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1642 return nullptr; 1643 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1644 1645 Value *SrcI = OpI->getOperand(0); 1646 Type *FITy = FI.getType(); 1647 Type *OpITy = OpI->getType(); 1648 Type *SrcTy = SrcI->getType(); 1649 bool IsInputSigned = isa<SIToFPInst>(OpI); 1650 bool IsOutputSigned = isa<FPToSIInst>(FI); 1651 1652 // We can safely assume the conversion won't overflow the output range, 1653 // because (for example) (uint8_t)18293.f is undefined behavior. 1654 1655 // Since we can assume the conversion won't overflow, our decision as to 1656 // whether the input will fit in the float should depend on the minimum 1657 // of the input range and output range. 1658 1659 // This means this is also safe for a signed input and unsigned output, since 1660 // a negative input would lead to undefined behavior. 1661 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1662 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1663 int ActualSize = std::min(InputSize, OutputSize); 1664 1665 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1666 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1667 if (IsInputSigned && IsOutputSigned) 1668 return new SExtInst(SrcI, FITy); 1669 return new ZExtInst(SrcI, FITy); 1670 } 1671 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1672 return new TruncInst(SrcI, FITy); 1673 if (SrcTy == FITy) 1674 return replaceInstUsesWith(FI, SrcI); 1675 return new BitCastInst(SrcI, FITy); 1676 } 1677 return nullptr; 1678 } 1679 1680 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1681 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1682 if (!OpI) 1683 return commonCastTransforms(FI); 1684 1685 if (Instruction *I = FoldItoFPtoI(FI)) 1686 return I; 1687 1688 return commonCastTransforms(FI); 1689 } 1690 1691 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1692 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1693 if (!OpI) 1694 return commonCastTransforms(FI); 1695 1696 if (Instruction *I = FoldItoFPtoI(FI)) 1697 return I; 1698 1699 return commonCastTransforms(FI); 1700 } 1701 1702 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1703 return commonCastTransforms(CI); 1704 } 1705 1706 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1707 return commonCastTransforms(CI); 1708 } 1709 1710 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1711 // If the source integer type is not the intptr_t type for this target, do a 1712 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1713 // cast to be exposed to other transforms. 1714 unsigned AS = CI.getAddressSpace(); 1715 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1716 DL.getPointerSizeInBits(AS)) { 1717 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1718 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1719 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1720 1721 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1722 return new IntToPtrInst(P, CI.getType()); 1723 } 1724 1725 if (Instruction *I = commonCastTransforms(CI)) 1726 return I; 1727 1728 return nullptr; 1729 } 1730 1731 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1732 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1733 Value *Src = CI.getOperand(0); 1734 1735 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1736 // If casting the result of a getelementptr instruction with no offset, turn 1737 // this into a cast of the original pointer! 1738 if (GEP->hasAllZeroIndices() && 1739 // If CI is an addrspacecast and GEP changes the poiner type, merging 1740 // GEP into CI would undo canonicalizing addrspacecast with different 1741 // pointer types, causing infinite loops. 1742 (!isa<AddrSpaceCastInst>(CI) || 1743 GEP->getType() == GEP->getPointerOperandType())) { 1744 // Changing the cast operand is usually not a good idea but it is safe 1745 // here because the pointer operand is being replaced with another 1746 // pointer operand so the opcode doesn't need to change. 1747 Worklist.Add(GEP); 1748 CI.setOperand(0, GEP->getOperand(0)); 1749 return &CI; 1750 } 1751 } 1752 1753 return commonCastTransforms(CI); 1754 } 1755 1756 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1757 // If the destination integer type is not the intptr_t type for this target, 1758 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1759 // to be exposed to other transforms. 1760 1761 Type *Ty = CI.getType(); 1762 unsigned AS = CI.getPointerAddressSpace(); 1763 1764 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1765 return commonPointerCastTransforms(CI); 1766 1767 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1768 if (Ty->isVectorTy()) // Handle vectors of pointers. 1769 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1770 1771 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1772 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1773 } 1774 1775 /// This input value (which is known to have vector type) is being zero extended 1776 /// or truncated to the specified vector type. 1777 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1778 /// 1779 /// The source and destination vector types may have different element types. 1780 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1781 InstCombiner &IC) { 1782 // We can only do this optimization if the output is a multiple of the input 1783 // element size, or the input is a multiple of the output element size. 1784 // Convert the input type to have the same element type as the output. 