xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 3794cc0e996481e10307b67c8436aa44e0d65d22)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Analyze 'Val', seeing if it is a simple linear expression.
26 /// If so, decompose it, returning some value X, such that Val is
27 /// X*Scale+Offset.
28 ///
29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
30                                         uint64_t &Offset) {
31   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
32     Offset = CI->getZExtValue();
33     Scale  = 0;
34     return ConstantInt::get(Val->getType(), 0);
35   }
36 
37   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
38     // Cannot look past anything that might overflow.
39     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
40     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
41       Scale = 1;
42       Offset = 0;
43       return Val;
44     }
45 
46     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
47       if (I->getOpcode() == Instruction::Shl) {
48         // This is a value scaled by '1 << the shift amt'.
49         Scale = UINT64_C(1) << RHS->getZExtValue();
50         Offset = 0;
51         return I->getOperand(0);
52       }
53 
54       if (I->getOpcode() == Instruction::Mul) {
55         // This value is scaled by 'RHS'.
56         Scale = RHS->getZExtValue();
57         Offset = 0;
58         return I->getOperand(0);
59       }
60 
61       if (I->getOpcode() == Instruction::Add) {
62         // We have X+C.  Check to see if we really have (X*C2)+C1,
63         // where C1 is divisible by C2.
64         unsigned SubScale;
65         Value *SubVal =
66           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
67         Offset += RHS->getZExtValue();
68         Scale = SubScale;
69         return SubVal;
70       }
71     }
72   }
73 
74   // Otherwise, we can't look past this.
75   Scale = 1;
76   Offset = 0;
77   return Val;
78 }
79 
80 /// If we find a cast of an allocation instruction, try to eliminate the cast by
81 /// moving the type information into the alloc.
82 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
83                                                        AllocaInst &AI) {
84   PointerType *PTy = cast<PointerType>(CI.getType());
85   // Opaque pointers don't have an element type we could replace with.
86   if (PTy->isOpaque())
87     return nullptr;
88 
89   IRBuilderBase::InsertPointGuard Guard(Builder);
90   Builder.SetInsertPoint(&AI);
91 
92   // Get the type really allocated and the type casted to.
93   Type *AllocElTy = AI.getAllocatedType();
94   Type *CastElTy = PTy->getNonOpaquePointerElementType();
95   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
96 
97   // This optimisation does not work for cases where the cast type
98   // is scalable and the allocated type is not. This because we need to
99   // know how many times the casted type fits into the allocated type.
100   // For the opposite case where the allocated type is scalable and the
101   // cast type is not this leads to poor code quality due to the
102   // introduction of 'vscale' into the calculations. It seems better to
103   // bail out for this case too until we've done a proper cost-benefit
104   // analysis.
105   bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
106   bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
107   if (AllocIsScalable != CastIsScalable) return nullptr;
108 
109   Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
110   Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
111   if (CastElTyAlign < AllocElTyAlign) return nullptr;
112 
113   // If the allocation has multiple uses, only promote it if we are strictly
114   // increasing the alignment of the resultant allocation.  If we keep it the
115   // same, we open the door to infinite loops of various kinds.
116   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
117 
118   // The alloc and cast types should be either both fixed or both scalable.
119   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
120   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
121   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
122 
123   // If the allocation has multiple uses, only promote it if we're not
124   // shrinking the amount of memory being allocated.
125   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
126   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
127   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
128 
129   // See if we can satisfy the modulus by pulling a scale out of the array
130   // size argument.
131   unsigned ArraySizeScale;
132   uint64_t ArrayOffset;
133   Value *NumElements = // See if the array size is a decomposable linear expr.
134     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
135 
136   // If we can now satisfy the modulus, by using a non-1 scale, we really can
137   // do the xform.
138   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
139       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
140 
141   // We don't currently support arrays of scalable types.
142   assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
143 
144   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
145   Value *Amt = nullptr;
146   if (Scale == 1) {
147     Amt = NumElements;
148   } else {
149     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
150     // Insert before the alloca, not before the cast.
151     Amt = Builder.CreateMul(Amt, NumElements);
152   }
153 
154   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
155     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
156                                   Offset, true);
157     Amt = Builder.CreateAdd(Amt, Off);
158   }
159 
160   AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt);
161   New->setAlignment(AI.getAlign());
162   New->takeName(&AI);
163   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
164 
165   // If the allocation has multiple real uses, insert a cast and change all
166   // things that used it to use the new cast.  This will also hack on CI, but it
167   // will die soon.
168   if (!AI.hasOneUse()) {
169     // New is the allocation instruction, pointer typed. AI is the original
170     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
171     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
172     replaceInstUsesWith(AI, NewCast);
173     eraseInstFromFunction(AI);
174   }
175   return replaceInstUsesWith(CI, New);
176 }
177 
178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
179 /// true for, actually insert the code to evaluate the expression.
180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
181                                                  bool isSigned) {
182   if (Constant *C = dyn_cast<Constant>(V)) {
183     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
184     // If we got a constantexpr back, try to simplify it with DL info.
185     return ConstantFoldConstant(C, DL, &TLI);
186   }
187 
188   // Otherwise, it must be an instruction.
189   Instruction *I = cast<Instruction>(V);
190   Instruction *Res = nullptr;
191   unsigned Opc = I->getOpcode();
192   switch (Opc) {
193   case Instruction::Add:
194   case Instruction::Sub:
195   case Instruction::Mul:
196   case Instruction::And:
197   case Instruction::Or:
198   case Instruction::Xor:
199   case Instruction::AShr:
200   case Instruction::LShr:
201   case Instruction::Shl:
202   case Instruction::UDiv:
203   case Instruction::URem: {
204     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
205     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
207     break;
208   }
209   case Instruction::Trunc:
210   case Instruction::ZExt:
211   case Instruction::SExt:
212     // If the source type of the cast is the type we're trying for then we can
213     // just return the source.  There's no need to insert it because it is not
214     // new.
215     if (I->getOperand(0)->getType() == Ty)
216       return I->getOperand(0);
217 
218     // Otherwise, must be the same type of cast, so just reinsert a new one.
219     // This also handles the case of zext(trunc(x)) -> zext(x).
220     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
221                                       Opc == Instruction::SExt);
222     break;
223   case Instruction::Select: {
224     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
225     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
226     Res = SelectInst::Create(I->getOperand(0), True, False);
227     break;
228   }
229   case Instruction::PHI: {
230     PHINode *OPN = cast<PHINode>(I);
231     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
232     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
233       Value *V =
234           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
235       NPN->addIncoming(V, OPN->getIncomingBlock(i));
236     }
237     Res = NPN;
238     break;
239   }
240   default:
241     // TODO: Can handle more cases here.
242     llvm_unreachable("Unreachable!");
243   }
244 
245   Res->takeName(I);
246   return InsertNewInstWith(Res, *I);
247 }
248 
249 Instruction::CastOps
250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
251                                        const CastInst *CI2) {
252   Type *SrcTy = CI1->getSrcTy();
253   Type *MidTy = CI1->getDestTy();
254   Type *DstTy = CI2->getDestTy();
255 
256   Instruction::CastOps firstOp = CI1->getOpcode();
257   Instruction::CastOps secondOp = CI2->getOpcode();
258   Type *SrcIntPtrTy =
259       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
260   Type *MidIntPtrTy =
261       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
262   Type *DstIntPtrTy =
263       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
264   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
265                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
266                                                 DstIntPtrTy);
267 
268   // We don't want to form an inttoptr or ptrtoint that converts to an integer
269   // type that differs from the pointer size.
270   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
271       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
272     Res = 0;
273 
274   return Instruction::CastOps(Res);
275 }
276 
277 /// Implement the transforms common to all CastInst visitors.
278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
279   Value *Src = CI.getOperand(0);
280   Type *Ty = CI.getType();
281 
282   // Try to eliminate a cast of a cast.
283   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
284     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
285       // The first cast (CSrc) is eliminable so we need to fix up or replace
286       // the second cast (CI). CSrc will then have a good chance of being dead.
287       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
288       // Point debug users of the dying cast to the new one.
289       if (CSrc->hasOneUse())
290         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
291       return Res;
292     }
293   }
294 
295   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
296     // We are casting a select. Try to fold the cast into the select if the
297     // select does not have a compare instruction with matching operand types
298     // or the select is likely better done in a narrow type.
299     // Creating a select with operands that are different sizes than its
300     // condition may inhibit other folds and lead to worse codegen.
301     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
302     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
303         (CI.getOpcode() == Instruction::Trunc &&
304          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
305       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
306         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
307         return NV;
308       }
309     }
310   }
311 
312   // If we are casting a PHI, then fold the cast into the PHI.
313   if (auto *PN = dyn_cast<PHINode>(Src)) {
314     // Don't do this if it would create a PHI node with an illegal type from a
315     // legal type.
316     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
317         shouldChangeType(CI.getSrcTy(), CI.getType()))
318       if (Instruction *NV = foldOpIntoPhi(CI, PN))
319         return NV;
320   }
321 
322   // Canonicalize a unary shuffle after the cast if neither operation changes
323   // the size or element size of the input vector.
324   // TODO: We could allow size-changing ops if that doesn't harm codegen.
325   // cast (shuffle X, Mask) --> shuffle (cast X), Mask
326   Value *X;
327   ArrayRef<int> Mask;
328   if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
329     // TODO: Allow scalable vectors?
330     auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
331     auto *DestTy = dyn_cast<FixedVectorType>(Ty);
332     if (SrcTy && DestTy &&
333         SrcTy->getNumElements() == DestTy->getNumElements() &&
334         SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
335       Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
336       return new ShuffleVectorInst(CastX, Mask);
337     }
338   }
339 
340   return nullptr;
341 }
342 
343 /// Constants and extensions/truncates from the destination type are always
344 /// free to be evaluated in that type. This is a helper for canEvaluate*.
345 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
346   if (isa<Constant>(V))
347     return true;
348   Value *X;
349   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
350       X->getType() == Ty)
351     return true;
352 
353   return false;
354 }
355 
356 /// Filter out values that we can not evaluate in the destination type for free.
357 /// This is a helper for canEvaluate*.
358 static bool canNotEvaluateInType(Value *V, Type *Ty) {
359   assert(!isa<Constant>(V) && "Constant should already be handled.");
360   if (!isa<Instruction>(V))
361     return true;
362   // We don't extend or shrink something that has multiple uses --  doing so
363   // would require duplicating the instruction which isn't profitable.
364   if (!V->hasOneUse())
365     return true;
366 
367   return false;
368 }
369 
370 /// Return true if we can evaluate the specified expression tree as type Ty
371 /// instead of its larger type, and arrive with the same value.
372 /// This is used by code that tries to eliminate truncates.
373 ///
374 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
375 /// can be computed by computing V in the smaller type.  If V is an instruction,
376 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
377 /// makes sense if x and y can be efficiently truncated.
378 ///
379 /// This function works on both vectors and scalars.