1785 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1786 1787 if (SrcTy->getElementType() != DestTy->getElementType()) { 1788 // The input types don't need to be identical, but for now they must be the 1789 // same size. There is no specific reason we couldn't handle things like 1790 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1791 // there yet. 1792 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1793 DestTy->getElementType()->getPrimitiveSizeInBits()) 1794 return nullptr; 1795 1796 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1797 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1798 } 1799 1800 // Now that the element types match, get the shuffle mask and RHS of the 1801 // shuffle to use, which depends on whether we're increasing or decreasing the 1802 // size of the input. 1803 SmallVector<uint32_t, 16> ShuffleMask; 1804 Value *V2; 1805 1806 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1807 // If we're shrinking the number of elements, just shuffle in the low 1808 // elements from the input and use undef as the second shuffle input. 1809 V2 = UndefValue::get(SrcTy); 1810 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1811 ShuffleMask.push_back(i); 1812 1813 } else { 1814 // If we're increasing the number of elements, shuffle in all of the 1815 // elements from InVal and fill the rest of the result elements with zeros 1816 // from a constant zero. 1817 V2 = Constant::getNullValue(SrcTy); 1818 unsigned SrcElts = SrcTy->getNumElements(); 1819 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1820 ShuffleMask.push_back(i); 1821 1822 // The excess elements reference the first element of the zero input. 1823 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1824 ShuffleMask.push_back(SrcElts); 1825 } 1826 1827 return new ShuffleVectorInst(InVal, V2, 1828 ConstantDataVector::get(V2->getContext(), 1829 ShuffleMask)); 1830 } 1831 1832 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1833 return Value % Ty->getPrimitiveSizeInBits() == 0; 1834 } 1835 1836 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1837 return Value / Ty->getPrimitiveSizeInBits(); 1838 } 1839 1840 /// V is a value which is inserted into a vector of VecEltTy. 1841 /// Look through the value to see if we can decompose it into 1842 /// insertions into the vector. See the example in the comment for 1843 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1844 /// The type of V is always a non-zero multiple of VecEltTy's size. 1845 /// Shift is the number of bits between the lsb of V and the lsb of 1846 /// the vector. 1847 /// 1848 /// This returns false if the pattern can't be matched or true if it can, 1849 /// filling in Elements with the elements found here. 1850 static bool collectInsertionElements(Value *V, unsigned Shift, 1851 SmallVectorImpl<Value *> &Elements, 1852 Type *VecEltTy, bool isBigEndian) { 1853 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1854 "Shift should be a multiple of the element type size"); 1855 1856 // Undef values never contribute useful bits to the result. 1857 if (isa<UndefValue>(V)) return true; 1858 1859 // If we got down to a value of the right type, we win, try inserting into the 1860 // right element. 1861 if (V->getType() == VecEltTy) { 1862 // Inserting null doesn't actually insert any elements. 1863 if (Constant *C = dyn_cast<Constant>(V)) 1864 if (C->isNullValue()) 1865 return true; 1866 1867 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1868 if (isBigEndian) 1869 ElementIndex = Elements.size() - ElementIndex - 1; 1870 1871 // Fail if multiple elements are inserted into this slot. 1872 if (Elements[ElementIndex]) 1873 return false; 1874 1875 Elements[ElementIndex] = V; 1876 return true; 1877 } 1878 1879 if (Constant *C = dyn_cast<Constant>(V)) { 1880 // Figure out the # elements this provides, and bitcast it or slice it up 1881 // as required. 1882 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1883 VecEltTy); 1884 // If the constant is the size of a vector element, we just need to bitcast 1885 // it to the right type so it gets properly inserted. 1886 if (NumElts == 1) 1887 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1888 Shift, Elements, VecEltTy, isBigEndian); 1889 1890 // Okay, this is a constant that covers multiple elements. Slice it up into 1891 // pieces and insert each element-sized piece into the vector. 1892 if (!isa<IntegerType>(C->getType())) 1893 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1894 C->getType()->getPrimitiveSizeInBits())); 1895 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1896 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1897 1898 for (unsigned i = 0; i != NumElts; ++i) { 1899 unsigned ShiftI = Shift+i*ElementSize; 1900 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1901 ShiftI)); 1902 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1903 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1904 isBigEndian)) 1905 return false; 1906 } 1907 return true; 1908 } 1909 1910 if (!V->hasOneUse()) return false; 1911 1912 Instruction *I = dyn_cast<Instruction>(V); 1913 if (!I) return false; 1914 switch (I->getOpcode()) { 1915 default: return false; // Unhandled case. 1916 case Instruction::BitCast: 1917 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1918 isBigEndian); 1919 case Instruction::ZExt: 1920 if (!isMultipleOfTypeSize( 1921 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1922 VecEltTy)) 1923 return false; 1924 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1925 isBigEndian); 1926 case Instruction::Or: 1927 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1928 isBigEndian) && 1929 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1930 isBigEndian); 1931 case Instruction::Shl: { 1932 // Must be shifting by a constant that is a multiple of the element size. 1933 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1934 if (!CI) return false; 1935 Shift += CI->getZExtValue(); 1936 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1937 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1938 isBigEndian); 1939 } 1940 1941 } 1942 } 1943 1944 1945 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1946 /// assemble the elements of the vector manually. 