380 ///
381 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
382                                  Instruction *CxtI) {
383   if (canAlwaysEvaluateInType(V, Ty))
384     return true;
385   if (canNotEvaluateInType(V, Ty))
386     return false;
387 
388   auto *I = cast<Instruction>(V);
389   Type *OrigTy = V->getType();
390   switch (I->getOpcode()) {
391   case Instruction::Add:
392   case Instruction::Sub:
393   case Instruction::Mul:
394   case Instruction::And:
395   case Instruction::Or:
396   case Instruction::Xor:
397     // These operators can all arbitrarily be extended or truncated.
398     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
399            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
400 
401   case Instruction::UDiv:
402   case Instruction::URem: {
403     // UDiv and URem can be truncated if all the truncated bits are zero.
404     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
405     uint32_t BitWidth = Ty->getScalarSizeInBits();
406     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
407     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
408     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
409         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
410       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
411              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
412     }
413     break;
414   }
415   case Instruction::Shl: {
416     // If we are truncating the result of this SHL, and if it's a shift of an
417     // inrange amount, we can always perform a SHL in a smaller type.
418     uint32_t BitWidth = Ty->getScalarSizeInBits();
419     KnownBits AmtKnownBits =
420         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
421     if (AmtKnownBits.getMaxValue().ult(BitWidth))
422       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
423              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
424     break;
425   }
426   case Instruction::LShr: {
427     // If this is a truncate of a logical shr, we can truncate it to a smaller
428     // lshr iff we know that the bits we would otherwise be shifting in are
429     // already zeros.
430     // TODO: It is enough to check that the bits we would be shifting in are
431     //       zero - use AmtKnownBits.getMaxValue().
432     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
433     uint32_t BitWidth = Ty->getScalarSizeInBits();
434     KnownBits AmtKnownBits =
435         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
437     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
438         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
439       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
440              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
441     }
442     break;
443   }
444   case Instruction::AShr: {
445     // If this is a truncate of an arithmetic shr, we can truncate it to a
446     // smaller ashr iff we know that all the bits from the sign bit of the
447     // original type and the sign bit of the truncate type are similar.
448     // TODO: It is enough to check that the bits we would be shifting in are
449     //       similar to sign bit of the truncate type.
450     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
451     uint32_t BitWidth = Ty->getScalarSizeInBits();
452     KnownBits AmtKnownBits =
453         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
454     unsigned ShiftedBits = OrigBitWidth - BitWidth;
455     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
456         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
457       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
458              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
459     break;
460   }
461   case Instruction::Trunc:
462     // trunc(trunc(x)) -> trunc(x)
463     return true;
464   case Instruction::ZExt:
465   case Instruction::SExt:
466     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
467     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
468     return true;
469   case Instruction::Select: {
470     SelectInst *SI = cast<SelectInst>(I);
471     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
472            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
473   }
474   case Instruction::PHI: {
475     // We can change a phi if we can change all operands.  Note that we never
476     // get into trouble with cyclic PHIs here because we only consider
477     // instructions with a single use.
478     PHINode *PN = cast<PHINode>(I);
479     for (Value *IncValue : PN->incoming_values())
480       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
481         return false;
482     return true;
483   }
484   default:
485     // TODO: Can handle more cases here.
486     break;
487   }
488 
489   return false;
490 }
491 
492 /// Given a vector that is bitcast to an integer, optionally logically
493 /// right-shifted, and truncated, convert it to an extractelement.
494 /// Example (big endian):
495 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
496 ///   --->
497 ///   extractelement <4 x i32> %X, 1
498 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
499                                          InstCombinerImpl &IC) {
500   Value *TruncOp = Trunc.getOperand(0);
501   Type *DestType = Trunc.getType();
502   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
503     return nullptr;
504 
505   Value *VecInput = nullptr;
506   ConstantInt *ShiftVal = nullptr;
507   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
508                                   m_LShr(m_BitCast(m_Value(VecInput)),
509                                          m_ConstantInt(ShiftVal)))) ||
510       !isa<VectorType>(VecInput->getType()))
511     return nullptr;
512 
513   VectorType *VecType = cast<VectorType>(VecInput->getType());
514   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
515   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
516   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
517 
518   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
519     return nullptr;
520 
521   // If the element type of the vector doesn't match the result type,
522   // bitcast it to a vector type that we can extract from.
523   unsigned NumVecElts = VecWidth / DestWidth;
524   if (VecType->getElementType() != DestType) {
525     VecType = FixedVectorType::get(DestType, NumVecElts);
526     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
527   }
528 
529   unsigned Elt = ShiftAmount / DestWidth;
530   if (IC.getDataLayout().isBigEndian())
531     Elt = NumVecElts - 1 - Elt;
532 
533   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
534 }
535 
536 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
537 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
538 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
539   assert((isa<VectorType>(Trunc.getSrcTy()) ||
540           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
541          "Don't narrow to an illegal scalar type");
542 
543   // Bail out on strange types. It is possible to handle some of these patterns
544   // even with non-power-of-2 sizes, but it is not a likely scenario.
545   Type *DestTy = Trunc.getType();
546   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
547   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
548   if (!isPowerOf2_32(NarrowWidth))
549     return nullptr;
550 
551   // First, find an or'd pair of opposite shifts:
552   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
553   BinaryOperator *Or0, *Or1;
554   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
555     return nullptr;
556 
557   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
558   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
559       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
560       Or0->getOpcode() == Or1->getOpcode())
561     return nullptr;
562 
563   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
564   if (Or0->getOpcode() == BinaryOperator::LShr) {
565     std::swap(Or0, Or1);
566     std::swap(ShVal0, ShVal1);
567     std::swap(ShAmt0, ShAmt1);
568   }
569   assert(Or0->getOpcode() == BinaryOperator::Shl &&
570          Or1->getOpcode() == BinaryOperator::LShr &&
571          "Illegal or(shift,shift) pair");
572 
573   // Match the shift amount operands for a funnel/rotate pattern. This always
574   // matches a subtraction on the R operand.
575   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
576     // The shift amounts may add up to the narrow bit width:
577     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
578     // If this is a funnel shift (different operands are shifted), then the
579     // shift amount can not over-shift (create poison) in the narrow type.
580     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
581     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
582     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
583       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
584         return L;
585 
586     // The following patterns currently only work for rotation patterns.
587     // TODO: Add more general funnel-shift compatible patterns.
588     if (ShVal0 != ShVal1)
589       return nullptr;
590 
591     // The shift amount may be masked with negation:
592     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
593     Value *X;
594     unsigned Mask = Width - 1;
595     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
596         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
597       return X;
598 
599     // Same as above, but the shift amount may be extended after masking:
600     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
601         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
602       return X;
603 
604     return nullptr;
605   };
606 
607   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
608   bool IsFshl = true; // Sub on LSHR.
609   if (!ShAmt) {
610     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
611     IsFshl = false; // Sub on SHL.
612   }
613   if (!ShAmt)
614     return nullptr;
615 
616   // The right-shifted value must have high zeros in the wide type (for example
617   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
618   // truncated, so those do not matter.
619   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
620   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
621     return nullptr;
622 
623   // We have an unnecessarily wide rotate!
624   // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
625   // Narrow the inputs and convert to funnel shift intrinsic:
626   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
627   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
628   Value *X, *Y;
629   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
630   if (ShVal0 != ShVal1)
631     Y = Builder.CreateTrunc(ShVal1, DestTy);
632   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
633   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
634   return CallInst::Create(F, {X, Y, NarrowShAmt});
635 }
636 
637 /// Try to narrow the width of math or bitwise logic instructions by pulling a
638 /// truncate ahead of binary operators.
639 /// TODO: Transforms for truncated shifts should be moved into here.
640 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
641   Type *SrcTy = Trunc.getSrcTy();
642   Type *DestTy = Trunc.getType();
643   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
644     return nullptr;
645 
646   BinaryOperator *BinOp;
647   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
648     return nullptr;
649 
650   Value *BinOp0 = BinOp->getOperand(0);
651   Value *BinOp1 = BinOp->getOperand(1);
652   switch (BinOp->getOpcode()) {
653   case Instruction::And:
654   case Instruction::Or:
655   case Instruction::Xor:
656   case Instruction::Add:
657   case Instruction::Sub:
658   case Instruction::Mul: {
659     Constant *C;
660     if (match(BinOp0, m_Constant(C))) {
661       // trunc (binop C, X) --> binop (trunc C', X)
662       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
663       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
664       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
665     }
666     if (match(BinOp1, m_Constant(C))) {
667       // trunc (binop X, C) --> binop (trunc X, C')
668       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
669       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
670       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
671     }
672     Value *X;
673     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
674       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
675       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
676       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
677     }
678     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
679       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
680       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
681       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
682     }
683     break;
684   }
685 
686   default: break;
687   }
688 
689   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
690     return NarrowOr;
691 
692   return nullptr;
693 }
694 
695 /// Try to narrow the width of a splat shuffle. This could be generalized to any
696 /// shuffle with a constant operand, but we limit the transform to avoid
697 /// creating a shuffle type that targets may not be able to lower effectively.
698 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
699                                        InstCombiner::BuilderTy &Builder) {
700   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
701   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
702       is_splat(Shuf->getShuffleMask()) &&
703       Shuf->getType() == Shuf->getOperand(0)->getType()) {
704     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
705     // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
706     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
707     return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
708   }
709 
710   return nullptr;
711 }
712 
713 /// Try to narrow the width of an insert element. This could be generalized for
714 /// any vector constant, but we limit the transform to insertion into undef to
715 /// avoid potential backend problems from unsupported insertion widths. This
716 /// could also be extended to handle the case of inserting a scalar constant
717 /// into a vector variable.
718 static Instruction *shrinkInsertElt(CastInst &Trunc,
719                                     InstCombiner::BuilderTy &Builder) {
720   Instruction::CastOps Opcode = Trunc.getOpcode();
721   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
722          "Unexpected instruction for shrinking");
723 
724   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
725   if (!InsElt || !InsElt->hasOneUse())
726     return nullptr;
727 
728   Type *DestTy = Trunc.getType();
729   Type *DestScalarTy = DestTy->getScalarType();
730   Value *VecOp = InsElt->getOperand(0);
731   Value *ScalarOp = InsElt->getOperand(1);
732   Value *Index = InsElt->getOperand(2);
733 
734   if (match(VecOp, m_Undef())) {
735     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
736     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
737     UndefValue *NarrowUndef = UndefValue::get(DestTy);
738     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
739     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
740   }
741 
742   return nullptr;
743 }
744 
745 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
746   if (Instruction *Result = commonCastTransforms(Trunc))
747     return Result;
748 
749   Value *Src = Trunc.getOperand(0);
750   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
751   unsigned DestWidth = DestTy->getScalarSizeInBits();
752   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
753 
754   // Attempt to truncate the entire input expression tree to the destination
755   // type.   Only do this if the dest type is a simple type, don't convert the
756   // expression tree to something weird like i93 unless the source is also
757   // strange.
758   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
759       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
760 
761     // If this cast is a truncate, evaluting in a different type always
762     // eliminates the cast, so it is always a win.
763     LLVM_DEBUG(
764         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
765                   " to avoid cast: "
766                << Trunc << '\n');
767     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
768     assert(Res->getType() == DestTy);
769     return replaceInstUsesWith(Trunc, Res);
770   }
771 
772   // For integer types, check if we can shorten the entire input expression to
773   // DestWidth * 2, which won't allow removing the truncate, but reducing the
774   // width may enable further optimizations, e.g. allowing for larger
775   // vectorization factors.