1947 /// Try to rip the code out and replace it with insertelements. This is to 1948 /// optimize code like this: 1949 /// 1950 /// %tmp37 = bitcast float %inc to i32 1951 /// %tmp38 = zext i32 %tmp37 to i64 1952 /// %tmp31 = bitcast float %inc5 to i32 1953 /// %tmp32 = zext i32 %tmp31 to i64 1954 /// %tmp33 = shl i64 %tmp32, 32 1955 /// %ins35 = or i64 %tmp33, %tmp38 1956 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1957 /// 1958 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1959 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1960 InstCombiner &IC) { 1961 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1962 Value *IntInput = CI.getOperand(0); 1963 1964 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1965 if (!collectInsertionElements(IntInput, 0, Elements, 1966 DestVecTy->getElementType(), 1967 IC.getDataLayout().isBigEndian())) 1968 return nullptr; 1969 1970 // If we succeeded, we know that all of the element are specified by Elements 1971 // or are zero if Elements has a null entry. Recast this as a set of 1972 // insertions. 1973 Value *Result = Constant::getNullValue(CI.getType()); 1974 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1975 if (!Elements[i]) continue; // Unset element. 1976 1977 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1978 IC.Builder.getInt32(i)); 1979 } 1980 1981 return Result; 1982 } 1983 1984 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1985 /// vector followed by extract element. The backend tends to handle bitcasts of 1986 /// vectors better than bitcasts of scalars because vector registers are 1987 /// usually not type-specific like scalar integer or scalar floating-point. 1988 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1989 InstCombiner &IC) { 1990 // TODO: Create and use a pattern matcher for ExtractElementInst. 1991 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1992 if (!ExtElt || !ExtElt->hasOneUse()) 1993 return nullptr; 1994 1995 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1996 // type to extract from. 1997 Type *DestType = BitCast.getType(); 1998 if (!VectorType::isValidElementType(DestType)) 1999 return nullptr; 2000 2001 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2002 auto *NewVecType = VectorType::get(DestType, NumElts); 2003 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2004 NewVecType, "bc"); 2005 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2006 } 2007 2008 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2009 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2010 InstCombiner::BuilderTy &Builder) { 2011 Type *DestTy = BitCast.getType(); 2012 BinaryOperator *BO; 2013 if (!DestTy->isIntOrIntVectorTy() || 2014 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2015 !BO->isBitwiseLogicOp()) 2016 return nullptr; 2017 2018 // FIXME: This transform is restricted to vector types to avoid backend 2019 // problems caused by creating potentially illegal operations. If a fix-up is 2020 // added to handle that situation, we can remove this check. 2021 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2022 return nullptr; 2023 2024 Value *X; 2025 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2026 X->getType() == DestTy && !isa<Constant>(X)) { 2027 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2028 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2029 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2030 } 2031 2032 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2033 X->getType() == DestTy && !isa<Constant>(X)) { 2034 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2035 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2036 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2037 } 2038 2039 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2040 // constant. This eases recognition of special constants for later ops. 2041 // Example: 2042 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2043 Constant *C; 2044 if (match(BO->getOperand(1), m_Constant(C))) { 2045 // bitcast (logic X, C) --> logic (bitcast X, C') 2046 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2047 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2048 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2049 } 2050 2051 return nullptr; 2052 } 2053 2054 /// Change the type of a select if we can eliminate a bitcast. 2055 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2056 InstCombiner::BuilderTy &Builder) { 2057 Value *Cond, *TVal, *FVal; 2058 if (!match(BitCast.getOperand(0), 2059 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2060 return nullptr; 2061 2062 // A vector select must maintain the same number of elements in its operands. 2063 Type *CondTy = Cond->getType(); 2064 Type *DestTy = BitCast.getType(); 2065 if (CondTy->isVectorTy()) { 2066 if (!DestTy->isVectorTy()) 2067 return nullptr; 2068 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2069 return nullptr; 2070 } 2071 2072 // FIXME: This transform is restricted from changing the select between 2073 // scalars and vectors to avoid backend problems caused by creating 2074 // potentially illegal operations. If a fix-up is added to handle that 2075 // situation, we can remove this check. 