776   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
777     if (DestWidth * 2 < SrcWidth) {
778       auto *NewDestTy = DestITy->getExtendedType();
779       if (shouldChangeType(SrcTy, NewDestTy) &&
780           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
781         LLVM_DEBUG(
782             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
783                       " to reduce the width of operand of"
784                    << Trunc << '\n');
785         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
786         return new TruncInst(Res, DestTy);
787       }
788     }
789   }
790 
791   // Test if the trunc is the user of a select which is part of a
792   // minimum or maximum operation. If so, don't do any more simplification.
793   // Even simplifying demanded bits can break the canonical form of a
794   // min/max.
795   Value *LHS, *RHS;
796   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
797     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
798       return nullptr;
799 
800   // See if we can simplify any instructions used by the input whose sole
801   // purpose is to compute bits we don't care about.
802   if (SimplifyDemandedInstructionBits(Trunc))
803     return &Trunc;
804 
805   if (DestWidth == 1) {
806     Value *Zero = Constant::getNullValue(SrcTy);
807     if (DestTy->isIntegerTy()) {
808       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
809       // TODO: We canonicalize to more instructions here because we are probably
810       // lacking equivalent analysis for trunc relative to icmp. There may also
811       // be codegen concerns. If those trunc limitations were removed, we could
812       // remove this transform.
813       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
814       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
815     }
816 
817     // For vectors, we do not canonicalize all truncs to icmp, so optimize
818     // patterns that would be covered within visitICmpInst.
819     Value *X;
820     Constant *C;
821     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
822       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
823       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
824       Constant *MaskC = ConstantExpr::getShl(One, C);
825       Value *And = Builder.CreateAnd(X, MaskC);
826       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
827     }
828     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
829                                    m_Deferred(X))))) {
830       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
831       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
832       Constant *MaskC = ConstantExpr::getShl(One, C);
833       MaskC = ConstantExpr::getOr(MaskC, One);
834       Value *And = Builder.CreateAnd(X, MaskC);
835       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
836     }
837   }
838 
839   Value *A, *B;
840   Constant *C;
841   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
842     unsigned AWidth = A->getType()->getScalarSizeInBits();
843     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
844     auto *OldSh = cast<Instruction>(Src);
845     bool IsExact = OldSh->isExact();
846 
847     // If the shift is small enough, all zero bits created by the shift are
848     // removed by the trunc.
849     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
850                                     APInt(SrcWidth, MaxShiftAmt)))) {
851       // trunc (lshr (sext A), C) --> ashr A, C
852       if (A->getType() == DestTy) {
853         Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
854         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
855         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
856         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
857         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
858                        : BinaryOperator::CreateAShr(A, ShAmt);
859       }
860       // The types are mismatched, so create a cast after shifting:
861       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
862       if (Src->hasOneUse()) {
863         Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
864         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
865         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
866         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
867         return CastInst::CreateIntegerCast(Shift, DestTy, true);
868       }
869     }
870     // TODO: Mask high bits with 'and'.
871   }
872 
873   // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
874   if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
875     unsigned MaxShiftAmt = SrcWidth - DestWidth;
876 
877     // If the shift is small enough, all zero/sign bits created by the shift are
878     // removed by the trunc.
879     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
880                                     APInt(SrcWidth, MaxShiftAmt)))) {
881       auto *OldShift = cast<Instruction>(Src);
882       bool IsExact = OldShift->isExact();
883       auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
884       ShAmt = Constant::mergeUndefsWith(ShAmt, C);
885       Value *Shift =
886           OldShift->getOpcode() == Instruction::AShr
887               ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
888               : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
889       return CastInst::CreateTruncOrBitCast(Shift, DestTy);
890     }
891   }
892 
893   if (Instruction *I = narrowBinOp(Trunc))
894     return I;
895 
896   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
897     return I;
898 
899   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
900     return I;
901 
902   if (Src->hasOneUse() &&
903       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
904     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
905     // dest type is native and cst < dest size.
906     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
907         !match(A, m_Shr(m_Value(), m_Constant()))) {
908       // Skip shifts of shift by constants. It undoes a combine in
909       // FoldShiftByConstant and is the extend in reg pattern.
910       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
911       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
912         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
913         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
914                                       ConstantExpr::getTrunc(C, DestTy));
915       }
916     }
917   }
918 
919   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
920     return I;
921 
922   // Whenever an element is extracted from a vector, and then truncated,
923   // canonicalize by converting it to a bitcast followed by an
924   // extractelement.
925   //
926   // Example (little endian):
927   //   trunc (extractelement <4 x i64> %X, 0) to i32
928   //   --->
929   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
930   Value *VecOp;
931   ConstantInt *Cst;
932   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
933     auto *VecOpTy = cast<VectorType>(VecOp->getType());
934     auto VecElts = VecOpTy->getElementCount();
935 
936     // A badly fit destination size would result in an invalid cast.
937     if (SrcWidth % DestWidth == 0) {
938       uint64_t TruncRatio = SrcWidth / DestWidth;
939       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
940       uint64_t VecOpIdx = Cst->getZExtValue();
941       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
942                                          : VecOpIdx * TruncRatio;
943       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
944              "overflow 32-bits");
945 
946       auto *BitCastTo =
947           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
948       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
949       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
950     }
951   }
952 
953   // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
954   if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
955                                                        m_Value(B))))) {
956     unsigned AWidth = A->getType()->getScalarSizeInBits();
957     if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
958       Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
959       Value *NarrowCtlz =
960           Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
961       return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
962     }
963   }
964 
965   if (match(Src, m_VScale(DL))) {
966     if (Trunc.getFunction() &&
967         Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
968       Attribute Attr =
969           Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
970       if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
971         if (Log2_32(MaxVScale.getValue()) < DestWidth) {
972           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
973           return replaceInstUsesWith(Trunc, VScale);
974         }
975       }
976     }
977   }
978 
979   return nullptr;
980 }
981 
982 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext) {
983   // If we are just checking for a icmp eq of a single bit and zext'ing it
984   // to an integer, then shift the bit to the appropriate place and then
985   // cast to integer to avoid the comparison.
986   const APInt *Op1CV;
987   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
988 
989     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
990     if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
991       Value *In = Cmp->getOperand(0);
992       Value *Sh = ConstantInt::get(In->getType(),
993                                    In->getType()->getScalarSizeInBits() - 1);
994       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
995       if (In->getType() != Zext.getType())
996         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
997 
998       return replaceInstUsesWith(Zext, In);
999     }
1000 
1001     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
1002     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
1003     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
1004     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
1005     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
1006     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
1007     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
1008     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
1009     if ((Op1CV->isZero() || Op1CV->isPowerOf2()) &&
1010         // This only works for EQ and NE
1011         Cmp->isEquality()) {
1012       // If Op1C some other power of two, convert:
1013       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
1014 
1015       APInt KnownZeroMask(~Known.Zero);
1016       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
1017         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
1018         if (!Op1CV->isZero() && (*Op1CV != KnownZeroMask)) {
1019           // (X&4) == 2 --> false
1020           // (X&4) != 2 --> true
1021           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
1022           return replaceInstUsesWith(Zext, Res);
1023         }
1024 
1025         uint32_t ShAmt = KnownZeroMask.logBase2();
1026         Value *In = Cmp->getOperand(0);
1027         if (ShAmt) {
1028           // Perform a logical shr by shiftamt.
1029           // Insert the shift to put the result in the low bit.
1030           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
1031                                   In->getName() + ".lobit");
1032         }
1033 
1034         if (!Op1CV->isZero() == isNE) { // Toggle the low bit.
1035           Constant *One = ConstantInt::get(In->getType(), 1);
1036           In = Builder.CreateXor(In, One);
1037         }
1038 
1039         if (Zext.getType() == In->getType())
1040           return replaceInstUsesWith(Zext, In);
1041 
1042         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1043         return replaceInstUsesWith(Zext, IntCast);
1044       }
1045     }
1046   }
1047 
1048   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1049     // Test if a bit is clear/set using a shifted-one mask:
1050     // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
1051     // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
1052     Value *X, *ShAmt;
1053     if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
1054         match(Cmp->getOperand(0),
1055               m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
1056       if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1057         X = Builder.CreateNot(X);
1058       Value *Lshr = Builder.CreateLShr(X, ShAmt);
1059       Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
1060       return replaceInstUsesWith(Zext, And1);
1061     }
1062 
1063     // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
1064     // It is also profitable to transform icmp eq into not(xor(A, B)) because
1065     // that may lead to additional simplifications.
1066     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
1067       Value *LHS = Cmp->getOperand(0);
1068       Value *RHS = Cmp->getOperand(1);
1069 
1070       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
1071       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
1072 
1073       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
1074         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
1075         APInt UnknownBit = ~KnownBits;
1076         if (UnknownBit.countPopulation() == 1) {
1077           Value *Result = Builder.CreateXor(LHS, RHS);
1078 
1079           // Mask off any bits that are set and won't be shifted away.
1080           if (KnownLHS.One.uge(UnknownBit))
1081             Result = Builder.CreateAnd(Result,
1082                                         ConstantInt::get(ITy, UnknownBit));
1083 
1084           // Shift the bit we're testing down to the lsb.
1085           Result = Builder.CreateLShr(
1086                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1087 
1088           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1089             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1090           Result->takeName(Cmp);
1091           return replaceInstUsesWith(Zext, Result);
1092         }
1093       }
1094     }
1095   }
1096 
1097   return nullptr;
1098 }
1099 
1100 /// Determine if the specified value can be computed in the specified wider type
1101 /// and produce the same low bits. If not, return false.
1102 ///
1103 /// If this function returns true, it can also return a non-zero number of bits
1104 /// (in BitsToClear) which indicates that the value it computes is correct for
1105 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1106 /// out.  For example, to promote something like:
1107 ///
1108 ///   %B = trunc i64 %A to i32
1109 ///   %C = lshr i32 %B, 8
1110 ///   %E = zext i32 %C to i64
1111 ///
1112 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1113 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1114 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1115 /// clear the top bits anyway, doing this has no extra cost.
1116 ///
1117 /// This function works on both vectors and scalars.
1118 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1119                              InstCombinerImpl &IC, Instruction *CxtI) {
1120   BitsToClear = 0;
1121   if (canAlwaysEvaluateInType(V, Ty))
1122     return true;
1123   if (canNotEvaluateInType(V, Ty))
1124     return false;
1125 
1126   auto *I = cast<Instruction>(V);
1127   unsigned Tmp;
1128   switch (I->getOpcode()) {
1129   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1130   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1131   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1132     return true;
1133   case Instruction::And:
1134   case Instruction::Or:
1135   case Instruction::Xor:
1136   case Instruction::Add:
1137   case Instruction::Sub:
1138   case Instruction::Mul:
1139     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1140         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1141       return false;
1142     // These can all be promoted if neither operand has 'bits to clear'.
1143     if (BitsToClear == 0 && Tmp == 0)
1144       return true;
1145 
1146     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1147     // other side, BitsToClear is ok.
1148     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1149       // We use MaskedValueIsZero here for generality, but the case we care
1150       // about the most is constant RHS.
1151       unsigned VSize = V->getType()->getScalarSizeInBits();
1152       if (IC.MaskedValueIsZero(I->getOperand(1),
1153                                APInt::getHighBitsSet(VSize, BitsToClear),
1154                                0, CxtI)) {
1155         // If this is an And instruction and all of the BitsToClear are
1156         // known to be zero we can reset BitsToClear.
1157         if (I->getOpcode() == Instruction::And)
1158           BitsToClear = 0;
1159         return true;
1160       }
1161     }
1162 
1163     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1164     return false;
1165 
1166   case Instruction::Shl: {
1167     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1168     // upper bits we can reduce BitsToClear by the shift amount.
1169     const APInt *Amt;
1170     if (match(I->getOperand(1), m_APInt(Amt))) {
1171       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1172         return false;
1173       uint64_t ShiftAmt = Amt->getZExtValue();
1174       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1175       return true;
1176     }
1177     return false;
1178   }
1179   case Instruction::LShr: {
1180     // We can promote lshr(x, cst) if we can promote x.  This requires the
1181     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1182     const APInt *Amt;
1183     if (match(I->getOperand(1), m_APInt(Amt))) {
1184       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1185         return false;
1186       BitsToClear += Amt->getZExtValue();
1187       if (BitsToClear > V->getType()->getScalarSizeInBits())
1188         BitsToClear = V->getType()->getScalarSizeInBits();
1189       return true;
1190     }
1191     // Cannot promote variable LSHR.
1192     return false;
1193   }
1194   case Instruction::Select:
1195     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1196         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1197         // TODO: If important, we could handle the case when the BitsToClear are
1198         // known zero in the disagreeing side.
1199         Tmp != BitsToClear)
1200       return false;
1201     return true;
1202 
1203   case Instruction::PHI: {
1204     // We can change a phi if we can change all operands.  Note that we never
1205     // get into trouble with cyclic PHIs here because we only consider
1206     // instructions with a single use.
1207     PHINode *PN = cast<PHINode>(I);
1208     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1209       return false;
1210     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1211       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1212           // TODO: If important, we could handle the case when the BitsToClear
1213           // are known zero in the disagreeing input.
1214           Tmp != BitsToClear)
1215         return false;
1216     return true;
1217   }
1218   default:
1219     // TODO: Can handle more cases here.
1220     return false;
1221   }
1222 }
1223 
1224 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
1225   // If this zero extend is only used by a truncate, let the truncate be
1226   // eliminated before we try to optimize this zext.
1227   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1228     return nullptr;
1229 
1230   // If one of the common conversion will work, do it.
1231   if (Instruction *Result = commonCastTransforms(CI))
1232     return Result;
1233 
1234   Value *Src = CI.getOperand(0);
1235   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1236 
1237   // Try to extend the entire expression tree to the wide destination type.
1238   unsigned BitsToClear;
1239   if (shouldChangeType(SrcTy, DestTy) &&
1240       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1241     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1242            "Can't clear more bits than in SrcTy");
1243 
1244     // Okay, we can transform this!  Insert the new expression now.
1245     LLVM_DEBUG(
1246         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1247                   " to avoid zero extend: "
1248                << CI << '\n');
1249     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1250     assert(Res->getType() == DestTy);
1251 
1252     // Preserve debug values referring to Src if the zext is its last use.
1253     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1254       if (SrcOp->hasOneUse())
1255         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1256 
1257     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1258     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1259 
1260     // If the high bits are already filled with zeros, just replace this
1261     // cast with the result.
1262     if (MaskedValueIsZero(Res,
1263                           APInt::getHighBitsSet(DestBitSize,
1264                                                 DestBitSize-SrcBitsKept),
1265                              0, &CI))
1266       return replaceInstUsesWith(CI, Res);
1267 
1268     // We need to emit an AND to clear the high bits.
1269     Constant *C = ConstantInt::get(Res->getType(),
1270                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1271     return BinaryOperator::CreateAnd(Res, C);
1272   }
1273 
1274   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1275   // types and if the sizes are just right we can convert this into a logical
1276   // 'and' which will be much cheaper than the pair of casts.
1277   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1278     // TODO: Subsume this into EvaluateInDifferentType.
1279 
1280     // Get the sizes of the types involved.  We know that the intermediate type
1281     // will be smaller than A or C, but don't know the relation between A and C.
1282     Value *A = CSrc->getOperand(0);
1283     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1284     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1285     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1286     // If we're actually extending zero bits, then if
1287     // SrcSize <  DstSize: zext(a & mask)
1288     // SrcSize == DstSize: a & mask
1289     // SrcSize  > DstSize: trunc(a) & mask
1290     if (SrcSize < DstSize) {
1291       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1292       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1293       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1294       return new ZExtInst(And, CI.getType());
1295     }
1296 
1297     if (SrcSize == DstSize) {
1298       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1299       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1300                                                            AndValue));
1301     }
1302     if (SrcSize > DstSize) {
1303       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1304       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1305       return BinaryOperator::CreateAnd(Trunc,
1306                                        ConstantInt::get(Trunc->getType(),
1307                                                         AndValue));
1308     }
1309   }
1310 
1311   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1312     return transformZExtICmp(Cmp, CI);
1313 
1314   // zext(trunc(X) & C) -> (X & zext(C)).
1315   Constant *C;
1316   Value *X;
1317   if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1318       X->getType() == CI.getType())
1319     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1320 
1321   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1322   Value *And;
1323   if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1324       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1325       X->getType() == CI.getType()) {
1326     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1327     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1328   }
1329 
1330   if (match(Src, m_VScale(DL))) {
1331     if (CI.getFunction() &&
1332         CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1333       Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange);
1334       if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1335         unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1336         if (Log2_32(MaxVScale.getValue()) < TypeWidth) {
1337           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1338           return replaceInstUsesWith(CI, VScale);
1339         }
1340       }
1341     }
1342   }
1343 
1344   return nullptr;
1345 }
1346 
1347 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1348 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
1349                                                  Instruction &CI) {
1350   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1351   ICmpInst::Predicate Pred = ICI->getPredicate();
1352 
1353   // Don't bother if Op1 isn't of vector or integer type.
1354   if (!Op1->getType()->isIntOrIntVectorTy())
1355     return nullptr;
1356 
1357   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1358       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1359     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1360     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1361     Value *Sh = ConstantInt::get(Op0->getType(),
1362                                  Op0->getType()->getScalarSizeInBits() - 1);
1363     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1364     if (In->getType() != CI.getType())
1365       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1366 
1367     if (Pred == ICmpInst::ICMP_SGT)
1368       In = Builder.CreateNot(In, In->getName() + ".not");
1369     return replaceInstUsesWith(CI, In);
1370   }
1371 
1372   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1373     // If we know that only one bit of the LHS of the icmp can be set and we
1374     // have an equality comparison with zero or a power of 2, we can transform
1375     // the icmp and sext into bitwise/integer operations.
1376     if (ICI->hasOneUse() &&
1377         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1378       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1379 
1380       APInt KnownZeroMask(~Known.Zero);
1381       if (KnownZeroMask.isPowerOf2()) {
1382         Value *In = ICI->getOperand(0);
1383 
1384         // If the icmp tests for a known zero bit we can constant fold it.
1385         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1386           Value *V = Pred == ICmpInst::ICMP_NE ?
1387                        ConstantInt::getAllOnesValue(CI.getType()) :
1388                        ConstantInt::getNullValue(CI.getType());
1389           return replaceInstUsesWith(CI, V);
1390         }
1391 
1392         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1393           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1394           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1395           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1396           // Perform a right shift to place the desired bit in the LSB.
1397           if (ShiftAmt)
1398             In = Builder.CreateLShr(In,
1399                                     ConstantInt::get(In->getType(), ShiftAmt));
1400 
1401           // At this point "In" is either 1 or 0. Subtract 1 to turn
1402           // {1, 0} -> {0, -1}.
1403           In = Builder.CreateAdd(In,
1404                                  ConstantInt::getAllOnesValue(In->getType()),
1405                                  "sext");
1406         } else {
1407           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1408           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1409           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1410           // Perform a left shift to place the desired bit in the MSB.
1411           if (ShiftAmt)
1412             In = Builder.CreateShl(In,
1413                                    ConstantInt::get(In->getType(), ShiftAmt));
1414 
1415           // Distribute the bit over the whole bit width.
1416           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1417                                   KnownZeroMask.getBitWidth() - 1), "sext");
1418         }
1419 
1420         if (CI.getType() == In->getType())
1421           return replaceInstUsesWith(CI, In);
1422         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1423       }
1424     }
1425   }
1426 
1427   return nullptr;
1428 }
1429 
1430 /// Return true if we can take the specified value and return it as type Ty
1431 /// without inserting any new casts and without changing the value of the common
1432 /// low bits.  This is used by code that tries to promote integer operations to
1433 /// a wider types will allow us to eliminate the extension.
1434 ///
1435 /// This function works on both vectors and scalars.
1436 ///
1437 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1438   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1439          "Can't sign extend type to a smaller type");
1440   if (canAlwaysEvaluateInType(V, Ty))
1441     return true;
1442   if (canNotEvaluateInType(V, Ty))
1443     return false;
1444 
1445   auto *I = cast<Instruction>(V);
1446   switch (I->getOpcode()) {
1447   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1448   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1449   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1450     return true;
1451   case Instruction::And:
1452   case Instruction::Or:
1453   case Instruction::Xor:
1454   case Instruction::Add:
1455   case Instruction::Sub:
1456   case Instruction::Mul:
1457     // These operators can all arbitrarily be extended if their inputs can.
1458     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1459            canEvaluateSExtd(I->getOperand(1), Ty);
1460 
1461   //case Instruction::Shl:   TODO
1462   //case Instruction::LShr:  TODO
1463 
1464   case Instruction::Select:
1465     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1466            canEvaluateSExtd(I->getOperand(2), Ty);
1467 
1468   case Instruction::PHI: {
1469     // We can change a phi if we can change all operands.  Note that we never
1470     // get into trouble with cyclic PHIs here because we only consider
1471     // instructions with a single use.
1472     PHINode *PN = cast<PHINode>(I);
1473     for (Value *IncValue : PN->incoming_values())
1474       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1475     return true;
1476   }
1477   default:
1478     // TODO: Can handle more cases here.
1479     break;
1480   }
1481 
1482   return false;
1483 }
1484 
1485 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
1486   // If this sign extend is only used by a truncate, let the truncate be
1487   // eliminated before we try to optimize this sext.
1488   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1489     return nullptr;
1490 
1491   if (Instruction *I = commonCastTransforms(CI))
1492     return I;
1493 
1494   Value *Src = CI.getOperand(0);
1495   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1496   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1497   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1498 
1499   // If the value being extended is zero or positive, use a zext instead.
1500   if (isKnownNonNegative(Src, DL, 0, &AC, &CI, &DT))
1501     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1502 
1503   // Try to extend the entire expression tree to the wide destination type.
1504   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1505     // Okay, we can transform this!  Insert the new expression now.