2076 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2077 return nullptr; 2078 2079 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2080 Value *X; 2081 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2082 !isa<Constant>(X)) { 2083 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2084 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2085 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2086 } 2087 2088 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2089 !isa<Constant>(X)) { 2090 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2091 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2092 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2093 } 2094 2095 return nullptr; 2096 } 2097 2098 /// Check if all users of CI are StoreInsts. 2099 static bool hasStoreUsersOnly(CastInst &CI) { 2100 for (User *U : CI.users()) { 2101 if (!isa<StoreInst>(U)) 2102 return false; 2103 } 2104 return true; 2105 } 2106 2107 /// This function handles following case 2108 /// 2109 /// A -> B cast 2110 /// PHI 2111 /// B -> A cast 2112 /// 2113 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2114 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2115 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2116 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2117 if (hasStoreUsersOnly(CI)) 2118 return nullptr; 2119 2120 Value *Src = CI.getOperand(0); 2121 Type *SrcTy = Src->getType(); // Type B 2122 Type *DestTy = CI.getType(); // Type A 2123 2124 SmallVector<PHINode *, 4> PhiWorklist; 2125 SmallSetVector<PHINode *, 4> OldPhiNodes; 2126 2127 // Find all of the A->B casts and PHI nodes. 2128 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2129 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2130 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2131 PhiWorklist.push_back(PN); 2132 OldPhiNodes.insert(PN); 2133 while (!PhiWorklist.empty()) { 2134 auto *OldPN = PhiWorklist.pop_back_val(); 2135 for (Value *IncValue : OldPN->incoming_values()) { 2136 if (isa<Constant>(IncValue)) 2137 continue; 2138 2139 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2140 // If there is a sequence of one or more load instructions, each loaded 2141 // value is used as address of later load instruction, bitcast is 2142 // necessary to change the value type, don't optimize it. For 2143 // simplicity we give up if the load address comes from another load. 2144 Value *Addr = LI->getOperand(0); 2145 if (Addr == &CI || isa<LoadInst>(Addr)) 2146 return nullptr; 2147 if (LI->hasOneUse() && LI->isSimple()) 2148 continue; 2149 // If a LoadInst has more than one use, changing the type of loaded 2150 // value may create another bitcast. 2151 return nullptr; 2152 } 2153 2154 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2155 if (OldPhiNodes.insert(PNode)) 2156 PhiWorklist.push_back(PNode); 2157 continue; 2158 } 2159 2160 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2161 // We can't handle other instructions. 2162 if (!BCI) 2163 return nullptr; 2164 2165 // Verify it's a A->B cast. 2166 Type *TyA = BCI->getOperand(0)->getType(); 2167 Type *TyB = BCI->getType(); 2168 if (TyA != DestTy || TyB != SrcTy) 2169 return nullptr; 2170 } 2171 } 2172 2173 // For each old PHI node, create a corresponding new PHI node with a type A. 2174 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2175 for (auto *OldPN : OldPhiNodes) { 2176 Builder.SetInsertPoint(OldPN); 2177 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2178 NewPNodes[OldPN] = NewPN; 2179 } 2180 2181 // Fill in the operands of new PHI nodes. 2182 for (auto *OldPN : OldPhiNodes) { 2183 PHINode *NewPN = NewPNodes[OldPN]; 2184 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2185 Value *V = OldPN->getOperand(j); 2186 Value *NewV = nullptr; 2187 if (auto *C = dyn_cast<Constant>(V)) { 2188 NewV = ConstantExpr::getBitCast(C, DestTy); 2189 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2190 Builder.SetInsertPoint(LI->getNextNode()); 2191 NewV = Builder.CreateBitCast(LI, DestTy); 2192 Worklist.Add(LI); 2193 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2194 NewV = BCI->getOperand(0); 2195 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2196 NewV = NewPNodes[PrevPN]; 2197 } 2198 assert(NewV); 2199 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2200 } 2201 } 2202 2203 // If there is a store with type B, change it to type A. 2204 for (User *U : PN->users()) { 2205 auto *SI = dyn_cast<StoreInst>(U); 2206 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2207 Builder.SetInsertPoint(SI); 2208 auto *NewBC = 2209 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2210 SI->setOperand(0, NewBC); 2211 Worklist.Add(SI); 2212 assert(hasStoreUsersOnly(*NewBC)); 2213 } 2214 } 2215 2216 return replaceInstUsesWith(CI, NewPNodes[PN]); 2217 } 2218 2219 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2220 // If the operands are integer typed then apply the integer transforms, 2221 // otherwise just apply the common ones. 2222 Value *Src = CI.getOperand(0); 2223 Type *SrcTy = Src->getType(); 2224 Type *DestTy = CI.getType(); 2225 2226 // Get rid of casts from one type to the same type. These are useless and can 2227 // be replaced by the operand. 