1506     LLVM_DEBUG(
1507         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1508                   " to avoid sign extend: "
1509                << CI << '\n');
1510     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1511     assert(Res->getType() == DestTy);
1512 
1513     // If the high bits are already filled with sign bit, just replace this
1514     // cast with the result.
1515     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1516       return replaceInstUsesWith(CI, Res);
1517 
1518     // We need to emit a shl + ashr to do the sign extend.
1519     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1520     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1521                                       ShAmt);
1522   }
1523 
1524   Value *X;
1525   if (match(Src, m_Trunc(m_Value(X)))) {
1526     // If the input has more sign bits than bits truncated, then convert
1527     // directly to final type.
1528     unsigned XBitSize = X->getType()->getScalarSizeInBits();
1529     if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize)
1530       return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1531 
1532     // If input is a trunc from the destination type, then convert into shifts.
1533     if (Src->hasOneUse() && X->getType() == DestTy) {
1534       // sext (trunc X) --> ashr (shl X, C), C
1535       Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1536       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1537     }
1538 
1539     // If we are replacing shifted-in high zero bits with sign bits, convert
1540     // the logic shift to arithmetic shift and eliminate the cast to
1541     // intermediate type:
1542     // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1543     Value *Y;
1544     if (Src->hasOneUse() &&
1545         match(X, m_LShr(m_Value(Y),
1546                         m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
1547       Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1548       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1549     }
1550   }
1551 
1552   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1553     return transformSExtICmp(ICI, CI);
1554 
1555   // If the input is a shl/ashr pair of a same constant, then this is a sign
1556   // extension from a smaller value.  If we could trust arbitrary bitwidth
1557   // integers, we could turn this into a truncate to the smaller bit and then
1558   // use a sext for the whole extension.  Since we don't, look deeper and check
1559   // for a truncate.  If the source and dest are the same type, eliminate the
1560   // trunc and extend and just do shifts.  For example, turn:
1561   //   %a = trunc i32 %i to i8
1562   //   %b = shl i8 %a, C
1563   //   %c = ashr i8 %b, C
1564   //   %d = sext i8 %c to i32
1565   // into:
1566   //   %a = shl i32 %i, 32-(8-C)
1567   //   %d = ashr i32 %a, 32-(8-C)
1568   Value *A = nullptr;
1569   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1570   Constant *BA = nullptr, *CA = nullptr;
1571   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1572                         m_Constant(CA))) &&
1573       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1574     Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1575     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1576         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1577     Constant *NewShAmt = ConstantExpr::getSub(
1578         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1579         NumLowbitsLeft);
1580     NewShAmt =
1581         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1582     A = Builder.CreateShl(A, NewShAmt, CI.getName());
1583     return BinaryOperator::CreateAShr(A, NewShAmt);
1584   }
1585 
1586   // Splatting a bit of constant-index across a value:
1587   // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1588   // If the dest type is different, use a cast (adjust use check).
1589   if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1590                                  m_SpecificInt(SrcBitSize - 1))))) {
1591     Type *XTy = X->getType();
1592     unsigned XBitSize = XTy->getScalarSizeInBits();
1593     Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1594     Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1595     if (XTy == DestTy)
1596       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1597                                         AshrAmtC);
1598     if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1599       Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1600       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1601     }
1602   }
1603 
1604   if (match(Src, m_VScale(DL))) {
1605     if (CI.getFunction() &&
1606         CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1607       Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange);
1608       if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1609         if (Log2_32(MaxVScale.getValue()) < (SrcBitSize - 1)) {
1610           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1611           return replaceInstUsesWith(CI, VScale);
1612         }
1613       }
1614     }
1615   }
1616 
1617   return nullptr;
1618 }
1619 
1620 /// Return a Constant* for the specified floating-point constant if it fits
1621 /// in the specified FP type without changing its value.
1622 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1623   bool losesInfo;
1624   APFloat F = CFP->getValueAPF();
1625   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1626   return !losesInfo;
1627 }
1628 
1629 static Type *shrinkFPConstant(ConstantFP *CFP) {
1630   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1631     return nullptr;  // No constant folding of this.
1632   // See if the value can be truncated to half and then reextended.
1633   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1634     return Type::getHalfTy(CFP->getContext());
1635   // See if the value can be truncated to float and then reextended.
1636   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1637     return Type::getFloatTy(CFP->getContext());
1638   if (CFP->getType()->isDoubleTy())
1639     return nullptr;  // Won't shrink.
1640   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1641     return Type::getDoubleTy(CFP->getContext());
1642   // Don't try to shrink to various long double types.
1643   return nullptr;
1644 }
1645 
1646 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1647 // type we can safely truncate all elements to.
1648 // TODO: Make these support undef elements.
1649 static Type *shrinkFPConstantVector(Value *V) {
1650   auto *CV = dyn_cast<Constant>(V);
1651   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1652   if (!CV || !CVVTy)
1653     return nullptr;
1654 
1655   Type *MinType = nullptr;
1656 
1657   unsigned NumElts = CVVTy->getNumElements();
1658 
1659   // For fixed-width vectors we find the minimal type by looking
1660   // through the constant values of the vector.
1661   for (unsigned i = 0; i != NumElts; ++i) {
1662     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1663     if (!CFP)
1664       return nullptr;
1665 
1666     Type *T = shrinkFPConstant(CFP);
1667     if (!T)
1668       return nullptr;
1669 
1670     // If we haven't found a type yet or this type has a larger mantissa than
1671     // our previous type, this is our new minimal type.
1672     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1673       MinType = T;
1674   }
1675 
1676   // Make a vector type from the minimal type.
1677   return FixedVectorType::get(MinType, NumElts);
1678 }
1679 
1680 /// Find the minimum FP type we can safely truncate to.
1681 static Type *getMinimumFPType(Value *V) {
1682   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1683     return FPExt->getOperand(0)->getType();
1684 
1685   // If this value is a constant, return the constant in the smallest FP type
1686   // that can accurately represent it.  This allows us to turn
1687   // (float)((double)X+2.0) into x+2.0f.
1688   if (auto *CFP = dyn_cast<ConstantFP>(V))
1689     if (Type *T = shrinkFPConstant(CFP))
1690       return T;
1691 
1692   // We can only correctly find a minimum type for a scalable vector when it is
1693   // a splat. For splats of constant values the fpext is wrapped up as a
1694   // ConstantExpr.
1695   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1696     if (FPCExt->getOpcode() == Instruction::FPExt)
1697       return FPCExt->getOperand(0)->getType();
1698 
1699   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1700   // vectors
1701   if (Type *T = shrinkFPConstantVector(V))
1702     return T;
1703 
1704   return V->getType();
1705 }
1706 
1707 /// Return true if the cast from integer to FP can be proven to be exact for all
1708 /// possible inputs (the conversion does not lose any precision).
1709 static bool isKnownExactCastIntToFP(CastInst &I) {
1710   CastInst::CastOps Opcode = I.getOpcode();
1711   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1712          "Unexpected cast");
1713   Value *Src = I.getOperand(0);
1714   Type *SrcTy = Src->getType();
1715   Type *FPTy = I.getType();
1716   bool IsSigned = Opcode == Instruction::SIToFP;
1717   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1718 
1719   // Easy case - if the source integer type has less bits than the FP mantissa,
1720   // then the cast must be exact.
1721   int DestNumSigBits = FPTy->getFPMantissaWidth();
1722   if (SrcSize <= DestNumSigBits)
1723     return true;
1724 
1725   // Cast from FP to integer and back to FP is independent of the intermediate
1726   // integer width because of poison on overflow.
1727   Value *F;
1728   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1729     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1730     // potential rounding of negative FP input values.
1731     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1732     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1733       SrcNumSigBits++;
1734 
1735     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1736     // significant bits than the destination (and make sure neither type is
1737     // weird -- ppc_fp128).
1738     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1739         SrcNumSigBits <= DestNumSigBits)
1740       return true;
1741   }
1742 
1743   // TODO:
1744   // Try harder to find if the source integer type has less significant bits.
1745   // For example, compute number of sign bits or compute low bit mask.
1746   return false;
1747 }
1748 
1749 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1750   if (Instruction *I = commonCastTransforms(FPT))
1751     return I;
1752 
1753   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1754   // simplify this expression to avoid one or more of the trunc/extend
1755   // operations if we can do so without changing the numerical results.
1756   //
1757   // The exact manner in which the widths of the operands interact to limit
1758   // what we can and cannot do safely varies from operation to operation, and
1759   // is explained below in the various case statements.
1760   Type *Ty = FPT.getType();
1761   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1762   if (BO && BO->hasOneUse()) {
1763     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1764     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1765     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1766     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1767     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1768     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1769     unsigned DstWidth = Ty->getFPMantissaWidth();
1770     switch (BO->getOpcode()) {
1771       default: break;
1772       case Instruction::FAdd:
1773       case Instruction::FSub:
1774         // For addition and subtraction, the infinitely precise result can
1775         // essentially be arbitrarily wide; proving that double rounding
1776         // will not occur because the result of OpI is exact (as we will for
1777         // FMul, for example) is hopeless.  However, we *can* nonetheless
1778         // frequently know that double rounding cannot occur (or that it is
1779         // innocuous) by taking advantage of the specific structure of
1780         // infinitely-precise results that admit double rounding.
1781         //
1782         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1783         // to represent both sources, we can guarantee that the double
1784         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1785         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1786         // for proof of this fact).
1787         //
1788         // Note: Figueroa does not consider the case where DstFormat !=
1789         // SrcFormat.  It's possible (likely even!) that this analysis
1790         // could be tightened for those cases, but they are rare (the main
1791         // case of interest here is (float)((double)float + float)).
1792         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1793           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1794           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1795           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1796           RI->copyFastMathFlags(BO);
1797           return RI;
1798         }
1799         break;
1800       case Instruction::FMul:
1801         // For multiplication, the infinitely precise result has at most
1802         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1803         // that such a value can be exactly represented, then no double
1804         // rounding can possibly occur; we can safely perform the operation
1805         // in the destination format if it can represent both sources.
1806         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1807           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1808           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1809           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1810         }
1811         break;
1812       case Instruction::FDiv:
1813         // For division, we use again use the bound from Figueroa's
1814         // dissertation.  I am entirely certain that this bound can be
1815         // tightened in the unbalanced operand case by an analysis based on
1816         // the diophantine rational approximation bound, but the well-known
1817         // condition used here is a good conservative first pass.
1818         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1819         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1820           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1821           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1822           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1823         }
1824         break;
1825       case Instruction::FRem: {
1826         // Remainder is straightforward.  Remainder is always exact, so the
1827         // type of OpI doesn't enter into things at all.  We simply evaluate
1828         // in whichever source type is larger, then convert to the
1829         // destination type.
1830         if (SrcWidth == OpWidth)
1831           break;
1832         Value *LHS, *RHS;
1833         if (LHSWidth == SrcWidth) {
1834            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1835            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1836         } else {
1837            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1838            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1839         }
1840 
1841         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1842         return CastInst::CreateFPCast(ExactResult, Ty);
1843       }
1844     }
1845   }
1846 
1847   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1848   Value *X;
1849   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1850   if (Op && Op->hasOneUse()) {
1851     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1852     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1853     if (isa<FPMathOperator>(Op))
1854       Builder.setFastMathFlags(Op->getFastMathFlags());
1855 
1856     if (match(Op, m_FNeg(m_Value(X)))) {
1857       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1858 
1859       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1860     }
1861 
1862     // If we are truncating a select that has an extended operand, we can
1863     // narrow the other operand and do the select as a narrow op.
1864     Value *Cond, *X, *Y;
1865     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1866         X->getType() == Ty) {
1867       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1868       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1869       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1870       return replaceInstUsesWith(FPT, Sel);
1871     }
1872     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1873         X->getType() == Ty) {
1874       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1875       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1876       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1877       return replaceInstUsesWith(FPT, Sel);
1878     }
1879   }
1880 
1881   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1882     switch (II->getIntrinsicID()) {
1883     default: break;
1884     case Intrinsic::ceil:
1885     case Intrinsic::fabs:
1886     case Intrinsic::floor:
1887     case Intrinsic::nearbyint:
1888     case Intrinsic::rint:
1889     case Intrinsic::round:
1890     case Intrinsic::roundeven:
1891     case Intrinsic::trunc: {
1892       Value *Src = II->getArgOperand(0);
1893       if (!Src->hasOneUse())
1894         break;
1895 
1896       // Except for fabs, this transformation requires the input of the unary FP
1897       // operation to be itself an fpext from the type to which we're
1898       // truncating.
1899       if (II->getIntrinsicID() != Intrinsic::fabs) {
1900         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1901         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1902           break;
1903       }
1904 
1905       // Do unary FP operation on smaller type.
1906       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1907       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1908       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1909                                                      II->getIntrinsicID(), Ty);
1910       SmallVector<OperandBundleDef, 1> OpBundles;
1911       II->getOperandBundlesAsDefs(OpBundles);
1912       CallInst *NewCI =
1913           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1914       NewCI->copyFastMathFlags(II);
1915       return NewCI;
1916     }
1917     }
1918   }
1919 
1920   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1921     return I;
1922 
1923   Value *Src = FPT.getOperand(0);
1924   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1925     auto *FPCast = cast<CastInst>(Src);
1926     if (isKnownExactCastIntToFP(*FPCast))
1927       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1928   }
1929 
1930   return nullptr;
1931 }
1932 
1933 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1934   // If the source operand is a cast from integer to FP and known exact, then
1935   // cast the integer operand directly to the destination type.
1936   Type *Ty = FPExt.getType();
1937   Value *Src = FPExt.getOperand(0);
1938   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1939     auto *FPCast = cast<CastInst>(Src);
1940     if (isKnownExactCastIntToFP(*FPCast))
1941       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1942   }
1943 
1944   return commonCastTransforms(FPExt);
1945 }
1946 
1947 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1948 /// This is safe if the intermediate type has enough bits in its mantissa to
1949 /// accurately represent all values of X.  For example, this won't work with
1950 /// i64 -> float -> i64.
1951 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1952   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1953     return nullptr;
1954 
1955   auto *OpI = cast<CastInst>(FI.getOperand(0));
1956   Value *X = OpI->getOperand(0);
1957   Type *XType = X->getType();
1958   Type *DestType = FI.getType();
1959   bool IsOutputSigned = isa<FPToSIInst>(FI);
1960 
1961   // Since we can assume the conversion won't overflow, our decision as to
1962   // whether the input will fit in the float should depend on the minimum
1963   // of the input range and output range.
1964 
1965   // This means this is also safe for a signed input and unsigned output, since
1966   // a negative input would lead to undefined behavior.
1967   if (!isKnownExactCastIntToFP(*OpI)) {
1968     // The first cast may not round exactly based on the source integer width
1969     // and FP width, but the overflow UB rules can still allow this to fold.
1970     // If the destination type is narrow, that means the intermediate FP value
1971     // must be large enough to hold the source value exactly.
1972     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1973     int OutputSize = (int)DestType->getScalarSizeInBits();
1974     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1975       return nullptr;
1976   }
1977 
1978   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1979     bool IsInputSigned = isa<SIToFPInst>(OpI);
1980     if (IsInputSigned && IsOutputSigned)
1981       return new SExtInst(X, DestType);
1982     return new ZExtInst(X, DestType);
1983   }
1984   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1985     return new TruncInst(X, DestType);
1986 
1987   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1988   return replaceInstUsesWith(FI, X);
1989 }
1990 
1991 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1992   if (Instruction *I = foldItoFPtoI(FI))
1993     return I;
1994 
1995   return commonCastTransforms(FI);
1996 }
1997 
1998 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1999   if (Instruction *I = foldItoFPtoI(FI))
2000     return I;
2001 
2002   return commonCastTransforms(FI);
2003 }
2004 
2005 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
2006   return commonCastTransforms(CI);
2007 }
2008 
2009 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
2010   return commonCastTransforms(CI);
2011 }
2012 
2013 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
2014   // If the source integer type is not the intptr_t type for this target, do a
2015   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
2016   // cast to be exposed to other transforms.
2017   unsigned AS = CI.getAddressSpace();
2018   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
2019       DL.getPointerSizeInBits(AS)) {
2020     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2021         DL.getIntPtrType(CI.getContext(), AS));
2022     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
2023     return new IntToPtrInst(P, CI.getType());
2024   }
2025 
2026   if (Instruction *I = commonCastTransforms(CI))
2027     return I;
2028 
2029   return nullptr;
2030 }
2031 
2032 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
2033 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
2034   Value *Src = CI.getOperand(0);
2035 
2036   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
2037     // If casting the result of a getelementptr instruction with no offset, turn
2038     // this into a cast of the original pointer!
2039     if (GEP->hasAllZeroIndices() &&
2040         // If CI is an addrspacecast and GEP changes the poiner type, merging
2041         // GEP into CI would undo canonicalizing addrspacecast with different
2042         // pointer types, causing infinite loops.
2043         (!isa<AddrSpaceCastInst>(CI) ||
2044          GEP->getType() == GEP->getPointerOperandType())) {
2045       // Changing the cast operand is usually not a good idea but it is safe
2046       // here because the pointer operand is being replaced with another
2047       // pointer operand so the opcode doesn't need to change.
2048       return replaceOperand(CI, 0, GEP->getOperand(0));
2049     }
2050   }
2051 
2052   return commonCastTransforms(CI);
2053 }
2054 
2055 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
2056   // If the destination integer type is not the intptr_t type for this target,
2057   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
2058   // to be exposed to other transforms.
2059   Value *SrcOp = CI.getPointerOperand();
2060   Type *SrcTy = SrcOp->getType();
2061   Type *Ty = CI.getType();
2062   unsigned AS = CI.getPointerAddressSpace();
2063   unsigned TySize = Ty->getScalarSizeInBits();
2064   unsigned PtrSize = DL.getPointerSizeInBits(AS);
2065   if (TySize != PtrSize) {
2066     Type *IntPtrTy =
2067         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2068     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2069     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2070   }
2071 
2072   if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
2073     // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
2074     // While this can increase the number of instructions it doesn't actually
2075     // increase the overall complexity since the arithmetic is just part of
2076     // the GEP otherwise.
2077     if (GEP->hasOneUse() &&
2078         isa<ConstantPointerNull>(GEP->getPointerOperand())) {
2079       return replaceInstUsesWith(CI,
2080                                  Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
2081                                                        /*isSigned=*/false));
2082     }
2083   }
2084 
2085   Value *Vec, *Scalar, *Index;
2086   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2087                                         m_Value(Scalar), m_Value(Index)))) &&
2088       Vec->getType() == Ty) {
2089     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2090     // Convert the scalar to int followed by insert to eliminate one cast:
2091     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2092     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2093     return InsertElementInst::Create(Vec, NewCast, Index);
2094   }
2095 
2096   return commonPointerCastTransforms(CI);
2097 }
2098 
2099 /// This input value (which is known to have vector type) is being zero extended
2100 /// or truncated to the specified vector type. Since the zext/trunc is done
2101 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2102 /// endianness will impact which end of the vector that is extended or
2103 /// truncated.
2104 ///
2105 /// A vector is always stored with index 0 at the lowest address, which
2106 /// corresponds to the most significant bits for a big endian stored integer and
2107 /// the least significant bits for little endian. A trunc/zext of an integer
2108 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2109 /// the front of the vector for big endian targets, and the back of the vector
2110 /// for little endian targets.
2111 ///
2112 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2113 ///
2114 /// The source and destination vector types may have different element types.
2115 static Instruction *
2116 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2117                                         InstCombinerImpl &IC) {
2118   // We can only do this optimization if the output is a multiple of the input
2119   // element size, or the input is a multiple of the output element size.
2120   // Convert the input type to have the same element type as the output.
2121   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2122 
2123   if (SrcTy->getElementType() != DestTy->getElementType()) {
2124     // The input types don't need to be identical, but for now they must be the
2125     // same size.  There is no specific reason we couldn't handle things like
2126     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2127     // there yet.
2128     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2129         DestTy->getElementType()->getPrimitiveSizeInBits())
2130       return nullptr;
2131 
2132     SrcTy =
2133         FixedVectorType::get(DestTy->getElementType(),
2134                              cast<FixedVectorType>(SrcTy)->getNumElements());
2135     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2136   }
2137 
2138   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2139   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2140   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2141 
2142   assert(SrcElts != DestElts && "Element counts should be different.");
2143 
2144   // Now that the element types match, get the shuffle mask and RHS of the
2145   // shuffle to use, which depends on whether we're increasing or decreasing the
2146   // size of the input.
2147   auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2148   ArrayRef<int> ShuffleMask;
2149   Value *V2;
2150 
2151   if (SrcElts > DestElts) {
2152     // If we're shrinking the number of elements (rewriting an integer
2153     // truncate), just shuffle in the elements corresponding to the least
2154     // significant bits from the input and use poison as the second shuffle
2155     // input.
2156     V2 = PoisonValue::get(SrcTy);
2157     // Make sure the shuffle mask selects the "least significant bits" by
2158     // keeping elements from back of the src vector for big endian, and from the
2159     // front for little endian.
2160     ShuffleMask = ShuffleMaskStorage;
2161     if (IsBigEndian)
2162       ShuffleMask = ShuffleMask.take_back(DestElts);
2163     else
2164       ShuffleMask = ShuffleMask.take_front(DestElts);
2165   } else {
2166     // If we're increasing the number of elements (rewriting an integer zext),
2167     // shuffle in all of the elements from InVal. Fill the rest of the result
2168     // elements with zeros from a constant zero.
2169     V2 = Constant::getNullValue(SrcTy);
2170     // Use first elt from V2 when indicating zero in the shuffle mask.
2171     uint32_t NullElt = SrcElts;
2172     // Extend with null values in the "most significant bits" by adding elements
2173     // in front of the src vector for big endian, and at the back for little
2174     // endian.
2175     unsigned DeltaElts = DestElts - SrcElts;
2176     if (IsBigEndian)
2177       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2178     else
2179       ShuffleMaskStorage.append(DeltaElts, NullElt);
2180     ShuffleMask = ShuffleMaskStorage;
2181   }
2182 
2183   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2184 }
2185 
2186 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2187   return Value % Ty->getPrimitiveSizeInBits() == 0;
2188 }
2189 
2190 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2191   return Value / Ty->getPrimitiveSizeInBits();
2192 }
2193 
2194 /// V is a value which is inserted into a vector of VecEltTy.