2228 if (DestTy == Src->getType()) 2229 return replaceInstUsesWith(CI, Src); 2230 2231 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2232 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2233 Type *DstElTy = DstPTy->getElementType(); 2234 Type *SrcElTy = SrcPTy->getElementType(); 2235 2236 // If we are casting a alloca to a pointer to a type of the same 2237 // size, rewrite the allocation instruction to allocate the "right" type. 2238 // There is no need to modify malloc calls because it is their bitcast that 2239 // needs to be cleaned up. 2240 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2241 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2242 return V; 2243 2244 // When the type pointed to is not sized the cast cannot be 2245 // turned into a gep. 2246 Type *PointeeType = 2247 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2248 if (!PointeeType->isSized()) 2249 return nullptr; 2250 2251 // If the source and destination are pointers, and this cast is equivalent 2252 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2253 // This can enhance SROA and other transforms that want type-safe pointers. 2254 unsigned NumZeros = 0; 2255 while (SrcElTy != DstElTy && 2256 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2257 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2258 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2259 ++NumZeros; 2260 } 2261 2262 // If we found a path from the src to dest, create the getelementptr now. 2263 if (SrcElTy == DstElTy) { 2264 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2265 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2266 } 2267 } 2268 2269 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2270 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2271 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2272 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2273 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2274 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2275 } 2276 2277 if (isa<IntegerType>(SrcTy)) { 2278 // If this is a cast from an integer to vector, check to see if the input 2279 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2280 // the casts with a shuffle and (potentially) a bitcast. 2281 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2282 CastInst *SrcCast = cast<CastInst>(Src); 2283 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2284 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2285 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2286 cast<VectorType>(DestTy), *this)) 2287 return I; 2288 } 2289 2290 // If the input is an 'or' instruction, we may be doing shifts and ors to 2291 // assemble the elements of the vector manually. Try to rip the code out 2292 // and replace it with insertelements. 2293 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2294 return replaceInstUsesWith(CI, V); 2295 } 2296 } 2297 2298 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2299 if (SrcVTy->getNumElements() == 1) { 2300 // If our destination is not a vector, then make this a straight 2301 // scalar-scalar cast. 2302 if (!DestTy->isVectorTy()) { 2303 Value *Elem = 2304 Builder.CreateExtractElement(Src, 2305 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2306 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2307 } 2308 2309 // Otherwise, see if our source is an insert. If so, then use the scalar 2310 // component directly. 2311 if (InsertElementInst *IEI = 2312 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2313 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2314 DestTy); 2315 } 2316 } 2317 2318 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2319 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2320 // a bitcast to a vector with the same # elts. 2321 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2322 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2323 SVI->getType()->getNumElements() == 2324 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2325 BitCastInst *Tmp; 2326 // If either of the operands is a cast from CI.getType(), then 2327 // evaluating the shuffle in the casted destination's type will allow 2328 // us to eliminate at least one cast. 2329 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2330 Tmp->getOperand(0)->getType() == DestTy) || 2331 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2332 Tmp->getOperand(0)->getType() == DestTy)) { 2333 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2334 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2335 // Return a new shuffle vector. Use the same element ID's, as we 2336 // know the vector types match #elts. 2337 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2338 } 2339 } 2340 } 2341 2342 // Handle the A->B->A cast, and there is an intervening PHI node. 2343 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2344 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2345 return I; 2346 2347 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2348 return I; 2349 2350 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2351 return I; 2352 2353 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2354 return I; 2355 2356 if (SrcTy->isPointerTy()) 2357 return commonPointerCastTransforms(CI); 2358 return commonCastTransforms(CI); 2359 } 2360 2361 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2362 // If the destination pointer element type is not the same as the source's 2363 // first do a bitcast to the destination type, and then the addrspacecast. 2364 // This allows the cast to be exposed to other transforms. 2365 Value *Src = CI.getOperand(0); 2366 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2367 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2368 2369 Type *DestElemTy = DestTy->getElementType(); 2370 if (SrcTy->getElementType() != DestElemTy) { 2371 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2372 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2373 // Handle vectors of pointers. 2374 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2375 } 2376 2377 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2378 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2379 } 2380 2381 return commonPointerCastTransforms(CI); 2382 } 2383