2195 /// Look through the value to see if we can decompose it into
2196 /// insertions into the vector.  See the example in the comment for
2197 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2198 /// The type of V is always a non-zero multiple of VecEltTy's size.
2199 /// Shift is the number of bits between the lsb of V and the lsb of
2200 /// the vector.
2201 ///
2202 /// This returns false if the pattern can't be matched or true if it can,
2203 /// filling in Elements with the elements found here.
2204 static bool collectInsertionElements(Value *V, unsigned Shift,
2205                                      SmallVectorImpl<Value *> &Elements,
2206                                      Type *VecEltTy, bool isBigEndian) {
2207   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2208          "Shift should be a multiple of the element type size");
2209 
2210   // Undef values never contribute useful bits to the result.
2211   if (isa<UndefValue>(V)) return true;
2212 
2213   // If we got down to a value of the right type, we win, try inserting into the
2214   // right element.
2215   if (V->getType() == VecEltTy) {
2216     // Inserting null doesn't actually insert any elements.
2217     if (Constant *C = dyn_cast<Constant>(V))
2218       if (C->isNullValue())
2219         return true;
2220 
2221     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2222     if (isBigEndian)
2223       ElementIndex = Elements.size() - ElementIndex - 1;
2224 
2225     // Fail if multiple elements are inserted into this slot.
2226     if (Elements[ElementIndex])
2227       return false;
2228 
2229     Elements[ElementIndex] = V;
2230     return true;
2231   }
2232 
2233   if (Constant *C = dyn_cast<Constant>(V)) {
2234     // Figure out the # elements this provides, and bitcast it or slice it up
2235     // as required.
2236     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2237                                         VecEltTy);
2238     // If the constant is the size of a vector element, we just need to bitcast
2239     // it to the right type so it gets properly inserted.
2240     if (NumElts == 1)
2241       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2242                                       Shift, Elements, VecEltTy, isBigEndian);
2243 
2244     // Okay, this is a constant that covers multiple elements.  Slice it up into
2245     // pieces and insert each element-sized piece into the vector.
2246     if (!isa<IntegerType>(C->getType()))
2247       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2248                                        C->getType()->getPrimitiveSizeInBits()));
2249     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2250     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2251 
2252     for (unsigned i = 0; i != NumElts; ++i) {
2253       unsigned ShiftI = Shift+i*ElementSize;
2254       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2255                                                                   ShiftI));
2256       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2257       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2258                                     isBigEndian))
2259         return false;
2260     }
2261     return true;
2262   }
2263 
2264   if (!V->hasOneUse()) return false;
2265 
2266   Instruction *I = dyn_cast<Instruction>(V);
2267   if (!I) return false;
2268   switch (I->getOpcode()) {
2269   default: return false; // Unhandled case.
2270   case Instruction::BitCast:
2271     if (I->getOperand(0)->getType()->isVectorTy())
2272       return false;
2273     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2274                                     isBigEndian);
2275   case Instruction::ZExt:
2276     if (!isMultipleOfTypeSize(
2277                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2278                               VecEltTy))
2279       return false;
2280     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2281                                     isBigEndian);
2282   case Instruction::Or:
2283     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2284                                     isBigEndian) &&
2285            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2286                                     isBigEndian);
2287   case Instruction::Shl: {
2288     // Must be shifting by a constant that is a multiple of the element size.
2289     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2290     if (!CI) return false;
2291     Shift += CI->getZExtValue();
2292     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2293     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2294                                     isBigEndian);
2295   }
2296 
2297   }
2298 }
2299 
2300 
2301 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2302 /// assemble the elements of the vector manually.
2303 /// Try to rip the code out and replace it with insertelements.  This is to
2304 /// optimize code like this:
2305 ///
2306 ///    %tmp37 = bitcast float %inc to i32
2307 ///    %tmp38 = zext i32 %tmp37 to i64
2308 ///    %tmp31 = bitcast float %inc5 to i32
2309 ///    %tmp32 = zext i32 %tmp31 to i64
2310 ///    %tmp33 = shl i64 %tmp32, 32
2311 ///    %ins35 = or i64 %tmp33, %tmp38
2312 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2313 ///
2314 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2315 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2316                                                 InstCombinerImpl &IC) {
2317   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2318   Value *IntInput = CI.getOperand(0);
2319 
2320   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2321   if (!collectInsertionElements(IntInput, 0, Elements,
2322                                 DestVecTy->getElementType(),
2323                                 IC.getDataLayout().isBigEndian()))
2324     return nullptr;
2325 
2326   // If we succeeded, we know that all of the element are specified by Elements
2327   // or are zero if Elements has a null entry.  Recast this as a set of
2328   // insertions.
2329   Value *Result = Constant::getNullValue(CI.getType());
2330   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2331     if (!Elements[i]) continue;  // Unset element.
2332 
2333     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2334                                             IC.Builder.getInt32(i));
2335   }
2336 
2337   return Result;
2338 }
2339 
2340 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2341 /// vector followed by extract element. The backend tends to handle bitcasts of
2342 /// vectors better than bitcasts of scalars because vector registers are
2343 /// usually not type-specific like scalar integer or scalar floating-point.
2344 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2345                                               InstCombinerImpl &IC) {
2346   // TODO: Create and use a pattern matcher for ExtractElementInst.
2347   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2348   if (!ExtElt || !ExtElt->hasOneUse())
2349     return nullptr;
2350 
2351   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2352   // type to extract from.
2353   Type *DestType = BitCast.getType();
2354   if (!VectorType::isValidElementType(DestType))
2355     return nullptr;
2356 
2357   auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
2358   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2359                                          NewVecType, "bc");
2360   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2361 }
2362 
2363 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2364 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2365                                             InstCombiner::BuilderTy &Builder) {
2366   Type *DestTy = BitCast.getType();
2367   BinaryOperator *BO;
2368   if (!DestTy->isIntOrIntVectorTy() ||
2369       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2370       !BO->isBitwiseLogicOp())
2371     return nullptr;
2372 
2373   // FIXME: This transform is restricted to vector types to avoid backend
2374   // problems caused by creating potentially illegal operations. If a fix-up is
2375   // added to handle that situation, we can remove this check.
2376   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2377     return nullptr;
2378 
2379   Value *X;
2380   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2381       X->getType() == DestTy && !isa<Constant>(X)) {
2382     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2383     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2384     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2385   }
2386 
2387   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2388       X->getType() == DestTy && !isa<Constant>(X)) {
2389     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2390     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2391     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2392   }
2393 
2394   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2395   // constant. This eases recognition of special constants for later ops.
2396   // Example:
2397   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2398   Constant *C;
2399   if (match(BO->getOperand(1), m_Constant(C))) {
2400     // bitcast (logic X, C) --> logic (bitcast X, C')
2401     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2402     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2403     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2404   }
2405 
2406   return nullptr;
2407 }
2408 
2409 /// Change the type of a select if we can eliminate a bitcast.
2410 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2411                                       InstCombiner::BuilderTy &Builder) {
2412   Value *Cond, *TVal, *FVal;
2413   if (!match(BitCast.getOperand(0),
2414              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2415     return nullptr;
2416 
2417   // A vector select must maintain the same number of elements in its operands.
2418   Type *CondTy = Cond->getType();
2419   Type *DestTy = BitCast.getType();
2420   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2421     if (!DestTy->isVectorTy() ||
2422         CondVTy->getElementCount() !=
2423             cast<VectorType>(DestTy)->getElementCount())
2424       return nullptr;
2425 
2426   // FIXME: This transform is restricted from changing the select between
2427   // scalars and vectors to avoid backend problems caused by creating
2428   // potentially illegal operations. If a fix-up is added to handle that
2429   // situation, we can remove this check.
2430   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2431     return nullptr;
2432 
2433   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2434   Value *X;
2435   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2436       !isa<Constant>(X)) {
2437     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2438     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2439     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2440   }
2441 
2442   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2443       !isa<Constant>(X)) {
2444     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2445     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2446     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2447   }
2448 
2449   return nullptr;
2450 }
2451 
2452 /// Check if all users of CI are StoreInsts.
2453 static bool hasStoreUsersOnly(CastInst &CI) {
2454   for (User *U : CI.users()) {
2455     if (!isa<StoreInst>(U))
2456       return false;
2457   }
2458   return true;
2459 }
2460 
2461 /// This function handles following case
2462 ///
2463 ///     A  ->  B    cast
2464 ///     PHI
2465 ///     B  ->  A    cast
2466 ///
2467 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2468 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2469 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2470                                                       PHINode *PN) {
2471   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2472   if (hasStoreUsersOnly(CI))
2473     return nullptr;
2474 
2475   Value *Src = CI.getOperand(0);
2476   Type *SrcTy = Src->getType();         // Type B
2477   Type *DestTy = CI.getType();          // Type A
2478 
2479   SmallVector<PHINode *, 4> PhiWorklist;
2480   SmallSetVector<PHINode *, 4> OldPhiNodes;
2481 
2482   // Find all of the A->B casts and PHI nodes.
2483   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2484   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2485   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2486   PhiWorklist.push_back(PN);
2487   OldPhiNodes.insert(PN);
2488   while (!PhiWorklist.empty()) {
2489     auto *OldPN = PhiWorklist.pop_back_val();
2490     for (Value *IncValue : OldPN->incoming_values()) {
2491       if (isa<Constant>(IncValue))
2492         continue;
2493 
2494       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2495         // If there is a sequence of one or more load instructions, each loaded
2496         // value is used as address of later load instruction, bitcast is
2497         // necessary to change the value type, don't optimize it. For
2498         // simplicity we give up if the load address comes from another load.
2499         Value *Addr = LI->getOperand(0);
2500         if (Addr == &CI || isa<LoadInst>(Addr))
2501           return nullptr;
2502         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2503         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2504         // TODO: Remove this check when bitcast between vector and x86_amx
2505         // is replaced with a specific intrinsic.
2506         if (DestTy->isX86_AMXTy())
2507           return nullptr;
2508         if (LI->hasOneUse() && LI->isSimple())
2509           continue;
2510         // If a LoadInst has more than one use, changing the type of loaded
2511         // value may create another bitcast.
2512         return nullptr;
2513       }
2514 
2515       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2516         if (OldPhiNodes.insert(PNode))
2517           PhiWorklist.push_back(PNode);
2518         continue;
2519       }
2520 
2521       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2522       // We can't handle other instructions.
2523       if (!BCI)
2524         return nullptr;
2525 
2526       // Verify it's a A->B cast.
2527       Type *TyA = BCI->getOperand(0)->getType();
2528       Type *TyB = BCI->getType();
2529       if (TyA != DestTy || TyB != SrcTy)
2530         return nullptr;
2531     }
2532   }
2533 
2534   // Check that each user of each old PHI node is something that we can
2535   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2536   for (auto *OldPN : OldPhiNodes) {
2537     for (User *V : OldPN->users()) {
2538       if (auto *SI = dyn_cast<StoreInst>(V)) {
2539         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2540           return nullptr;
2541       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2542         // Verify it's a B->A cast.
2543         Type *TyB = BCI->getOperand(0)->getType();
2544         Type *TyA = BCI->getType();
2545         if (TyA != DestTy || TyB != SrcTy)
2546           return nullptr;
2547       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2548         // As long as the user is another old PHI node, then even if we don't
2549         // rewrite it, the PHI web we're considering won't have any users
2550         // outside itself, so it'll be dead.
2551         if (!OldPhiNodes.contains(PHI))
2552           return nullptr;
2553       } else {
2554         return nullptr;
2555       }
2556     }
2557   }
2558 
2559   // For each old PHI node, create a corresponding new PHI node with a type A.
2560   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2561   for (auto *OldPN : OldPhiNodes) {
2562     Builder.SetInsertPoint(OldPN);
2563     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2564     NewPNodes[OldPN] = NewPN;
2565   }
2566 
2567   // Fill in the operands of new PHI nodes.
2568   for (auto *OldPN : OldPhiNodes) {
2569     PHINode *NewPN = NewPNodes[OldPN];
2570     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2571       Value *V = OldPN->getOperand(j);
2572       Value *NewV = nullptr;
2573       if (auto *C = dyn_cast<Constant>(V)) {
2574         NewV = ConstantExpr::getBitCast(C, DestTy);
2575       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2576         // Explicitly perform load combine to make sure no opposing transform
2577         // can remove the bitcast in the meantime and trigger an infinite loop.
2578         Builder.SetInsertPoint(LI);
2579         NewV = combineLoadToNewType(*LI, DestTy);
2580         // Remove the old load and its use in the old phi, which itself becomes
2581         // dead once the whole transform finishes.
2582         replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2583         eraseInstFromFunction(*LI);
2584       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2585         NewV = BCI->getOperand(0);
2586       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2587         NewV = NewPNodes[PrevPN];
2588       }
2589       assert(NewV);
2590       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2591     }
2592   }
2593 
2594   // Traverse all accumulated PHI nodes and process its users,
2595   // which are Stores and BitcCasts. Without this processing
2596   // NewPHI nodes could be replicated and could lead to extra
2597   // moves generated after DeSSA.
2598   // If there is a store with type B, change it to type A.
2599 
2600 
2601   // Replace users of BitCast B->A with NewPHI. These will help
2602   // later to get rid off a closure formed by OldPHI nodes.
2603   Instruction *RetVal = nullptr;
2604   for (auto *OldPN : OldPhiNodes) {
2605     PHINode *NewPN = NewPNodes[OldPN];
2606     for (User *V : make_early_inc_range(OldPN->users())) {
2607       if (auto *SI = dyn_cast<StoreInst>(V)) {
2608         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2609         Builder.SetInsertPoint(SI);
2610         auto *NewBC =
2611           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2612         SI->setOperand(0, NewBC);
2613         Worklist.push(SI);
2614         assert(hasStoreUsersOnly(*NewBC));
2615       }
2616       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2617         Type *TyB = BCI->getOperand(0)->getType();
2618         Type *TyA = BCI->getType();
2619         assert(TyA == DestTy && TyB == SrcTy);
2620         (void) TyA;
2621         (void) TyB;
2622         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2623         if (BCI == &CI)
2624           RetVal = I;
2625       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2626         assert(OldPhiNodes.contains(PHI));
2627         (void) PHI;
2628       } else {
2629         llvm_unreachable("all uses should be handled");
2630       }
2631     }
2632   }
2633 
2634   return RetVal;
2635 }
2636 
2637 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder,
2638                                         const DataLayout &DL) {
2639   Value *Src = CI.getOperand(0);
2640   PointerType *SrcPTy = cast<PointerType>(Src->getType());
2641   PointerType *DstPTy = cast<PointerType>(CI.getType());
2642 
2643   // Bitcasts involving opaque pointers cannot be converted into a GEP.
2644   if (SrcPTy->isOpaque() || DstPTy->isOpaque())
2645     return nullptr;
2646 
2647   Type *DstElTy = DstPTy->getNonOpaquePointerElementType();
2648   Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType();
2649 
2650   // When the type pointed to is not sized the cast cannot be
2651   // turned into a gep.
2652   if (!SrcElTy->isSized())
2653     return nullptr;
2654 
2655   // If the source and destination are pointers, and this cast is equivalent
2656   // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2657   // This can enhance SROA and other transforms that want type-safe pointers.
2658   unsigned NumZeros = 0;
2659   while (SrcElTy && SrcElTy != DstElTy) {
2660     SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2661     ++NumZeros;
2662   }
2663 
2664   // If we found a path from the src to dest, create the getelementptr now.
2665   if (SrcElTy == DstElTy) {
2666     SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2667     GetElementPtrInst *GEP = GetElementPtrInst::Create(
2668         SrcPTy->getNonOpaquePointerElementType(), Src, Idxs);
2669 
2670     // If the source pointer is dereferenceable, then assume it points to an
2671     // allocated object and apply "inbounds" to the GEP.
2672     bool CanBeNull, CanBeFreed;
2673     if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
2674       // In a non-default address space (not 0), a null pointer can not be
2675       // assumed inbounds, so ignore that case (dereferenceable_or_null).
2676       // The reason is that 'null' is not treated differently in these address
2677       // spaces, and we consequently ignore the 'gep inbounds' special case
2678       // for 'null' which allows 'inbounds' on 'null' if the indices are
2679       // zeros.
2680       if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2681         GEP->setIsInBounds();
2682     }
2683     return GEP;
2684   }
2685   return nullptr;
2686 }
2687 
2688 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2689   // If the operands are integer typed then apply the integer transforms,
2690   // otherwise just apply the common ones.
2691   Value *Src = CI.getOperand(0);
2692   Type *SrcTy = Src->getType();
2693   Type *DestTy = CI.getType();
2694 
2695   // Get rid of casts from one type to the same type. These are useless and can
2696   // be replaced by the operand.
2697   if (DestTy == Src->getType())
2698     return replaceInstUsesWith(CI, Src);
2699 
2700   if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2701     // If we are casting a alloca to a pointer to a type of the same
2702     // size, rewrite the allocation instruction to allocate the "right" type.
2703     // There is no need to modify malloc calls because it is their bitcast that
2704     // needs to be cleaned up.
2705     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2706       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2707         return V;
2708 
2709     if (Instruction *I = convertBitCastToGEP(CI, Builder, DL))
2710       return I;
2711   }
2712 
2713   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2714     // Beware: messing with this target-specific oddity may cause trouble.
2715     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2716       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2717       return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2718                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2719     }
2720 
2721     if (isa<IntegerType>(SrcTy)) {
2722       // If this is a cast from an integer to vector, check to see if the input
2723       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2724       // the casts with a shuffle and (potentially) a bitcast.
2725       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2726         CastInst *SrcCast = cast<CastInst>(Src);
2727         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2728           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2729             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2730                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2731               return I;
2732       }
2733 
2734       // If the input is an 'or' instruction, we may be doing shifts and ors to
2735       // assemble the elements of the vector manually.  Try to rip the code out
2736       // and replace it with insertelements.
2737       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2738         return replaceInstUsesWith(CI, V);
2739     }
2740   }
2741 
2742   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2743     if (SrcVTy->getNumElements() == 1) {
2744       // If our destination is not a vector, then make this a straight
2745       // scalar-scalar cast.
2746       if (!DestTy->isVectorTy()) {
2747         Value *Elem =
2748           Builder.CreateExtractElement(Src,
2749                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2750         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2751       }
2752 
2753       // Otherwise, see if our source is an insert. If so, then use the scalar
2754       // component directly:
2755       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2756       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2757         return new BitCastInst(InsElt->getOperand(1), DestTy);
2758     }
2759 
2760     // Convert an artificial vector insert into more analyzable bitwise logic.
2761     unsigned BitWidth = DestTy->getScalarSizeInBits();
2762     Value *X, *Y;
2763     uint64_t IndexC;
2764     if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2765                                         m_Value(Y), m_ConstantInt(IndexC)))) &&
2766         DestTy->isIntegerTy() && X->getType() == DestTy &&
2767         Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2768       // Adjust for big endian - the LSBs are at the high index.
2769       if (DL.isBigEndian())
2770         IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2771 
2772       // We only handle (endian-normalized) insert to index 0. Any other insert
2773       // would require a left-shift, so that is an extra instruction.
2774       if (IndexC == 0) {
2775         // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2776         unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2777         APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2778         Value *AndX = Builder.CreateAnd(X, MaskC);
2779         Value *ZextY = Builder.CreateZExt(Y, DestTy);
2780         return BinaryOperator::CreateOr(AndX, ZextY);
2781       }
2782     }
2783   }
2784 
2785   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2786     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2787     // a bitcast to a vector with the same # elts.
2788     Value *ShufOp0 = Shuf->getOperand(0);
2789     Value *ShufOp1 = Shuf->getOperand(1);
2790     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2791     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2792     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2793         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2794         ShufElts == SrcVecElts) {
2795       BitCastInst *Tmp;
2796       // If either of the operands is a cast from CI.getType(), then
2797       // evaluating the shuffle in the casted destination's type will allow
2798       // us to eliminate at least one cast.
2799       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2800            Tmp->getOperand(0)->getType() == DestTy) ||
2801           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2802            Tmp->getOperand(0)->getType() == DestTy)) {
2803         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2804         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2805         // Return a new shuffle vector.  Use the same element ID's, as we
2806         // know the vector types match #elts.
2807         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2808       }
2809     }
2810 
2811     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2812     // a byte-swap:
2813     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2814     // TODO: We should match the related pattern for bitreverse.
2815     if (DestTy->isIntegerTy() &&
2816         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2817         SrcTy->getScalarSizeInBits() == 8 &&
2818         ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() &&
2819         Shuf->isReverse()) {
2820       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2821       assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2822       Function *Bswap =
2823           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2824       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2825       return CallInst::Create(Bswap, { ScalarX });
2826     }
2827   }
2828 
2829   // Handle the A->B->A cast, and there is an intervening PHI node.
2830   if (PHINode *PN = dyn_cast<PHINode>(Src))
2831     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2832       return I;
2833 
2834   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2835     return I;
2836 
2837   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2838     return I;
2839 
2840   if (Instruction *I = foldBitCastSelect(CI, Builder))
2841     return I;
2842 
2843   if (SrcTy->isPointerTy())
2844     return commonPointerCastTransforms(CI);
2845   return commonCastTransforms(CI);
2846 }
2847 
2848 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2849   // If the destination pointer element type is not the same as the source's
2850   // first do a bitcast to the destination type, and then the addrspacecast.
2851   // This allows the cast to be exposed to other transforms.
2852   Value *Src = CI.getOperand(0);
2853   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2854   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2855 
2856   if (!SrcTy->hasSameElementTypeAs(DestTy)) {
2857     Type *MidTy =
2858         PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace());
2859     // Handle vectors of pointers.
2860     if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
2861       MidTy = VectorType::get(MidTy, VT->getElementCount());
2862 
2863     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2864     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2865   }
2866 
2867   return commonPointerCastTransforms(CI);
2868 }
2869